
The Linear Logic Primer

Vincent Danos

Case 7014

Université de Paris VII

2, Place Jussieu

75251 PARIS Cedex 05

e-mail:

danos@pps.jussieu.fr

Roberto Di Cosmo

Case 7014

Université de Paris VII

2, Place Jussieu

75251 PARIS Cedex 05

e-mail:

roberto@dicosmo.org

2

Contents

1 Introduction 7

1.1 Linear Logic legitimate ambitions 8

1.1.1 Logic and Computer Science 8

1.1.2 Linear Logic . 9

1.2 Linear Logic and recent advances in theoretical computer science . 10

1.3 Hilbert style or the axiomatic approach 12

1.3.1 Hilbert's axiomatic system for classical propositional logic 12

1.4 Gentzen style or the syntactic approach 13

1.5 Classical Sequent Calculus . 13

1.5.1 Identity Rules . 13

1.5.2 Structural rules . 14

1.5.3 Logical rules . 14

1.5.4 Weakening and contraction: bad bookkeepers 17

1.6 Linear Sequent Calculus . 18

1.7 Complexity Issues . 26

1.8 Informal Semantics . 27

1.8.1 Linear connectives: useful devices to read your menu . . . 27

2 Logical Embeddings into Linear Logic 29

2.1 Recovering Intuitionistic Logic 31

2.2 More economical embeddings 33

2.2.1 Completeness of the translation 35

2.3 Recovering Classical Logic . 36

2.3.1 The traditional embeddings: Gödel's translation 37

2.3.2 A decorative embedding of LK into LJ 37

2.3.3 Embedding LK into LL 39

3 Proof Nets 41

3.1 Digression: Natural Deduction for ISC 42

3.1.1 Natural Deduction and Proof Structures 44

3

4 CONTENTS

3.1.2 Proof Structures. Concrete and abstract form. 44

3.2 Correctness Criteria . 46

3.2.1 Topological Criteria . 47

3.2.2 Towards ACC . 48

3.2.3 Completeness of the criteria 50

3.2.4 Graph Parsing criteria 52

3.2.5 Handling the MIX rule 53

3.2.6 Deadlock freeness, MIX and ACC 54

3.3 Reduction of proof-nets. 55

3.4 Proof Nets for MELL . 57

4 Computational aspects of the Embeddings into Linear Logic 63

4.1 Embedding �-calculus in Linear Logic 64

4.2 Local Reduction . 66

4.3 Dynamic Algebra . 67

4.4 Taming the full typed �-calculus 70

5 Conclusions and annotated bibliography 73

A Proof of completeness for ACC 81

Preface

Linear Logic was built by Jean-Yves Girard around 1986, and was originally moti-

vated by a deeper investigation of the semantics of �-calculus. Such investigation
led to the surprising discovery that, in coherence spaces, the intuitionistic implica-

tion, or arrow-type A) B is interpreted, as is now very well known, as !A �� B,

i.e. it is decomposed into two more primitive constructs, a linear implication ��
and the modality !.

Only afterwards the new connectives were understood from the syntactic point

of view.

In these notes, though, we will deliberately present Linear Logic in a very

partisan way: we will stick to the syntactical viewpoint, and concentrate all our

efforts in familiarizing the reader with the Linear Logic system, while referring for

the detailed investigation of the formal semantics to one of the nice presentations

that are already available (see for example [Gir87, GLT90]).

These notes born in Paris, in 1992, during two weeks of intensive work which

allowed the second author to have an exciting tour of Linear Logic, guided by

the �rst one. Some parts are already published and well known, but other ones

provide an original presentation of material that can be found mostly in the �rst

author's Phd thesis.

There is a huge amount of exercises: many of them are completely new ones

that are especially selected in order to familiarize the reader with some important

�ne points and are therefore intended as an essential part of the course notes, not

as a decoration.

Finally, remark that all the presentation given here is inside the world of propo-

sitional Linear Logic. It is amazing to see how much can be said about proposi-

tional calculus, and how much propositional Linear Logic has to say about com-

putation, that is here our major concern.

5

6 CONTENTS

Chapter 1

Introduction

I'm not a linear logician

Jean-Yves Girard

Tokio, April 1996

7

8 CHAPTER 1. INTRODUCTION

Linear Logic is a transversal theme: nobody really claims to be purely a linear

logician, not even its very inventor, but many people have discovered that Linear

Logic provides valuable tools ranging from simply the new language, that con-

veys better intuitions, to new logical, semantic and algebraic structures. On this

tenth anniversary of Linear Logic, even a super�cial look at the titles of the over

300 papers in the literature is suf�cient to con�rm this peculiar aspect: only a few

papers are about Linear Logic itself, while the vast majority are examples of how

these tools have been fruitfully applied in practically all disciplines of theoretical

computer science, and in many cases trickled down to real world applications.

It may well be the case that some problem or application you are currently

working at could bene�t from the linear logic toolbox, and the goal of this book

is precisely to help you �nd out if this is the case. For this, we think that it is

important to provide a lightweight introduction to linear logic, and then give a

broad view on the elementary concepts that turned out to be the most fruitful in

applications. We will systematically detail the elementary cases to give a thorough

understanding of the mechanisms at work, and systematically provide pointers to

the relevant literature when dealing with the general case would involve details

that obscure the basic structures.

In our survey of linear logic, we will whenever possible take a purely syntac-

tical point of view: this is not because we despise semantics, but because syntax,

in particular for this logic, can be more easily accepted and understood by a wide

public than its formal semantic underpinnings.

1.1 Linear Logic legitimate ambitions

Let us try to brie�y explain why logic took part in the shaping of contemporary

computer science, and how linear logic, by giving means to analyze the non-linear

treatment of information, offers new tools and ideas in applying logic to computer

science.

1.1.1 Logic and Computer Science

Modern logic began when people discussed the possibility of reading `A implies

B' as `gimme A and I get you B'. They were beginning to suspect something. A

proof of such a reading of the implicative statement might be more convincing

than a proof of the traditional reading `B is true whenever A is', and for good

reasons: it describes a process by which a proof of B can be produced from a

proof of A. What better reason could we think of: it is because my proof of `A

1.1. LINEAR LOGIC LEGITIMATE AMBITIONS 9

implies B' will get you B, when you give me A, that it is a proof at all !

Logic, or at least proof-theory, sets up formal proof systems: intuitionistic

predicate calculus, classical predicate calculus, arithmetics, higher order calculi

. . . , i.e., consistent and structured sets of process-building rules. Except that the

`processual' interpretation, if any, has to be made explicit.

Computer science, on the other hand, sets up computational mechanisms:

application and substitution, polymorphism, exceptions, methods in object lan-

guages, message passing, eval/quote mechanism, variable assignment . . . that is

sets of process-building rules. Except that the logic of these processes, if any, has

to made explicit.

At a given moment these two sciences met. People realized that the set of

implication-only intuitionistic deductions was a core functional language called

simply-typed lambda-calculus: the programmming language was a logic, the logic

a programming language. This memorable meeting was called the `Curry-Howard

isomorphism'. Since then, 20 or so years ago, logic has ambitions in the �eld of

programming: formal veri�cation, formal semantics, language design, complexity

theory . . .

1.1.2 Linear Logic

Linear Logic begins with a further twist in the reading of `A implies B': read now

`gimme as many A as I might need and I get you B'. The notion of copy which is

so central to the idea of computation is now wired into the logic.

This opens up a new dimension, already intensely exploited, in applications

of logic to computer science, and at the same time aims at a mathematical theory

within which mathematics are comfortably done. It is both a theory and a tool.

New possibilities show up at two levels, which we might call the language

level and the operational level. At the language level the way is open to have:

� new formulas expressing re�ned operational properties: `gimme A once and

I get you B'.

Applications here range from knowledge representation in IA, re�ned Logic

Programming where the born ability of Linear Logic to represent states

is put to use, analysis of Classical Logic and computational interpreta-

tions thereof, namely exception mechanisms in programming languages,

by means of embeddings in Linear Logic, re�ned temporal logics, linearity

analysis.

� new rules expressing constraints on the use of copies resulting in a frag-

ment of Linear Logic for polytime computations to mention only the most

spectacular application.

� new ways of representing proofs displaying their hidden geometry.

10 CHAPTER 1. INTRODUCTION

Here we think of Proof Nets, a parallel syntax for proofs which has been

intensively studied, from the graph-theoretic viewpoint to the homological

one.

Proof-nets considerably ease the manipulation of syntax, and gave birth to

explicit substitutions systems, themselves useful in the proof of compilers

for functional languages, and were also used in linguistics to study parsing

in natural languages, again to mention only a few applications.

At the operational level, the way proofs or processes are to be understood

operationaly, that is how they are to be computed, there is room to have:

� new evaluation schemes of which the most salient aspect is their local and

asynchronous treatment of copy.

Optimal functional evaluation has been understood much better in the light

of the `geometry of interaction' a combinatorial model of proofs for closed

computations. Compilations to parallel code are at hand.

� new models of processes capturing in a nice algebraic setting characteristics

of evaluation: continuity, stability, and giving tools in proving correction

and equivalence of programs.

Linear Logic has lead to the `best' model of proofs as functions, namely hy-

percoherences, and has been of crucial help in the new `games semantics',

which solved the long-standing problem of `full abstraction', that is strate-

gies in those models all come from syntax. Linear Logic also yielded the

�rst model of polymorphism, a logical system where code can be available

for objects of different types, anticipating object-oriented programming.

Progress has been made also in holding a topological model of program-

ming, bridging the gap with classical mathematical methods.

1.2 Linear Logic and recent advances in theoretical

computer science

Linear logic has shown great promise for theoretical computer science ever since

its very birth, and over the past years part of these promises (as we will see, mainly,

but not exclusively, those concerning a �ne analysis of sequential computation)

have been ful�lled: optimal reduction, geometry of interaction, fully abstract se-

mantics to cite but a few. In this book, we aim to give a broad overview of what has

been accomplished, that should be both accessible for the newcomer and useful

for the experienced researcher. Due to the novel nature of the subject, we believe

that this goal is best accomplished by exposing in details the results and showing

the techniques at work, even if in a simpli�ed framework, rather than �ooding the

1.2. LINEARLOGICANDRECENTADVANCES IN THEORETICALCOMPUTER SCIENCE11

reader with the complex de�nitions and theorems needed to handle the more com-

plex cases (for those readers that feel con�dent with the subject after this reading,

we give full references to the research papers on the subject).

Here follows a schematic diagram showing the subjects treated in the book,

and the chapters where they and the connections between them are treated: there is

a clear path from classical sequent calculus (LK) to intuitionistic sequent calculus

(LJ) to Linear logic (LL), and from intuitionistic natural deduction (ND) to Proof

Nets (PN); then, in the lower part of the diagram we get to the more novel results

concerning the algebrization of computation, optimal reduction, game semantics

and explicit substitutions. Finally, we will give some taste of interesting fragments

of linear logic using ELL.

LK

LJ

LL

ND

PN

Dynamic Algebra
Geometry of Interaction

Optimal / Local Reduction

Game
Semantics

12 CHAPTER 1. INTRODUCTION

1.3 Hilbert style or the axiomatic approach

blurb on the axiomatic approach to logical systems and its �tness to model theory.

1.3.1 Hilbert's axiomatic system for classical propositional logic

Here we recall Hilbert's system of axioms and rules for propositional logic. We

have here only one rule, the �modus ponens�

A) B A

B
MP

and a set of axioms for each connective (recall that implication associates to

the right, so A) B) C really stands for A) (B) C), and that implication

has lower priority than all other connectives, so A^B) A_B really stands for

(A ^B)) (A _B)):

Implication

A) B) A
(A) B) C)) (A) B)) A) C
(A) (B) A))) A (Peirce's law)

Conjunction

A ^B) A
A ^B) B
A) B) A ^B

Disjunction

A) A _B
B) A _B
(A) C)) (B) C)) A _B) C

Falsity

?) A

Here a proof of a formula A is a sequence A0; : : : An of formulae, where

An = A and each of the Ai is either an instance of an axiom or a consequence,

via MP , of some formulae appearing earlier in the sequence (i.e. some Aj ; Ak

1.4. GENTZEN STYLE OR THE SYNTACTIC APPROACH 13

with j; k < i).

To see why this system is de�nitely not adequate for �nding a proof, try to

prove the trivial fact that A) A : you will face exactly the same dif�culty as

that of programming the identity function using the well-known combinators S
and K (see [Bar84, HS80] for more details on combinators and their relation to

�-calculus). For this reason the very �rst theorem one proves in this framework is

the deduction theorem, that allows to get a proof of A) B out of a proof of B
under hypothesis A.

1.4 Gentzen style or the syntactic approach

blurb on Gentzen's works and the Hauptsatz, plus curry-howard isomorphisms.

A quite different approach is due to Gentzen, who introduced the notion of

sequent calculus: a sequent is made up of two lists � and � of formulae sepa-

rated by the entailment symbol ` , and is written � ` �. The intuition is that

� holds the hypothesis of an asserion and � the conclusions. In this presentation

there only one axiom, the identity aiom A ` A, and to each connective are now

associated no longer axioms, but introduction rules, on the left and on the right.

Let us see what the sequent calculus for classical logic looks like.

1.5 Classical Sequent Calculus

We will give a presentation of Classical Sequent Calculus where we insist upon

its symmetries and show the importance of structural rules.

Rules of Sequent Calculus are divided into three groups.

Let �;�; : : : stand for sequences of formulas.

1.5.1 Identity Rules

The identity axiom and the cut rule

A ` A
Id

� ` A;� �0; A ` �0

�;�0 ` �;�0

Cut

simply say that A is A.

14 CHAPTER 1. INTRODUCTION

1.5.2 Structural rules

These rules are concerned with manipulation of contexts. By using them, we can

access hypotheses (by exchange),

�; A;B;�0 ` �

�; B;A;�0 ` �
LX

� ` �; A;B;�0

� ` �; B;A;�0

RX

discard hypotheses (by weakening)

� ` �

�; A ` �
LW

� ` �

� ` A;�
RW

or share hypotheses (by contraction)

�; A;A ` �

�; A ` �
LC

� ` A;A;�

� ` A;�
RC

1.5.3 Logical rules

The rules in this group introduce the logical connectors on the left or the right

hand side, as in

�; A;B ` �

�; A ^B ` �
L^

� ` A;� �0 ` B;�0

�;�0 ` A ^B;�;�0

R^

The rule L^ tells us that the ^ connective is just an internal notation for the comma

on the left.

