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Abstract

This paper contains a full treatment of isomorphic
types for languages equipped with an ML style poly-
morphic type inference mechanism. Surprisingly
enough, the results obtained contradict the common-
place feeling that (the core of) ML is a subset of sec-
ond order λ-calculus: we can provide an isomorphism
of types that holds in the core ML language, but not
in second order λ-calculus. This new isomorphism not
only allows to provide a complete (and decidable) ax-
iomatisation of all the types isomorphic in ML style
languages, a relevant issue for the type as specifica-
tions paradigm in library searches, but also suggest a
natural extension that in a sense completes the type-
inference mechanism in ML. This extension is easy to
implement and allows to get a further insight in the
nature of the let polymorphic construct.

1 Introduction

The interest in building models satisfying specific iso-
morphisms of types (or domain equations) is a very
long standing one, as it is a crucial problem in the de-
notational semantics of programming languages. Since
1984, though, some interest started to develop around
the dual problem of finding the domain equations
(type isomorphisms) that must hold in every model
of a given language, or valid isomorphisms of types,
as we will call them in the sequel. The seminal paper

by Bruce and Longo ([BL85]) addressed then the case
of pure first and second order typed λ-calculus with
essentially model-theoretic motivations, but due to
the connections between typed λ-calculus, Cartesian
Closed Categories, Proof Theory and Functional Pro-
gramming, the notion of valid isomorphism of types
showed up as a central idea that translates easily in
each of those different but related settings. In the
framework of Category Theory, Soloviev already stud-
ied the problem of characterizing types (objects) that
are isomorphic in every cartesian closed category, pro-
viding a model theoretic proof of completeness for the
theory Th1

×T
we will see later on [Sol83]. A treat-

ment of this same problem by means of purely syn-
tactic methods for a λ-calculus extended with Surjec-
tive Pairing and unit type was developed in [BDCL90],
where the relations between these settings and Proof
Theory, originally suggested by Mints, have been stud-
ied, and pursued further on in [DCL89], where a new
model of typed λ-calculus is also proposed. Finally,
[DC91] provides a complete characterization of valid
isomorphisms of types for second order λ-calculus with
Surjective Pairing and unit type, that includes all the
previously studied systems.

Meanwhile, these results were starting to find their
applications in the area of Functional Programming,
where the problem of retrieving functions in a library
was showing up as an increasingly relevant issue: while
the size of the function libraries grows steadily (the
standard library of CAML v.2.6 contains already more
than 1000 user-level identifiers, for example), the tools
generally available today to retrieve functions stored
in a library are still nothing more than a prehistorical
alphabetical index of identifiers, maybe with some fa-
cility to enable regular-expression searches (like in the
CAML interpreter, see [CH88]), or some kind of the-
saurus, useful when you have to find your way in an

1



Language Name Type

ML of Edinburgh LCF itlist ∀X.∀Y.(X → Y → Y ) → List(X) → Y → Y

CAML list it ”
Haskell foldl ∀X.∀Y.(X → Y → X) → X → List(Y ) → X

SML of New Jersey fold ∀X.∀Y.(X × Y → Y ) → List(X) → Y → Y

The Edinburgh SML Library fold left ∀X.∀Y.(X × Y → Y ) → Y → List(X) → Y

Table 1: an example

UNIX manual (the well known -k option of the man
command).

But the name given to a function is left to the more
or less original imagination of the programmer, so if
you change system, you change dialect also: borrow-
ing an amusing example from [Rit90b], if we look for a
function that distributes a binary operation on a list,
we can easily collect a nice amount of names: itlist,
list it, foldl, fold and fold left, so that the rudimen-
tary tools available to search the libraries dont help
at all. If we are using strongly typed functional lan-
guages, though, the Proofs as Types paradigm just
tells us that a type can be considered as a (partial)
logical specification of a program, suggesting to use
the type of a function as a search key in order to pro-
vide the programmer with a uniform and sensible tool
to retrieve data in libraries. The types, with their logi-
cal counterpart, would provide the necessary standard
language.

This simple, but rather new idea is the starting
point of work done by Mikael Rittri ([Rit89], [Rit90a]),
Colin Runciman and Ian Toyn ([RT89]) in this di-
rection. They immediately notice how functions that
we want to consider essentially the same turn out to
be assigned pretty different types. Borrowing from
[Rit90b], we can provide an example of this unpleas-
ant phaenomenon, just by looking at the type that the
itlist - list it - foldl - fold - fold left function is assigned
in five different widely used languages based on the
same polymorphic type discipline originally presented
in Milner’s ML [Mil78] (see Table 1).

The syntactic equality of types is too much a fine
relation on types to be used for our purposes: so what
is the right way to compare types? We need a coarser
relation on types that take into account, for exam-
ple, currying-uncurrying and argument permutation.
Moreover, this notion of equivalence ought not depend
on the particular implementation of the language, and
it needs to be decidable in order to be of any use.

We can clearly see the connection with the no-
tion of type isomorphism described above: for any
typed functional language L, the equivalence relation

on types will be exaclty the one given by the notion
of valid isomorphism.

Definition 1.1 (Valid isomorphisms)
A ∼= B is a valid isomorphism ⇐⇒ for any M model
of L, M |= A ≃ B, i.e.

