Preserving landmark legacy software with the
Software Heritage Acquisition Process

Laura Bussi
University of Pisa
Italy
laurabussi@live.it

Roberto Di Cosmo
Inria and University of Paris
France
roberto@dicosmo.org

Carlo Montangero
University of Pisa
Italy
carlo@montangero.eu

0000-0002-7493-5349
Guido Scatena

University of Pisa
Italy
guido.scatena@unipi.it

Abstract - The source code of landmark software de-
veloped since the beginning of the computer era is a pre-
cious part of our cultural heritage, and needs to be prop-
erly rescued, curated, archived and made available to
present and future generations. In this article, we present
the Software Heritage Acquisition Process, that has been
designed to provide detailed guidelines on how to perform
this important task, preserving important historical infor-
mation. This process has been validated extensively on
several important pieces of software source code of his-
torical relevance in the University of Pisa, in collaboration
with UNESCO, and is open to all for adoption and improve-
ment.

Keywords - software preservation, legacy software,
source code, acquisition process

Conference Topics - new developments; capacity
building

l. Introduction

Software binds our personal and social lives, embod-
ies a vast part of the technological knowledge that pow-
ers our industry, supports modern research, mediates
access to digital content and fuels innovation. In a word,
growing part of our collective knowledge is embodied in,
or depends on software artifacts.

Software is written by humans, in the form of soft-
ware Source Code, a precious, unique form of knowl-
edge that, besides being readily translated into machine-
executable form, should also “be written for humans to
read” (Abelson and Julie Sussman [1]), and “provides a
view into the mind of the designer” (Shustek [2]).

As stated in the Paris Call on Software Source code as
Heritage for sustainable development (Report [3]), from
the UNESCO-Inria expert group meeting, it is essential to
preserve this precious technical, scientific and cultural
heritage over the long term.

17th International Conference on Digital Preservation

iPRES 2021, Beijing, China.

Copyright held by the author(s). The text of this paper is published
under a CC BY-SA license (https://creativecommons.org/licenses/by/4.0/).
DOI: 10.1145/nnnnnnn.nnnnnnn

Software Heritage is a non-profit, multi-stakeholder
initiative, launched by Inria in partnership with UNESCO,
that has taken over this challenge. Its stated mission is
to collect, preserve, and make readily accessible all the
software source code ever written, in the Software Her-
itage Archive. To this end, Software Heritage designed
specific strategies to collect software according to its na-
ture (Abramatic, Di Cosmo, and Zacchiroli [4]).

For software that is easily accessible online, and that
can be copied without specific legal authorizations, the
approach is based on automation. As of February, Soft-
ware Heritage has already archived more than 6 billion
unique source code files from over 90 million different
origins, focusing in priority on popular software develop-
ment platforms like GitHub and GitLab and rescuing soft-
ware source code from legacy platforms, such as Google
Code and Gitorious that once hosted more than 1.5 mil-
lion projects.

For source code that is not easily accessible online,
a different approach is needed. It is necessary to cope
with the variety of physical media where the source code
may be stored, the multiple copies and versions that
may be available, the potential input of the authors that
are still alive, and the existence of ancillary materials like
documentation, articles, books, technical reports, email
exchanges. Such an approach shall be based on a fo-
cused search, involving a significant amount of human
intervention, as demonstrated by the pioneering works
reconstructing the history of Unix (Spinellis [5]) and the
source code of the Apollo Guidance Computer (Burkey

[6)).

In order to rescue, curate and illustrate landmark
legacy software source code, a jointinitiative of Software
Heritage and the University of Pisa, in collaboration with
UNESCO, has led to developing SWHAP, the SoftWare
Heritage Acquisition Process, that provides detailed, ac-

IPRES 2021

17th International Conference
on Digital Preservation

tionable guidelines now available for everyone.

This article presents the SWHAP process, focuses
on relevant aspects of its implementation during the
legacy software rescue campaing carried on in Pisa dur-
ing 2019, and provides examples of landmark legacy
software that have been handled using SWHAP on this
occasion.

Il The acquisition process, an abstract view

This section, extracted from the full SWHAP guide-
lines [7], describes the acquisition process for software
artifacts at an abstract level, that is, without making spe-
cificassumptions on the tools, platforms and technologies
that may be used to perform the various operations de-
scribed here.

A Phases

The activities involved in the acquisition process can
be organized in the following four phases, of which the
first one is conservative, i.e., it is devoted to save the raw
materials that the other phases will build upon.

Figure 1 provides a pictorial view of the process, its
phases, data stores and roles.

1. Collect

The purpose of this phase is to find the source code
and related materials and gather it as is in a physical
and/or logical place where it can be properly archived for
later processing.

Various strategies are possible for collecting the raw
materials: a dedicated team may proactively search for
the artifact of specific software that has been identified
as relevant (pull approach), or a crowdsourcing process
may be set up to allow interested parties to submit soft-
ware that has not been previously identified (push ap-
proach).

Source code can be provided in a digital or physical
form. Typically, source code for old machines (such
as the first Italian computer, CEP [8], now exposed in
the Pisa museum of computing) is available only as pa-
per printouts that may even include hand-written com-
ments: all these materials deserve to be preserved.

Related materials can include research articles, pic-
tures, drawings, user manuals: all of these are part of
the software history and need to be preserved as well
as the source code.

