Module Parmap
module Parmap:sig..end
Module Parmap: efficient parallel map, fold and mapfold on lists and
arrays on multicores.
All the primitives allow to control the granularity of the parallelism
via an optional parameter <code class="code">chunksize</code>: if <code class="code">chunksize</code> is omitted, the
input sequence is split evenly among the available cores; if <code class="code">chunksize</code>
is specified, the input data is split in chunks of size <code class="code">chunksize</code> and
dispatched to the available cores using an on demand strategy that
ensures automatic load balancing.
A specific primitive <code class="code">array_float_parmap</code> is provided for fast operations on float arrays.<br>
Setting and getting the default value for ncores
val set_default_ncores : int -> unitval get_default_ncores : unit -> intSequence type, subsuming lists and arrays
type 'a sequence =
| |
L of |
| |
A of |
The parmapfold, parfold and parmap generic functions, for efficiency reasons,
convert the input data into an array internally, so we provide the 'a sequence type
to allow passing an array directly as input.
If you want to perform a parallel map operation on an array, use array_parmap or array_float_parmap instead.
Parallel mapfold
val parmapfold : ?ncores:int ->
?chunksize:int ->
('a -> 'b) ->
'a sequence -> ('b -> 'c -> 'c) -> 'c -> ('c -> 'c -> 'c) -> 'cparmapfold ~ncores:n f (L l) op b concat computes List.fold_right op (List.map f l) b
by forking n processes on a multicore machine.
You need to provide the extra concat operator to combine the partial results of the
fold computed on each core. If 'b = 'c, then concat may be simply op.
The order of computation in parallel changes w.r.t. sequential execution, so this
function is only correct if op and concat are associative and commutative.
If the optional chunksize parameter is specified,
the processes compute the result in an on-demand fashion
on blocks of size chunksize.
parmapfold ~ncores:n f (A a) op b concat computes Array.fold_right op (Array.map f a) bParallel fold
val parfold : ?ncores:int ->
?chunksize:int ->
('a -> 'b -> 'b) -> 'a sequence -> 'b -> ('b -> 'b -> 'b) -> 'bparfold ~ncores:n op (L l) b concat computes List.fold_right op l b
by forking n processes on a multicore machine.
You need to provide the extra concat operator to combine the partial results of the
fold computed on each core. If 'b = 'c, then concat may be simply op.
The order of computation in parallel changes w.r.t. sequential execution, so this
function is only correct if op and concat are associative and commutative.
If the optional chunksize parameter is specified,
the processes compute the result in an on-demand fashion
on blocks of size chunksize.
parfold ~ncores:n op (A a) b concat similarly computes Array.fold_right op a b.Parallel map
val parmap : ?ncores:int -> ?chunksize:int -> ('a -> 'b) -> 'a sequence -> 'b listparmap ~ncores:n f (L l) computes List.map f l
by forking n processes on a multicore machine.
parmap ~ncores:n f (A a) computes Array.map f a
by forking n processes on a multicore machine.
If the optional chunksize parameter is specified,
the processes compute the result in an on-demand fashion
on blocks of size chunksize; this provides automatic
load balancing for unbalanced computations, but the order
of the result is no longer guaranteed to be preserved.Parallel iteration
val pariter : ?ncores:int -> ?chunksize:int -> ('a -> unit) -> 'a sequence -> unitpariter ~ncores:n f (L l) computes List.iter f l
by forking n processes on a multicore machine.
parmap ~ncores:n f (A a) computes Array.iter f a
by forking n processes on a multicore machine.
If the optional chunksize parameter is specified,
the processes perform the computation in an on-demand fashion
on blocks of size chunksize; this provides automatic
load balancing for unbalanced computations.Parallel mapfold, indexed
val parmapifold : ?ncores:int ->
?chunksize:int ->
(int -> 'a -> 'b) ->
'a sequence -> ('b -> 'c -> 'c) -> 'c -> ('c -> 'c -> 'c) -> 'cParallel map, indexed
val parmapi : ?ncores:int ->
?chunksize:int -> (int -> 'a -> 'b) -> 'a sequence -> 'b listParallel iteration, indexed
val pariteri : ?ncores:int ->
?chunksize:int -> (int -> 'a -> unit) -> 'a sequence -> unitParallel map on arrays
val array_parmap : ?ncores:int -> ?chunksize:int -> ('a -> 'b) -> 'a array -> 'b arrayarray_parmap ~ncores:n f a computes Array.map f a
by forking n processes on a multicore machine.
If the optional chunksize parameter is specified,
the processes compute the result in an on-demand fashion
on blochs of size chunksize; this provides automatic
load balancing for unbalanced computations, but the order
of the result is no longer guaranteed to be preserved.Parallel map on arrays, indexed
val array_parmapi : ?ncores:int -> ?chunksize:int -> (int -> 'a -> 'b) -> 'a array -> 'b arrayParallel map on float arrays
exception WrongArraySize
type buf
: float array -> buf
init_shared_buffer a creates a new memory mapped shared buffer big enough to hold a float array of the size of a.
This buffer can be reused in a series of calls to array_float_parmap, avoiding the cost of reallocating it each time.val array_float_parmap : ?ncores:int ->
?chunksize:int ->
?result:float array ->
?sharedbuffer:buf -> ('a -> float) -> 'a array -> float array
array_float_parmap ~ncores:n f a computes Array.map f a by forking
n processes on a multicore machine, and preallocating the resulting
array as shared memory, which allows significantly more efficient
computation than calling the generic array_parmap function. If the
optional chunksize parameter is specified, the processes compute the
result in an on-demand fashion on blochs of size chunksize; this
provides automatic load balancing for unbalanced computations, *and* the
order of the result is still guaranteed to be preserved.
In case you already have at hand an array where to store the result, you
can squeeze out some more cpu cycles by passing it as optional parameter
result: this will avoid the creation of a result array, which can be
costly for very large data sets. Raises WrongArraySize if result is too
small to hold the data.
It is possible to share the same preallocated shared memory space across
calls, by initialising the space calling init_shared_buffer a and
passing the result as the optional sharedbuffer parameter to each
subsequent call to array_float_parmap. Raises WrongArraySize if
sharedbuffer is too small to hold the input data.
Parallel map on float arrays, indexed
val array_float_parmapi : ?ncores:int ->
?chunksize:int ->
?result:float array ->
?sharedbuffer:buf -> (int -> 'a -> float) -> 'a array -> float arrayLike array_float_parmap, but the map function gets as an extra argument the index of the mapped element
Debugging
val debugging : bool -> unitEnable or disable debugging code in the library; default: false
Redirection of stdout and stderr
val redirecting : bool -> unitEnable or disable the redirection of the stdout and stderr. If enabled, the stdin and stdout in the workers will be redirected to files located in the temporary directory /tmp, carrying names of the shape .parmap.XXXXX; default: false