
OCTOBER 2018 | VOL. 61 | NO. 10 | COMMUNICATIONS OF THE ACM 29

V
viewpoints

I
M

A
G

E
 B

Y
 A

N
D

R
E

Y
 V

P

attention to software safety, security,
reliability, and traceability. But un-
like other scientific fields, we lack
large-scale research instruments for
enabling massive analysis of all the
available software source code.

As computer scientists and profes-
sionals, it is our duty, responsibility,
and privilege to build a shared infra-
structure that answers these needs.
Not just for our community, not just
for the technical and scientific com-
munity, but for society as a whole.

Software Heritagea is an initiative
launched at Inria—the French Institute
for Research in Computer Science and
Automation—precisely to take up this

a	 See https://www.softwareheritage.org

S
OFTWARE IS BECOMING the
fabric that binds our personal
and social lives, embodying a
vast part of the technologi-
cal knowledge that powers

our industry and fuels innovation. Soft-
ware is a pillar of most scientific research
activities in all fields, from mathematics
to physics, from chemistry to biology,
from finance to social sciences. Soft-
ware is also an essential mediator for ac-
cessing any digital information.

In short, a rapidly increasing part of
our collective knowledge is embodied
in, or dependent on, software artifacts.
Our ability to design, use, understand,
adapt, and evolve systems and devices
on which our lives have come to depend
relies on our ability to understand,
adapt, and evolve the source code of
the software that controls them.

Software source code is a precious,
unique form of knowledge. It can be
readily translated into a form execut-
able by a machine, and yet it is human
readable: Harold Abelson wrote “Pro-
grams must be written for humans to
read,”1 and source code is the preferred
form for modification of software arti-
facts by developers.3 Quite differently
from other forms of knowledge, we
have grown accustomed to use version-
control systems that trace source code
development, and provide precious in-
sight into its evolution. As Len Shustek
puts it, “Source code provides a view
into the mind of the designer.”4

And yet, we have not been taking
good care of this precious form of
knowledge.

Source code is spread around a variety
of platforms and infrastructures that we
use to develop and/or distribute it, and
software projects often migrate from
one to another: there is no universal
catalog that tracks it all.

Software can be deleted, corrupted,
or misplaced. What’s even more worry-
ing, in recent years we have seen major
code forges shut down, endangering
hundreds of thousands of publicly
available software projects at once.6

We clearly need a universal archive
of software source code.

The deep penetration of software
in all aspects of our world brings
along failures and risks whose po-
tential impact is growing. Users now
understand the need for an organized

Viewpoint
Building the Universal
Archive of Source Code
A global collaborative project for the benefit of all.

DOI:10.1145/3183558	 Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli

http://dx.doi.org/10.1145/3183558

30 COMMUNICATIONS OF THE ACM | OCTOBER 2018 | VOL. 61 | NO. 10

viewpoints

and enables full deduplication (mas-
sively reducing storage costs), integrity
checking, and tracking of reuse across
all software projects at the file level.
But it also poses novel challenges
when it comes to efficiently indexing
and querying its contents.

Sharing
The raw material that Software Heritage
collects must be properly organized
to ease its fruition. On top of the infor-
mation captured by version-control
systems, we need metadata describing
the software and means to classify the
millions of harvested projects, written
in one of the thousands of known pro-
gramming languages.e We need to ex-
tract and reconcile existing information
from many different sources, encoded
in one of the many different software
ontologies, and complete it using either
automatic tools or crowdsourcing.

We must also support the many use
cases that it enables. Programmers
may want to search for specific project
versions or code snippets to reuse, and
then browse them online or download
history-full source code bundles. Com-
panies may want to access an API to
build applications that use the archive.
Researchers may want to access the
whole corpus to perform big data opera-
tions or train machine learning models.

We must carefully assess which
functionalities are generic enough to
be incorporated in the archive, and
which are so specific that they are best
implemented externally by third par-
ties. And there are of course legal and
ethical issues to be dealt with when
redistributing parts—or all—of the
contents of the archive.

Current Status
Software Heritage is an active project
that has already assembled the largest
existing collection of software source
code. At the time of writing the Software
Heritage Archive contains more than
four billion unique source code files and
one billion individual commits, gath-
ered from more than 80 million pub-
licly available source code repositories
(including a full and up-to-date mirror
of GitHub) and packages (including a
full and up-to-date mirror of Debian).
Three copies are currently maintained,

e	 See http://hopl.info/

mission. While a full article detailing
our approach is available online,2 we
focus here on the challenges raised by
the three main goals: collecting, pre-
serving, and sharing the source code
of all the software ever written.