At this stage of elaboration of the process, this phase
is better thought of as abstract, in the sense that several,
more focussed descriptions should be provided to cater
for the different situations identified. The same applies
to the Curator role, which may need different capabili-
ties in different scenarios.

iPRES 2021 - 17th International Conference on Digital Preservation
October 19-22, 2021, Beijing, China

2. Curate

The purpose of this phase is to analyze, cleanup and
structure the raw materials that have been collected.

Preparing software source code for archival in Soft-
ware Heritage requires special care: the source code
needs to be cleaned up, different versions with their pro-
duction dates need to be ascertained, and the contributors
need to be identified in order to build a faithful history of
the evolution of the software over time.

Also, proper metadata should be created and made
available alongside the source code, providing all the
key information about the software that is discovered
during the curation phase. We recommend to use
the vocabulary provided by CodeMeta as an extension
to schema.org (see https://codemeta.github.io/terms/);
this includes the software runtime platform, program-
ming languages, authors, license, etc.

Particular care is required to identify the owners of
the different artifacts, and obtain if needed the necessary
authorizations to make these artifacts publicly available’.

3. Archive

The purpose of this phase is to contribute the cu-
rated materials to the infrastructures specialized for
each kind of materials: Software Heritage for the source
code, Wikimedia for images or videos, open access repos-
itories for research articles, Wikidata for software descrip-
tions and properties, and so on.

Well established guidelines are available for con-
tributing materials to Wikimedia (see [10]) and Wikidata
(see [11]), hence we focus primarily on curating and con-
tributing the software source code to Software Heritage,
a process that is new and may require rather technical
steps.

4, Present

The purpose of this phase is to create dedicated pre-
sentations of the curated materials.

Once the curated materials are made available in the
dedicated infrastructures, itis possible to use it to create
presentations for a variety of purposes: special events,
virtual or physical expositions for museums or websites.

For this, the archived materials need to be refer-
enced using the identifiers that each platform provides
for its contents. Software Heritage provides intrin-
sic persistent identifiers that are fully documented
at https://docs.softwareheritage.org/devel/swh-
model/persistent-identifiers.html

The presentation phase is out of the scope of this
document, and as such we are currently not providing
a supporting implementation. Anyway, a good example

"This is a complex issue, that may need to be handled according to
country-specific regulations and is out of the scope of the present doc-
ument. In the United States, one may leverage the “fair use” doctrine,
see for example the detailed analysis presented in [9].

https://codemeta.github.io/terms/
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

Deposit

Collector Engineer Curator

. Journal/Catalogue
AcgMotice

Collect

DepositedSC —>

Curate
CuratedSC

Journal/Catalogue

Archive
Engineer

Presentation

Designer [Web Designer]

Journal/Catalogue
»

. Joumnal/Catalogue
Archive | E—

ArchivedSC

[Present] | presentedsc
 —
[Warehouse] : V V
Depository : V v
Curated Source | ___ ..t ; ___
Code Deposit V
Software : ;
Heritage V
Wikies V
Key Role needed in the
phase below
Input Output
product product

...fed in the
V phase above
v ...used in the

phase above
Entities in italic are abstract, square brackets denote optional elements.

Shared
data
store...

Figure 1: Source code acquisition process.

of what can be done is the https://sciencestories.io web-
site.

B. An iterative process

New information may arise at any time: new raw ma-
terials may be discovered, refined information may be
identified that needs to be added to the curation, and
mistakes may need to be corrected. Hence, the over-
all process must be seen as iterative, in the sense that,
when new data are available, the pertinent phase can
be re-entered and the process enacted once more from
there to update all the relevant information. This sug-
gests that, whenever possible, the data stores should
be fully versionable, not to loose historical information
about the acquisition process itself.

C Resources needed by the process

As any process supported digitally, SWHAP needs
both human and technical resources to be enacted.

First of all, several data stores and working areas are
needed, to save and make public the intermediate prod-
ucts, which are themselves of value, as already men-
tioned, and to pass the collected information across the
phases. These are shown in the lower part of Figure 1,
and are summarized here.

iPRES 2021 - 17th International Conference on Digital Preservation
October 19-22, 2021, Beijing, China

1. Warehouse

A physical location where physical raw materials are
safely archived and stored, with the usual acquisition
process?.

2. Depository

Avirtual space where digital raw materials are safely
archived. The raw digital materials found in the Depos-
itory are used in the Curation phase to produce the
source code that Software Heritage can ingest in the
Archive phase.

The Depository holds also the related raw materials
that may be elaborated and deposited in locations like
WikiData, WikiMedia etc. - referred to as Wikies in fig. 1
- in the other phases.

3. Workbench

Any implementation of the process will need a virtual
space and working environment where the activities can
be carried out, with support for temporary storage and
for logging the various operations in a journal.

2See for example https://collectionstrust.org.uk/spectrum/.

https://sciencestories.io
https://collectionstrust.org.uk/spectrum/

4, Curated source code deposit

A fully versioned repository, holding the recon-
structed development history of the source code, in view
of its transfer to Software Heritage.

5. Catalogues and journals

As shown in fig. 1, according to the best practices
of the archival sciences, each phase shall produce both
a Catalogue of its products and a Journal recording its
activities - who did what, and when. A list of the Actors
involved in the process is also necessary. Provision to
store all these information safely has to be foreseen in
any supporting implementation.

D. Roles in the process

With respect to the human resources, several roles
are needed to enact the process, as indicated in the top
part of fig. 1. Here is a short summary of the involved
capabilities.

1. Collector

Searches and receives the raw materials. Identifies,
classifies and separates source code and ancillary mate-
rials.

