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Abstract

FOSS (Free and Open Source Software) systems present interesting challenges in system
evolution. On one hand, most FOSS systems are based on very fine-grained units of soft-
ware deployment—called packages—which promote system evolution; on the other hand,
FOSS systems are among the largest software systems known and require sophisticated
static and dynamic conditions to be verified, in order to successfully deploy upgrades on
user machines. The slightest error in one of these conditions can turn a routine upgrade
into a system administrator nightmare.

In this paper we introduce a model-based approach to support the upgrade of FOSS
systems. The approach promotes the simulation of upgrades to predict failures before
affecting the real system. Both fine-grained static aspects (e.g. configuration incoher-
ences) and dynamic aspects (e.g. the execution of configuration scripts) are taken into
account, improving over the state of the art of upgrade planners. The effectiveness of the
approach is validated by instantiating the approach to widely-used FOSS distributions.

1. Introduction

Any software system must undergo continuing evolution [24]. The fact that system
implementations include a significant number of components does not affect this funda-
mental truth [25]. Software development, based on the combination of existing compo-
nents, was discussed in the 1960s [31], but its practical application has not been widely
explored in practice [3, 18] until recently. The management of evolution in component-
based systems cannot neglect the numerous relationships, implicit or explicit, among
components which might be affected when performing routine component management
operations; doing so can easily lead to unusable and corrupted systems. The increasing
adoption of Free and Open Source Software (FOSS) has worsened these problems [26]
mainly because of a non-centralized and controlled development of system components
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which are frequently released [33]. Therefore, the ability to analyze and predict compo-
nent behavior during their upgrades, e.g. installation and removal, in FOSS systems is
intrinsically difficult and requires techniques, algorithms, and methods which are both
expressive and computationally feasible in order to be used in practice. In particular,
focusing on Linux distributions, current upgrade management tools, called package man-
agers, are only aware of some static aspects of packages that can influence upgrades. At
the same time package managers completely ignore relevant dynamic aspects, such as
potential failures of configuration scripts that are executed during upgrade deployment.
Thus, it is not surprising that an apparently innocuous package upgrade can end up with
a broken system state [9]. Despite the relevant body of research on software evolution (see
e.g. [29]), there is still the need for better predictive models which are able to anticipate
the consequences of applying specific system changes [30].

In this paper, we propose an approach based on model-driven techniques, called
Evoss (EVolution of free and Open Source Software), to enhance the prediction of up-
grades in FOSS distributions. In order to make upgrade prediction more accurate, Evoss
considers both static and dynamic aspects of upgrades. Static aspects have been mod-
eled by enhancing the expressiveness of the representations with respect to the state
of the art of package managers, enabling the detection of a larger number of undesir-
able configurations, such as the breakage of fine-grained dependencies among packages,
currently neglected by package managers. The main dynamic aspects considered are
those related to the behavior of package configuration scripts which are executed during
upgrade deployment. The scripting languages in which such scripts are written have
rarely been formally investigated, thus posing additional difficulties in understanding
their side-effects which are pervasive and are currently ignored when planning upgrades.
A notion of simulation is given and shown to be realizable by means of a domain-specific
language (DSL) that specifies maintainer script behavior. The language includes a set of
high level clauses with a well defined transformational semantics expressed in terms of
system state modifications: each system state is given as a model and the script behavior
is represented by corresponding model transformations. The proposed semantics is de-
signed to better understand how the system evolves in a new configuration by simulating
system upgrades: this allows system users to discover upgrade failures due to fallacious
maintainer scripts before deploying the upgrade on the real system. In order to apply
the proposed simulation approach we provide model injectors to automatically extract
system configuration and package models from existing artifacts.

To sum up, Evoss represents an advancement, with respect to the state of the art of
package managers, in the following aspects: (i) it provides a homogeneous representation
of the whole system configuration in terms of models, including relevant system elements
that are currently not explicitly represented, (ii) it supports the upgrade simulation with
the aim to discover failures before they can affect the real system, (iii) it proposes a
failure detector module able to discover problems on the configuration reached by the
simulation. Examples of these problems are implicit dependencies, missing configuration
files, dangling mime-type handlers, missing services, and so on.

The paper is structured as follows: Section 2 gives an overview of FOSS concepts and
highlights limitations of current package management solutions. Section 3 introduces
Evoss and details the modeling of the static parts of the upgrade process. Section 4 is
devoted to the dynamic part and presents the DSL describing its syntax and semantics.
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The validation of the proposed approach is reported in Section 5 by showing how Evoss
is able to solve some of the limitations highlighted in Section 2. Section 6 discusses
some aspects related to the applicability and the full acceptance of Evoss in real scenar-
ios. Related work is discussed in Section 7, just before concluding with future research
directions in Section 8.