Similarly, we introduce the _ connective on the left or the right hand side:

�; A ` � �0; B ` �0

�;�0; A _B ` �;�0

L_
� ` A;B;�

� ` A _B;�
R_

The rule R_ tells us that the_ connective is just an internal notation for the comma

on the right.

Notice that we could as well de�ne the introduction rules in another, more eco-

nomic way:

1.5. CLASSICAL SEQUENT CALCULUS 15

�; A ` �

�; A ^B ` �
L1^

�; B ` �

�; A ^B ` �
L2^

� ` A;� � ` B;�

� ` A ^B;�
R^0

�; A ` � �; B ` �

�; A _B ` �
L_0

� ` A;�

� ` A _B;�
R1_

� ` B;�

� ` A _B;�
R2_

Notation 1.5.1 (Terminology) These two distinct styles of managing contexts in

the rules are called respectively multiplicative and additive.

Of course, we have now rules for implication and negation, (and for quanti�ers if

we want to cover predicate calculus, but we will not deal with it here).

� ` A;�

�;:A ` �
L:

�; A ` �

� ` :A;�
R:

� ` A;� �0; B ` �0

�;�0; A) B ` �;�0

L)
�; A ` B;�

� ` A) B;�
R)

Exercise 1.5.2 (additive cut) Show that the cut rule Cut, in presence of struc-

tural rules, can be stated in a more economic, but equivalent way, as

� ` A;� �; A ` �

� ` �
Cut

0

Exercise 1.5.3 Show that in the classical (or intuitionistic1) framework R^ and

R^0 are equivalent. Similarly, show that rule L^ is equivalent to rules L1^ and

L2^.

Exercise 1.5.4 Show that in the classical (or intuitionistic) framework L_ and

L_0 are equivalent. Similarly, show that rule R_ is equivalent to rules R1_ and

R2_.

1But recall that in intuitionistic sequent calculus you have right to no more than one formula on the

right!

16 CHAPTER 1. INTRODUCTION

Remark 1.5.5 Exercises 1.5.3 and 1.5.4 tell us that the choice we make in the

presentation of classical (intuitionistic) sequent calculus are just a matter of taste.

In Linear Logic, it will no longer be so!

Exercise 1.5.6 Show that in the classical framework2 the rules for) can be de-

rived from the rules for : and ^ (or : and _).

Notice now that the rules for ^ are symmetrical with the rules for _: e.g. R^ is

the �mirror image� of L_. This is no surprise at all, since a classical sequent is

symmetrical and these connectives are just notation for a comma: ^ on the left

and _ on the right.

Another, deeper symmetry between the introduction and elimination rules for the

same connective makes possible to replace a proof looking like

...
� ` A;�

...
�0 ` B;�0

�;�0 ` A ^B;�;�0

R^

...
�00; A ` �00

�00; A ^B ` �00

L1^

�;�0;�00 ` �;�0;�00

Cut

by the following one

...
� ` A;�

...
�00; A ` �00

�;�00 ` �;�00

Cut

�;�0;�00 ` �;�0;�00

where the double bar means a sequence of structural rules (weakenings and ex-

changes).

Exercise 1.5.7 Formulate such conversions for the three other cases: L ^=R ^,
L ^=R ^' and L i ^=R ^'.

Investigating carefully such conversions leads to the central property of viable

logics, namely that it is possible to eliminate the cut rule from any proof which

does not assume extra axioms (Gentzen's Hauptsatz). In other words if a sequent

is provable at all then there exists a cut-free proof of it.

2In the intuitionistic sequent calculus this fact is not true.

1.5. CLASSICAL SEQUENT CALCULUS 17

Exercise 1.5.8 (Subformula Property) Show that any cut-free proof of a sequent

� ` � without proper axioms only mentions subformulas of the formulae in �
and�.

Remark 1.5.9 The Intuitionistic Sequent Calculus can be obtained from the Clas-

sical Sequent calculus by constraining the number of formulae on the right of a

sequent to at most one. This calculus also enjoys cut-elimination. In the intu-

itionistic case the process of cut-elimination is very similar to �-reduction in �-
calculus and promotes logic as a paradigm of computation (see [GLT90] for more

details). In the classical case, the computational meaning of this process is still a

matter of passionate investigation.

Exercise 1.5.10 Show that from any intuitionistic proof of ` A _ B one can

extract a proof of A or a proof of B. Notice that this is the case because of the

forbidding of the right contraction rule, implicit in the restriction on the right

hand side of an intuitionistic sequent. So control over structural rules yields new

properties; linear logic will impose the most severe control on these rules.

Exercise 1.5.11 State the natural conversion associated to contraction; one can

see that this rule is responsible for the combinatorial explosion of cut-elimination.

Notation 1.5.12 (Terminology) It is common in the literature to �nd the follow-

ing notation:

LK, CSC the Classical Sequent Calculus

LJ, ISC the Intuitionistic Sequent Calculus

1.5.4 Weakening and contraction: bad bookkeepers

Now, all this is very nice, but before being satis�ed with such a formalization of

the laws of thought, let's look at the contraction and weakening rules from the

point of view of daily life in a capitalistic world.

There are several reasons to get rid of weakening and contraction as structural

rules, but we can start with a very simple and intuitive one. If we look at a sequent

� ` � from the point of view of classical logic, it reads �from the truth of �
follows the truth of��, but from a capitalistic point of view, we can read it as � if

you give me the goods in �, I will give you one of the goods in��.

Now, classically, the contraction rule says that if you derive the truth of � us-

ing several occurrences of an assumption A, you can as well derive it with just

one assumption: classical logics is interested in knowing whether A exists in the

assumptions (i.e. wheter it is true or not), and not in how many times it occurs.

18 CHAPTER 1. INTRODUCTION

Similarly, weakening says that once you have the truth of� it does not harm to add

some extraneous assumptions: � will stay true, and who cares some additional

hypothesis.

Now, let's take the capitalistic point of view:

Contraction reads more or less this way: �if you can buy one of the goods in �
using several goods A, then you can buy it with just one A�.

And weakening becomes: �if you can buy one of the goods in � with �, then it

does not harm to spend some more A's without getting anything more in change�.

It is as easy to be convinced that the capitalistic reading would not be accepted by

any sane merchant (that is not likely going to make you any present, as contraction

would imply), nor by any careful buyer (that would not follow the advice given

by weakening to waste carelessly his money for nothing).

Weakening and contraction as used in classical logic are bad bookkeepers: they

make us loose control on our expenses, and hence waste our resources.

When the control of the use of some resource A is important, we need to do

something to modify the capitalistic meaning of such structural rules: either we

keep them (because we are fond of classical logic, and ready to waste our money

for it) and we spend a lot of effort to formalize with a series of extra-logical axioms

the fact that assuming A has a cost, or we can simply drop these rules, hoping to

recover them in a simple way when dealing with resources that cost nothing.

Once we decide to be careful about resources, we start to be suspicious about the

traditional ^ and _ connectives too, and we discover that each of them is now

split in two. In fact, without weakening and contraction, we can no longer show

equivalent the two formulations of the left introduction rules for ^ (R^, R^0)
and _ (L_, L_0): actually exercises 1.5.3 and 1.5.4 require some weakenings and

some contractions to be solved. This means that the different rules are describing

different connectives, and we have now two conjunctions and two disjunctions.

This leads us to Linear Logic.

1.6 Linear Sequent Calculus

In Linear Logic, we have no longer the right to forget hypotheses or use themmore

than once, (no weakening and no contraction). This does not affect Exchange and

Identity (while cut requires some care), but the classical ^ and _ connectives are

now split in two.

We have two conjunctions: a tensor product (or cumulative conjunction: it corre-

sponds to the �non-economic� presentation of the classical ^)

�; A;B ` �

�; A
B ` �
L

� ` A;� �0 ` B;�0

�;�0 ` A
B;�;�0

R

1.6. LINEAR SEQUENT CALCULUS 19

and a direct product (or alternative conjunction: it corresponds to the �economic�

presentation of the classical ^):

�; A ` �

�; ANB ` �
L1N

�; B ` �

�; ANB ` �
L2N

� ` A;� � ` B;�

� ` ANB;�
RN

Symmetrically, we get the rules for the two disjunctions: a direct sum: it corre-

sponds to the �economic� presentation of the classical ^):

�; A ` � �; B ` �

�; A�B ` �
L�

� ` A;�

� ` A�B;�
R1�

� ` B;�

� ` A�B;�
R2�

and a tensor sum: it corresponds to the �non-economic� presentation of the clas-

sical _)

�; A ` � �0; B ` �0

�;�0; AOB ` �;�0

LO

� ` A;B;�

� ` AOB;�
RO

:

The rule for negation stays as in the classical case, and the negation operator (that

is now noted ?) is still involutive (i.e. A?? is the same as A).

� ` A;�

�; A? ` �
L?

�; A ` �

� ` A?;�
R?

What about the cut rule then? Here we need some care, as the following remark

and exercise show.

Remark 1.6.1 The additive rule Cut' does not allow to internalize the ` symbol:

actually, it is not possible with such a cut rule to prove

` A A ` B

` B

Exercise 1.6.2 (Schellinx) Show that adding the additive cut rule yields the same

theory as adding the axiom A � A?; infer that this alternative cut cannot be

eliminated.

Hence, for Linear Logic we will keep the multiplicative cut rule Cut.

This presentation of a propositional fragment of Linear Logic based on symmet-

rical sequents is well suited to show how it can be derived from the classical

frameworks by elimination of the weakening and contraction rules. It also allows

us to de�ne the classical and intuitionistic linear fragment in the same way as for

the usual Gentzen calculus.

20 CHAPTER 1. INTRODUCTION

Notation 1.6.3 (Terminology) In the literature, one can �nd the system above,

with also rules for the constants and the exponential connectives, used to present

what is usually called Classical Linear Logic (or CLL) and distinguish it from

Intuitionistic Linear Logic (or ILL), where at most one formula is allowed to the

right.

Anyway, we can already see, just with these connectives, that this presentation

of the system is very redundant: due to the symmetries (already pointed out in

the classical case) present in the rules, there are many ways (using negation) to

express some rules in terms of some other ones. This fact can be used to give a

more concise presentation of the system, so let's restart from scrath and do the

work more properly!

� We give atomic formulae in two forms: A and A?. Then we say that the

negation of A is A? and the negation A?? of A? is A.

� We de�ne negation of non-atomic formulae by use of the De Morgan rules:

(A
B)? = A?OB? (ANB)? = A? �B?

(AOB)? = A?
B? (A�B)? = A?NB?

� We de�ne linear implication A �� B as a shorthand for A?OB.

� We convert a symmetric sequent A1; : : : ; An ` B1; : : : ; Bm into an asym-

metric right-only form by use of linear negation ` A?1 ; : : : ; A
?
n ; B1; : : : ; Bm

Exercise 1.6.4 Check that the De Morgan's identities above correspond to linear

equivalences in the two sided version of the calculus.

Now, the identity axiom becomes ` A?; A and also subsumes the same time the

rules for linear negation. The cut rule is transformed into:

` A;� ` A?;�

` �;�
Cut

There is only one exchange rule that subsumes the left and right one of the sym-

metric presentation.

` �; A;B;�

` �; B;A;�
X

and the logical rules are now expressed by:

1.6. LINEAR SEQUENT CALCULUS 21

` A;B;�

` AOB;�
O

` A;� ` B;�

` A
B;�;�

` A;�

` A�B;�
1�

` B;�

` A�B;�
2�

` A;� ` B;�

` ANB;�
N

This is much better then the previous presentation! We can now continue with the

full system of Propositional Linear Logic.

We introduce units:

1
? = ? ?? = 1 >? = 0 0

? = >

` �

` ?;�
?

` 1

1 (no rule for 0)
` >;�

>

Exercise 1.6.5 Check that actually 1 is an identity for
, ? for O, > for N and

0 for �.

And �nally, we allow two modalities !A (of course A) and ?A (why not A) to
deal with non-capitalistic resources:

(!A)? =?A? (?A)? = !A?

` �

` ?A;�
W?

` ?A; ?A;�

` ?A;�
C?

` A;�

` ?A;�
D?

` A; ? �

` !A; ? �
!

Exercise 1.6.6 (Terminology) Prove the following linear equivalences:

!(ANB) � (!A)
 (!B) ?(A�B) � (?A)O(?B):

So that is the reason why
 and O are called multiplicatives, while the N and �
are called additives and ! and ? exponentials.

Exercise 1.6.7 Show that the aforementioned fundamental isomorphisms are in-

deed isomorphisms of vector spaces if read with the following dictionary: E? is

the dual of E,
 and O are both the tensor product, N and � the direct sum and

both modalities the symmetric algebra.

22 CHAPTER 1. INTRODUCTION

Remark 1.6.8 The rule for ! imposes constraints on the context, as the rule for

N. The rules for exponentials carry some resemblance to the rules for the modal

connectives for necessity and possibility (2 and 3).

Notation 1.6.9 (Terminology) It is common in the literature to �nd the following

names for different fragments of Linear Logic.

LL The full propositional fragment of Linear Logic

MLL The multiplicative fragment of Linear Logic (no exponentials)

MALL The multiplicative and additive fragment of Linear Logic (no exponen-

tials)

MELL The multiplicative fragment of Linear Logic with exponentials.

Linear logic also enjoys cut-elimination and subformula property: state the con-

versions (reduction moves) for each pair of dual connectives :
 and O, N and �,
? and !.

Cut-elimination is now (as opposed to the case of classical logic) a deterministic

process; and indeed full LL can be seen as a computationaly sound completion of

MALL.

Exercise 1.6.10 Notice that the commas are multiplicative: show that � ` � if

and only if
� `O�. Does the same hold for N� ` ��?

Exercise 1.6.11 (invertible connectives) Prove that the O is invertible, i.e., that

�; AOB is provable iff �; A;B is provable.

State and prove (resp. disprove) a similar property for the N (resp.
 and

PLUS).
Prove also that the ! is invertible if all formulae of the context are pre�xed by a ?
modality.

Exercise 1.6.12 (Unprovable formulae)

1. Show that the following sequents are unprovable in LL, although they are

classically valid substituting ^ to
 (check).

` A
A;A?
A? and ` A
B;A?
B;A
B?; A?
B?

` (A
A) �� A and ` A �� (A
A)

2. Show also that ` A? � A is not provable. So it is of no interest to de�ne

an additive implication: compare with 1.6.1.

1.6. LINEAR SEQUENT CALCULUS 23

Exercise 1.6.13 (Girard) Suppose one adds a new pair of modalities, !', ?', with

the same rules as for the standard ones. Show you cannot prove the equivalence

of this new pair with the old one.