2. Deposit engineer

Masters the procedures to archive physical and digi-
tal materials, in the local context.

3. Curator

Prepares the version history, identifying the authors
and other contributors. Provides a context to the source
code, choosing among the ancillary materials.

4. Archive engineer

Masters the procedures to transfer the curated
source code to SWH and to publish the context in the
Wikies.

5. Presentation designer and Web engineer

These are out of the scope of this document, and are
mentioned only to note that, though most of the presen-
tations of the archived software will be on line, the abil-
ities to design the contents of a presentation should be
considered separately from the technical ones.

E. Implementation requirements

The abstract process may be implemented using dif-
ferent tools, platforms and technologies, as long as the
following key requirements are satisfied.

1. Long term availability

The places where the artefact (both raw and curated)
are stored must provide sufficient guarantees of avail-
ability over the long term. These places may be physical

iPRES 2021 - 17th International Conference on Digital Preservation
October 19-22, 2021, Beijing, China

(warehouses), or logical (depositories).

2. Historical accuracy

Any supporting implementation should support the
faithful recording of the authorship of the source code
as well as of the reconstruction process, e.g., via a flexi-
ble versioning system.

3. Traceability

It must be possible to trace the origin of each of the
artifacts that are collected, curated and deposited. For
physical materials, we refer to common practice®. For
digital artifacts, it is recommended to keep a journal of
all the operations that are performed, and to automate
them as much as possible, as the collection and curation
process may require several iterations.

4. Openness

Any supporting implementation should be based on
open and free tools and standards.

5. Interoperability

Any supporting implementation should provide sup-
port for the cooperation and coordination of the many
actors playing the many roles of the acquisition process.

M. The SWHAP process for University of Pisa

At the University of Pisa, the SWHAP process has
been implemented leveraging modern tools and plat-
forms to manipulate software source code.

We provide here some key highlights of this partic-
ular implementation of the process, and we refer the
interested reader to the complete guidelines [7] for full
details, and a complete walkthrough on a medium sized
example.

A Instantiating the working areas

After an extensive study of the available options,
the popular version control system Git [12] has been
choosen as the designated tool for traceability and his-
torical accuracy: it naturally provide a means to record
the history of the modifications made to the digital as-
sets, with information on who did what and when, and
it is particularly well suited for managing complex work-
flows.

Once this choice has been made, it was natural to
look for a way to use the same tool in all the storage and
working areas, so the collaborative platform GitHub has
been selected to instantiate the Depository, the Curated
source code deposit and the Workbench.

The (logical) areas described above are then instanti-
ated by means of repositories in GitHub. There are three
repositories for each source code acquisition, one for
each area of the abstract process:

3See for example in https://collectionstrust.org.uk/spectrum/.

https://github.com/
https://collectionstrust.org.uk/spectrum/

Workbench repository, to implement the Work-
bench, i.e. a working area where one can tem-
porarily collect the materials and then proceed
to curate the code;

Depository repository, to implement the Depos-
itory, where we can collect and keep separated
the raw materials from the curated source
code;

Source Code repository, to implement the Cu-
rated source code deposit, where we store the
version history of the code; this version history
is usually “synthetic”, rebuilt by the curation
team, for old projects that did not use a version
control system.

B. Curating the source code version history

While the full details of the concrete process used
at Pisa can be found in the complete guidelines [7], we
would like to focus now on some important aspects of
the curation phase that leads to the final source code
repository with the synthetic history.

When rescuing legacy software, one often finds sev-
eral versions that have been released in the past, and
the curation team needs to ascertain for each version of
the software at least the main contributing author and the
exact date of the release of this particular version.

The SWHAP guidelines recommend to collect all
this information in a dedicated metadata file, named
version_history.csv, that contains the following
fields:

directory name name of the directory containing the
source code of this version

author name name of the main author

author email email of the main author, when avail-

able

date original original date when this version was
made

curator name name of the curator person or team

curator email the reference email of the acquisition
process

release tag a tag name if the directory contains a re-
lease, empty otherwise

commit message text containing a brief note from the
curation team

For traceability, the name of the main author and
the date of the original release are of paramount impor-
tance, and must be properly preserved also in the final
synthetic repository, and distinguished from the infor-
mation related to the curation team.

iPRES 2021 - 17th International Conference on Digital Preservation
October 19-22, 2021, Beijing, China

The good news is that modern version control sys-
tems like Git allow to attach to every modification of the
version history two different sets of metadata: one that
describes the author of the modified digital assets, to-
gether with the author date of the modification, and an-
other set that describes the committer, i.e. the person
that adds the modified digital assets to the version his-
tory, together with the committer date.

Leveraging this functionality, it is possible to a syn-
thetic version history of the development of a software
project over time that clearly distinguishes the role of
the original author, whose name and dates will go in the
author field, from the role of the curator, whose name
and date will go in the committer field.

An example of the result of the process is shown in
Figure 2, that shows in the Software Heritage archive the
release 1.1 of the CMM garbage collector that was res-
cued according to the SWHAP process in Pisa. We can
clearly see that this version of the software has as main
author Giuseppe Attardi, that, as ascertained during the
curation process, released it on October 27 1994, while
the synthetic repository that contains this particular ver-
sion among many others has been created by the Curation
Team on December 11 2019.

The fact that this information is stored safely in the
version control system, and is properly presented in the
Software Heritage archive, further supports the choice
of using Git as the common tool for keeping track of the
modifications.