∃f : A → B, g : B → A s.t. g◦f = idA, f◦g = idB .

What is needed then is the ability to search types
up to such isomorphisms, i.e. a complete and decid-
able characterization of the valid isomorphisms. The
completeness of the theory is obviously essential, as
a sound theory that is incomplete would miss part of
the functions in the library.
In this paper, we survey the known results on valid

isomorphisms of types (Section 2) and we point out
why they are not adequate to handle languages where
the let polymorphic construct is allowed. We study
thereafter in Section 3 the problem of valid isomor-
phisms in the presence of such a polymorphic con-
struct, and we provide a complete and decidable char-
acterization for it in Section 4. This characterization
uncovers a new and much unexpected isomorphism
that does not hold for second order typed λ-calculus.
It can be used to extend the usual ML type-inference
algorithm, as proposed in Section 5. Finally, in Sec-
tion 6 we summarize the key contributions of this pa-
per and some open issues arising from this work.

2 Survey

In this section we survey the known results about the
valid isomorphisms of types for first and second order
λ-calculi, and we build up the necessary machinery to
handle valid isomorphisms in type-assignment systems
with the let constructor. For the full syntax of the
typed calculi referred below, see [CDC91].

2.1 First order isomorphic types

In [BL85], Bruce and Longo showed that two types
A and B are isomorphic in every model of the simple



1. A×B = B ×A

2. A× (B × C) = (A×B)× C

3. (A×B) → C = A → (B → C)

4. A → (B × C) = (A → B)× (A → C)

5. A×T = A

6. A → T = T

7. T → A = A
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8. ∀X.∀Y.A = ∀Y.∀X.A

9. ∀X.A = ∀Y.A[Y/X] (X free for Y in A, Y not free in A)

10. ∀X.(A → B) = A → ∀X.B (X not free in A)
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11. ∀X.A×B = ∀X.A× ∀X.B

12. ∀X.T = T
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A, B, C can be arbitrary types and T is a constant for the unit type.
Notice that the axiom (swap) of Th1 is provable in Th1

×T
by axioms 1 and 3.

Table 2: The theories of valid isomorphisms

typed λ-calculus λ1βη if and only if they can be shown
equal in the equational theory Th1 that has only the
following proper axiom

(swap) A → (B → C) = B → (A → C)

where A, B, C can be arbitrary types.
A key point in the proof of completeness is the fact,

very easy to show, that valid isomorphisms are always
definable by programs in the language, i.e.

Proposition 2.1 (Definable isomorphisms)
A ∼= B ⇐⇒ there exist λ-terms M : A → B
and N :B → A such that λ1βη ⊢ M◦N =
IB and λ1βη ⊢ N◦M = IA, where IA and IB are
the identities of type A and B, and M◦N is the usual
composition of terms λx.M(Nx).

This result holds for any of the languages we will
survey in this section (see [DC91] for details), so we
will talk indifferently about valid or definable isomor-
phisms, or just about isomorphisms.

Remark 2.2
Notice that we are in an explicitly typed framework,
so the isomorphism between type A and B is given by
explicitly typed terms M : A → B and N :B → A.

Later on, this approach was extended to the lambda
calculus with surjective pairing and terminal object

(λ1βηπ∗), i.e. the internal language of Cartesian
Closed Categories. In [Sol83] this problem is solved
by model theoretic methods that can essentially be
traced down to work done in number theory by Mar-
tin ([Mar72]), while a completely new proof based on
proof theoretic methods was provided by Bruce, Longo
and the author (see [BDCL90]). The notion of iso-
morphism between types presented there is exactly
the same adopted by Rittri in the case of ML-style
languages, to the study of which he devotes the two
papers [Rit89] and [Rit90a].

The resulting fundamental theorem in [Sol83] and
[BDCL90] states that two types A and B are isomor-
phic in every model of the calculus λ1βηπ∗ if and only
if they can be shown equal in the equational theory
Th1

×T
of Table 2.

2.2 Second order isomorphic types

These results can be extended to second order typed
λ-calculus, as in [BL85], where Bruce and Longo char-
acterized the valid isomorphism for the pure second
order λ-calculus λ2βη via the equational theory Th2

of Table 2.

This result is not powerful enough, though, to treat
ML-style systems, as we miss the product and the unit
type constructors, so we need to look at [DC91], where
a finite, decidable axiomatisation of the isomorphisms



holding in the models of second order lambda calculus
with surjective pairing and terminal object λ2βηπ∗ is
provided. The Main Theorem of that paper shows
that two types A and B can be constructively proved
to be isomorphic, by programs which act one as the
inverse of the other, if and only if Th2

×T
⊢ A = B,

where Th2
×T

is the set of axioms in Table 2. This last
theory of valid isomorphisms contains all the previous
theories and is as far as we can go by now.

3 Isomorphisms of types in

ML-style languages

In [Rit89] and [Rit90a], Rittri uses the theory Th1
×T

to develop a library search system for strongly typed
functional languages in the ML family. Languages
of the ML family are equipped with the so-called
“implicit type polymorphism”, a brand of type poly-
morphism that essentially allows to give the user the
safety of a strongly typed world without the burden
of mandatory type declarations: the user writes type-
free programs and the compiler “infers” a type for it
by filling in all the type information.