2. FOSS distributions

Widely used FOSS distributions, like Debian, Ubuntu, Fedora, and Suse are based
on the central notion of software package. Packages are assembled to build a specific
software system. The recommended way of evolving such systems is to use package man-
ager tools to perform system modifications by adding, removing, or replacing packages.
These operations are generically called upgrades. Existent package managers integrate
some preliminary checks, albeit extremely weak: many unpredicted upgrade failures can
happen. To better understand limitations of existent package managers, Section 2.1 pro-
vides an overview of the typical elements composing the packages of FOSS distributions,
and in Section 2.2 we provide a classification of possible upgrade failures, discussing their
origins.

2.1. Packages and upgrades

In FOSS distributions, a package is a software unit u = 〈c, d〉 containing the software
component c and a description d of it, also known as metadata. More precisely, the
structure of a package u = 〈c, d〉 [12] is shown in Figure 1.

upgrade role

package


(c) file bundle ⊇ configuration files static

⊇ maintainer scripts dynamic

(d) metadata ⊇ inter-package relationships static

Figure 1: Structure of a package

The core of each package is a file bundle encoding the shipped component: executable
binaries, data, documentation, etc. A distinguished subset of those files consists of
configuration files, which affect the runtime behavior of the component and are meant to
be customized. During upgrade deployment, most files play a “static” role, in the sense
that they are simply copied over.

Packages also contain a set of executable maintainer scripts, used by package main-
tainers to hook custom actions into the upgrade process. Several aspects of maintainer
scripts are noteworthy: (i) they play a dynamic role as they are executed during up-
grades; (ii) they are full-fledged programs, usually written in POSIX shell language; (iii)
they are run with sysadm rights and then they may perform arbitrary changes to the
whole system; (iv) they cannot be replaced by just shipping extra files: they might need
to access data which is available in the target installation machine, but not in the package
itself; (v) they are expected to complete without errors: their failures, usually signalled
by non-0 exit codes, automatically trigger upgrade failures.
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Figure 2: The upgrade process: main phases

Metadata describe package aspects needed for upgrade planning. Common metadata
contain the package identifier, version, maintainer, and description. Most notably, meta-
data are also used to declare inter-package relationships such as: dependencies (the need
of other packages to work properly), conflicts (the incompatibilities with other packages),
and feature provisions (an indirection layer over dependencies) [26]. This information is
taken into account by the package manager when performing the system upgrade.

A system configuration can be very complex: it is composed of the file system, run-
ning services and processes, environment data, memory content, etc. In practice, the
most relevant part of the system state for upgrades is the package status, recording
which packages are currently installed. Changes to the package status are performed by
package managers that are usually separated into two types: low-level installers—which
deploy individual packages on the system, possibly aborting the operation if problems are
encountered at deploy-time—and high-level meta-installers—which first plan upgrades
and then drive installers.

Figure 2 gives an overview of the overall upgrade process. The first phase—planning—
tries to find an upgrade plan that satisfies the user request. Planning poses challenging
algorithmic problems such as solving inter-package relationships (a NP-complete prob-
lem [26]) and choosing the best configuration according to user preferences [35]. Nowa-
days, planning is entirely delegated to meta-installers. In a typical upgrade scenario,
the system administrator (or sysadm) requests a status change and the meta-installer
devises a corresponding upgrade plan to be deployed by the installer. The actual deploy-
ment phase alternates between unpacking and configuration stages: during the former,
static package files get installed on disk; during the latter, maintainer scripts are ex-
ecuted at the appropriate hook points. Hook points encompass pre-/post-installation
hooks (i.e., before/after package unpacking), pre-/post-removal hooks, etc.

In order to figure out the role of maintainer scripts during an upgrade, we report a
simple example of such scripts (see Example 1).

Example 1. A recent Debian php5 package—which ships a web scripting language—contains
a post-installation (postinst, on the left) and a pre-removal script (prerm, on the right):

1 # !/ bin / sh
2 i f [−e / etc / a p a c h e 2 / a p a c h e 2 . c o n f ] ;

↪→ t hen
3 a 2 e n m o d p h p 5 | | t r u e
4 r e l o a d _ a p a c h e
5 f i

1# !/ bin / sh
2i f [−e / etc / a p a c h e 2 / a p a c h e 2 . c o n f ] ;

↪→ t hen
3a 2 d i s m o d p h p 5 | | t r u e
4f i

postinst gets executed after unpacking and, in particular, after the Apache module php5 files
have been installed: it first takes care of enabling the module by invoking the a2enmod command
on line 3, then it reloads the Apache service (line 4) to activate it. Upon php5 removal, this
module is disabled by invoking a2dismod.