We insist here on the need to carefully follow the
process described in the full SWHAP guidelines to prop-
erly handle these metadata. By default, Git replicates
the committer information into the author information,
and a naive use of the tool may lead to incorrect results:
on GitHub it's quite common to find today legacy source
code with wrong metadata containing only the name of
the person that uploaded the code on GitHub, and the
date of the upload, while the real author name and the
original date are missing®.

IV. Results from enacting SWHAP in Pisa

In this section, we report on some of the legacy land-
mark projects whose software source code has beenres-
cued, curated and archived in Software Heritage follow-
ing the SWHAP process, as part of the activities to cel-
ebrate the 50th anniversary of the first course in Com-
puter Science in Italy, established in Pisa in 1969.

That the Italian formal education in computing
started in Pisa, was not by chance, and it seems useful
to report briefly here on the tradition in the discipline in
Pisa, to provide the context for what follows.

Starting March 1955, Pisa saw the construction of
the first electronic computing machines conceived and
designed in Italy, by Italian scientists and technicians. In-

4See for example the collection of legacy videogame source code
found on https://github.com/videogamepreservation/

i
F5%
1]

< Browse archived revision for origin https://github.com/Unipisa/CMM @

ii‘ fHVisits [Snapshot date: 13 December 2019,15:52 UTC ¥ Branches (3) W Releases (8)
o <o-Revision oe186db83ao43dcfegc666dd4coofoe8dibgoz34e authored by Giuseppe Attardi on 27 October1994,11:26 UTC, committed by CMM
o2 Curation Team on 11 December 2019,14:35 UTC
Q 11-
l Contributors mentioned in Changelog :
- Giuseppe Attardi @attardi.
‘*" o parent o
? Files Changes
3103eds / 'D History = Actions ¥
File Mode Size
®scom de—

Figure 2: Distinguishing author metadata from curator metadata

deed, the University of Pisa then established the Centro
Studi Calcolatrici Elettroniche (CSCE, Italian for Center for
the Study of Electronic Computing machines) to exploit
funds offered by the public administrations of Livorno,
Lucca and Pisa. More funds came from Olivetti, then the
major Italian manufacturer of electromechanical calcula-
tors, when the company CEO, Adriano Olivetti, signed an
agreement with the University, as part of his strategy to
enter the market of electronic computers.

Contemporarily, the other notable efforts in Italy to
keep up with the new field of electronic computing re-
sorted to buying available machinery: in Milan, the lo-
cal Polytechnic acquired a CRC 102A from the US firm
National Cash Register; in Rome, the Istituto Nazionale
per le Applicazioni del Calcolo (INAC, National Institute for
Computing Applications) acquired what became known
as FINAC, a Mark I* of the English firm Ferranti.

The joint venture in Pisa gave rise to two cooper-
ating lines of design and development. Olivetti set up
the Laboratorio Ricerche Elettroniche (LRE, Laboratory for
Electronics Researches) in Barbaricina, at the outskirts
of Pisa, to develop a general purpose commercial data
processing machine; people at the CSCE were inter-
ested in a high precision high speed machine for scien-
tific computing. In a couple of years, both teams deliv-
ered. The LRE presented the so called Macchina Zero
(Machine #0) to Adriano Olivetti in July 1957. Eventually,
this prototype evolved in the ELEA 9003, distributed by
Olivetti since 1959 in more than 180 exemplars. Also
in July 1957, the CSCE delivered an experimental ma-
chine, dubbed Macchina Ridotta (MR, Reduced Machine),
which, despite its experimental nature, offered its com-
putational services to the scientific community in Pisa
until March 1959, when it was dismantled and partly re-
cycled into a new machine, the Calcolatrice Elettronica
Pisana (CEP, Pisa Electronic Computing machine). The
CEP became operational in February 1961 and was in
use till the Spring of 1970, when it was dismantled and
eventually exhibited in the Museo degli Strumenti per il
Calcolo (MSC, Computing Machinery Museum) of the Uni-
versity of Pisa.

iPRES 2021 - 17th International Conference on Digital Preservation
October 19-22, 2021, Beijing, China

As foreseen by those who supported the initial
choice of building a machine rather than buying one, the
CEP project created a large amount of qualified exper-
tise that fostered many new activities in Pisa. The CSCE
became part of the Consiglio Nazionale delle Ricerche
(CNR, National Research Council) under the name of Isti-
tuto di Elaborazione dell'Informazione (IEl, Information
Processing Institute), and the University was able to es-
tablish the Centro Nazionale Universitario di Calcolo Elet-
tronico (CNUCE, National University Center for Electronic
Computing) to host the successor of the CEP, an IBM
7090 to offer computing services to the Italian scientific
community at large. At the same time, a wealth of edu-
cational activities were carried on, from internal courses
on the use of the CEP to solve Numerical Analysis prob-
lems in the ‘50s, to graduate courses in Computing in
the early ‘60s, to lectures offered within Science and En-
gineering undergraduate courses in the second half of
the ‘60s, and finally the first undergraduate course in
Scienze dell'Informazione (Information Sciences) in 1969,
as mentioned above, to finish with the first PhD program
in Informatics in 1981. As a consequence, what is de-
scribed below is just a very tiny part of the software that
has been developed during the developments outlined
above.