The inference problem is easily decidable in the case
of monomorphic languages, like the simply typed λ-
calculus, (see [Hin69], [Mil78]), while we do not know
how to deal with it for calculi with the full power of
second order quantification over types, like second or-
der typed λ-calculus.

It is a common idea (but we will shortly see how
it is not a very correct one) that ML-style languages
lie somewhere in between these two extremes, as any
user-defined function is given a type that can be more
than monomorphic, but not fully second order poly-
morphic. These types are either monomorphic types
(known as monotypes) (denoted by τ below) or the
so-called type-schemas (denoted by σ below):

Definition 3.1 ML types are the closed types gener-
ated by the following grammar (At is a collection of
atomic types)

type-schemas σ ::= τ | ∀X.σ (if X is free in σ)
monotypes τ ::= At |X | τ → τ | τ × τ

Type schemas are essentially types where every type
variable is bound by a quantifier that can appear only
as an outermost constructor of the type (and not inside
→ , × or other type contructors).

If we follow the common intuition that ML is some-
where in between simple typed λ-calculus and second
order λ-calculus, it is easy to conjecture that the valid
isomorphisms of type-schemas are axiomatized by a
theory ThML that includes Th1

×T
and is included in

Th2
×T

.

Then, noticing that Axioms 10, 11 and 12 involve
second order types that are not type-schemas, it seems
reasonable that ThML be just Th2

×T
less these three

axioms. So the naive approach to deciding equality of
type-schemas σ1 = ∀ ~X.τ1 and σ2 = ∀~Y .τ2 , would be
to check if there is a way of substituting in some order
the variables ~X with ~Y in τ1 such that for the result-
ing type τ ′1 the theory Th1

×T
proves τ ′1 = τ2. We say

naive, because in principle the restriction of Th2
×T

to
ML types is not necessarily axiomatised by the restric-
tion to ML types of the axiomatic presentation Th2

×T

we have chosen for this equality relation. Even worse,
the techniques used to show completeness for Th2

×T

on second order types rely in an essential way on the
fact that the language considered there is explicitly
typed, while ML-style languages are type assignment
systems equipped with a let construct whose typing
rules have no immediate counterpart in the explicitly
typed calculi. So we could expect to find some isomor-
phism that is not axiomatised even in the full theory
Th2

×T
.

Rittri’s system (see [Rit89]), based on the well
known soundness of Th1

×T
for monomorphic lan-

guages, implements the procedure sketched above, and
is sound for isomorphisms in ML, but to handle the
completeness problem in ML we have to face the prob-
lem of valid type-schema isomorphisms in its own
right. It turns out that we are in for some surprises,
here, but first of all, let’s set up the right formalism
for type-assignment systems.

3.1 A formal setting for valid isomor-

phisms in ML-like languages

Let’s first briefly recall the basic typing rules for ML-
like languages:

Definition 3.2 (Type assignment)
We write Γ⊢M : A if M can be assigned type A in
the type assignment system given in Table 3.

Remark 3.3 Notice that the (LET) rule gets priority
on the ordinary (APP) rule: we do not introduce here
the usual syntactic sugar let x = e’ in e for (λx.e)e’.

In this type-assignment framework, the Defini-
tion 1.1 used to introduce the notion of valid isomor-
phism is no longer appropriate: the programs we work
with are assigned not only one, but several types, and
we must take this fact into account. We proceed as
follows.

Definition 3.4 We say that A and B are isomorphic
w.r.t. the context Γ (Γ⊢A ∼= B) via M,M−1 iff

• ∀P,Γ⊢P : A ⇒ Γ⊢(MP ) : B
and Γ⊢M−1(MP ) = P : A



(V AR) Γ⊢x : A[τi/Xi] if x:A = ∀X1 . . .Xn.τ is in Γ and the τi are monotypes

(ABS)
Γ, x : A⊢M : B

Γ⊢λx.M : A → B
(APP )

Γ⊢M : A → B Γ⊢N : A

Γ⊢(MN) : B

(PAIR)
Γ⊢M : A1 Γ⊢N : A2

Γ⊢ < M,N >: A1 ×A2
(PROJ)

Γ⊢M : A1 ×A2

Γ⊢piM : Ai

(LET )
Γ⊢N : A Γ, x : ∀X1 . . .Xn.A⊢M : B

Γ⊢(λx.M)N : B
where {X1 . . .Xn} is FV (A)− FV (Γ)

Table 3: Type inference rules for an ML-like functional language.

• ∀Q,Γ⊢Q : B ⇒ Γ⊢(M−1Q) : A
and Γ⊢M(M−1Q) = Q : B

We say that A and B are isomorphic (A ∼= B) via
M,M−1 iff ∀Γ,Γ⊢A ∼= B via M,M−1.

It is an easy consequence of this definition the fact
thatM andM−1 are invertible, that is to say,M◦M−1

= λx.x and vice-versa, so it is not necessary to require
this property explicitly.
Now we can easily verify that Axiom 12 is in a sense

still valid.