Now let's see that the rules for exponentials capture exactly weakening and con-

traction.

Exercise 1.6.14 (Schellinx)

1. Show that if A �� (1N(A
 A)) then left weakening and contraction rules

are admissible for A.

2. Show that if A �� !A then A �� (1N(A
A)).

3. Open problem: does the converse hold? Try to state the problem.

Exercise 1.6.15 (Joinet) �

1. Prove that !!A is linearly equivalent to !A.

2. Prove there are only seven modalities (combinations of the two modalities !

and ?) up to linear equivalence, related as in the lattice

?
?!?

!? ?!
!?!
!

Exercise 1.6.16 (Danos-Joinet-Schellinx) �
The purpose of this long exercise is to state an admissible extension of the contraction-

rule in LL.

We shall use �A to denote one ofA and ?A, and � to denote any of the connectives

;O;N;�.
Let the notions of positive, negative subformulas of a linear formula F be given as

usual. Say that a linear formula G is a positive (resp. negative) decoration of F
iff G has been obtained from F by questioning some (maybe none) positive (resp.

negative) subformulas of F .

a) Let F be any formula, F+ be any positive and F� any negative decoration of

F . By induction on F show: F ` F+ and F� ` F .

b) Show that one turns the set D + (F) of all positive decorations of F into a

lattice with the ordering A � B iff the decoration of B is equal to or extends that

of A; the join A t B of two elements A and B being the surperposition of both

decorations.

24 CHAPTER 1. INTRODUCTION

c) So by a) A � B entails B ` A, is the converse true ?
d) show with the help of a) that the �extended� dereliction:

� ` F 0; F 00;�

� ` �(F 0 t F 00) ` �

where F 0, F 00 are in D
+(F) and � =? iff neither F 0 nor F 00 is questioned, is

admissible.

Exercise 1.6.17 (Girard) Assign an integer v(pi) in ZZ to every atomic symbol

pi, and then extend this valuation to non atomic formulae as follows:

v(p?i) = 1� v(pi) v(1) = 1 v(?) = 0

v(A
B) = v(A) + v(B)� 1 v(AOB) = v(A) + v(B):

1. �nd a relation between v(A) and v(A?)

2. show that if A is provable then v(A) = 1

3. �nd a formulaA (without 1 or?) that is not provable and such that v(A) =
1 for every possible valuation v.

Exercise 1.6.18 (Girard) Let's focus now on those formulae of MALL that are

closed, i.e. the ones built out of 1 and? only. Consider now the classical valuation

c(1) = >; v(?) = ? extended to non atomic formulae as follows:

v(A
B) = c(A) ^ c(B) c(AOB) = c(A) _ v(B):

1. show that 1O1, ? are not provable, and deduce that ?
 (1O1) is not

provable

2. show a closed formula A that is not provable, classically false (i.e. c(A) =
?) and such that v(A) = 1; show also a classically true formula B such

that v(B) 6= 1.

3. �nd for every n 2 ZZ a closed formula An such that v(An) = n and

c(An) = >

4. show a non provable closed formula A s.t. v(A) = 1 and c(A) = >

Exercise 1.6.19 (Girard) We still stay in the world of closed formulae.

1. show a formula A s.t. (A
A?)O1 is not provable

2. given any set E and a valuation �(A) 2 E for all closed formulae A that

enjoys the following properties:

1.6. LINEAR SEQUENT CALCULUS 25

� if �(A) = �(B) then �(A?) = �(B?)

� if �(A) = �(A0) and �(B) = �(B0) then �(A
B) = �(A0
B0)

Show that for every e 2 E the set of closed formulae A s.t. �(A) = e is

different from the set of provable formulae.

3. in particular, recover the results of 1.6.18, i.e. the fact that v(A) = 1 and

c(A) = > are not suf�cient conditions for provability

Exercise 1.6.20 (Danos, Exploring the additive-only world.) 1.

2.

3.

4.

5. Prove that in the purely additive fragment sequents have exactly one for-

mula on the lefthand side and one on the righthand side.

6.

(a) Prove that the cut-free additive calculus is decidable (hint: all rules

have their premisse(s) smaller than the conclusion).

(b) Deduce from the general cut-elimination result the cut-elimination for

the additive fragment. One just has to check that conversions stay

within the fragment.

7. Facts about provability:

(a) Prove both additives are associative and commutative.

(b) Prove ANB ` A � B and disprove the converse (hint: use cut-

elimination).

(c) Prove A � B ` C holds iff A ` C and B ` C, and the symmetric

statement for C ` ANB. One says � is reversible on the left and N

on the right.

(d) ProveANB ` C�D holds iff one of the four following sequent holds:

A ` C �D, B ` C �D, ANB ` C, ANB ` D.

8. We now want to interpret our additives as traditional mathematical opera-

tions; since they look like union and intersection, we might have a look at

lattices.

Let a setX of propositional variables be given. Let L be a lattice generated

byX , that is an ordering with in�ma and suprema with a mapping (:)� from
X to L.

26 CHAPTER 1. INTRODUCTION

Any formula A can be interpreted as an element A� of L as follows: (A �
B)� = A� _B�, (ANB)� = A� ^B�.

Any sequent A ` B can then be interpreted as A� � B�, an atomic state-

ment about the ordering in L. This statement might be right and might be

wrong.

(a) Show that if A ` B is provable then A� � B� holds in L. Did

this requires L to be a lattice? What if one restricts to the plus-only

fragment of ALL.

(b) Show the converse when L is freely generated by X , which means for

all L0 generated by X with mapping (:)�0 there is a unique lattice

morphism f such that (:)�; f = (:)�0. It is enough to show that (ALL-

formulas/(),`) is a lattice.

(c) Thus distributivity must fail in general. Prove it directly, then prove it

by building a non-distributive lattice (hint: take generators incompa-

rable, a top and a bottom). Formula models are often used to refute

sequents.

(d) Suppose one adds some non-logical axioms of the form p ` q, for some
p's and q's in X , and requires that p� � q� when p ` q. Reconsider
the last two points in this case.

1.7 Complexity Issues

The last point of the exercise above tells us that there is no hope to �nd a �simple�

valuation catching multiplicative truth. This is a hint that multiplicative provabil-

ity is a dif�cult problem (in terms of complexity). An extensive research work

has been dedicated to the study of the complexity and decidability issues for sev-

eral fragments of LL. While a recent presentation of the current knowledge can be

found in [Lin95], we summarize here a few relevant results:

MLL

� provability is NP-complete [Kan94b]

MALL

� provability is PSPACE-complete [LMSS92]

� LL provability is undecidable [LMSS92]

Surprisingly (or not? didn't we say that the expressive power of LL comes from

the built-in control of resources, not from the combinatorics of some truth valu-

ation function?) these results stay the same even if we focus on the fragments

1.8. INFORMAL SEMANTICS 27

Menu a 75 Frs

Entree

quiche lorraine

ou

saumon fume

et

Plat

pot-au-feu

ou

�let de canard

et

Fruit

selon saison (banane ou raisin ou oranges ou ananas)

ou

Dessert au choix (mistere, glace, tarte aux pommes)

Figure 1.1: The linear Menu

of the logics where only the constants, and no propositional variables are al-

lowed [Kan94a, LW94]: indeed, it is possible to encode arbitrary formulae into

constant-only formulae preserving provability.

1.8 Informal Semantics

Before starting our study of Linear Logic, that involves a series of relevant syntac-

tic results, we will now try to give an informal semantics of Linear Logic, and try

to understand what these linear connectives are by using that capitalistic point of

view that already helped us to be suspicious about the weakening and contraction

rules, otherwise so innocuous-looking.

This will help us to familiarize with Linear Logic, and will hopefully convey

enough intuitive meaning to make these new entities
, O, N, � etc. as natu-

ral as (or more natural than) the usual classical connectives.

1.8.1 Linear connectives: useful devices to read your menu

Linear implication and the four basic connectives that linear logic supllies in

change of the traditional ^ and _ are really nothing new to the people that is

used to go frequently to restaurants that offer �xed-price menu's. Let's have a

look at a typical one (as in [Gir90]).

We can easily formulate this menu in linear logic as

28 CHAPTER 1. INTRODUCTION

75FF?O(QNS)
 (PNF)
 ((B �R�O �A)N(MNGNT))

The O connective tells us that if we give in 75 Frs (that sadly disappear immedi-

ately afterwards: the fact that we give in the francs is expressed by the little ?)
for one �entree� and one �plat� and either a �dessert� or some �fruit�. So a O

connective somewhere in a formula tells us that we are faced with a trading sit-

uation: A?OB means we can get A or B in the very particular sense that if we

got an A somewhere (we are not too poor) either we keep this A or we get a B

by exchanging it with our A. We cannot get both, because we live in a capitalistic

world. On the other hand, we are pretty sure that we will get both one �entree�

and a �plat�, that is formalised by the
 linear connective.

Now, let's keep looking at the menu. As an �entree� we can have a �quiche lor-

raine� or a �saumon fume�, but not both. Here, anyway, the connective we use

is not a O, but a N: we are in a different situation that allows us to get a �quiche

lorraine� or a �saumon fume�, at our will, but to get the �quiche lorraine� we are

not obliged to give in a �saumon fume�. After all, we went in the restaurant to get

some food, not to give food away! Similarly for the �plat�. Then we can choose

to have one (but only one) between a �Dessert� or a �fruit� (again a N), but here

some other peculiar phenomenon happens: we know that we can get only one of

the fruits listed in the Menu, but now we cannot decide which one, not even by

trading something in exchange. Hence we cannot use a
 to formalize it (we get

only one fruit, not all), nor a N or a O (we cannot choose the one we want, not

even by trading), so here comes to our rescue the last connective of linear logic:

the �. This connective tells us that the object we will get from A�B is either an

A or a B, but nothing more.

Chapter 2

Logical Embeddings into

Linear Logic

citazione sistemi logici

Jean-Yves Girard

????

29

30 CHAPTER 2. LOGICAL EMBEDDINGS INTO LINEAR LOGIC

2.1. RECOVERING INTUITIONISTIC LOGIC 31

2.1 Recovering Intuitionistic Logic

The exponential connectives allow us to recover the full power of Intuitionistic

Logic: we can provide a faithful translation ? of intuitionistic formulae and proofs

into linear ones, in such a way that if a sequent � ` A of LJ is provable, then its

translation �? ` A? is provable.

Notice that, for simplicity, we will give the translation just for LJ without the right

weakening rule: this fragment is largely suf�cient both to encode the �-calculus
without explicit escape constructs and to faithfully encode the full classical se-

quent calculus, as we will see in the next section. If one really wants to handle

also the right weakening, then an LJ-sequent � ` A should be translated into

something like !� ` ?!A: we do not consider this extra burden worthwhile, and

suggest that the interested reader use the translation of LK into LL instead1.

Translation of formulae.

If A is atomic, then A? = A.

(A) B)? = ?(A?)?O!B? = (!A?) ��!B?

(A ^B)? = !A?

N!B?

(A _B)? = !A?

�!B?

(:A)? = ?(A?)?

Remark 2.1.1 Exponentials are used in the translation; they are in charge of non

linear effects. The �rst equation is remarkable, it is as if linear logic were a

looking-glass through which the intuitionistic implication appears as a compound

connective. Notice that the translation suggested for the conjunction is for its

additive presentation: if you want to take the multiplicative presentation, than

you should better try !A
!B.

Conventions for sequents in LL.

Let's write � ` � for ` �?;�.
The idea behind this translation from LJ to LL is as follows:

�
.

.

.

� ` A
?

;

�?

.

.

.

!�? ` !A?

Now we de�ne a translation of LJ-proofs by induction on the structure of proofs

in LJ.

1It is also possible to give a translation where ? is used only for weakening, see [Jac94].

32 CHAPTER 2. LOGICAL EMBEDDINGS INTO LINEAR LOGIC

axiom

A ` A
?

; !A?

` !A?

cut

�1

.

.

.

�; A ` C

�2

.

.

.

�0 ` A

�;�0 ` C
?

;

�?

1

.

.

.

!�?; !A?

` !C?

�?

2

.

.

.

!�0? ` !A?

!�; !�0? ` !C?

weakening

�
.

.

.

� ` C

�; A ` C
?

;

�?

.

.

.

!�? ` !C?

!�?; !A?

` !C?

contraction

�
.

.

.

�; A;A ` C

�; A ` C
?

;

�?

.

.

.

!�?; !A?; !A?

` !C?

!�?; !A?

` !C?

left arrow

�1

.

.

.

�; B ` C

�2

.

.

.

�0 ` A

�;�0; A) B ` C
?

;

�?

1

.

.

.

!�?; !B?

` !C?

�?

2

.

.

.

!�? ` !A?

!�?; !�0?; (!A?) �� (!B?) ` !C?

!�?; !�0?; !((!A?) �� (!B?)) ` !C?

right arrow

�
.

.

.

�; A ` C

� ` A) C
?

;

�?

.

.

.

!�?; !A?

` !C?

!�? ` (!A?) �� (!C?)

!�? ` !((!A?) �� (!C?))

2.2. MORE ECONOMICAL EMBEDDINGS 33

Exercise 2.1.2 Complete the translation of proofs treating the case of ^, _ and

:.

Remark 2.1.3 (Decoration) Indeed, the translation of proofs we have exhibited

has a very nice structural property (if you properly treat the cases of disjunction

and conjunction in the previous exercise): if we forget about the exponentials

and the eventually duplicated sequents, the underlying tree of the derivation (of-

ten called a skeleton) is the same in the LJ-proof and in the translated LL-proof.

Indeed, one can see the whole translation as a process of decoration of the intu-

itionistic proof with a bunch of exponentials. This is not the case, for example, of

the more economical and well-known translation that we will present later.

The translation of proofs we have just exhibited actually proves the following

Theorem 2.1.4 (Soundness) Let A be an intuitionistic propositional formula of

LJ. If A is provable in LJ, then A? is provable in LL.

2.2 More economical embeddings

The translation we just presented is often referred to as the �plethoric� transla-

tion , as it uses much more exponentials than what is strictly necessary (though

it is indeed minimal if one asks for a uniform decoration procedure as de�ned

above). Here we present another, more economical embedding, which is better

known in the linear logic literature, but it should be noted that it is possible to give

an embedding which is the most economical among all embeddings, as shown

in [DJS93, DJS95a], and could be useful in compiling into a linear machine, as

suggested in [Rov92]. Unlike the plethoric translation, though, this new transla-

tion will not respect the skeleton of a proof, most notably in the case of the arrow,

which we will detail here.