The expertise and the computing facilities available
in Pisa as a consequence of this history fostered a large
number of scientific endeavours involving the develop-
ment of software. Many of these projects were, and
are, internal to Informatics, but many others in Physics,
Mathematics, Medicine, etc. required software. In the
sequel, we report on some of what we were able to save
so far, covering a representative range of situations with
respect to the target of the software, but also to the ac-
quisition mode, the development period, the program-
ming language, the versioning system, etc.

All the software projects that have been acquired
following the SWHAP guidelines are indexed in the
SWHAPPE catalogue [13].

(a) Handwritten FORTRAN CEP form.

(b) FORTRAN CEP printout.

Figure 3: Excerpts of Softi raw materials.

A Softi (1968) [14]

This code, though very short, is interesting for both
its purpose and its structure. Its purpose is described
as Softening® of a curve and performs a simple smooth-
ing of the values of a function. Likely, it is an exercise
in using the CEP, the implementation of a general pur-
pose numerical algorithm. As such, it is representative
of the subsequent activities of the author, Tonina Starita
- at the time affiliated to the CSCE - who was pioneering
the use of digital computing machines to study biologi-
cal data, like EEG and similar measurements.

The structure of this code is interesting, since it is
representative of the typical usage of the CEP at the time,
and comprises three kinds of code. The main algorithm
is written in FORTRAN CEP[15], a dialect, developed in-
house at CSCE, of the IBM FORTRAN II; the input/output
routines are written in the assembly language of the CEP
(LSDC, Symbolic Decimal CEP Language); finally there
are also the scripts to launch execution, written in the
command language of the execution control system of
the CEP.

The original materials were stored in the MSC's ware-
house by an unknown person in a folder labeled CEP Pro-

5Actually, the first version reads Softing, hence the name we chose
for the repository.

iPRES 2021 - 17th International Conference on Digital Preservation
October 19-22, 2021, Beijing, China

grams, and recovered by Carlo Montangero in July 1919,
while looking for source code documenting the early us-
age of the CEP. Besides Softi, the folder contains thirteen
more manila folders, which seems to be all is left of the
software run on the CEP.

The original Softi documents consist of several
sheets of different formats and substance. There are the
sheets hand written by Tonina with the original source
code, and the related printouts, once the code had been
punched on paper tape by the service personnel (Fig.
3). The former are written on printed forms, prepared
by the Programming Service of the CSCE. The printouts
have been cut from a continuous roll of paper, and show
hand annotations of the servicing personnel, like "after
assembly, the machine halted at 4095". The source code,
given that it is very short, was digitized typing it directly
in Visual Studio Code, and then imported in GitHub. The
most interesting piece is the FORTRAN program, which
occurs in four versions. Three are printed; one, version
3, was recovered from hand annotations on version 2.

The resulting repository consists of 56 lines of FOR-
TRAN CEP code in 4 versions, 48 lines of CEP Assembly
in a single version and 4 lines of CEP PDT in 2 versions,
from 1968.

ANV B Lo e 4 |
o ta g A iAol |
’ b

(a) Annotated FORTRAN printout.

(b) TAUmMus on exhibit.

Figure 4: TAUmus materials and showcase.

B. TAUmus (1972-1977) [16]

TAUmus is computer music software developed dur-
ing the 70's, first at IEl and then at CNUCE, by a team led
by Maestro Pietro Grossi. It was basically a command
line interpreter running on the IBM 370 that had sub-
stituted the 7090 at CNUCE in the meantime, and it en-
abled the user to create and modify music to be played
by the TAU2 audio terminal. This was a hardware de-
vice that was developed by the same team at IE|, to play,
under the control of the 370, the music created via TAU-
mus.

The acquisition process started as an initiative of
the SWHAPPE team during the aforementioned celebra-
tions for the 50th anniversary of the first course in Com-
puter science: TAUmus looked worth preserving as one
of the first computer music software that has ever been
developed. Furthermore, despite the small amount of
source code that has been recovered, TAUmus is quite
interesting for several reasons: indeed, the fact that this
software has been only partially recovered (thus pre-
senting “holes”) pose interesting questions about the
preservation of incomplete software. TAUmus also pro-
vided us a benchmark for the entire process, including
the (optional) present phase. Indeed, thanks to a collab-
oration with ISTI-CNR®, we have been able to provide a
TAUmus demonstrator showcasing some of the tracks
created by Grossi in the ‘70s (Fig. 4b).

After a first meeting with Leonello Tarabella, where
the team has been provided with the available mate-
rial (mostly FORTRAN/TAUmus listings and handwritten
notes - see Fig. 4a), the team proceeded to digitize and
archive the material in the Depository, while the source
code has been typed into FORTRAN files in the TAUmus
workbench.

The resulting repository consists of 266 lines of FOR-

5This is the institute born within CNR from the fusion of IEI and
CNUCE.

iPRES 2021 - 17th International Conference on Digital Preservation
October 19-22, 2021, Beijing, China

TRAN 77 code in 4 files in 2 versions from 1972. Further-
more, the repository contains 71 lines of TAUmus code
in 4 files, contained in the TAUmus folder.

C CMM (1994-1997) [17]

The Customizable Memory Management (CMM)[18]
is @ memory management facility supporting complex
memory-intensive applications in C++. The CMM can
manage several heaps, each one implementing a dif-
ferent storage discipline. It offers some predefined
storage discipline (e.g. copying garbage collection and
mark&sweep heap) allowing users to define their own
heap classes for the specific storage requirements of
their algorithms. The CCM has been exploited in the
implementation of the Buchberger [19] algorithm in the
context of the European research project PoSSo (Poly-
nomial System Solving) active from 1992 to 1995, and
in 1994 was used by Sun Microsystems in the develop-
ment of the language the Oak programming language,
later known as Java.