Remark 3.5 Let A be ∀X.σ, where σ is isomorphic
to T via M,M−1. Then it is easy to check that
M,M−1 provide an ML-isomorphism between ∀X.σ
and T also.

So we must already add to our tentative definition
of the ThML theory the following new Axiom (unit),
that is essentially Axiom 12 of Th2

×T
restricted to ML

types. This fact supports our original idea that ThML

is more than just Th2
×T

less Axioms 10, 11 and 12.

(unit) ∀X.A = T if A is isomorphic to T

But the real surprise is that we also get a new isomor-
phism, not derivable in Th2

×T
, that comes out of the

peculiar typing rule used to obtain the traditional let
polymorphism in ML-style languages.

Proposition 3.6 In ML-like languages, the following
isomorphism hold

(split) ∀X.A×B ∼= ∀X.∀Y.A× (B[Y/X])

Proof. It suffices to provide M and M−1 s.t.
∀Γ,Γ⊢A ∼= B via M,M−1.
Let M be λx. < p1x, p2x > and M−1 be λx.x.

Since these are closed terms, the context Γ poses
no problem and it is easy to check that, given N

s.t. Γ⊢N : ∀X.A×B, we can derive, using as a
key tool the let polymorphic type inference rule, that
Γ⊢(λx. < p1x, p2x >)N : ∀X.∀Y.A× (B[Y/X]). Fur-
thermore, it is clear that (λx.x)((λx. < p1x, p2x >)N)
can be assigned type ∀X.A×B.
The

other direction of the isomorphism is obvious, since
∀X.A×B is an instance of ∀X.∀Y.A× (B[Y/X]). ✷

Well, if you really don’t believe it, just run your fa-
vorite typed functional language and try the following
example (syntax of CAML):

Example 3.7
CAML (mips) (V 2-6.1) by INRIA Fri Nov 24 1989

#let join = let pair x = (x,x)

in let id x = x

in pair id;;

Value join = (<fun>,<fun>) : ((’a -> ’a) * (’a -> ’a))

#let f = join in (fst f, snd f);;

(<fun>,<fun>) : ((’a -> ’a) * (’b -> ’b))

✷

Remark 3.8 The isomorphism (split) is not deriv-
able in Th2

×T
.

Indeed, (split) allows to change the number of free
type variables even in types that are not isomorphic
to the unit type T, while all the axioms in Th2

×T
pre-

serve that number for such types. This fact is partic-
ularly unexpected, as it shows that type-assignment
systems allow to prove constructively equivalent some
proofs that are not so in the second order logic cor-
responding to the second order λ-calculus (for a dis-
cussion of the notion of constructive equivalence, and
its connections with the isomorphisms of types, see
[DCL89]). So the original commonplace idea that ML
is just a limited version of second order λ-calculus is
now deeply shaken: in (core) ML we cannot do every-
thing we can do in explicitly polymorphic calculi, as it



is well known, but it is also surprisingly true that we
can do in (core) ML something that cannot be done
in second order λ-calculus.

4 Completeness and conserva-

tivity results

Are there any more unexpected isomorphisms coming
out of the let construct? What about the Axioms 10
and 11 of Th2

×T
we were forced to leave out? Do

they induce some derived isomorphisms on ML types?
These are the questions we address in the present Sec-
tion.

4.1 Completeness

By adapting to the type assignment framework the
techniques introduced in [BDCL90] and [DC91], we
can prove the following fundamental result.

Theorem 4.1 The theory Th2
×T

less Axioms 10, 11
and 12 plus (unit) and (split) is complete for ML
isomorphisms.

Proof. See Appendix. ✷

This result gives us the safe definition of the theory
ThML of type isomorphisms for (core) ML:

Definition 4.2 ThML is the theory of equality de-
fined by Th2

×T
less Axioms 10, 11 and 12 plus (unit)

and (split).

4.2 Conservativity

As for the relation between Th2
×T

and ThML, a careful
analysis of the invertible terms in λ2βηπ∗ allows to
show that (split) and (unit) give us back the full
power of Th2

×T
on ML types.

Proposition 4.3 Let A and B be ML types. If Th2
×T

proves A = B, then ThML proves A = B too.

Proof. See Appendix. ✷

Since (split) is not derivable in Th2
×T

(Remark 3.8),

the theory ThML is strictly more powerful on ML
types, so the previous proposition actually states that
ThML is an extension of Th2

×T
on ML types, and not

the reverse.

4.3 Deciding ML isomorphism

The proof of completeness allows to derive an easy de-
cision algorithm for valid isomorphisms of ML types
based on a variant of the narrowing technique. Ev-
ery type A is rewritten to a (unique) type normal
form n.f.(A) via a strongly normalizing confluent1 type

1The system ❀ is a sub-system of the one used in [DC91],
see Proposition 3.5 there.

rewriting system derived from the axioms of ThML.

Definition 4.4 (Type rewriting R) Let ❀ be the tran-
sitive and substitutive type-reduction relation gener-
ated by:

A× (B × C) ❀ (A×B)× C T×A ❀ A
(A×B) → C ❀ A → (B → C) A → T ❀ T
A → (B × C) ❀ (A → B)× (A → C) T → A ❀ A
A×T ❀ A ∀X.T ❀ T.

