Delimiting diagrams

Vincent van Oostrom*

Abstract

We propose a way in which a strategy may exceed another one. In
particular, we say that a strategy uniformly exceeds another one, if every
maximal reduction for the former is as least as long as every reduction for
the latter. For instance, we show that the strategy Fo uniformly exceeds
any other strategy for the ordinary A-calculus. In order to prove these
results we introduce the notion of a delimiting diagram. Its usefulness is
shown by presenting simple proofs not only of some classical results, but
also of some new ones such as maximality of Fi, for the A-calculus with
explicit substitutions Ax~.

1 Delimiting diagrams

We assume familiarity with the basics of rewriting. Our notions and notations
are from [5], For the convenience of the reader, we have recapitulated some
fundamental notions from that book in Appendix A.

Throughout, we assume that the abstract rewrite systems considered in a
given context have the same objects and normal forms. We employ —,—, —
to range over abstract rewrite systems and use o, 7, v to denote reductions. A
reduction o may be finite or infinite. That is, its length |o| is either some natural
number or w. Two reductions are co-initial if they have the same source, cofinal
if they have the same target, and coextensive if they are co-initial, and cofinal or
either is infinite. The composition o - T is only defined if o has a target (so o is
finite) which is the source of 7. A reduction o is a prefiz of itself and of any o,
and 7 is a suffiz of the latter reduction. We employ underlining/overlining to
indicate a prefix/suffix of a reduction, implicitly assuming that whenever both
a prefix o and suffix @ of o are specified then 0 = ¢ - 7. A reduction is mazimal
if it is a prefix only of itself.

Definition. A diagram D (for — and —) is a quadruple (g, 0,7, 7), such that
o and T are coextensive, ¢ is a —-reduction which is a prefix of ¢ such that
the induced suffix 7 (if any) of ¢ is a —-reduction, and vice versa T is a —»-
reduction which is a prefix of 7 such that the induced suffix 7 (if any) of 7 is a
—-reduction.
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The diagram D is empty/mazimal if all reductions are so, trivial if either
prefix is empty, local if both prefixes consist of exactly one step, and delimiting
if |o] < |7,

Note that a maximal delimiting diagram is of the shape (o,0,7,7), hence
we simply say the pair o,7 is delimiting. Unlike the diagrams often found in
the literature our diagrams can be both partial in that they may ‘lack’ some
sides, and infinite in that sides may not have an end-point. The following figure
illustrates abstractly that a delimiting diagram D = (g, 0, 7, 7) may have, apart
from the ‘standard’ shape on the left, six other shapes varying in partiality and

infinity.
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Here edges denote reductions and vertices indicate sources/targets, as usual.
Thus o is the path from the top—left vertex going down and then right, and 7
first goes right and then down. By the diagrams being delimiting, if the former
path does not end in a vertex, i.e. if o is infinite, then the latter does not end
in a vertex either, i.e. 7 is infinite as well.

Definition. Delimiting diagrams D; = (o;, 04, 73, 7;) for i€ {1,2}, are composed
horizontally and vertically by ‘pasting’ them: E.g. if the suffix 77 of 7 exists and
coincides with the prefix oy of o2, then the horizontal composition D1|Dy of Dy
and D5 is the diagram (o1, 0102, 71 -T2, T1-T2) if 03 exists, and (o1, 01, 7172, T1-T2)

if o3 does not exist. The vertical composition g—; of Dy and D5 is defined
analogously.
Proposition. e Delimiting diagrams are closed under both compositions.

e Both compositions are associative.

D11 D12 _ D11|Di2
D21 | Das D21 |D22

e The exchange law holds, if all compositions are defined.

Proof. By routinely pasting diagrams. O

2 Uniformly exceeds

Definition. — uniformly exceeds —, denoted by — > — if each pair of co-
initial maximal —,—-reductions is delimiting.

This is a strong requirement as shown by the following examples.



Example. 1. The non-confluent ARS b « a — ¢ does not uniformly exceed
itself as the pair of co-initial maximal reductions a — b,a — c¢ is not
delimiting since the reductions are not co-extensive (cofinal).

2. The confluent ARS a < b — ¢ does not uniformly exceed itself as the pair
of co-initial maximal reductions a — b — ¢,a — ¢ is not delimiting since
the latter is not as long as the former (despite being cofinal).

The problem in the first example is that the ARS does not have unique normal
forms. The problem in the second example is that the ARS is not ... uniform.
It is easy to see that deterministic ARSs are uniform in the sense that on them
> is reflexive.

Lemma. > is transitive.