CMM was our first acquisition: After the seminar
that he gave to present Software Heritage at the Scuola
Normale in Pisa in December 2018, Di Cosmo met ac-
cidentally Attardi, who offered to retrieve the source
code of the CMM. The offer was promptly accepted, and
the code served as test bed during the development of
SWHAP and its implementation in Pisa.

The raw material consists in a compressed tgz
archive of eight (out of nine) versions managed with
an in-house versioning system, along with build instruc-
tions. The need to synthesize a development history in
git, prompted the implementation of a general purpose
tool for reconstructing a Git repository from a directory
of source code [20]. The tool is now available and used
for the other acquisitions.

The resulting repository (Fig. 5) consists of 10k lines
of mainly C++ code in 41 files in 8 versions from 1994 to

1997.

D. OrbFit (2002-2019) [21]

OrbFitis an astronomy library to compute orbits and
ephemerides [22]. The first version of OrbFit dates back
to 1995, although its development builds upon a pre-
existing system, Orbit, which had already reached the
eleventh version at the time.

Orbit can be dated back to the founding of the Celes-
tial Mechanics Group (1978), but we have not yet found
any trace of these older versions.

This acquisition allowed us to test yet another aspect
of the SWHAP process. Indeed, within the Informatica50
initiatives mentioned above, the University issued a call
to submit source code to Software Heritage, and the cur-
rent developers promptly answered - a typical case of
acquisition in pull mode.

It is worthwhile to note here that, though widely
used and maintained, the current code was stored on a
local server, with no special provisions to ensure its sur-
vivability, as it happens, too often, for lack of resources.

The older versions were rescued from the hard
drives of decommissioned computers in the Depart-
ment of Mathematics. The acquisition consisted in re-
covering the versions from the different digital media
and making them versionable, that s, giving them a com-
mon structure. To collect metadata we have carried out
some interviews.

The resulting repository consists of 78k lines of code
in many programming languages (FORTRAN 77, FOR-
TRAN 90, Perl, Tcl/Tk, Pascal, Prolog, D, Mercury, MAT-
LAB) in more than 300 files in 13 versions from 2002 to
2019.

CMM

a Customisable Memory Manager

This repository contains the CMM Development History.
The original finds are stored in the Depository containing the raw materials and the browsable source.
Information on the acquisition of this code can be found in the CMM-Workbench repository.

This repository was created with the support of the Software Heritage Acquisition Process Pisa Enactor.

& archived release 1.9 | i archived swh:1:rev:cOf12bb6f3ea8f1350371695b42990a5c2eb93f2
4 archived release 1.8 | %+ archived swh:1:rev:55778ad8b99c136e1886959c11333c776df14el
3 archived release 1.7 | 4 archived swh:1:rev:cfa29670480cf0d5109f5e3055e530dec3e6f65

4 archived release 1.6 | 4 archived swh:1:rev:b2be05bf9df919837e45359f90f640bbd6975330

4 archived release 1.5 | 4 archived swh:1:rev:bf76b38al6alc7c2b9b54c40b3d6e1471fe79cTb

i archived swh:Lirev:b9c41e1dc870c04d1222401cf5ef2d18b035756

% archived release 1.3 | % archived swh:1:rev:29c7c5881c0ff2ef9e3a96be37e6eaefob33a201

& archived release 1.1 | i archived swh:1:rev:0e186db83a043dcfe9c666dd4co0f9eB8d1b9234e

Figure 5: The front page of the CMM repository.

iPRES 2021 - 17th International Conference on Digital Preservation
October 19-22, 2021, Beijing, China

V. Conclusions

Software source code being a relatively young cre-
ation of human ingenuity, and until recently little known
to the general public, it is not surprising that initiatives
to preserve it have been way less widespread than for
other digital material that encodes more familiar forms
of human knowledge, like written text, music, images or
videos.

Today, there is a raising awareness of the impor-
tance of preserving landmark legacy source code, as an
important trace of humankind's efforts to build the sci-
ence and the technology underlying the digital revolu-
tion.

There is also a clear urgency to act while the creators
of these software artifacts are still alive, and available
to provide precious insights about where to find their
source code, when and why it was produced, and how
it links to other important documentary evidence like re-
search articles or documentation.

Since rescuing, curating and preserving landmark
legacy source code is a significant undertaking that re-
quires considerable human resources and time, it is of
paramount importance that the result of the preserva-
tion effort be uniform, faithful and of good quality. And
yet, to the best of our knowledge, up to now there were
no comprehensive guidelines specifically for software
source code.

The detailed guidelines collected in the SWHAP pro-
cess have been developed in collaboration by Software
Heritage, the University of Pisa and UNESCO precisely to
fill this gap.

They are meant to ensure that when legacy source
code is available, its history will be reconstructed into
modern version control systems, and equipped with
proper metadata that describes the work of the original
authors, as well as the work of the curation team.

SWHAP has been extensively tested and refined
while rescuing a variety of legacy source codes, ranging
from very old small programs that reached us only in
printed form, to large software projects that are still ac-
tively maintained today.

The selection presented in the previous section
shows how all these diverse cases can be successfully
handled using SWHAP, leading to uniform, high quality
results.

We hope that these guidelines will empower a large
community of digital preservationists, and that the con-
crete results summarised in this article will help attract
more people willing to contribute to rescue the precious
software source code legacy of the digital revolution.