Remark 4.5 A type normal form n.f.(A) of a type
A is just a type ∀X1 . . .Xn.(A1 × . . . ×An), where no
product or unit type appear in the Ai. We call the Ai

the coordinates of A.

It can be shown that ThML proves A = B iff n.f.(A)
is proven equal to n.f.(B) via (split), associativity and
commutativity of product, bound variable renaming,
quantifier swap and the derived Axiom (swap).

To decide this last equality, we can use (split) to
rename all the bound variables in such a way that
in the normal forms the Ai share no common type
variable. We will call split-normal-form a type normal
form with this property.
Using again the analysis of the structure of the

terms that witness the isomorphism used in the proof
of Theorem 4.1, it is then easily shown that ThML

proves A = B iff the coordinates of the split-n.f. of A
and B are in the same number and for a permutation
σ each Ai is equal to some Bσ(i) via variable renaming,
and (swap).

Since unification up to (swap), which is the left-
commutativity of → , is decidable (see [Kir85]), this
last problem is easily solved by looking for a variable
renaming unifier that does not identifies variables orig-
inally distiguished inside split-n.f.(A) or split-n.f.(B).

A detailed account of the decision procedure will be
given in [DC92].

5 Understanding ML polymor-

phism: completing the type

checker

Actually, there is something special in (split) w.r.t.
the other isomorphisms: the terms that witness this
isomorphism are essentially the identity. The invert-
ible terms associated to all the other isomorphisms
perform a coding that is simple, but does something
to the term, while this is not so in the case of λx.x
and λx. < p1x, p2x >.
Indeed, the only interesting effect of the term λx. <

p1x, p2x > is to allow the use of the let polymorphism
necessary to change the type of the original term. This
fact suggests that (split) has more to do with the



type-checking algorithm than with the notion of cod-
ing we found at the basis of the equivalences needed
in library searches performed on the basis of the type
seen as a search key. Now, it is doubtful if the iso-
morphisms in Th1

×T
ought to be made part of the

type-inference algorithm of an ML-style language es-
sentially for two reasons:

• Correctness: the witnesses of the isomorphisms
in Th1

×T
do change the original program, so that

the intended meaning of the program is not neces-
sarily preserved when the program type-checks up
to isomorphisms, but not in the original system.
An easy example is the interaction of the com-
mutativity of product on equal types with func-
tions that are not commutative, like subtraction
on numbers. There are ways to recover this case
(essentially by ruling out commutativity), but the
matter is not clear enough to suggest such a mod-
ification right now.

• Complexity: unification up to Th1
×T

is not
known to be decidable (see [NPS89] for recent re-
sults), and even equality up to ThML is at least
as hard as Graph Isomorphism (see [DC91] and
[Bas90] for details), so such a modification of the
ML type-checker is not clearly feasible.

But these problems are not there if we consider
(split) alone: for correctness, there is nothing to
prove, as there is no transformation of programs, so
the intended meaning is surely preserved. We simply
type check more programs, and we will see in a mo-
ment that the new program we allow to type-check
should already type-check. As for complexity, we will
propose below a straightforward modification of the
type-inference rules that includes (split) at a very
reasonable cost.
It is time for a working example: let’s see the same

program in ML that type checks only if written “the
right way”, while with (split) it would type-check
in any case. Since it seemingly cracks the ML type
checker, we will call the following program crack.

Example 5.1
CAML (mips) (V 2-6.1) by INRIA Fri Nov 24 1989

#let join = let pair x = (x,x)

in let id x = x

in pair id;;

Value join = (<fun>,<fun>) : ((’a->’a)*(’a->’a))

#let split = let f x = x in (f,f);;

Value split = (<fun>,<fun>) : ((’a->’a)*(’b->’b))

#let crack f x y = ((fst f) x, (snd f) y);;

Value crack = <fun> : ((’a->’b)*(’c->’d)->’a->’c->’b*’d)

(* crack on split and different types *)

#crack split 3 true;;

(3,true) : (num * bool)

(* crack on join and different types *)

#crack join 3 true;;

line 1: ill-typed phrase, the constant true of type

bool cannot be used with type instance num in

crack join 3 true

1 error in typechecking

Typecheck Failed

✷

Both functions, join and split, define a pair of iden-
tity functions, but only the split version survives the
test of the context crack 3 true!

We can try to understand better what is going on by
getting rid of the let construct via the usual translation
let x = e’ in e ⇒ (λx.e) e’.

• join translates to
(λpair.(λf.pairf)(λx.x))(λx. < x, x >)

• split translates to (λf. < f, f >)(λx.x)

Now it is easy to see what is going on: join and
split translate to two terms that are not syntactically
equal, but only up to the usual β conversion. Actually,
join β-reduces to split.
Now, let’s recall the key idea in let polymorphism:

the polymorphic rule allows to give a type to an appli-
cation if this application is typable in the monomor-
phic system after one step of evaluation. That is to
say, to type (λx.M)N, we change the type-inference al-
gorithm, that would try to give a type to (λx.M) and
N separately, and only if it succeeds it tries to type
their application. Instead, we look forward just one
step of reduction, that is to say, we try to give a type
to M[N/x]: if we succeed, that will be the type the
original expression (λx.M)N will be given.
Well, crack split 3 true is two steps from crack

join 3 true, so the original form of polymorphic
type inference cannot get it! Adding (split) corre-
sponds in a sense to moving forward more than one
step in the type-inference process.