2.2. Upgrade failures: reasons and discussion

Current tools are able to predict a very limited set of upgrade failures before deploy-
ment: most notably, meta-installers can only detect broken dependencies by inspecting

4



the metadata, before calling the low-level installer, which would otherwise complain about
them during deployment. A meta-installer knows how to check a precondition that en-
sures that no broken dependencies exist in the target configuration. If the precondition
is not verified, no attempt will be made to deploy the (broken) upgrade plan.

Unfortunately, when trying to predict upgrade failures, existing tools only consider
static package metadata. In this way they do not take into account implicit dependencies
among packages that occur, for instance, because of their configuration files. For example,
the package Apache does not depend on php5 (and should not, because it is useful also
without it), but while php5 is installed, Apache needs specific configuration to work in
harmony with it. At the same time, such configuration would inhibit Apache to work
properly once php5 gets removed. The bookkeeping of such configuration intricacies is
delegated to the maintainer scripts shown in Example 1.

Moreover, the behaviour of the maintainer scripts is completely ignored. This leaves
a wide range of failures unpredicted, some of which can be captured by using our model-
driven approach.

Upgrade deployment can fail for several reasons [12]. Both experience and previous
research show that failures are not hypothetical, but rather the reality of sysadm life [9].
Upgrade failures can be classified according to when a failure is detected: at deploy-time
(usually by the installer) or later on (usually by the user). Deploy-time failures can be
refined according to the specific upgrade phase in which they are detected and to whether
they concern the static or dynamic part of a package.

Static deploy-time failures occur when a static requirement is violated during the
upgrade: typical examples are file conflicts (two packages attempt to install the same
file, violating an explicit installation policy) and dependency errors (an attempt is made
to install a package violating package dependencies). In both cases, the low-level package
manager fails at deploy-time, aborting the upgrade process.

Dynamic deploy-time failures occur when a maintainer script fails. They are
tricky to deal with, given that shell script failures can originate from a wide range of
errors, ranging from syntax errors to failures in the invocation of external tools. Dynamic
deploy-time failures cannot be easily undone: scripts can alter the whole system (on
purpose) and any non-trivial property about them is undecidable (the language is Turing
complete and difficult to treat formally [36]), it is therefore impossible to determine before
the execution of scripts which part of the system will be affected by their execution. This
kind of failures has not been addressed by state of the art package managers.

Undetected failures are failures that remain undetected through upgrade deploy-
ment: according to all involved tools, the upgrade has been completed successfully, but
the obtained system configuration contains incoherences. Undetected failures are the
most subtle kind of upgrade failures, and can take very long (days, or even weeks) before
being discovered, if they ever are. They can sometimes be fixed by configuration tun-
ing (e.g. changing configuration keys or values to match the requirements of new sofware
versions), but when this is not the case, an unsupported and error-prone manual rollback
is the only solution left. As an example of such a failure, consider again Example 1 and
imagine that postinst does not disable the php5 module (not an unlikely scenario, given
that such snippets are often written by hand). After removing php5, an incoherence is
created in the system, as the Apache configuration still references a module which is no
longer there. As Apache is not restarted upon removal of the module, the error will go
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unnoticed during the upgrade. It will show up at the next Apache reload, which can
take place months later, when the sysadm will most likely find out that Apache cannot
be restarted, and will hardly relate it to the past upgrade. Addressing dynamic and
undetected failures is hence a major issue for FOSS distributions.

Current package managers are able to detect only static deploy-time failures. The
objective of Evoss is to propose an approach able to detect also dynamic deploy-time
failures and (current) undetected failures. To this aim Evoss provides a simulator to
predict the effect of maintainer script executions (see Section 3), to deal with deploy-time
failures, and a failure detector component, which is able to deal with undetected failures.

3. Using models to enhance package upgrades

To improve the failure prediction of FOSS system upgrades, we propose a model-
driven engineering (MDE) approach [2] called Evoss (a preliminary version of the ap-
proach can be found on [7]) which relies on a model-based representation of the current
system configuration and of all packages that are meant to be upgraded. This enables
Evoss to simulate upgrades as model transformations before upgrade deployment. To
this end, we encode fine-grained configuration dependencies and abstract over maintainer
scripts. This way the models capture all the information needed to anticipate the in-
consistent configurations that current tools cannot detect, as they only rely on package
metadata. The abstraction of maintainer scripts is realized by defining a new domain
specific language as described in Section 4.