References

[11 H. Abelson and G. J. S. with Julie Sussman, Struc-
ture and Interpretation of Computer Programs. Cam-
bridge, MA: The MIT Press and McGraw-Hill, 1985,

9

force.
force.
force
force.
force
force.
force
force.
force
force.
gauss
gausse
least.
least.
least.
least.
least

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

:_model.f90: END SUBROUTINE force

_model.f90:END MODULE force model

_model.f90:LOGICAL FUNCTION velocity req()

_model.f90:END FUNCTION velocity_req

_model.f90: SUBROUTINE radar_ob(type,m)

_model. 99 :END SUBROUTINE radar_ob

_model.f90:SUBROUTINE selpert(name,found)

_model.f90:END SUBROUTINE selpert

_model . F99: SUBROUTINE selpert2(nan®, nanp ,nfound)
_model.f90:END SUBROUTINE selpert2

deg8_£00: SUBROUTINE gaussdeg8(tobs.alpha.delta,obscod.lel.nroots.nsol, rr, fail,msg.debug)
deg8_f90:END SUBROUTINE gaussdeg8

_squares.f98:1 NOT IN MODULE

_squares.f90:! MODULES AND HEADERS

_squares. f98:MODULE least_squares

_squares.f90:! PUBLIC SUBROUTINEs

sauares.f98:1 LIST OF PRIVATE ENTITIES. COMMON TO THE MODULE

force_model.f90:END SUBROUTINE selpert2
force_sat_f9@:MODULE force_sat
force_sat_f9@:CONTAINS

force_sat.fo0:
force_sat.fo0:
force_sat.f90:
force_sat.fo0:

SUBROUTINE forcesat(x.v.te.f.nd,1dc.xxpla,ips.imem, derf@)
END SUBROUTINE forcesat

SUBROUTINE eamoon_mass

END SUBROUTINE eamoon_mass

force_sat_f98:END MODULE force_sat

gaussdeg8_ 90: SUBROUTINE gaussdeg8(tobs,alpha,delta,obscod,ecc_max,q max,el,nroots,nsol, rr, fail,msg,
gaussdeg8_f98:END SUBROUTINE gaussdeg8

Laplace_potncare. f98: SUBROUTINE laplace_poincare(m,obs,obsw.el.nroots.nsol,rr, fatl.msg.debug)
laplace_potincare. f90:END SUBROUTINE laplace_poincare

Lleast_squares.f99:! NOT IN MODULE

least_squares.f90:! MODULES AND HEADERS

Lleast_squares. f99:MODULE least_squares

least_squares.f98:! PUBLIC SUBROUTINES

least sauares.f98:! LIST OF PRIVATE ENTITIES. COMMON TO THE MODULE

Figure 6: An excerpt of OrbFit synthetic development history: comparing two versions.

pp. xx + 542, isbn: 0-262-01077-1 (MIT Press), 0-07-
000422-6 (McGraw-Hill).

L. J. Shustek, “What should we collect to preserve
the history of software?” I[EEE Annals of the History
of Computing, vol. 28, no. 4, pp. 110-112, 2006. doi:
10.1109/MAHC.2006.78. [Online]. Available: http:
//dx.doi.org/10.1109/MAHC.2006.78.

E. G. Report, Paris call: Software source code as her-
itage for sustainable development, Available from

[12]

[13]

[14]

https://unesdoc.unesco.org/ark:/48223/pf0000366715,

2019.

J.-F. Abramatic, R. Di Cosmo, and S. Zacchiroli,
“Building the universal archive of source code,”
Commun. ACM, vol.61,n0.10, pp. 29-31, Sep. 2018,
issn: 0001-0782. doi: 10.1145/3183558. [Online].
Available: http : //doi . acm . org/ 10 . 1145/
3183558.

D. Spinellis, “A repository of unix history and evolu-
tion,” Empirical Software Engineering, vol. 22, no. 3,
pp. 1372-1404, 2017. doi: 10.1007/s10664-016-
9445-5. [Online]. Available: https://doi.org/10.
1007/s10664-016-9445-5.

R. Burkey, Virtual agc - changelog, Available athttp:
//ibiblio . org/apollo/changes . html, Spans
years 2003 to 2019.

L. Bussi, R. Di Cosmo, C. Montangero, and
G. Scatena, Software heritage acquisition process
guidelines. [Online]. Available: https: //github.
com/SoftwareHeritage/swhapguide.

G. A. Cignoni and F. Gadducci, “Retrac-
ing and assessing the CEP project,” CoRR,
vol. abs/1904.00944, 2019. arXiv: 1904 . 00944,
[Online]. Available: http://arxiv.org/abs/1904.
00944.

K. Cox, P. Aufderheide, P. Jaszi, and B. Butler, Code
of best practices in fair use for software preserva-
tion, Sep. 2018. [Online]. Available: https://www.
softwarepreservationnetwork . org /project /
code-of-best-practices-for-fair-use/.

First steps to contribute to wikipedia. [Online]. Avail-
able: https://commons . wikimedia . org/wiki/
Commons :First_steps/Contributing.

Donating data to wikidata. [Online]. Available:
https://www.wikidata . org/wiki/Wikidata:
Data_donation.

iPRES 2021 - 17th International Conference on Digital Preservation
October 19-22, 2021, Beijing, China

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

G. community, Git version control system, retrieved
09 April 2018, 2005. [Online]. Available: https://

git-scm.com/.