Remark 5.2 Of course there are lots of terms that
are typable in the monomorphic discipline only after
some steps of reductions, but the examples that are
usually given typically involve a non typable subterm
that is erased during these steps of reduction. For ex-
ample, (λx.λy.y)Ω, where Ω is a diverging term, is of
course not typable, while its reduct λy.y trivially has a
type.
It is important to notice that this is not the case of

split and join, as no interesting subterm is erased
during the two steps of reductions that separate them.

So adding (split) to the type-checker is not just one
of the various possible extensions of ML that can be



(split− let)
Γ⊢N : A×B Γ, x : ∀X1 . . .XnY1 . . .Ym.A× (B[Y1 . . .Ym/Xi1 . . .Xim ])⊢M : C

Γ⊢(λx.M)N : C

The set {X1 . . .Xn} is FV (A×B)− FV (Γ),
Xi1 . . .Xim are the type variables among these that are shared by A and B,

and Y1 . . .Ym are fresh type variables.

Table 4: The rule (split-let).

suggested, but in a sense is a necessary completion of a
language that allows, as it is now, one way of defining
a pair of identity functions, while forbidding another
that seems as perfectly correct.

5.1 A modified type inference al-

gorithm featuring split polymor-

phism.

We can easily modify the polymorphic type infer-
ence algorithm to accommodate (split) in the type-
inference phase: it is just a matter of taking into ac-
count the renaming of type variables allowed by this
axiom in the polymorphic type inference rule. So it is
enough to add to the original ML type-inference algo-
rithm the rule split-let of Table 4, with priority on the
original let one. This type checking algorithm assigns
to join the same type as split, thus preventing the
type error we saw in Example 5.1 above.
Adapting an existing type-checker to accommodate

this further rule is rather easy: the necessity of check-
ing for shared type variables in product types requires
some care in the actual implementation, but there is
no need for new, complex unification procedures.

6 Conclusions

As the discovery of the new isomorphism (split)
stresses, it is not possible to consider ML-style lan-
guages as a particular case of the explicitly typed lan-
guages: this paper provides, as far a we know, the first
explicit treatment of isomorphic types in the frame-
work of type-assignment systems.
The main contributions of this work are the char-

acterization of the class of isomorphic types and the
extension of the ML type checker. The first result pro-
vides the necessary theoretical basis for the design of
tools to perform library searches using the type of a
function as a search key. Previous work on the subject
originally motivated this research, and finds here its
natural completion.
The extension to the ML type checker derived from

the (split) isomorphism rises on the contrary some
new issues. The traditional way of typing let expres-
sions corresponds to typing programs that will be ty-
pable without let after one step of reduction. The new

rule to capture (split) seems to correspond to moving
forward two steps in the reduction: we believe that
the necessity of moving two step forward is related in
an essential way to the non linearity of the Surjective
Pairing rule, that is the counterpart of η-equality in
the theory of ML with products. It is probably for
this reason that the ML type checker, originally born
without tuple constructors, failed to incorporate a rule
similar to (split) from the beginning. This is why, as
suggested in the title of the paper, the new rule (split-
let) is to be seen more as a completion of the original
type inference system than as an extension to it.

We believe that it is necessary to understand more
thoroughly than we do now the real nature of ML poly-
morphism, especially in the presence of type construc-
tors different from the arrow: the case of the product
we treated here tells us that we can be in for some
more surprises. This investigation will be the argu-
ment of forthcoming work.
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A Technical proofs.

This Appendix is meant to provide a sketch of the
proofs of Theorems 4.1 and Proposition 4.3, and it is
mainly here with the aim to give a taste of the proof
techniques that were developed, not to provide the full
details. The interested reader ought to refer to [DC91]
and [DC92].



In particular, we will use in what follows many no-
tion whose definition can be best found in the refer-
ences. For the notion of finite-hereditary-permutations
(f.h.p.’s) and Böhm tree (BT(M)) of a term M, see
[Bar84], [BDCL90]. For second order finite-hereditary-
permutations (2-f.h.p.’s), see [BL85] and especially
[DC91].

A.1 Completeness

To show completeness of ThML, we first notice that
each type reduction rule in ❀ (see Definition 4.4) de-
rives from a valid isomorphism. So to each such type
reduction is associated an isomorphism, and then,
since isomorphisms compose, any isomorphism M can
be decomposed as in Figure 1, where F and G, with
their inverses F−1 and G−1, are the isomorphisms as-
sociated to the rules used to rewrite the types A and
B to their split-normal-form.

✛ ✲

✛ ✲

❄

✻✻

❄
∀~Y .(B1 × . . .×Bm)

∀ ~X.(A1 × . . .×An)

M’ = G◦M◦F−1M

B

A

G

F

Figure 1: Decomposition of an ML isomorphism.