Translation of formulae.

If A is atomic, then A� = A.

(A) B)� = ?(A�)?OB� = (!A�) �� B�

(A ^B)� = A�
NB�

(A _B)� = !A�
�!B�

(:A)� = ?(A�)?

34 CHAPTER 2. LOGICAL EMBEDDINGS INTO LINEAR LOGIC

The idea behind this translation from LJ to LL is as follows:

�
.

.

.

� ` A
�
;

��

.

.

.

!�� ` A�

Exercise 2.2.1 Find a proof �(X;Y) in LL of !((!X) �� Y) ` (!X) �� (!Y)
and of !(XNY) ` (!X)N(!Y).

Remark 2.2.2 (Savings balance) It is interesting to remark that only on the con-

nectives �� and ^ we could save on exponentials, while you can show that such

a savings is not really possible on the (notoriously proof-theoretically ugly) _
and : connectives (that would imply, for example, to be able to prove something

like !(A � B) ` !(!A�!B), which is not likely). Indeed, one can really show

that such savings are only possible on the connectives that are right-invertibles

(see [DJS95b] for more details).

Now we de�ne the translation by induction on the structure of proofs in LJ.

axiom

A ` A
�
;

A�
` A�

!A�
` A�

cut

�1

.

.

.

�; A ` C

�2

.

.

.

�0 ` A

�;�0 ` C
�
;

��

1

.

.

.

!��; !A�
` C�

��

2

.

.

.

!�0� ` A�

!�0� ` !A�

!�; !�0� ` C�

2.2. MORE ECONOMICAL EMBEDDINGS 35

left arrow

�1

.

.

.

�; B ` C

�2

.

.

.

�0 ` A

�;�0; A) B ` C
�
;

�(A�; B�)

.

.

.

!((!A�) �� B�) ` (!A�) �� (!B�)

��

1

.

.

.

!��; !B�
` C�

��

2

.

.

.

!�� ` A�

!�� ` !A�

!��; !�0�; (!A�) �� (!B�) ` C�

!��; !�0�; !((!A�) �� B�) ` C�

right arrow

�
.

.

.

�; A ` C

� ` A) C
�
;

��

.

.

.

!��; !A�
` C�

!�� ` !A�
�� C�

Exercise 2.2.3 Complete the translation treating the case of ^ and _.

The translation of proofs we have just exhibited actually proves the following

Theorem 2.2.4 (Soundness) Let A be an intuitionistic propositional formula of

LJ. If A is provable in LJ, then A� is provable in LL.

Exercise 2.2.5 Try the translation: (A ^B)� = A�
B�.

2.2.1 Completeness of the translation

We discuss here a simple proof of completeness of the translation for the proposi-

tional fragment of LJ with the connectives) _ and ^, but no constants (like true
and false) and no negation.

1. Recall that ILL, the Intuitionistic Linear Logic, is obtained from the sym-

metric presentation of LL by restricting the formulae on the right hand side

of a sequent to at most one. Furthermore, we need only consider here the

connectives: ��, N, �, and !. (Why?).

2. Show that if � is a cut-free proof in LL of � ` A where � and A are

without ?, O or constants, then it stays wholly in ILL. (hint: inspect each

rule that can be performed on such a sequent and show they all are in ILL;

in particular, this means checking that any rule that can be applied to derive

in LL a sequent with exactly one consequent � ` A can use as premisses

only sequents with one consequent, hence still in ILL. In particular, notice

that if a premiss of a left �� rule has an empty succedent, then this premiss

cannot be derived in the system without linear negation and constants).

36 CHAPTER 2. LOGICAL EMBEDDINGS INTO LINEAR LOGIC

3. Deduce from these facts the

Theorem 2.2.6 (Completeness) LetA be an intuitionistic propositional for-

mula of LJ, If A? is provable in LL, then it is provable in LJ.

Proof. Hint: show that the following read-back procedure � from ILL to LJ

is correct.

If A is atomic, then A� = A.

(!A)� = A�

(A �� B)� = A�
) B�

(ANB)� = A�
^B�

(A�B)� = A�
_B�

2

Remark 2.2.7 (Schellinx) Notice, though, that if we extend the translation to the

full LJ system with the ? constant, and hence negation de�ned in the usual way,

it is then rather more complex to show that this translation is complete. Schellinx

observed that in the presence of the rules for 0, a derivation of an ILL sequent

using only the connectives of ILL could have more than one consequent, as in the

following case:

A ` A 0 ` A;A �� 0

A;A �� 0 ` A;A �� 0 0 `

A;A �� 0; A �� 0 ` A �� 0

!A; !(A �� 0); !(A �� 0) ` A �� 0

!A; !(A �� 0) ` A �� 0

Hence the proof we conducted above is no longer correct. The theorem is nonethe-

less true, and the interested reader is referred to [Sch91] for details on a correct,

but more complex proof. It is possible to generalize the theorem to the full calculus

with (�rst or second order) quanti�ers.

2.3 Recovering Classical Logic

In this section, we will show how classical logic can be full and faithfully em-

bedded into LL. To do so, we choose not to directly give the usual translation,

but rather to obtain it via an embedding of LK into LJ which is also well behaved

w.r.t. to the skeleton of a classical proof. As the reader will immediately no-

tice, this does not mean that the skeleton is exactly the same, but only up to some

intervening negations that are instrumental to keep the translation inside LJ.

2.3. RECOVERING CLASSICAL LOGIC 37

2.3.1 The traditional embeddings: Gödel's translation

De�nition et discussion du fait que cela ne marche pas trop bien parce que pas

substitutif et pas preserve cut-free et modi�e l'arbre (pas decoratif).

2.3.2 A decorative embedding of LK into LJ

We de�ne a translation � from classical formulae into intuitionistic formulae as

follows:
If A is atomic, then A� = A.

(A! B)� = (:B�)) (:A�)
(A ^B)� = (::A�

^ ::B�)
(A _B)� = (::A�

_ ::B�)
(:A)� = :A�

The idea behind this translation from LK to LJ is as follows:

�
.

.

.

� ` �
�
;

��

.

.

.

��;:��
`

Remark 2.3.1 This actually embeds LK in a fragment of LJ where no right weak-

ening is used, and where all right introduction rule is immediately followed by

a negation rule that moves the introduced formula to the left. We will note this

fragment LJ�.

Now we de�ne a translation of derivations by induction on the structure of proofs

in LK.

axiom

A ` A
�
;

A�
` A�

A�;:A�
`

cut

�1

.

.

.

�; A ` �

�2

.

.

.

�0 ` A;�0

�;�0 ` �;�0 �
;

��

1

.

.

.

��; A�;:��
`

��;:��
` :A�

��

2

.

.

.

�0�;:A�;:�0�
`

��;�0�;:��;:�0�
`

38 CHAPTER 2. LOGICAL EMBEDDINGS INTO LINEAR LOGIC

right weakening

�
.

.

.

� ` �

� ` A;�
�
;

��

.

.

.

��;:��
`

��;:A�;:��
`

right contraction

�
.

.

.

� ` A;A�

� ` A;�
�
;

��

.

.

.

��;:A�;:A�;:��
`

��;:A�;:��
`

left arrow

�1

.

.

.

�; B ` �

�2

.

.

.

�0 ` A;�0

�;�0; A! B ` �;�0 �
;

��

1

.

.

.

��; B�;:��
`

��;:��
` :B�

��

2

.

.

.

��;:A�;:�0�
`

��;�0�; (:B�)) (:A�);:��;:�0�
`

right arrow

�
.

.

.

�; A ` B;�

� ` A! B;�
�
;

��

.

.

.

��; A�;:B�;:��
`

��;:B�;:��
` :A�

��;:��
` (:B�)) (:A�)

��;:((:B�)) (:A�));:��
`

Exercise 2.3.2 Complete the translation of proofs treating the trivial case of left

contraction and weakening and the case of ^, _ and :.

The translation of proofs we have just exhibited actually proves the following

Theorem 2.3.3 (Soundness) Let A be a classical propositional formula of LK. If

A is provable in LK, then A� is provable in LJ.

The converse is also true, but unlike the case of the embedding of LJ into LL, the

proof is trivial.

2.3. RECOVERING CLASSICAL LOGIC 39

Theorem 2.3.4 (Completeness) Let A be a classical propositional formula of

LK. If A� is provable in LJ, then A is provable in LK.

Proof. A derivation of A� in LJ is also a derivation in LK, since LJ is a subsystem
of LK. Now any formula A is classically equivalent to A�, and the result trivially

follows. 2

Remark 2.3.5 (Preservation of cut-free proofs) Notice that a cut-free proof is

mapped by the translation into a cut-free proof, as it is clear from the soundness

proof for the embedding. Actually, we will be able to say much more than this:

it is possible to de�ne a notion of cut-elimination in LK that is preserved by the

translation, in such a way that the cut-elimination theorem for LK can be inferred

from the one of LJ. This uses in an essential way the fact that the translation

respects the skeleton.

2.3.3 Embedding LK into LL

If we now take the composition (�)? of the translations, we get back a translation
from LK into LL that acts on formulae as follows:

(A! B)�
?
= (:B�) :A�)? = !(:B�)? ��!(:A�)? = !?(B�?)? ��!?(A�?)? = ?!A�? ��?!B�?

and translates sequents � ` � as !��? ` ?!��?.

Again this is a plethoric translation: it is of course possible to obtain a more eco-

nomical one (indeed, even two, one of them allows to recover then the economical

intuitionistic translation; you can �nd all this in [DJS95c]).

40 CHAPTER 2. LOGICAL EMBEDDINGS INTO LINEAR LOGIC

Chapter 3

Proof Nets

citazione parallel syntax

Jean-Yves Girard

????

41

42 CHAPTER 3. PROOF NETS

As is the case for classical or intuitionistic sequent calculus, a proof of a sequent

� ` � (or ` �?;� in our asymmetric presentation) can contain a lot of details

that sometimes are uninteresting. For example, consider how many uninterest-

ingly different ways there are to form a proof of ` �; (A1OA2); : : : ; (An�1OAn)
starting from a derivation of ` �; A1; A2; : : : ; An.

This unpleasant fact derives from the sequential nature of proofs in sequent cal-

culus: if we want to apply a set S of n rules to different parts of a sequent, we

cannot apply them in one step, even if they do not interfere with each other! We

must sequentialize them, i.e. choose a linear order on S and apply the rules in n
steps, according to this order. This phenomenon can lead us to n! proofs that are
intensionally different, but that we would like to consider as just one proof.

At this point, there is a natural question that needs to be answered: �is there a

representation of proofs that abstracts from such uninteresting details?�. A similar

question is answered positively in the case of Intuitionistic Sequent Calculus by

means of what is known, after Prawitz, as Natural Deduction.

3.1 Digression: Natural Deduction for ISC

Let's recall brie�y the natural deduction presentation of the implication-only frag-

ment of Intuitionistic Sequent Calculus, and some of its fundamental properties.

For details, the interested reader ought to refer to [GLT90].

De�nition 3.1.1 (Natural deduction)

� A is a deduction of the formula A from hypothesis A

� if
D

B
is a deduction of B from a multiset of hypothesis �, then

D
0

B

A) B

is a deduction of A) B from hypothesis �0, where �0 is �, eventually
without some occurrences of A.

� if
D1

A) B
is a deduction of A)B from hypothesis � and

D2

A
is a deduction

of A from hypothesis �0, then

D1

A) B

D2

A

B

3.1. DIGRESSION: NATURAL DEDUCTION FOR ISC 43

is a deduction of B from hypothesis �
U
�0, where

U
is multiset union.

It is possible to give a simple translation from any proof P in LJ to a natural de-

duction D, and to show that this translation is surjective (see[GLT90]), so that the

two systems are equivalent as far as provability is concerned (i.e. proving a se-

quent � ` A (recall that we are talking about Intuitionistic calculus) is equivalent

to build a natural deduction ofA with premisses taken (as much times as we want)

from �). See [GLT90] for more details.

The natural deduction tree structure D associated to a proof P can be thinked of

as the quotient of all the proofs that can be obtained from P by legal permutations

of the rules in P.

The cut elimination property for ISC becomes a similar property still called cut

elimination (but where a cut is de�ned in a different way) for Natural Deduc-

tions. A natural deduction tree can be put in exact correspondence with typed

�-calculus (that can be considered as just a notation for such deductions), and

the cut-elimination in Natural Deduction corresponds exactly to �-reduction in

�-calculus.
In fact, we can present the simple typed �-calculus in a way that mimicks directly

the construction of a derivation tree.

De�nition 3.1.2 (Simple typed �-calculus)

� x:A is a variable of type A

� if
D

M : B
is a deduction of M:B from a multiset of hypotheses �, then

D
0

M : B

(�x : A:M) : A) B

is a deduction of (�x : A:M) : A) B from hypothesis �0, where �0 is �,
where all occurrences of x:A are discarded.

� if
D1

M : A) B
is a deduction of M:A)B from hypothesis � and

D2

N : A
is

a deduction of N:A from hypothesis �0, then

D1

M : A) B

D2

N : A

(MN) : B

is a deduction of (MN):B from hypothesis �
U
�0, where

U
is multiset union,

if the declaration of types of common variables agree.

44 CHAPTER 3. PROOF NETS

From a simple typed �-term it is possible to recover the full structure of the deriva-

tion of its well-typing. This is why such terms are also used as a �notation� for

derivations in natural deduction.

Remark 3.1.3 The rules for building a natural deduction tree have the following

properties:

� global well-formedness: the application of a building rule can require the

inspection of the global tree already built (see the case for)).

� local correctness: if all the rules are applied properly (i.e. the proof tree is

well-formed), then the deduction is correct.

3.1.1 Natural Deduction and Proof Structures

As already noted, a natural deduction is essentially a tree, with just one root that

correspond to the just one conclusion in an intuitionistic sequent.

Can we adapt this construction to the case of Linear Logic? We have a �rst dif-

�culty to face: sequents in LL, even in the symmetric presentation, have more

than one conclusion, so that it seems not clear how to associate a tree to a class

of derivations. Actually, it is possible to adapt natural deduction to this situation

by using an interpretation of symmetric linear sequents in terms of intuitionistic

linear sequents of ILL. Anyway, there is a more natural way (and much more

interesting, as we will see later) to build a mathematical object that identi�es un-

interestingly different derivations in Linear Sequent Calculus.

We will consider no longer trees, but graphs, as suggested by the asymmetric

presentation of LSC. For simplicity, the presentation that follows is restricted to

the case of the multiplicative fragment MLL of linear logic.