Software heritage acquisition process pisa enactor.
[Online]. Available: https : / / github . com /
Unipisa/SWHAPPE.

Software Heritage depository: Softi - fortran cep
code to smooth a curve. [Online]. Available: https:
/ / archive . softwareheritage . org/ browse /
origin/https://github.com/Unipisa/Softi.
git/directory/.

0. G. Mancino and M. Morandi Cecchi, “The inter-
nal structure of the fortran cep translator,” Comm.
ACM, pp. 149-151, 1965. doi: 10 . 1145 /363791 .
363799.

Software Heritage depository: TAUmus - code control-
ling TAU2, a music synthesizer of the 70’s. [Online].
Available: https://archive.softwareheritage.
org /browse / origin/https : // github . com/
Unipisa/TAUmus/directory/.

Software Heritage depository: CMM - a customis-
able memory manager. [Online]. Available: https:
/ / archive . softwareheritage . org / browse /
origin/https://github. com/Unipisa/CMM/
directory/.

G. Attardi and T. Flagella, “Memory management
in the posso solver,” J. Symb. Comput.,vol. 21, no. 3,
pp.293-311, 1996. doi: 10. 1006/ jsco.1996.0013.
[Online]. Available: https://doi.org/10.1006/
jsco.1996.0013.

B. Buchberger, “A theoretical basis for the reduc-
tion of polynomials to canonical forms,” SIGSAM
Bull., vol. 10, no. 3, 19-29, Aug. 1976, issn: 0163-
5824. doi: 10.1145/1088216 . 1088219. [Online].
Available: https://doi.org/10.1145/1088216.
1088219.

Directory tree to synthetic git. [Online]. Available:
https://github.com/Unipisa/DT2SG.

Software Heritage depository: OrbFit - an astronomy
library to compute orbits and ephemerides. [Online].
Available: https://archive.softwareheritage.
org/browse /origin/https://github . com/
Unipisa/OrbFit.git/directory/.

A. Milani and G. Gronchi, Theory of Orbit Determi-
nation. Cambridge University Press, 2009. doi: 10.
1017/CB09781139175371.

10

https://doi.org/10.1109/MAHC.2006.78
http://dx.doi.org/10.1109/MAHC.2006.78
http://dx.doi.org/10.1109/MAHC.2006.78
https://doi.org/10.1145/3183558
http://doi.acm.org/10.1145/3183558
http://doi.acm.org/10.1145/3183558
https://doi.org/10.1007/s10664-016-9445-5
https://doi.org/10.1007/s10664-016-9445-5
https://doi.org/10.1007/s10664-016-9445-5
https://doi.org/10.1007/s10664-016-9445-5
http://ibiblio.org/apollo/changes.html
http://ibiblio.org/apollo/changes.html
https://github.com/SoftwareHeritage/swhapguide
https://github.com/SoftwareHeritage/swhapguide
https://arxiv.org/abs/1904.00944
http://arxiv.org/abs/1904.00944
http://arxiv.org/abs/1904.00944
https://www.softwarepreservationnetwork.org/project/code-of-best-practices-for-fair-use/
https://www.softwarepreservationnetwork.org/project/code-of-best-practices-for-fair-use/
https://www.softwarepreservationnetwork.org/project/code-of-best-practices-for-fair-use/
https://commons.wikimedia.org/wiki/Commons:First_steps/Contributing
https://commons.wikimedia.org/wiki/Commons:First_steps/Contributing
https://www.wikidata.org/wiki/Wikidata:Data_donation
https://www.wikidata.org/wiki/Wikidata:Data_donation
https://git-scm.com/
https://git-scm.com/
https://github.com/Unipisa/SWHAPPE
https://github.com/Unipisa/SWHAPPE
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/Softi.git/directory/
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/Softi.git/directory/
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/Softi.git/directory/
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/Softi.git/directory/
https://doi.org/10.1145/363791.363799
https://doi.org/10.1145/363791.363799
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/TAUmus/directory/
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/TAUmus/directory/
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/TAUmus/directory/
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/CMM/directory/
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/CMM/directory/
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/CMM/directory/
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/CMM/directory/
https://doi.org/10.1006/jsco.1996.0013
https://doi.org/10.1006/jsco.1996.0013
https://doi.org/10.1006/jsco.1996.0013
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1145/1088216.1088219
https://github.com/Unipisa/DT2SG
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/OrbFit.git/directory/
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/OrbFit.git/directory/
https://archive.softwareheritage.org/browse/origin/https://github.com/Unipisa/OrbFit.git/directory/
https://doi.org/10.1017/CBO9781139175371
https://doi.org/10.1017/CBO9781139175371

	Introduction
	The acquisition process, an abstract view
	Phases
	Collect
	Curate
	Archive
	Present

	An iterative process
	Resources needed by the process
	Warehouse
	Depository
	Workbench
	Curated source code deposit
	Catalogues and journals

	Roles in the process
	Collector
	Deposit engineer
	Curator
	Archive engineer
	Presentation designer and Web engineer

	Implementation requirements
	Long term availability
	Historical accuracy
	Traceability
	Openness
	Interoperability

	The SWHAP process for University of Pisa
	Instantiating the working areas
	Curating the source code version history

	Results from enacting SWHAP in Pisa
	Softi (1968) Softi1968
	TAUmus (1972-1977) TAUmus19721977
	CMM (1994-1997) CMM19941997
	OrbFit (2002-2019) OrbFit20022019

	Conclusions