Proof. Suppose — > — > — and let o,u be a co-initial maximal pair of
— »—-reductions. Choose any maximal —-reduction 7 co-initial to ¢ and wv.
By assumption both the pairs 0,7 and 7,0 are delimiting, so |o| < |7| < |v].
Moreover, the only way in which o,v could fail to be coextensive is if both o, v
were finite but 7 not, which is impossible since |7| < |v|, and we conclude. O

Proving that one ARS uniformly exceeds another one can be localised.

Definition. We say that — uniformly delimits — if any peak b <4 a —y ¢
can be completed to a delimiting diagram, i.e. (¢, ¢ - 0,9, - 7) is a delimiting
diagram for some —-reduction ¢ and —-reduction 7.

Note that |o] < |7| holds for o, 7 as in the definition.

m

Lemma (Progress). If — uniformly delimits —, and b <™ a —™ ¢, then

d «""™ ¢ for some d.

Proof. By induction on n.! In case n < m, setting d = ¢ works, and in case
m =0, d = b does. Supposing n > m > 1 (see the figure below), there exist b’
and ¢ such that b <"1 ¥ «—a — ¢ -1 ¢, By uniform delimitation,
either there is an infinite —-reduction from ¢’ or there are n’ < m’, d’ such that
v —" d ™ ¢/. We claim that in either case there is a —-reduction of length
n =1 from ¢’. If the claim holds true, then by the IH for that reduction and

¢ —»™1 ¢, there is a d such that d «—™=D=(m=1 ¢ and we conclude.

=1
a = ¢ n > C UD = uniform delimitation
\L UD IH \L IH = induction hypothesis
n < m/ A n=m A = arithmetic for naturals
b ——— = d d

n-1 (n=1)=n'
b d//

M. Bezem has shown that formalising the induction step in Geometric Logic [1] its proof
is automatable.



To prove the claim note that it holds trivially if ¢’ allows an infinite —-reduction.
Otherwise (see the figure above), by the IH for b <"1 #/ —n" ', there is a
d” such that d” «—"=D=n" @' hence d”’ —((n=D=n)+tm" o+ By calculating
(n=1)=n)+m' >((n=1)=m')+m' =max(n = 1,m') >n =1 we find a
reduction of length n — 1 from ¢’ as desired. O

Lemma (Extension). If — uniformly delimits —, then for ¢ normal, b «"
a —™ ¢ is completable into a delimiting diagram, i.e. b —* ¢ with n + k < m.

Proof. By induction on m. In case m = 0, then n = 0 by our global assumption
that —,—-normal forms coincide. In case n = 0, setting k = m works. Suppos-
ing n,m > 1, there exist b’ and ¢’ such that b <"1 b «— a — ¢/ ™! ¢c. By
uniform delimitation, either there is an infinite —-reduction from ¢’, or there
are n’ < m/, d such that ¥’ —" d «—™ ¢/. The former case is impossible,
since this would yield by the Progress Lemma some non-empty reduction from
¢ contradicting it being in normal form. Thus the latter case holds and by the
H for & «™ ¢ —m=1c d' —F ¢ with m’+ k" < m =1, hence b’ —"'+¥ ¢. By
n'+k <m +k <m-=1the IH may be applied to b —"1 §/ ="' +*" ¢ vielding
b —F ¢ with (n = 1)+ k < n’ + k', which implies n + k < m as desired. O

In the following, we first assume — to be a strategy for —, next, dually, — to
be a strategy for —, and finally both, i.e. that —, — coincide. By the definition
of strategy the normal forms of —, — coincide each time, in concordance with
our global assumption. So, first, let — be a strategy for —. Then we leave —
implicit, and say — is uniformly minimal instead of — uniformly delimits —.

Lemma (Internal Needed). The internal needed strategy is uniformly min-
imal for orthogonal TRSs.

Proof. 2 An internal needed redex is an innermost redex among the needed ones.
We distinguish cases on the relative positions of the redexes contracted at p, ¢
in a peak s «p t =4 w:

(=) Then s = u, so the —-step is uniformly minimal.

(Il) Then s —4 v <} u, for some term v. Since at least one of the residuals of a
needed redex must be needed, and here the needed redex has a unique residual,
it must therefore be needed, so in fact v +—, v and we are ok.

(<) Then q is non-needed. Now consider a maximal —-reduction from ¢ via s.
Since this is an internal needed reduction, its projection over the non-needed
g-step yields an internal needed reduction again from wu, of exactly the same
length. If the former reduction is finite, then the latter reduction being its
projection has the same target, from which one easily concludes.

(>) Then s —, v <« u for some v, where the —-reduction in fact contracts
the residuals of the redex at position ¢ which all are at disjoint positions. We
may partition this set into the non-needed and the internal needed residuals,
and accordingly partition the reduction v <« u as v «— v’ «— u. Note that since

2 Apart from separating out uniform minimality, this proof also corrects the flawed proof
of Theorem 9.4.7 in [5].



p is needed, the latter partition is non-empty. Since taking the residual of any
needed reduction from v’ along v <« v’ yields a reduction from v of exactly the
same length, the result follows from confluence (or non-termination). O

Minimality and normalisation of the internal needed strategy follow:

Theorem (Minimality). If — is uniformly minimal, then it is minimal and
normalising.