3.1.2 Proof Structures. Concrete and abstract form.

Let's start by de�ning the notion of sequential proof structure, or SPS, by follow-

ing exactly the construction of derivations in the asymmetric sequent calculus for

MLL.

De�nition 3.1.4 (sequential proof structure) De�ne inductively �S is a SPSwith

conclusions X1; : : : ; Xn�, where X1; : : : ; Xn are multiplicative formulae, as fol-

lows:

1. ax link. For any multiplicative formula A

A A?

3.1. DIGRESSION: NATURAL DEDUCTION FOR ISC 45

is a SPS with conclusions A;A?.

2. par link. If S1 is a SPS with conclusions X1; : : : ; Xn; A;B, then S is a
SPS with conclusions X1; : : : ; Xn; AOB, where S is :

S1
.

.

.

A B

AOB

3. tensor link . If S1 is a SPS with conclusions X1; : : : ; Xn; A, and S2 is a
SPS with conclusions Y1; : : : ; Ym; B,

S1
.

.

.

A

S2
.

.

.

B

A
B

is a SPS with conclusions X1; : : : ; Xn; Y1; : : : ; Ym; A
B

4. cut link . If S1 is a SPS with conclusions X1; : : : ; Xn; A, and S2 is a SPS
with conclusions Y1; : : : ; Ym; A

?,

S1
.

.

.

A

S2
.

.

.

A?

is a SPS with conclusions X1; : : : ; Xn; Y1; : : : ; Ym

This de�nition allows to associate in a straightforward way an SPS to any deriva-

tion of an MLL sequent.

Exercise 3.1.5 (Embedding sequents into SPS's) Give a formal translation of a

derivation of a sequent ` A1; : : : ; An into a SPS with conclusions A1; : : : ; An.

What is more interesting, we can prove that any SPS actually comes from a deriva-

tion of a sequent in SPS.

Theorem 3.1.6 (Correction of SPS's) If S is an SPSwith conclusionsA1; : : : ; An,

then there exists a derivation D in MLL of the sequent ` A1; : : : ; An. Further-

more, the translation of this derivation is S.

46 CHAPTER 3. PROOF NETS

Proof. Exercise. 2

Are these SPS's the structures we were looking for in order to abstract from the too

many details present in the derivations of the sequent calculus? Apparently yes: in

a SPS there is no longer a trace of the order of application of non-interfering rules.

Unfortunately, SPS's enjoy the same properties of natural deduction, i.e. the local

correctness and global well-formedness, and here to check the well-formedness

of a tensor link in a SPS S we have to �nd a possible order of construction of S.
So, SPS's are easy to build, but it seems to be very dif�cult to check that a structure
looking like an SPS is actually an SPS, and not simply what is called a concrete
proof structure (or CPS), that is a composition of links choosen among

A A?
A B

AOB

A B

A
B
A A?

and satisfying the conditions:

� every formula is conclusion of exactly one link

� every formula is premiss of at most one link.

Remark 3.1.7 (proof-structures) In the literature, CPS are ususally called pré-

réseaux or proof structures, while SPS are called réseaux or proof-nets.

In the concrete form, the horizontal segments represent what are called links. For-

mulae directly above a link are called premisses of the link, while those directly

below are called conclusions of the link. The formulae that are not premisses of

any link in a CPS are called conclusions of that CPS. We also call cut-formulae

those formulae that are premisses of a cut link, and terminal formulae of a CPS

the cut-formulae and the conclusions of that CPS.

3.2 Correctness Criteria

We need to look for a criterion of correctness to ensure that a given CPS is actually

an SPS, i.e. represents a derivation inMLL. We will provide here a rather detailed

account of the most appealing criterions known to date (essentially due to Vincent

Danos and Laurent Regnier, see [Reg92, Dan90]), and a quick survey of the other

ones we know of. Essentially this will lead us to a tour of the following criteria:

Topological criteria

Long-trip [Gir87]

Contractibility [Dan90]

3.2. CORRECTNESS CRITERIA 47

Acyclic-Connected (ACC) [Dan90]

Hereditary Secessiveness [Dan90]

Graph Parsing [GMM97]

Deadlock-freeness [AD]

For each of them a proof of soundness and completeness can be found in the ref-

erenced papers. Here we mean by soundness the implication if a CPS is an SPS

than it satis�es the criterion, and by completeness the reverse implication if a CPS

satis�es the criterion, then it is an SPS. Typically, soundness can be shown in a

straightforward way by induction on the structure of an SPS, while the complete-

ness requires much more work. We will state all these criteria, but only study in

detail two of them, namely Contractibility and Acyclic-connected, showing their

soundness and completeness in a way that factors the dif�cult implication, and

will give us two criteria for the price of one (this proof is an original elaboration

of the original one in [Dan90]).

3.2.1 Topological Criteria

Let's start our survey by the long-trip criterion originally stated by Girard in his

seminal paper. To do so, we look at each link of a proof-net as a router, having

as ports the formulae that are premisses or conclusions of the link: to each link

we associate a set of routing rules that tell us from which port we come out when

we enter from a given port. Axiom and cut have a �xed behaviour, while tensor

and par have two possible behaviours, determined by a local switch, that has two

possible positions, L and R.

De�nition 3.2.1 (Link routing tables and switches) To each link in a CPS we

associate a routing table, as depicted in the following:

Tensor and par links can have two states, L andR, and their routing tables depend

on these states.

The long-trip criterion can be stated as follows:

Theorem 3.2.2 (Long-trip) A CPS is a SPS iff for every possible con�guration

of the switches associated to the par and tensor nodes one obtains a �long trip�

(i.e. starting from any node one travels along a path that visits exactly once all

formulae in the net in each direction).

48 CHAPTER 3. PROOF NETS

3.2.2 Towards ACC

This �rst criterion is of exponential complexity, so it is interesting to try and see

if we can do better. Our �rst step will be to identify the underlying topological

structure of a CPS: abstracting from the concrete details of the links of a CPS, we

immediately notice that every link is essentially a connective with two (ax and cut

link) or three (par and tensor links) connecting ports. The ax and cut connectives

directly connect their two ports, while the par and tensor connectives connect two

of the ports (the premisses) with a main port (the conclusion).

This observation suggests to represent abstractly each of these links by two con-

nected segments in a graph.

De�nition 3.2.3 A paired graph is any undirected graph S = (E; V;C) (where E
is a set of edges, and V is a set of vertices), equipped with a set C(S) of pairwise
disjoint couples of co-incident edges1.The set of pairs C(S) can also be seen as a

binary relation on E � E.

Let's call simply pairs such couples of edges and basis of a pair a node common

to the two edges, and let's say that two edges that belong to a same couple are

coupled.

Graphically we denote the fact that two edges are coupled by a little arc tying

them.

It is then straightforward to associate a paired graph S� to a CPS S: just write
an axiom link and a cut link as two edges, a tensor link as three edges and a par

link as three edges, but where the two upper ones are coupled as in the following

picture.

1Two edges are co-incident if they have at least one node in common.

3.2. CORRECTNESS CRITERIA 49

......
..........
...
......
.

......
..........
...
......
.

......
..........
...
......
.

......
..........
...
......
.

..........
...
......
.

......
..........
...
......
.

......
..........
...
......
.

......
..........
...
......
.......

..........
...
......
.

......
..........
...
......
.

......
..........
...
......
.

...........
...................

..

......
..........
...
......
.

Tensor

......
..........
...
......
.......

..........
...
......
.

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.. ..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

Cut Axiom

Par

Now we can state the next correctness criterion:

De�nition 3.2.4 (Acyclic-Connected) Given a paired graph G, let GC(G) be

the set of graphs that can be obtained from it by removing exactly one edge for

each pair of coupled edges.

We say that that G satis�es the Acyclic-Connected condition (ACC) if all the

graphs in GC(G) are acyclic and connected (i.e. they are trees). We will say

that a CPS S satis�es ACC if S� satis�es ACC.

As we will see later, a CPS satisfying ACC is a SPS, but this criterion still invites

to an exponential check: the graphs in GC(S) are 2p where p is the number of

par link in the CPS S.

It is possible to do much better than that, using the following notion of graph

reduction.

De�nition 3.2.5 We de�ne the following graph rewriting rules on paired graphs:

50 CHAPTER 3. PROOF NETS

......

......
.......
............

..

..

......
..........
...
......
.

......
..........
...
......
.

......
..........
...
......
.

........
........
........
.......
.......
.......
.......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.......
.......
.......
.......
........
........
....
.......
..
......
.

)

......
..........
...
......
.

)

2 1

with the condition that:

� rule 1 can be applied only to non-coupled edges connecting two different

nodes

� rule 2 applies only to two coupled edges that connect the same two nodes.

Exercise 3.2.6 Show that the graph reduction just de�ned is strongly normalizing

and weakly con�uent (hence con�uent).

De�nition 3.2.7 (Contractibility) A CPS S is contractible iff S� reduces to a

single node.

Again, we will see later that a contractible CPS is an SPS. A check for con-

tractibility, though, can be performed in at most quadratic time.

Now it is very easy to show the sequence of implications:

S is a SPS) S is contractible) S satis�es ACC:

The proofs are left as exercises.

Exercise 3.2.8 (SPS's are contractibles) Show by induction on de�nition 3.1.4

that a SPS is contractible.

Exercise 3.2.9 (Contractible CPS's satisfy ACC) Let S be a paired graph re-

ducing to S0 by rule 1 or 2 above.

� Show that S satis�es ACC iff S0 does.

� Infer from this that if S is contractible then S satis�es ACC.

3.2.3 Completeness of the criteria

The two implications just proved tell us that both criteria are sound. Furthermore,

we know by the second implication that completeness of the ACC criterion implies

completeness of the contractibility criterion.

3.2. CORRECTNESS CRITERIA 51

So we are left to show that a CPS satisfying ACC is indeed an SPS. To do so,

we will again procede by induction on the structure of the graph, but a key point

will be the possibility of splitting a given paired graph satisfying ACC into two

smaller paired graphs that still satisfy ACC. Unlike what happens in the case of

the proof of completeness of the original long-trip criterion, we will split the graph

in correspondence of a par link, and not of a tensor link.

De�nition 3.2.10 (splitting pair) Let S be a paired graph. We say S is split if

there is a pair p of S s. t. the basis of p is disconnected from the other two

extremities of p in S n p. Such pair is called splitting.

Exercise 3.2.11 (splitting preserves ACC) Let S be a paired graph split by p;
show that if S satis�es ACC then S n p has two connected components, also sat-

isfying ACC. Show the converse.

Is it always possible to �nd a splitting pair in a paired graph that satis�es ACC?

Yes, it is! But here we �nd the only hard part of the proof.

Theorem 3.2.12 (Paired graphs with at least one pair are split) Let S be a �-

nite paired graph satisfying ACC. If S counts at least one pair then it is split.

Proof. This is a dif�cult theorem: see [Dan90], Proposition 4-5, for details. See

also the Appendix. 2

Exercise 3.2.13 Show a counter example to the theorem above in case one allows

in�nite graphs.

Now we have all the necessary tools to prove the completeness of the ACC crite-

rion, and hence of the Contractibility criterion too.

Theorem 3.2.14 (Completeness) Any CPS S satisfying ACC is an SPS.

Proof. We will procede by induction on the size of S, but the inductive steps will
force us to look at S not just as a CPS or a SPS, but as a slightly more general

structure.

Exercise 3.2.15 Add to de�nition 3.1.4 the following clause:

1'. hypothesis-link. For any multiplicative formula A

A

is a SPS with hypotheses with conclusions A.

52 CHAPTER 3. PROOF NETS

to have the de�nition of a SPS with hypotheses. Similarly extend the de�nition of

CPS to cope with hypotheses (this is only induction loading).

Now, let S be a CPS w. h. satisfying ACC:

� if S has no pairs show by induction on the number of
 that S is a SPSw.h.,

� if S has a pair use the non obvious graph-theoretic property above to show

by induction on the number of O that S is a SPSw.h..

2

Exercise 3.2.16 (Danos-Schellinx) Let A be a provable multiplicative formula.

1. Suppose S is a cut-free proof-net proving A, so it consists in the �tree� of

A, say T (A), together with a set of axiom links over its leaves (the atoms of

A). Show that C(A) = N(A) + 1, where C(A) is the number of connected
components of T (A) under any switching s, and N(A) is the number of

axiom links in S.

2. Prove that P (A) = N(A), where P (A) is the number of O connectives in

A

3. infer from this that 6` A;A; � � � ; A; and better that if A1, A2, . . . , An are

provable (for n > 1), then 6` A1; A2; � � � ; An

4. again infer from point 1 that if P (A) + N(A) � P (B) + N(B) (mod 2),

then 6` A;B.

3.2.4 Graph Parsing criteria

Once we have seen how correctness can be established easily via contractibility of

the paired graph associated to a CPS, it is not dif�cult to derive a criterion working

directly on the proof structures, and that has the same behaviour [Laf95]: this is

done by de�ning a graph parsing grammar that will rewrite a correct CPS having

conclusion � to a single special node NET having the same conclusions. Here

we present the grammar corresponding toMLL taken from [GM97], where it has

been extended to a version of full MELL where weakening is only allowed on the

axioms.

Theorem 3.2.17 (Graph Parsing [GM97]) A CPS with conclusions � is a SPS

iff it rewrites to the node NET with conclusions � under the graph grammar in

table 3.1.

Remark 3.2.18 The correctness proof proceeds exactly like the one for the Con-

tractibility criterion, i.e. via a reduction to ACC. Unlike the case of the two re-

duction rules in the contractibility criterion, this graph rewriting system is not

con�uent in general, but this is not problematic since one can show that if a re-

duction path recognizes the net as correct, then all paths do, and this is enough.

3.2. CORRECTNESS CRITERIA 53ax p?p ! net p?pnetA1 Ak ut net BhB1C C?:::::::: :::::::: ! netA1 Ak BhB1:::: ::::netA1 Ak BhB1A BOAOB:::: :::: ! netA1 Ak BhB1AOB:::: ::::netA1 Ak A B
A
B net BhB1:::::::: :::::::: ! netA1 Ak BhB1A
B:::: ::::
Table 3.1: Graph parsing rules for MLL

3.2.5 Handling the MIX rule

In the proof of correctness for the ACC criterion, the only dif�cult part really uses

(as you can see in the Appendix), a weaker property, called Weak-ACC or just

AC, that asks the correction graphs to be acyclic, but not necessarily connected.