Collection
There are various kinds of source code.
Some is current, actively developed,
and technically easy to make available;
some other is legacy source code that
must be painfully retrieved from offline
media. Some is open, and free for all to
read and reuse; some is closed behind
proprietary doors. Software Heritage’s
ambition is to collect it all.

For current, open source code, we
need an automated process to harvest all
software projects, with all the available
development history, from the many
places where development and distri-
bution take place, like forges and pack-
age repositories. Yes, we really mean
harvesting everything available, with no
a priori filtering. Because the value of
an active software project will only be
known in the future, and because stor-
ing all present and future source code
can be done at a reasonable cost.

The technical challenge is to build
crawlers for each code-hosting plat-
form, as there is no common protocol
available, and to develop adapters for
all version-control systems and package
formats. It is a significant undertaking,
but once a standard platform is avail-
able each of these crawlers and adapters
can be developed in parallel.

For legacy, open source code, we
need a crowdsourcing platform to
empower the volunteers that are will-
ing to help recover their preferred
software artifacts. Guidelines must be
offered to help properly reconstruct
from the raw material the interesting
history that lies behind it, like in the
beautiful work that has been done for
the history of Unix.5

Closed software contains precious
knowledge that is more difficult to re-
cover. For example, the Computer His-
tory Museumb and Living Computersc
have shown, in the case of the mythi-
cal Alto system,d that once the busi-

b	 See http://www.computerhistory.org/
c	 See http://www.livingcomputers.org/
d	 See http://xeroxalto.computerhistory.org and

http://www.livingcomputers.org/Discover/
News/ContrAlto-A-Xerox-Alto-Emulator.aspx

ness need to keep software closed fades
away, a focused search (that requires a
costly and dedicated effort) can succeed
in recovering and liberating its source
code, growing our software commons.

Finally, by providing a means to
safely keep closed source software un-
der embargo, much like what happens
already with software escrow, we may
succeed in collecting current and future
closed source, and be ready to liberate it
when time comes, dispensing altogeth-
er with costly technical recovery efforts.

Preservation
In the extensive literature on digital
preservation, it is now well established
that long-term preservation requires
full access to the source code of the
tools used for the task. Software Heri-
tage uses and develops exclusively free
and open source software tools for
building its archive.

Also, replication and diversifica-
tion are best practices to mitigate the
threats—from technical failures to
legal and economic decisions—that
endanger any long-term preservation
initiative. Hence, we want to foster a
geographically distributed network of
mirrors, implemented using a variety
of storage technologies, in different ad-
ministrative domains, controlled by a
plurality of institutions, and located in
different jurisdictions.

Finally, preserving software source
code also requires preserving the de-
velopment history of source code,
which carries precious insights into
the structure of programs and also
tracks inter-project relationships.
Software Heritage’s unique approach
is to store all available source code
and its revisions into a single Merkle
DAG (Directed Acyclic Graph), shared
among all software projects. This
data structure facilitates distribution

We are at a unique
turning point in
the history
of computer science
and technology.

OCTOBER 2018 | VOL. 61 | NO. 10 | COMMUNICATIONS OF THE ACM 31

viewpoints

including one on a public cloud.
As a graph, the Merkle DAG under-

pinning the archive consists of 10 billion
nodes and 100 billion edges; in terms of
resources, the compressed and fully de-
duplicated archive requires some 200TB
of storage space. These figures grow
constantly, as the archive is kept up to
date by periodically crawling major code
hosting sites and software distributions,
adding new software artifacts, but never
removing anything. The contents of the
archive can already be browsed online,
or navigated via a REST API.f

Next Steps
We are at a unique turning point in
the history of computer science and
technology. Looking backward, we see
many important pieces of historical
software that are lost, misplaced, or be-
hind barriers. On the other hand, many
of our founding fathers are still here.
They have the knowledge and the will
to share what is necessary to rebuild the
full history of our discipline—a unique
opportunity that no other field of sci-
ence or technology has ever offered.

Looking to the future, we see soft-
ware development skyrocketing. It is
urgent to build the missing infrastruc-
ture and put in place the good practices
necessary to ensure our entire software
commons will be properly collected
and preserved. Every year that goes by
without acting significantly increases
the backlog.

By launching Software Heritage,
Inria has done the initial effort, creat-
ing the archive infrastructure, estab-
lishing an agreement with UNESCO,
and assembling an initial group of
supportersg and committed sponsors,
including Microsoft, Intel, Société
Générale, Huawei, Google, GitHub,
Qwant, Nokia Bell Labs, DANS, FossID,
UQAM, and the University of Bologna.
Now we need to move forward, and
grow Software Heritage into an inter-
national common infrastructure.