Proof. Suppose a —" b with b a normal form. Then, by the Extension Lemma,
m exceeds the length of any —-reduction from a (normalisation), in particular
of any —-reduction from a to b (minimality). O

Another application of the Minimality Theorem is the well-known fact that the
Gross-Knuth strategy —e—gx, contracting all redexes in a term in one go, is
minimal and normalising for orthogonal rewrite systems, be it TRSs, the A\j3-
calculus, or a rewrite system in any higher-order format such as Nipkow’s higher-
order pattern rewrite systems (PRSs), Klop’s combinatory reduction systems
(CRSs), or Khasidashvili’s expression reduction systems (ERSs).

Lemma (Gross-Knuth). e~ is uniformly minimal for orthogonal PRSs.

Proof. If s «e-gx t —o— wu, then either s = uw or s «e—gx wu or there exists
some v such that s —e» v «e-gxg wu, by the standard theory for projecting
multi-steps. O

Next, let — be a strategy for —. We leave — implicit and say — is uniformly
mazximal instead of — uniformly delimits —. How to find such a —7 For ortho-
gonal second-order rewrite systems?® external steps would fit the bill, but for their
failure to deal with erasure: e.g. for the A-calculus leftmost-outermost (lmo)
steps are external but uniform maximality fails for (Az.y)N' — (Az.y)N — y
since (A\z.y)N’ — y. The limit strategy? solves this by calling itself on erased
arguments, instead of taking the external step in such cases.

Lemma (Limit). The limit strategy is uniformly maximal for orthogonal second-
order PRSs (e.g. for CRSs).5

Proof. Distinguish cases on the relative positions of the redexes contracted at
D, qin s «pt—>gu

(=) Then s = u, so uniform maximality holds.

(Il) Then s —4 v «—p u, for some term v, and we are ok again.

(<) Then by definition of — and orthogonality, p must be a redex erasing ¢, so
5 —p u.

(>) Then s —4 v <o u for some v, where the latter reduction contracts the

3The rewrite systems should also be fully-extended in the sense of [4, Def. 10], meaning
that rules such as the n-rule in the A-calculus testing for the absence of a bound variable are
forbidden.

4The strategy Foo for the A-calculus is a special case of a limit strategy.

5Also here, full-extendedness is required (to guarantee existence of external steps).



residuals of the redex at position p, which holds by the diamond property for
multi-steps in orthogonal PRSs [5, Theorem 11.6.29]. If s —, v is non-erasing,
then s —, v. Otherwise,5 —-reduce each erased argument in turn to its normal
form, before contracting the (then limit) redex at ¢ to v. By [5, Theorem 11.6.29]
again, u reduces to v by performing for each erased argument of s, these same
steps on the (non-empty) set of descendants of each argument in u.” To guar-
antee that this reduction has at least the same length as that from s, it suffices
to perform the reduction on the descendants according to the inside-out order
of the descendants. The only exception to this is when the —-reduction from s
be infinite, but then u allows an infinite reduction as well. O

The A-calculus with explicit substitutions Ax~ is a left-linear and left-normal
second-order PRS [4, Def. 13]. So lmo-redexes are external, inducing a limit
strategy known as F.

Lemma (Ax~-limit). Fi is uniformly maximal for Ax~.

Proof. Tt suffices to extend the case analysis in the proof of the Limit Lemma
with overlap:

(#) CIM (=N {yi=P)] —p Cl\aM)N (y:=P)] —q Cl(A.M)(y:=P)N (=P},
As in the (>)-case we simulate a —-reduction from s, by a reduction from u
which is at least as long, giving the desired result by confluence of Ax~. Start
simulating with u — C[M (y:=P)(x:=N(y:=P))] = «/. Then the idea is that
the (z:=N)(y:=P)-closure occurring in s as indicated, is only ever replicated in
its entirety, in two consecutive —»-steps, which are matched on v’ each time by
replicating the corresponding (y:=P){xz:=N (y:=P))-closure. Only if a variable
is reached, a further case distinction is needed:

(x) Then conclude from x(z:=N){y:=P) — N {y:=P) <2 z(y:=P){z:=N (y:=P)).
(y) Then — recurs on N and we go via y(z:=N"){y:=P) — y({y:=P) — P to
P’, with N’, P’ the normal forms of N, P. This is matched by a reduction
from y(y:=P){x:=N(y:=P)) via y{y:=P){x:=N'(y:=P)) — P(x:=N'(y:=P))
to P'{x:=N'({y:=P)) to P’ (in at least one step), using that  occurs in P nor
P’, and that P’ is in normal form so does not contain closures.