This allows to capture CPS that are families of SPS's, and correspond to proof in

MLL extended with the following MIX rule:

` � ` �0

` �;�0
MIX

The MIX rule allows for example to prove the linear implication

A
B �� AOB

It is then a simple exercise to adapt the de�nitions and proofs just seen to obtain

the following

Theorem 3.2.19 (AC criterion) A CPS satisfying AC is a family of SPS's, and

represent a proof in MLL+ MIX.

54 CHAPTER 3. PROOF NETS

3.2.6 Deadlock freeness, MIX and ACC

A �nal criterion that we want to present here is due to Andrea Asperti, and tries

to highlight a sort of relation with concurrent processes: here formulae are pro-

cesses, and connectives are used to build new processes out of existing ones, in

the process-algebras tradition, according to the following informal intuition

A
B is the interleaving of process A and process B

AOB is process A run in parallel with process B

A? is the process whose only action is to synchronize with A

If we take this point of view, a CPS becomes the representation of a network

of processes interconnected via the axiom and cut links, and it is natural to ask

questions about the dynamics of this parallel system, i.e. what happens when a

process A is activated (we will write "A to denote activation) and when does it

terminate (we will write A# to denote termination).

According to the intuition given above, the natural evolution rules of the system

are the following:

De�nition 3.2.20 (Activation and termination of processes) Activation and ter-

mination are propagated along the links according to the following rules:

� evolution of an axiom link:

"A "A? ! A# A?#

� evolution of a par link:

A B

"AOB !

"A "B

AOB

A# B#

AOB !

A B

AOB#

� evolution of a tensor link: to every tensor is associated a switch with two

possible states L and R (like in Girard's criterion), and the evolution of the

link depends on this state

A B

"A
B
L

!

"A B

AOB
L

A B

"A
B
R

!

A "B

AOB
R

A# B

A
B
L

!

A "B

AOB
L

A B#

A
B
R

!

"A B

AOB
R

A B#

A
B
L

!

A B

AOB#
L

A# B

A
B
R

!

A B

AOB#
R

3.3. REDUCTION OF PROOF-NETS. 55

� evolution of a cut link: in a process net all cut links between a formula A
and its dual A? are handled exactly as if they were replaced by a tensor

link with conclusion A
A? (the same can be done in Girard's criterion)

In this view, a deadlock is a con�guration that can no longer evolve, yet contains

at least one active processes. It turns out that a CPS which is correct for MLL

with the MIX rule is precisely a process structure that does not produce deadlocks

during the evolution of the system.

Theorem 3.2.21 (An SPS with MIX is a deadlock-free CPS) A CPS is an SPS

for MLL with the MIX rule iff under any con�guration of the tensor switches the

resulting process net is deadlock free (i.e. after activating all terminal formulae of

the net one can reach the �nal state where all terminal formulae have terminated).

This treatment can be extended to reacher process algebras: for details see [Asp91].

Remark 3.2.22 It is still interesting to remark that, while a direct proof of com-

pleteness is possible, a very easy proof can be given by reducing the criterion to

the Weak-ACC one [AD93]. Again, we see here that the interest of the ACC cri-

terion is not its complexity, still exponential, but its versatility in providing proofs

of completeness by reduction to it.

3.3 Reduction of proof-nets.

Now that we know how to spot a real proof net among the many CPS, the main

question is: can we perform cut elimination directly on the proof nets? Is it easier

than in the sequent calculus? If so, how do we prove that such process preserves

correctness?

In the MLL case, the answer is a de�nite yes, and everything is very simple: one

can reduce a proof-net either this way (axiom move):

A
... A?

...
A

;

...
A
...

or that way (multiplicative move):

...
A

...
B

A
B

...

A?

...

B?

A?OB?
;

...
A

...

A?

...
B

...

B?

56 CHAPTER 3. PROOF NETS

These reduction preserve correctness, are con�uent and strongly normalizing, so

provide an effective way of performing cut elimination that is way simpler than

what can be done in the sequent calculus directly: thanks to the parallel syntax

provided by the proof nets, we have no need whatsoever to go through awkward

commutation lemmas here.

Exercise 3.3.1 (Reduction preserves correctness)

1. Show that the axiom-move preserves correctness.

2. Call R the lhs of the multiplicative-move; take S to be any switch of R and

call S0 the graph obtained from S by erasing the three links
, O and cut

concerned by the move. Show that among A, B, A? and B? the only two

connected vertices are A? and B?.

3. Deduce from the previous point that the multiplicative move also preserves

correctness.

So these two moves preserve correctness, and the right handside is indeed a proof-

net if the left hand side is one.

Exercise 3.3.2 (Con�uence and Strong Normalisation)

1. Show that this rewriting process is noetherian;

2. show it is con�uent (by the previous point it is enough to prove that it is

locally con�uent) and every reduction to normal form have the same length.

Exercise 3.3.3 (splitting
) Let S be a CPS, a
 in S is said to split it if its

erasure splits S in two connected components.

1. show that in a CPS satisfying ACC, with no terminal O-links, there is such

a
 (unless the structure is an axiom link).

2. (Andreoli-Pareschi) show that under the same hypotheses one can even

�nd an hereditarily splitting
, i.e., a splitting
, the premises of which are
O's or again hereditarily splitting
.

Note that there is a hidden assumption in the de�nition of the axiommove. Namely

that both A's are different occurrences of A. If they were the same, then the situ-

ation would be the `black-hole':

A A?
;

3.4. PROOF NETS FOR MELL 57

forever rewriting to itself. Of course this black hole is not a proof-net. So there

is more about acyclicity than sequentialisation, it also prevents the formation of

looping con�gurations.

Bechet [?] recently proved a kind of converse to this remark that makes a real

happy end to the story of correctness. Suppose a proof-structure S is cyclic, then

there are proof-nets R1, . . . , Rn such that S cut on R1, . . . , Rn produces a black

hole. Thus acyclic proof-structures are exactly those that will never produce any

such con�guration, whatever the context in which they are plugged.

3.4 Proof Nets for MELL

We have seen up to now what are the proof nets for MLL, whose behaviour is

fully satisfactory. For MELL, we can proceed to a similar construction, but the

traditional presentation of exponentials, as we will see, is less satisfactory. Here

follows the traditional presentation of Proof Nets for MELL:

De�nition 3.4.1 The set of proof nets, denoted by PN , is the smallest set satisfy-

ing the following properties:

� An A-axiom link is a proof net with output formulae A;A?, written as

A A?ax
� If S is a proof net with output formulaeA;� and T is a proof net with output

formulae A?;�, then adding an A-cut link between A and A? yields a

proof net with output formulae �;� written as

A A?cutΓ ∆

� If S is a proof net with output formulaeA;� and T is a proof net with output

formulae B;�, then adding an A-B-times link between A and B yields a

proof net with output formulae �; A
B;� written as

A B
A�B

Γ ∆

58 CHAPTER 3. PROOF NETS

� If S is a proof net with output formulae �; A;B, then adding an A-B-par

link between A and B yields a proof net with output formulae �; AOB
written as

A B
AOB

Γ

� If S is a proof net with output formulae �, then adding anA-weakening link
yields a proof net with output formulae �; ?A written as

Γ ?A

w
� If S is a proof net with output formulae �; ?A; ?A, then adding an A-n-

contraction link yields a proof net with output formulae �; ?A written as

?A ?Ac
?A

Γ

We say that ?A; : : : ; ?A are the inputs of the contraction node, and the

conclusion formula ?A is the output of the contraction node.

� If S is a proof net with output formulae �; A, then adding an A-dereliction
link yields a proof net with output formulae �; ?A written as

?Ad
?A

Γ

� If S is a proof net with output formulae ?�; A, then adding an A-?�-box

3.4. PROOF NETS FOR MELL 59

link yields a proof net with output formulae ?�; !A written as

De�nition 3.4.2 The cut-elimination procedure over PN is performed via the

rewrite relation de�ned as follows:

� axiom:

A A? Acutax
A�!id

� times-par:

A B
AOB

A? B?
A?�B?cut A B A? B?cutcut�!mul

� weakening-box:

?A

w
!A? ?Γ
A? ?Γcut ?Γ

w�!w
� contraction-box:

?A ?Ac
?A !A?A? ?Γ

?Γcut ?A ?A

!A?A? ?Γ
?Γcut !A?A? ?Γ

?Γcut c
?Γ

�!dup

60 CHAPTER 3. PROOF NETS

� dereliction-box:

?A

dA
!A? ?Γ
A? ?Γcut A

A? ?Γcut�!der
� box-box:

?A
?A

!A? ?Γ
A? ?Γcut ?A

!A? ?Γ
A? ?Γcut

?Γ

C�!com
For this system one can show the same results as for MLL, but in a less straight-

forward way.

Theorem 3.4.3 (Cut-elimination in MELL) The reduction rules are con�uent, strongly

normalizing and preserve correctness.

For a proof, the interested reader is referred to the seminal paper [Gir87].

Remark 3.4.4 This original presentation of proof nets for full MELL is not totally

satisfactory for several reasons:

� binary contraction nodes mimick exactly in the net the order of application

of contraction rules in the sequent derivations, so we have lost the par-

allelisation of syntax: for each of the exponentially many ways to derive

` A from ` A; : : : ; A| {z }
n

, we get a different tree of contraction nodes in the

corresponding net. Also, the order of application of the contraction and

promotion rules is still visible in the net. One can remedy to these defect by

working in nets up to associativity of contraction nodes and traversal of box

borders for contraction nodes. This has been done by several authors: to

give a cleaner presentation of the Geometry of Interaction equations for the

semantics of �-calculus in [DR95], where reduction is de�ned to maintain

speci�c normal forms up to these rules, and to give a tight simulation of the

reduction used for �-calculi with explicit substitutions in [DCD96], where

more liberal reductions are used.

3.4. PROOF NETS FOR MELL 61

� due to the presence of boxes, we lost the nice local reduction property that

was so attractive in the proof nets for MLL. As we will see later, one can get

locality of reduction back by different means, all leading to various �avours

of sharing graphs that are used to implement optimal reduction.

62 CHAPTER 3. PROOF NETS

Chapter 4

Computational aspects of the

Embeddings into Linear Logic

algebrization du calcul

Jean-Yves Girard

????

63

64CHAPTER 4. COMPUTATIONALASPECTSOF THE EMBEDDINGS INTOLINEARLOGIC

The embeddings from LJ into LL naturally suggest an embedding of natural de-

duction intuitionistic proofs (that correspond to types �-calculus), into proof-nets.
In this chapter we will show how the more re�ned structure of proof-nets allows to

perform a �ner analysis of sequential computation, in at least the following three

possible ways:

local and optimal reduction the reduction in MLL proof nets is local, as op-

posed to the global substitution or grafting mechanism which is the only

available in intuitionistic natural deduction. This locality of the reduction,

which still can be mantained inMELL at the price of some more graph com-

binators, allows to (sort of) implement Levy's optimal reduction strategy for

the �-calculus.

algebrization of the reduction instead of reducing a proof net, one can try to ex-

pose the essence of such a reduction, by introducing an algebraic description

of the paths that make up a proof net, with the axioms that insure a correct

composition. A proof net is then decomposed in a family of paths, out of

which one can, by algebraic manipulations, recover its normal form. This

plan forms the core of Girard's Geometry of Interaction.

game semantics �nally, another way to compute with proof nets is by interpret-

ing linear formulas as suitable games and linear derivations as strategies in

these games. Similarly to what happens with paths, strategies can be com-

posed and one can then obtain the strategy associated to the normal form by

formal manipulation.

Here too, we will try to be faithful to the spirit of the book: we focus on a simple

case (the linear lambda calculus andMLL), where a detailed exposition will allow

any reader to become familiar with the fundamental ideas, and then refer to the

appropriate literature for the case of the full �-calculus (but the next chapter will
help in bridging the gap betweenMLL andMELL by studying all these issues in a

powerful fragment of LL known as Elementary Linear Logic).

4.1 Embedding �-calculus in Linear Logic

A linear �-term is a term of which each variable occurs exactly once. Such terms

are simply typable in the type-assigment system we introduced in 3.1.2, as stated

in the following

Exercise 4.1.1 (Simple types for linear terms) Show that any linear term is sim-

ply typeable.

Proof. (Hint: prove �rst the property for terms in � normal form, and then show

that a linear term is simply typeable if and only if one of its �-contractums is.) 2

4.1. EMBEDDING �-CALCULUS IN LINEAR LOGIC 65

For linear lambda terms, both embeddings we have seen (the plethoric and the

economical one) can be simpli�ed by removing all exponentials (this is indeed

the key to this simple case: neither duplication nor erasure is allowed).

De�nition 4.1.2 (Simple embedding from LJ toMLL) De�ne (A ! B)? to be

A??
OB? and if A is atomic A? to be A.

Now, to any (simply typeable) term t we can associate an unique intuitionistic

derivation D(t) in natural deduction, and then to this derivation we can associate

a (no longer unique, but one can choose the natural one) derivation S(D(t)) in
the sequent calculus LJ. This gives, via ?, a derivation S(D(t))

?
in MLL, which

we know how to map into proof-nets. This process provides us, in general, with

an embedding of �-terms into proof-nets, that depends on the chosen translation

from LJ into LL.

In our simple case, we can make the translation explicit: the principle of the trans-

lation is that MA[xB1

1 : : : xBnn] is turned into a proof-net M? with conclusions

B?
1

?
, . . . , B?

n

?
and A?.

De�nition 4.1.3 (Embedding linear lambda terms in MLL proof nets) The trans-

lation is de�ned by induction on the derivation as follows (dropping the ?'s over
the formulae in the net)

� xA is turned into an axiom link between A? and A;

� letMA!B and NA be two terms, then (M)N is turned into:

M?

...
A! B

N?

...
A B?

A
B?

B

� LetMB be a term and xA a free variable inM , �x M is turned into:

M?

...

A? B

A! B

What is wrong with this translation is that normal terms are not turned into cut-

free proof-nets. Indeed, one can devise a better translation where redexes of M
are one-to-onely mapped to cuts ofM?, this map preserving types. Moreover this

66CHAPTER 4. COMPUTATIONALASPECTSOF THE EMBEDDINGS INTOLINEARLOGIC

translation induces an interesting equivalence relation between �-terms (see [Reg91,

Dan90] for details). But let us content ourselves with this simple encoding.

Now one can see proof-nets as a relaxed way to write down �-terms. If one re-

members the reduction moves for proof-nets, then the bene�t of such an embed-

ding is clear: we now have local reductions, whereas at �rst sight �-reduction
even on linear terms did not seem to be local. Surely this is a very satisfying

representation of terms, alas, we are expelled from this girardian paradise as soon

as we step out from linear terms, for erasure and duplication deprive us from this

locality of reductions in the general case . . . but still we can do better.