An overview of Evoss is sketched in Figure 3. The simulation of a system upgrade
is performed by the Upgrade Simulator which takes a set of models as input produced
by the Injector : a System Configuration Model and Package Models corresponding to
the packages which have to be installed/removed/replaced. The output of Upgrade Sim-
ulator is a new System Configuration Model if no errors occur during the simulation,
otherwise an Incoherences Report is produced. The new System Configuration Model is
queried and analyzed by the Failure Detector component. When Failure Detector dis-
covers inconsistencies they are collected in the Incoherences Report. The real upgrade is
performed on the system only if the new system configuration model is coherent.

January 2010 – Nice Meeting
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Figure 3: Overview of the Evoss approach
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The System Configuration Model describes the state of a given system in terms of
installed packages, running services, configuration files, etc. The Package Model provides
information about all packages involved in the upgrade, including maintainer script be-
haviour. The abstraction provided by Evoss is more expressive than current package
metadata. In fact, the proposed models also capture configuration dependencies and
provide a representation of the maintainer scripts which have to be executed, as shown
in Figure 4.

package


(c) file bundle ⊇ configuration files static

⊇ maintainer scripts dynamic

(d) model ⊇ inter-package relationships static

⊇ configuration dependencies static

⊇ maintainer scripts representation dynamic

Figure 4: Modeling packages

The modeling constructs which can be used to define system and package models are
defined in the system configuration and package metamodels, respectively. Such meta-
models have been obtained by analyzing the FOSS system domain and by formalizing
it, according to an iterative process consisting of two main steps: (a) elicitation of new
concepts from the domain to the metamodel, and (b) validation of the formalization via
instantiation to real systems. This process may be iterated further in case we discover
limitations in the failure prediction power of the approach. These two metamodels are
only briefly outlined in the rest of the section, but the complete metamodels can be found
on the web at: http://www.mancoosi.org/software/mancoosi-metamodels.tar.gz.

System configuration metamodel. Figure 5 shows a fragment of the system configuration
metamodel which contains the main concepts of FOSS system configurations. In par-
ticular, the Environment metaclass enables the specification of loaded modules, shared
libraries, and running processes.

All system services can be used once the corresponding packages have been installed
(note the association between the Configuration and Package metaclasses) and properly
configured (PackageSetting). Moreover, the metamodel allows the configuration of an
installed package to depend on other package configurations: this is a fundamental feature

Figure 5: Fragment of the Configuration metamodel
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Figure 6: Fragment of the Package metamodel

that allows us to capture undetected failures, like the one that would arise if modifying
the scripts of Example 1.

Package metamodel. The metamodel shown in Figure 6 contains the modeling constructs
used to describe relevant package elements. In order to describe maintainer scripts be-
havior, the package metamodel contains the Statement metaclass which represents an
abstraction of the commands that can be executed by a given script to affect the envi-
ronment, the file system, or the package settings of a given configuration.

Inside the Statement metaclass, we provide an abstract representation of maintainer
scripts which takes the form of a new domain specific language. We recall that “real”
scripts are usually written in POSIX shell language and that all non-trivial properties
about them are undecidable, including determining a priori their effects, for the purpose
of reverting them upon failure. In this respect, a new language is required to reliably
specify and simulate the behaviour of the scripts which are executed during package
upgrades. In an ideal future scenario, all maintainer scripts will be written in the new
DSL. In the meantime, in order to enable the application of the proposed upgrade sim-
ulation, specific support is required to translate the existing scripts in statements of the
DSL as discussed in Section 3.1. Section 3.2 describes the upgrade simulator compo-
nent, Section 3.3 describes the failure detector component, while Section 3.4 discusses
the integration of Evoss with legacy environments.