(z) As in the previous case but simpler as we end up just in z (if — terminates
at all). O

These strategies being uniformly maximal implies their maximality and per-
petuality, by substituting the latters for minimality and normalisation in (the
proof of) the Minimality Theorem:

Theorem (Maximality). If — is uniformly maximal, then it is maximal and
perpetual.

6In the M-calculus this is witnessed by e.g. (Az.y)N «— (Az.(Az.y)z)N — (Az.y)N. In
that case, we should have first —s-reduced N to normal form, say N’, before to proceed with
(Az,y)N' —y

"For third order rewrite systems this might not be possible, and the theorem fails.



This answers the open question whether F,, is maximal [2, Rem. 3.18] for Ax~,
in the affirmative.’

Finally, we let — coincide with —, in which case we speak of — being
self-delimiting. Joining minimality and maximality into equidistance, i.e. all
reductions from a given object a to a normal form b have the same length, and
normalisation and perpetuality into uniform normalisation [4, Def. 2|, i.e. for
all objects a, WN(a) implies SN(a), we have:

Theorem (Self-delimitation). if — is self-delimiting, then it is equidistant
and uniformly normalising.

This covers many notions and results in the literature: Balanced WCR [6] re-
quires & = [ (in the definition of — uniform delimitation —), and its general-
isation balanced SCR [3] requires the natural numbers and object chosen for
a given a peak and its symmetric version to be identical. Linear biclosed [4]
requites k = 0 or k = 1 = [, and its generalisation SCR=! [3] k = 0 = [
or k <1 < [. Our generalisation is proper in all these cases as witnessed by
a—b—e2 fand a — ¢ — d — e. Beware of symmetry (cf. Exc. 1.3.11): for
any ARS if b < a — ¢ then also ¢ < a — b. Hence self-delimitation requires
that in such a case we not only have b —™ d <" ¢, for some d and some n < m,
but also b =" d' —™ ¢, for some d’ and some n’ > m/
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A Basic notions and facts

For the convenience of the reader we recapitulate some basic notions and facts from [5]
as used in this paper. For each, we put a reference to the corresponding item-number
in [5] between parentheses to facilitate locating the motivation for them as given there.

Definition (8.2.2). An abstract rewriting system, ARS for short, is a quadruple
(A, @, src, tgt) with A a set of objects, ® a set of steps and src, tgt :® — A the source
and target functions, respectively.

Definition (8.2.5(i)). Let —; = (A, ®;, src;, tgt;) be abstract rewriting systems, for
i1€{1,2}. We say —1 is a sub-abstract-rewriting-system (sub-ARS) of — if A; C As,
®; C Py, and srcy, tgt, are the restrictions of srca, tgt, to @;.

Definition (8.5.59). A term rewrite rule is left-normal if in its left-hand side no
function symbols occur to the right of a variable. A term rewriting system is left-
normal if all its rules are.

Definition (9.1.1). A strategy for an abstract rewriting system — is a sub-ARS of
— having the same objects and normal forms.

Definition (9.1.4). An object of an abstract rewriting system is deterministic if it is
the source of at most one step. An abstract rewriting system is deterministic if all its
objects are so.

Definition (9.1.12). A strategy for an ARS — is normalizing if it is terminating.

Definition (9.2.1). A step ¢ from a term ¢ is said to be needed if some residual of ¢
must be eliminated by overlap in any reduction from t to normal form.

Theorem (9.2.9). The needed strategy is normalizing for orthogonal term rewriting
systems.

Definition (9.2.31). A step from a term is external to a reduction from that term if
its residuals are not nested by other (not necessarily contracted) redexes in the course
of the reduction. The step is external if it is external to any reduction.

Definition (9.4.1). A strategy is minimal if for any term ¢, the length of any reduc-
tion from t to a normal form s according to the strategy, is minimal among all possible
reductions from ¢ to s.

Definition (9.4.4). A step from a term is an internal step if its residuals do not nest
needed redexes in the course of any reduction. The internal needed strategy contracts
internal needed steps.

Lemma (9.4.5). Innermost needed redexes are internal needed for orthogonal term
rewriting systems.

Definition (9.5.1). A strategy is mazimal if the minimal number of steps according
to the strategy, needed to reach a normal form is maximal among all reductions to
normal form, for any given term.

A step is perpetual if it preserves non-termination. A strategy is perpetual if it
performs perpetual steps.

Definition (9.5.5). The limit strategy is inductively defined by:
e any non-redex-erasing external step is a limit step.
e if ¢:t — s is a limit step, then C[¢]:C[t] — C[s] is a limit step, if ¢ is an erased
argument of an external redex in C[t].