4.2 Local Reduction

The embedding just de�ned allows us to implement the �-reduction rule

(�x:M)N !� M [N=x]

locally inMLL proof nets precisely via the reduction moves in the proof nets. Ac-

tually, we can forget about the formulae and just remember the links, thus getting

closer to the usual graph reduction.

For example, here is the implementation of the reduction (�x : A:x)y !� y via

the local reductions inside proof nets:

The simplistic framework of the linear lambda calculus does not allow to expose

much of what is done in this �eld, because the real dif�culty is to handle sharing,

and no sharing is necessary for linear lambda terms. Let us just say for the moment

that the locality of the reduction can be mantained inMELL (which is the subsys-

tem of LL we need to capture the full �-calculus) at the price of some more graph

combinators, and allows to (sort of) implement Levy's optimal reduction strategy

for the �-calculus. We say �sort of�, here, because what really has been done is to

provide a graph implementation where just the number of graph reduction steps

corresponding to initiating a � reduction is optimal, while the number of graph

reduction steps necessary to bring the �-reduction to completion is in general dif-

�cult to evaluate, and here is where all the work on optimal reduction takes place:

without this explanation of the misleading terminology which is commonplace in

the �eld, a reader could be much surprised by the many papers dealing with �op-

timizations� of �optimal� reduction.

We will present in detail the optimal reduction rules for a more powerful fragment

of LL in the next chapter.

4.3. DYNAMIC ALGEBRA 67

4.3 Dynamic Algebra

Encoding proof-nets in the dynamic algebra.

Let us study another way to store the information which hides in a proof-net and

is really needed for computation. Take a proof-net without cuts (also called a pure

net looking like:

...
A

...
B C?

B
 C?

AO(B
 C?)

C

...
D

C
D

a section along an axiom link in this proof-net is a path � like:

C
D;C;C?; B
 C?; AO(B
 C?)

linking two roots of the pure-net. Suppose now L and R to mean respectively left

and right, and ? to mean upwards, then the weight of �:

w(�) = R2L?

is enough to describe it, if one knows which roots � is connecting (beware compo-

sition is to the left). Therefore, formula-trees and axiom links of a pure-net P can

be represented (up to the identi�cation of
 andO, but the distinction only matters

for correctness, see again the multiplicative move) by a matrixM = (MAB):

� whose entries are the roots of P ;

� whereMAB =
P

w(�), the sum extending over all sections connecting A
to B.

In case the net we are given is not pure, we will nevertheless decompose it in its

pure part, to which we will associate a matrixM as above, and in a cut-link part,

to which we associate a matrix �:

� with the same entries asM ;

� where �AB = 1 iff A and B are cut-linked and 0 otherwise.

Remark 4.3.1 The idea behind this construction is that what really counts in a

net is just the set of paths connecting each �nal formula of the net to each other

formula, and such paths can be decomposed into paths along a section followed

by a cut-link, followed by another path along a section and so on. L andR (for left

and right) are like Pollicino's white stones keeping track of the path, augmented

with an involutive operation ? to remember if we are going up or down along a

section, L being down left and L? being up left.

68CHAPTER 4. COMPUTATIONALASPECTSOF THE EMBEDDINGS INTOLINEARLOGIC

The set in which these coef�cients are equipped with an associative product that

is distributive over the sum, together with some reasonable equations like an in-

volutive ?, is called the dynamic algebra. More formally

De�nition 4.3.2 (The dynamic algebra �� (forMLL)) The dynamic algebra is

a semiring generated by fL;Rg, with an involutive operation � de�ned as

u�� = u
0� = 0
1� = 1
(u+ v)� = u� + v�

(uv)� = v�u�

and satisfying the following consistency axioms:

L�L = 1
R�R = 1

L�R = 0
R�L = 0

Remark 4.3.3 In the algebra, 1 models an empty path, hence the identity over

paths, while 0 models an illegal path, that composed with any other path stays

illegal, hence the multiplicative zero over paths.

The consistency axioms also have a very intuitive reading: the �rst two just say

that going up and then coming back down bring us precisely to where we came

from; the second two are there to say that it is illegal to go down left and then

up right or down right and the up left: indeed, this combination only can happen

if we are crossing a cut link and we do not take the right path, that connects left

premisses of a
 (resp. O) to left premiss of a O (resp.
), and does not mix right
with left.

Computing the paths in a net N with the two matrices introduced above amounts

to compose sections along cut-links, i.e., to build some path in N taking alterna-

tively a section and a cut, which we weight with the product of the weights of the

sections it uses. To put this in a formula:

EX(�;M) = P (M +M�M +M�M�M + � � �)P;

where P is the projection on those roots which are not cut-linked to any other root,

which can be easily seen to be (1� �2).
Now one can prove:

Theorem 4.3.4 EX(�;M) is an invariant of reduction moves, and (�M)2
jNj+1

=
0 where jN j is the number of axiom moves it costs to reach the normal form ofN .

4.3. DYNAMIC ALGEBRA 69

Example 4.3.5 All this is best understood by looking at a worked example: let's

consider the translation of the linear �-term (�x : A:x)y where y is a free variable
of type A. According to our de�nition of the translation, we get the following

proof net: x which reduces, in 3 steps of cut elimination, to the identity net

A A?

Let's give a number to each of the conclusions of the net cosidered without the

cut links: we have 4 formulae, F1 = A?OA;F2 = A
 A?; F3 = A?; F4 = A.
Now we can write down the two matricesM and �, indexed over F1; : : : ; F4.

� =

0
BB@

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

1
CCA M =

0
BB@

RL� + LR� 0 0 0
0 0 L� R�

0 L 0 L�R = 0
0 R R�L = 0 0

1
CCA

Also, the matrix 1 � �2 is just the projector necessary to keep only the paths

between the conclusions of the net that are not cut with any other formula:

1� �2 =

0
BB@

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

1
CCA

You can check that (�M)3 = 0 and that EX(�;M) is

EX(�;M) =

0
BB@

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

1
CCA

which corresponds exactly to the identity net over A? and A, which in turn is the

translation of a free variable y of type A. 2

Remark 4.3.6 Notice that this perfect match between �-reduction and execution

formula is commonplace only over linear terms: as soon as we allow multiple oc-

currences of a same variable, duplication and erasing lead us to handling sharing

of data in the proof nets. It can well be the case, then, that if a term t reduces to
t0, the nets associated to t and t0 present different degrees of sharing.

De�nition 4.3.7 (Regular path, maximal path) A path in a proof net (i.e. a mono-

mial of the algebra) is called maximal if it cannot be extended, and regular if its

weight is not null.

70CHAPTER 4. COMPUTATIONALASPECTSOF THE EMBEDDINGS INTOLINEARLOGIC

Exercise 4.3.8 Let r be any of the two reduction move and P a proof-net.

1. Build a one-one correspondence from maximal regular paths of P onto

maximal regular paths of r(P),

2. deduce from the previous point the theorem above.

Exercise 4.3.9 (�-reduction) Translate �y (x)y into pure-nets as shown in 4.1.3;
reduce it, then compare with the translation of x and de�ne �-reduction in proof-

nets.

Exercise 4.3.10 (�-invariance) 1. Show that the degree of nilpotency of P is

invariant under �-reduction (see exercise 4.3.9 for the de�nition).

2. Suppose M is a linear �-term and M 0 an �-expansion of it such that M 0 is �
equivalent toM . Show that the reduction length (reduction length is independent

of the strategy for linear terms; check !) is greater forM 0 than forM . Conclusion:

the degree of nilpotency does not measure reduction lengths.

Exercise 4.3.11 (regular extensions) Say a monomialm in the dynamic algebra

is stable if it has the form m1m
�
2 where m1 and m2 are monomials without any

?'s (the void product means 1). Note that sections have normal weights.

1. Show that for all monomials m, either m = 0, or there is a stable m0 s.t.

m = m0.

2. Infer from this that every regular non maximal path in a proof-net admits a

regular extension.

Exercise 4.3.12 (a model) Consider the set PI(X) of partial injections (short,
pi) from a countable set X into itself. De�ne in this set the involution and the

product of the dynamic algebra, and �nd two pi's interpreting L and R.

4.4 Taming the full typed �-calculus

It is possible to extend this treatment of computation to the full typed �-calculus,
as we will brie�y hint here, and event ot the pure untyped �-calculus (see [Dan90,
Reg92] for details). The �rst step is to de�ne a translation suitable for non-linear

terms, so we need exponentials, and we have many choices, but the easier to

present is a transaltion associated to the economical embedding of LJ into LL:

De�nition 4.4.1 (From typed terms to MELL proof nets) The translation of a type

is the same as for the economical embedding:

A� = A if A is atomic

(AB)
�

= ?((A�)?)OB�

and the translation of a derivation is given by induction on the typing derivation

as follows:

4.4. TAMING THE FULL TYPED �-CALCULUS 71

� If �; x : A ` x : A is an axiom, with � = C1; � � � ; Cn, then its translation

is:

� If � ` �x : B:M : B C, with �; x : B `M : C, then its translation is

� If � ` (M N) : A, with � ` M : B A and � ` N : B, then we translate

(M N) as:

As for the dynamic algebra, one needs to extend it with some additional genera-

tors and operators necessary to code the new form that a section can assume once

we allow exponentials in the nets: four new constants r; s; t; d code the right or

left choice in a path traversing a contraction node, the auxiliary ports of a box and

the crossing of a dereliction operator respectively, while a new unary operator !
marks a path crossing the main door of a box.

The following new axioms take care of the identi�cation and annihlation of paths

along a reduction of a proof net, and complete the de�nition of the dynamic alge-

bra for MELL, once added to the ones for MLL that we have seen above:

(!(x))� =!((x)�)
!(x)!(y) =!(xy)

Annihilation

r�r = s�s = d�d = t�t = 1
s�r = r�s = 0

Commutation

!(x)r = r!(x)
!(x)s = s!(x)
!(x)t = t!!(x)
!(x)d = dx

VINCENT

Remark 4.4.2 (Preservation of paths under cut-elimination) In this richer set-

ting, we no longer have the simple correspondence between equations in the al-

gebra and cut-elimination that holds in the MLL case: here a path in a net R
before cut-elimination is not equal in general in the algebra to the residual of that

path in the proof net R0 obtained after one step of cut-elimination. What counts

is the preservation property: proper (non-zero) paths in R will survive the pro-

cess of cut elimination and stay non-zero under the action of the dynamic algebra.

This unpleasant phaenomenon is quite related to the accumulation of brackets and

croissants in sharing graphs �a la Lamping [?].

72CHAPTER 4. COMPUTATIONALASPECTSOF THE EMBEDDINGS INTOLINEARLOGIC

Remark 4.4.3 (Categorical analogies) Note that the equations associated to d
and t remind of a monad or a comonad. Indeed, ! can be seen as a comonad in

a suitable category of proofs (show that ` !A �� A and !A ��!!A). More details

can be found in [Asp93].

Remark 4.4.4 (Simpler dynamic algebras) If one works with n-ary contraction
nodes, it is possible to give a much more compact presentation of the dynamic

algebra, as done in [DR95], to which we refer the interested reader for more

details.

This �nishes our exposition of the Geometry of Interaction, but does not exhausts

the subject: what can be done for example for the additives? Are there different

presentation of the dynamic algebra? These and many other questions are the

object of active ongoing research at the time of writing. The interested reader can

�nd some glimpse of this work in papers like [AJ94b, Gir95]

Chapter 5

Conclusions and annotated

bibliography

73

74 CHAPTER 5. CONCLUSIONS AND ANNOTATED BIBLIOGRAPHY

Here we add a small selection of annotated research and exposition papers in dif-

ferent �elds of application of linear logic, while referring the interested reader

to up-to-date on-line WEB bibliographies for a comprehensive index of research

in the domain. Our intent is to provide a few pointers to paper that are signi�-

cant in view of the goal of this book: namely, provide a broad view of relevant

applications and elementary concepts.

Index

LJ�, 37

net

pure, 69

plethoric, 33

75

76 INDEX

Bibliography

[AD] Andrea Asperti and Giovanna Dore. Yet another cor-

rectness criterion for MLL with MIX. Available as

ftp://ftp.cs.unibo.it/pub/asperti/ADlfcs.ps.Z.

[AD93] Andrea Asperti and Giovanna Dore. Yet another correctness crite-

rion for multiplicative linear logic with MIX. Manuscript, November

1993.

[AJ94a] Samson Abramsky and Radha Jagadeesan. Games and full com-

pleteness for multiplicative linear logic. Journal of Symbolic Logic,

59(2):543�574, 1994.

[AJ94b] Samson Abramsky and Radha Jagadeesan. New foundations for the

geometry of interaction. Information and Computation, 111(1):53�

119, 1994. Extended version of the paper published in the Proceedings

of LICS'92.

[Asp91] Andrea Asperti. A linguistic approach to deadlock. TR LIENS 91-15,

Ecole Normale Superieure. DMI, 1991.

[Asp93] Andrea Asperti. Linear logic, comonads and optimal reductions.

Manuscript, to appear in Fundamenta Informaticae, 1994, special is-

sue devoted to Categories in Computer Science, September 1993.

[Bar84] Henk Barendregt. The Lambda Calculus; Its syntax and Semantics

(revised edition). North Holland, 1984.

[Dan90] Vincent Danos. La logique linéaire appliquée �a l'étude de divers pro-

cessus de normalisation (et principalement du �-calcul). PhD thesis,

Université de Paris VII, 1990. Th�ese de doctorat de mathématiques.

[DCD96] Roberto Di Cosmo and Kesner Delia. Strong normalization of explicit

substitutions via cut elimination in proof nets, 1996. Available from

http://www.dmi.ens.fr/�dicosmo/Publications.

77

78 BIBLIOGRAPHY

[DJS93] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The struc-

ture of exponentials: uncovering the dynamics of linear logic proofs.

In Springer, editor, 3rd Kurt Gödel Colloquium, number 713 in LNCS,

pages 159�171, Brno, 1993.

[DJS95a] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. On the

linear decoration of intuitionistic derivations. Arch. for Math. Logic,

33:387�412, 1995.

[DJS95b] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. On the

linear decoration of intuitionistic derivations. In Archive for Mathe-

matical Logic, volume 33, pages 387�412, 1995.

[DJS95c] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. Proof-

nets and the hilbert space. In Advances in Linear Logic, number 222

in Leture Notes. London Mathematical Society, 1995.