It is evident from the diagram that two types A and
B are isomorphic iff their split normal forms are. Now,
reduction to split normal form is done accordingly to
some axioms of ThML, so that to prove completeness
of this theory it suffices to prove completeness for iso-
morphisms between types in split-normal-form. In or-
der to do this, we study the structure of a generic
invertible term providing an isomorphisms between
such types. We follow the techniques introduced in
[BDCL90] and [DC91] for the case of explicitly typed
languages, that we adapt here to the type assignment
framework.

Since to deal with the strucure of terms we need
to work on normal form representatives of terms, we
first need to provide a suitable notion of reduction
that preserves (or at least does not decrease) the set
of types that can be assigned to a term. This is not a
concern in the case of explicitly typed languages, but
in this type assignment framework it requires some
care, as the following remark shows.

Remark A.1 The reduction rule for Surjective Pair-
ing

(SP ) 〈p1M, p2M〉 reduces to M

strictly decreases the set of types that can be assigned
to a term by the type-inferernce algorithm of Defini-
tion 3.1.

Indeed, the program split in Example 5.1 has
the type ((’a->’a)*(’b->’b)), but its reductum
w.r.t. (SP) can only have types that are instances
of ((’a->’a)*(’a->’a)).

If we orient (SP) the other way round, though, to
get a Surjective Pairing Expansion as suggested for
example in [Jay91], it is easy to show that we still get a
strongly normalizing calculus for which the reductum
of a term M can be given at least all the types that
are legal for M.

Theorem A.2 (Subject reduction) Let M reduce
to M’ w.r.t. the usual notion of reduction, but with
SP Expansion. If M⊢A, then M’⊢A.

Proof. Essentially the same as in [HS80], Theo-
rem 15.17. ✷

Now we can carry on our analysis of invertible
terms. Lemma 2.6 and Proposition 3.4 in [BDCL90]
go through essentially unchanged in the type assign-
ment case, and they tell us that isomorphic types
in split-normal-forms have the same number of co-
ordinates, so that, in Figure 1, n = m. Further-
more, for any given isomorphisms M between split-
normal-forms there exist a permutation σ : n → n
such that M can be split into componentwise iso-
morphisms Mi between Ai and Bσ(i). Such Mi are
then finite-hereditary-permutations , whose structure is
known from [Dez76], and the following Completeness
Theorem can be shown by induction on the depth of
the Böhm tree of M, exactly as in [BDCL90].

Theorem A.3 The theory Th2
×T

less Axioms 10, 11
and 12 plus (unit) and (split) is complete for ML
isomorphisms.

Proof. Proceed as in [BDCL90], Theorem 3.5, with
Axiom 8 and 9 on top of Axiom (swap) to take care
of the additional cases arising from type assignment.
For example, let’s do the base case.

• depth(BT(M)) = 1. Then M is λx.x, and can
prove the isomorphisms A ∼= A, for any type, or,
for any renaming σ, ∀ ~X.A ∼= ∀~Y .A[Yσ(i)/Xi], due
to the fact that in ML types the order and the
names of the generic type variables are not rel-
evant. In any case, ThML proves these equali-
ties: the first one trivially as ThML is a theory of
equality; the second one by Axioms 8 and 9.

✷



A.2 Conservativity

Lemma A.4 Let M:A → B be a 2-f.h.p. (in normal
form). If A and B are types not containing quantifiers,
them M is a term of λ1βη (the simple typed λ-calculus)
and Axiom (swap) suffices to prove A = B.

Proof. By an easy induction on the Böhm tree of
M. See [DC92] for details. ✷

Theorem A.5 Let ∀ ~X.A and ∀~Y .B be second order
types such that A and B do not contain quantifiers,
products and the unit type. If Th2

×T
⊢ ∀ ~X.A = ∀~Y .B,

then ThML⊢ ∀ ~X.A = ∀~Y .B.

Proof. Suppose that the given types are equal in
Th2

×T
. They are already in normal form w.r.t. the

rewriting system R of [DC91], Definition 3.4, so by
Theorem 3.32 of [DC91] their isomorphism is wit-
nessed by an invertible term M that is actually a 2-
f.h.p. (a term of λ2βη).
Now, Th2

×T
does not allow to change the number of

quantifiers in a type unless there is at least an occur-
rence of the unit type in their scope, and this is for-
bidden by our hypotheses, so we know that the length
n of ~X is equal to that of ~Y .

Knowing all this, let’s study the term M. It is a
2-f.h.p., so (see [DC91], Definition 3.29)

M = λz : (∀ ~X.A).λY1 . . .Yn.λxn+1 . . .xn+k.zP1 . . .Pn+k

In a 2-f.h.p., all the abstracted type variables must
appear once and only once at the level immediately
below that where they are abstracted, so, due to the
type of z and the fact that A does not contain quanti-
fiers, the first n Pi’s must be exactly the type variables
~Y in some order. This means that, for the permuta-
tion σ : n+ k → n+ k associated to the 2-f.h.p. M,
we have that λxi.Pσ(i) are 2-f.h.p.’s whose types do
not contain quantifiers (or otherwise, due to the fact
that A does not contain quantifiers, M would not type-
check). Hence the real structure of M is

M = λz : (∀ ~X.A).λY1 . . .Ynλxn+1 . . .xn+k.