Four ingredients are key to the suc-
cess of our mission: raising awareness
of the importance of source code as a
first-class citizen in our cultural heri-
tage; gathering the resources needed
to create the infrastructure; leveraging

f	 See https://archive.softwareheritage.org/
g	 See https://www.softwareheritage.org/support/

testimonials/

the expertise from many fields of our
discipline; and building on a commu-
nity that shares the vision.

As an open initiative, Software Heri-
tage strives to act as a host and a cata-
lyzer for this community, and we are
now calling for contributors to join
forces and tackle the issues highlight-
ed in this Viewpoint, and the many oth-
ers that will arise along the way. A few
of these issues include:

˲˲ For the collection phase, we need
help recovering important software
from the past and building adaptors for
the many hosting platforms and source
code distribution formats.

˲˲ For the preservation phase, we
need resources to host mirrors, as well
as contributors willing to try different
technologies for storing and mirroring
the archive.

˲˲ For the sharing phase, help is
needed to organize the contents, to
build efficient indexing and querying
mechanisms, and to develop applica-
tions for specific domains.

We—technologists, engineers,
scientists, and IT professionals—have
a noble mission and a grand challenge:
let’s work together to deliver on it.	

References
1.	 Abelson, H., Sussman, J., and Sussman, J. The

Structure and Interpretation of Computer Programs.
Preface by A.J. Perlis, MIT Press, 1985.

2.	 Di Cosmo, R. and Zacchiroli, S. Software Heritage: Why
and How to Preserve Software Source Code. iPRES 2017.

3.	 Free Software Foundation, Inc. The GNU General
Public License, Version 3, §1, 2007.

4.	 Shustek, L.J. What should we collect to preserve the
history of software. IEEE Annals of the History of
Computing, 2006.

5.	 Spinellis, D. A repository of Unix history and evolution.
Empirical Software Engineering, 2017.

6.	 Squire, M. The Lives and Deaths of Open Source Code
Forges. OpenSym, 2017.

Jean-François Abramatic (Jean-Francois.Abramatic@
inria.fr) is research director emeritus at Inria, the
French Institute for Research in Computer Science and
Automation.

Roberto Di Cosmo (roberto@dicosmo.org) is director of
Software Heritage at Inria, and professor of computer
science at IRIF, University Paris Diderot.

Stefano Zacchiroli (zack@upsilon.cc) is associate
professor of computer science at IRIF, University Paris
Diderot, and CTO of Software Heritage at Inria.

Copyright held by authors.

Calendar
of Events
October 14–17
UIST ‘18: The 31th Annual ACM
Symposium on User Interface
Software and Technology,
Berlin, Germany,
Co-Sponsored: ACM/SIG,
Contact: Patrick Baudisch,
Email: patrickbaudisch@gmx.
net

October 15–19
CCS ‘18: 2018 ACM SIGSAC
Conference on Computer and
Communications Security,
Toronto, ON, Canada
Sponsored: ACM/SIG,
Contact: David J.F. Lie,
Email: lie@eecg.toronto.edu

October 16–20
ICMI ‘18: International
Conference on
Multimodal Interaction,
Boulder, CO, USA
Sponsored: ACM/SIG,
Contact: Sidney D’Mello,
Email: sidney.dmello@gmail.
com

October 22–26
CIKM 2018: The 27th ACM
International Conference on
Information and Knowledge
Management,
Torino, Italy,
Co-Sponsored: ACM/SIG,
Contact: Alfredo Cuzzocrea,
Email: cuzzocrea@si.dimes.
unical.it

October 22–26
MM ‘18: ACM Multimedia
Conference,
Seoul, Republic of Korea,
Sponsored: ACM/SIG,
Contact: Kyoung Mu Lee,
Email: kyoungmu@snu.ac.kr

October 28–31
CHI PLAY ‘18: The Annual
Symposium on Computer-
Human Interaction in Play,
Melbourne, VIC, Australia
Sponsored: ACM/SIG,
Contact: Florian Mueller,
Email: floyd@floydmueller.com

October 28–November 2
MSWIM ‘18: 21th ACM Int’l
Conference on Modeling,
Analysis and Simulation of
Wireless and Mobile Systems,
Montreal, QC, Canada
Sponsored: ACM/SIG,
Contact: Azzedine Boukerche,
Email: boukerch@site.uottawa.ca

Watch the authors discuss
their work in this exclusive
Communications video.
https://cacm.acm.org/videos/
building-the-universal-archive-of-
source-code