[DR95] Vincent Danos and Laurent Regnier. Proof-nets and Hilbert space. In

J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear

Logic, pages 307�328. Cambridge University Press, 1995. Proceed-

ings of the Workshop on Linear Logic, Ithaca, New York, June 1993.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50,

1987.

[Gir90] Jean-Yves Girard. La logique linéaire. Pour La Science, (150):74�85,

April 1990. French edition of Scienti�c American.

[Gir95] Jean-Yves Girard. Geometry of interaction III: The general case. In

J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear

Logic, pages 329�389. Cambridge University Press, 1995. Proceed-

ings of the Workshop on Linear Logic, Ithaca, New York, June 1993.

[GLT90] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.

Cambridge University Press, 1990.

[GM97] Stefano Guerrini and Andrea Masini. Parsing mell proof nets. 1997.

[GMM97] Stefano Guerrini, Simone Martini, and Andrea Masini. Parsing mell

proof nets. In TLCA, 1997. Available as TR-96-34 dipartimento di

informatica Pisa Italy.

[HS80] Roger Hindley and Jonathan P. Seldin. Introduction to Combinators

and �-calculus. London Mathematical Society, 1980.

[Jac94] Bart Jacobs. Semantics of weakening and contraction. Annals of Pure

and Applied Logic, 69:73�106, 1994.

BIBLIOGRAPHY 79

[Kan94a] Max I. Kanovich. Simulating linear logic with 1-linear logic. Preprint

94-02, Laboratoire de Mathématiques Discr�etes, University of Mar-

seille, 1994.

[Kan94b] M.I. Kanovich. The complexity of Horn fragments of linear logic.

Annals of Pure and Applied Logic, 69:195�241, 1994.

[Laf95] Yves Lafont. From proof nets to interaction nets. In J.-Y. Girard,

Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, pages

225�247. Cambridge University Press, 1995. Proceedings of the

Workshop on Linear Logic, Ithaca, New York, June 1993.

[Lin95] Patrick Lincoln. Deciding provability of linear logic formulas. In J.-Y.

Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic,

pages 109�122. Cambridge University Press, 1995. Proceedings of

the Workshop on Linear Logic, Ithaca, New York, June 1993.

[LMSS92] Patrick Lincoln, John Mitchell, Andre Scedrov, and Natarajan

Shankar. Decision problems for propositional linear logic. Annals

of Pure and Applied Logic, 56:239�311, April 1992. Also in the Pro-

ceedings of the 31th Annual Symposium on Foundations of Computer

Science, St Louis, Missouri, October 1990, IEEE Computer Society

Press. Also available as Technical Report SRI-CSL-90-08 from SRI

International, Computer Science Laboratory.

[LW94] Patrick Lincoln and Timothy Winkler. Constant-only multiplicative

linear logic is NP-complete. Theoretical Computer Science, 135:155�

169, 1994.

[Reg91] Laurent Regnier. �-calcul et réseaux. PhD thesis, Université de Paris

VII, 1991. Th�ese de doctorat de mathématiques.

[Reg92] Laurent Regnier. �-Calcul et Réseaux. PhD thesis, University of Paris

VII, 1992.

[Rov92] Luca Roversi. A compiler from Curry-typed �-terms to the linear �-
terms. In P. Mentrasti and M. Venturini Zilli, editors, Proceedings of

the Fourth Italian Conference Theoretical Computer Science, pages

330�344, L'aquila, Italy, 1992. World Scienti�c Publishing Company.

[Sch91] Harold Schellinx. Some syntactical observations on linear logic. Jour-

nal of Logic and Computation, 1(4):537�559, 1991.

80 BIBLIOGRAPHY

Appendix A

Proof of completeness for ACC

First of all, let's be precise about the notation we will use in this Section.

De�nition A.1.1 (Sub-paired-graph) Given a paired graph S = (E; V;C), we
say that S0 = (E0; V 0; C 0) is a sub-paired-graph of S if

� it is a subgraph of S (i.e. E0 � E and V 0 � V)

� C 0 is C restricted to E0 (i.e. the only paired edges of S0 are those edges that
are already paired in S

De�nition A.1.2 (Free pair) A pair c = fa; bg is called free if its basis is of

degree 2 (i.e. if a; b are the only edges attached to the basis of c.

De�nition A.1.3 (Path, path composition) A (�nite) path � in a graph S is a

(�nite) sequence ei of different edges of S s.t. en shares one node with en+1,
different from the node shared with en�1 in case n > 1. If � is a path that extends

�, we note � :: � their composition.

De�nition A.1.4 (Pseudo-realizable path) A path� in a paired graph S is pseudo-

realizable (short, p.r.), if it contains only free pairs.

De�nition A.1.5 (Attractive Path) A path � in a paired graph S is attractive if

from every node u of S that does not belong to � there are at least two pseudo-

realizable paths to � that are distinct in u (i.e. do not use the same edge when

leaving u). We can restrict ourselves to paths that intersect � only at the end (i.e.

they share just the last node with �).

Actually, in the proof of the theorem, we will use a more relaxed condition than

ACC.

81

82 APPENDIX A. PROOF OF COMPLETENESS FOR ACC

De�nition A.1.6 (Weak ACC) A paired graph S satis�es Weak-ACC if all the

graphs in GC(S) are acyclic.

This more relaxed condition is preserved by subgraphs.

Lemma A.1.7 (Sub-paired-graphs) If S satis�esWeak-ACC, then any sub-paired-

graph S0 of S satis�es Weak-ACC.

Proof. Notice the only non-legal con�gurations in a correction-graph of a paired

graph S is the presence of both edges of a pair. Now, if a path � is in a graph of

GC(S0), then it cannot contain both edges of a pair c of S0. But now, by de�nition
of sub-paired-graph, if S0 contains both edges of a pair c of S, then c is a pair in
S0 too, so � cannot contain both edges of a pair c of S. This means that any cycle

 in a graph ofGC(S0) would be a cycle also in some graph ofGC(S), hence the
statement of the lemma follows. 2

Theorem A.1.8 (Paired graphs with at least one pair are split (3.2.12)) Let S be

a �nite paired graph that satis�esWeak-ACC. If S contains at least one pair then

it is split.

Proof. We will show that in any paired graph S s.t.

� (H1) all graphs in GC(S) are acyclic,

� (H2) with a non-empty set of pairs C(S),

� (H3) and with no splitting pair,

it is possible to �nd an in�nite strictly increasing sequence Sn of sub-paired-

graphs of S. By contradiction, the theorem will follow.

Actually, we will need to build also a sequenceDn of attractive pseudo-realizable

cycles in each of the Sn. Let's remark now that in the proof we will always deal

with elementary cycles, i.e. cyclic paths that do not contain already a cycle.

So, the inductive hypothesis we will use in the construction of the increasing se-

quence of sub-paired-graphs of S is the following:

� (Hi1) Sn is a sub-paired-graph of S,

� (Hi2) Sn has an attractive pseudo-realizable cycle Dn

Here comes the inductive construction.

� Base Case

First, we notice that in any paired graph S satisfying H1, H2 and H3 we

can actually �nd a cycle. Otherwise, any pair c is clearly a splitting pair (if

there is no cycle in S, then it is actually a tree, and by removing the two

83

edges of any pair c, we clearly disconnect the base from the other nodes of

the pair). Take then an elementary cycle as the �rst sub-paired-graph S0 of
the sequence, and set D0 = S0.

Notice that D0 is trivially pseudo-realizable and attractive in S0, since it

coincides with S0.

� Inductive Case

Suppose now we are given Sn sub-paired-graph of S andDn an elementary

cycle that is pseudo-realizable and attractive in Sn.

� Choosing Sn+1.

First, notice that Dn must necessarily contain a pair c. Otherwise,

there is a graph in GC(Sn) that contains Dn, i.e. a cycle, that is im-

possible since Sn satis�esWeak-ACC by Lemma A.1.7. Furthermore,

c is free in Sn because Dn is pseudo-realizable.

Let's call x the base of c, and x1, x2 the other nodes of c. Now, c
is not a splitting pair of S, by H3. This means there is a path in S
connecting x with x1 or x2 not using the edges of c.

Since c is free in Sn, such a path must necessarily use an edge e of S
that does not belong to Sn. Let's call � the segment of this path that

lies entirely in S n Sn, but for x and the �rst node z of the path that

belongs to Sn.

Let Sn+1 be Sn augmented with this path �, considered as a sub-

paired-graph of S, so that Hi1 is trivially satis�ed by Sn+1; notice
that

� Sn+1 is strictly bigger than Sn, as at least the edge e was not in
Sn

� each new pair in Sn+1 has at least an edge in �

� the pairs in Sn that can happen to be no longer free have x or z as
basis.

� Building Dn+1.

Now, we need to buildDn+1, pseudo-realizable and attractive in Sn+1.
We will use � and Dn for this purpose. Figure A.1 will help in fol-

lowing the construction.

There are two cases: either z belongs to Dn or not. We will assume

�rst that z is not in Dn.

By Hi2, Dn is attractive, so there are two paths �1 and �2 from z to

Dn, distinct in z and intersecting Dn only in one node.

Let's note these nodes z1 and z2, respectively. Now, z1 (resp. z2)
cannot be x, as, by construction, in Sn, x has degree 2, while z1

84 APPENDIX A. PROOF OF COMPLETENESS FOR ACC

(resp. z2) have degree 3. So, one of the following paths is pseudo-

realizable:

� :: �1; � :: �2

Indeed, �1 and �2 are pr. in Sn, so they are pseudo-realizable in Sn+1
as they use edges that were already in Sn, and the only possible pairs

and edges we add in Sn+1 can only modify the status of a pair based in

z, which is not part of these paths. Also, � is p.r. by construction. The

intersection of � and �1 (resp. �2) is z. Since �1 and �2 are distinct

in z, � :: �1 and � :: �2 cannot both contain a new pair in z that was

not in Sn.

So, one of the two junctions is p.r.; say it is � :: �1.

Call now �1 and �2 the two strict sub-paths ofDn connecting z1 to x.
One of the following cycles is p.r.:

� :: �1 :: �1; � :: �1 :: �2

The intersection of the paths a :: �1 and �1 (resp. �2) is fz1; xg. Fur-
thermore, �1 and �2 are p.r. in Sn+1 since they are p.r. in Sn and all

their pairs are still free (remember that only the degree of z and x is

affected by the construction).

Similarly as above, one shows that the junction in z1 is correct (as �1
and �2 are distinct in z1).

Since the only pair with base x belongs to Dn, the junction in x is

correct in both cases. Suppose now that � :: �1 :: �1 is p.r.: this will
be our Dn+1.

In case z 2 Dn, the same proceed applies, taking z in place of z1.

� Dn+1 is attractive. Now we need to check that Dn+1 is attractive,

i.e., for each u in Sn+1 not in Dn+1, we need to show two pseudo-

realizable paths distinct in u connecting it to Dn+1 (again, we can

consider that such paths intersect Dn+1 only in the �nal node).

Since u is not in Dn+1, it is necessarily in Sn (as �, that contains the
only new nodes w.r.t. Sn, is entirely in Dn+1).

If it is in Dn, since x and z1 are in the intersection of the two cy-

cles, the two strict sub-paths of Dn connecting u to x and z1 are the

required p.r. paths.

If it is not inDn, there are two p.r. paths in Sn, �1 and �2, distinct in u,
connecting it to Dn (by Hi2 for Sn).

Take �1. If it does not intersect Dn+1, it is easy to see that one can

extend it in a pseudo-realizable path to x or z1, giving the needed path.
Otherwise, it intersectsDn+1, and the initial segment from u toDn+1

is the seeked path.

85

To check now that the two paths are distinct in u, it is enough to notice
that in the construction we keep a non empty part of the �, because u
does not belong to Dn+1.

This ends the inductive part of the construction, so the theorem is proved.

This proof provides an effective procedure to �nd a pair contradicting H3, i.e. a

splitting pair in S.
2

The Theorem3.2.12 follows trivially by the previous one, as ACC impliesWeak-ACC.

86 APPENDIX A. PROOF OF COMPLETENESS FOR ACC

..

........
........
........
........
........
........
.......
........
........
........
........
........
........
.......
........
........
........
..

p

p

p

p

p

......
.......
..
......
..

......
.......
..
......
...

......
.......
..
......
...

......
.......
..
......
..

......
.......
..
......
..

......
.......
..
......
..

......
.......
..
......
..

......
.......
..
......
...

..

..

......
.......
......
.......
.......
.......
.......
.......
........
......
......
......
......
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.....
.......
......
......
......
......
......
.....
......
......
......
......
......
.....
.......
.......
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
......
......
......
........
.......
.......
......
......
.......
......
......
......
........
.......
.......
.......
.......
........
.......
.......
.......
.......
........
.......
........
........
........
........
.........
........
........
........
........
........
.........
........
........
........
........
........
.........
........
........
........
.........
.........
........
.........
.........
.........
.........
..........
...........
..........
............
..............
...............
................
...................
.....................

..............................
...

...
......................................

............................
.....................

...............
.............

.............
...........

............
...........
...........
..........
..........
...........
.........
.........
.........
.........
.........
.........
.........
........
........
........
........
........
.......
.......
.......
......

ppppppppppppppppppppp
pppppppppppppppppppppppppppp

ppppp
pppp

pppp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
ppp
ppp
ppp
ppp
ppp

pppp
pppp
pppp
ppp
ppp
ppp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

ppp
ppp
ppp
ppp
ppp
ppp
ppp

pppp
pppp
pppp
pppp
pppp
p

ppppp
ppppp
ppppp
ppppp
p

ppppppppppppppppppppp ppppppppppppppppppppp

ppppppppppppppppppppp

ppppppppppp

..
...............................

.........................
.....................

....................
.................
...............
..............
.............
............
............
............
..........
..........
..........
..........
.........
.........
........
........
........
.......
........
........
........
........
......
.......
.......
......
.......
.......
......
.......
.......
......
......
......
.......
......
......
......
.......
......
......
......
.......
......
......
......
.......
.....
......
.....
......
......
.....
.......
.......
.......
.......
.......
.......
.....
......
......
......
.......
.......
.......
......
.......
........
........
........
........
........
........
........
........
........
.........
..........
.........
.........
.........
..........
..........
............

............
...............

....................
............................

..

........
.......
......
......
......
......
.......
.......

.......
........
........
........
........
........
........
........
.........
.........
...........
..............
.......................

..
...............

.............
...........

...........
...........

..........
..........
...........
..........
...

�

..

...
............
...

x
x2

x1

�1

�1
�2

�2

Sn

S

z2

z1

z

c

Dn

Figure A.1: The construction of Dn+1