z[Yσ(1) . . .Yσ(n)]Pn+1 . . .Pn+k,

where we know by Lemma A.4, that the 2-f.h.p.’s
λxi.Pσ(i) (and hence the Pn+i’s), are simple typed
terms of λ1βη.
Now, by a simple induction on the depth of the

Böhm tree of M it is easy to show that ∀ ~X.A = ∀~Y .B
can be proved using only (swap) and Axioms 8 and
9, that are all derivable in ThML. ✷

Corollary A.6 Let ∀ ~X.A and ∀~Y .B be second or-
der types as above in Theorem A.5. Let ∀ ~X ′.A and
∀ ~Y ′.B be the ML types obtained from them by erasing
all quantifications on type variables not occurring in
A and B respectively. Then Th2

×T
⊢∀ ~X.A = ∀~Y .B ⇒

ThML⊢∀ ~X ′.A = ∀ ~Y ′.B

Proof. Suppose Th2
×T

⊢∀ ~X.A = ∀~Y .B.
The terms Pn+i’s and the variables xi’s in Theo-

rem A.5 contain as free type variables only the ~Y ′
i’s,

as only these variables occur in the type B, so we can
build the term

M ′ = λw : (∀ ~X ′.A).λ ~Y ′.λxn+1 . . .xn+k.

w[Y ′

σ]Pn+1 . . .Pn+k

Where Y ′
σ is what is left of Yσ(1). . .Yσ(n) after erasing

the type variables not occurring in B.
The term M’ type checks2, and proves (in Th2

×T
)

∀ ~X ′.A = ∀ ~Y ′.B, so we can apply once more Theo-
rem A.5 and finally get ThML⊢∀ ~X ′.A = ∀ ~Y ′.B, as
required. ✷

Theorem A.7 (ThML subsumes Th2
×T

on ML types)
Let C and D be any ML types. If Th2

×T
⊢ C = D, then

ThML ⊢ C = D.

Proof.
Let C = ∀ ~X.A, and C = ∀~Y .B be ML types equated

in Th2
×T

. Take their normal forms n.f.(C) and n.f.(D)
w.r.t. the type rewriting system R of [DC91]. We
know that, since they are equal in Th2

×T
, there is

an n s.t. n.f.(C) = (C1 × . . .× Cn) and n.f.(D) =
(D1 × . . .×Dn), where no product or unit type ap-
pears in the Ci’s and the Di’s. Moreover, the rewrit-
ing rules in R do not push any ∀ inside → or × , and
we start with ML-style types (that have ∀ only as the
outermost type constructors), so we know that the Ci

and the Di are still ML-style types. More than that,
we know that for some types Ai and Bi not containing
quantifiers Ci ≡∀ ~X.Ai and Di ≡∀~Y .Bi. Now, Theo-
rem 3.32 in [DC91] says that there exist a permuta-

tion σ : n → n s.t. for all i Th2
×T

⊢ ∀ ~X.Ai = ∀~Y .Bσ(i).

Let’s call ~Xi and ~Yi the type variables free in the Ai’s
and the Bi’s respectively. Now Corollary A.6 states
that ThML⊢∀ ~Xi.Ai = ∀ ~Yσ(i).Bσ(i) Since we can re-
name bound type variables in ThML, these equalities
can be turned into ThML⊢∀ ~X ′

i.A
′
i = ∀ ~Y ′

σ(i).B
′
σ(i)

where all the type variables have been renamed in such
a way that no two A′

i’s or B
′
σ(i)’s share any type vari-

able. If M ′
i’s are the ML terms associated to these

equalities in ThML, then we can build the ML term

λw.〈M ′
1(pσ(1)w), 〈. . . ,M

′
n(pσ(n)w)〉 . . . 〉

that proves

ThML ⊢ ∀ ~X ′
1 . . . ~X ′

n.(A
′
1 × . . .×A′

n)

= ∀ ~Y ′
1 . . . ~Y ′

n.(B
′
1 × . . .×B′

n)

These two last types are in normal form w.r.t the
type rewriting system ❀, that is a subsystem of R in

2Notice that ~Y ′ and ~X′ have the same length, since the rules
in Th2

×T
do not change the number of bound variables to prove

∀ ~X.A = ∀~Y .B



[DC91], and moreover all the coordinates have disjoint
type variables: they are actually split-normal-forms of
C and D.
Now, ThML proves that any ML type is equal to

any of its split-normal-forms (see again Figure 1), so,
by transitivity, ThML⊢ C = D, as required. ✷

Remark A.8 Notice that the proof relies in an essen-
tial way on the equivalence between an ML type and
its split-normal-form, that is due to Axiom (split).
Actually, without it, the previous theorem is false, as
the following example shows.

Example A.9
Let A and B be different types. Then it is easily seen
that

Th2
×T

⊢ ∀XY .(X→(X→Y )→A)×(Y→(Y→X)→B)

= ∀ZW.(Z→(Z→W )→B)×(Z→(Z→W )→A).

But ThML without Axiom (split) cannot prove it:
these types are already in normal form w.r.t. ❀, and
there is no way to equate them with only variable re-
naming, permutation or swapping of premisses. ✷
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