3.1. Model Injector

The first step to apply the proposed simulation approach is to build the system con-
figuration and package models. In MDE terminology we need model injectors, apt to
extract models from existing artifacts. Evoss uses a specific model injection architec-
ture that is implemented by using the Eclipse Modeling Framework (EMF)1. As shown
in Figure 7, this architecture has a layered structure. The most specialized layer, which
is in charge of querying the concrete system configuration, is distribution-specific and
needs to be re-targeted to each new distribution; the other two layers are distribution-
independent. The Mancoosi Model Management consists of Java code which provides

1Eclipse Modeling Framework: http://www.eclipse.org/emf
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Ubuntu
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Figure 7: The Evoss model injection architecture

the infrastructure necessary to manipulate models conforming to the Configuration and
Package metamodels shown in Figure 5 and in Figure 6. The Mancoosi Injection In-
stractucture contains a set of Java classes devoted to gather specific aspects of Linux
distributions, like the file system, packages, alternatives, etc. This layer is distribution-
independent and makes use of distribution-dependent injectors defined in the uppermost
layer in Figure 7.

The outcome of the system injection is a model that represents, in a homogeneous
form, different aspects of a running system, such as installed packages, users and groups,
mime type handlers, alternatives, implicit dependencies, etc. Figure 8 shows a con-
figuration model obtained as output of the model injector. This model consists of an
environment composed of the services sendmail, and www (see the instances s1 and s2)
corresponding to the running mail and web servers, respectively.

Figure 8: Configuration model: an example

The instances ps1 and ps2 of the metaclass PackageSetting represent the settings
of the installed packages apache2 and libapachemod-php5, respectively. The former
depends on the latter (see the value of the attribute depends of ps1 in Figure 8) and
both are associated with the corresponding files which store their configurations. Such a
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Figure 9: Overview of the package injection procedure

fine-grained, installation-specific dependency is not currently expressible using package
metadata only.

A particular attention is required for the injection of packages since they have both
static and dynamic parts. The outcome of package injection is shown in Figure 9, where
the distinction between static and dynamic package parts can be appreciated. The re-
sulting model contains modeling elements encoding both the considered package and its
scripts (as DSL statements). The maintainer script injection requires specialized tech-
niques and tools. We used Gra2MoL [5] which is a language especially tailored to spec-
ify mappings between grammar elements and target metamodel elements. A Gra2MoL
transformation definition consists of rules transforming grammar elements into model
elements.

Maintainer 
Scripts

Grammar 
GMS

Parser 
GMS

Generated 
Model

ANTLR Gra2Mol
useconforms

Abstract 
Syntax 
Tree

artefact

activity

Control flow

I/O data

conforms

use

Legenda
Mancoosi

Metamodel
conforms

Figure 10: Maintainer scripts injection

The maintainer scripts injection process is depicted in Figure 10: GMS is the grammar
we defined for parsing the maintainer scripts. By means of ANTLR2 we produced a
parser for GMS . The parser takes as input the maintainer scripts and produces an
abstract syntax tree for the parsed scripts. The abstract syntax tree is taken as input by

2http://www.antlr.org
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Figure 11: Upgrade simulator

Gra2MoL transformations which query it and generate target models. Further details
about the whole injection process can be found at [16].

3.2. Upgrade Simulator

The simulation of system upgrades is performed by the Upgrade Simulator compo-
nent shown in Figure 3. Given an upgrade plan consisting of a sequence of packages
to be installed/removed/replaced, the corresponding package models are retrieved by
means of the model injector. In particular for each package involved in the upgrade, the
maintainer scripts injector retrieves the maintainer scripts associated to the package and
transforms them in DSL scripts. Then, for each package model the simulator executes
the four steps shown in Figure 11. Starting with the simulation of pre-install(-removal)
scripts (step a), if no errors are identified, a new configuration model is obtained and
the unpacking simulation is performed on it (step b). Then post-installation scripts are
simulated on the obtained model (step c), and if no errors are encountered yet, the tar-
get configuration model is finalized by adding/removing/replacing the representation of
the involved packages (step d). When an error is encountered during the simulation,
specific error models are produced; they can be further queried and analyzed to better
understand the nature of the error.

The most delicate part of the overall process is the simulation of the scripts which
are executed during the upgrade. Figure 12 shows an overview of the simulator which
has been conceived for such a purpose. The script simulator performs three subsequent
activities. Given a maintainer script expressed in the DSL and composed of n statements
St1, St2, . . . , Stn, the activity a), namely Retrieval of Model transformations, retrieves,
from the Repository of Model transformations, the model transformations associated to
the n statements composing the script. It is important to recall that the model trans-
formations provide the (operational) semantics of the script statements. More precisely,
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Upgrade Simulator: Script simulator
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Error
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Figure 12: Script simulator

the model transformations define how a source configuration changes when DSL state-
ments are executed. The activity b), namely Model transformation orchestration gen-
eration, properly chains these model transformations. Finally, the activity c), namely
Model transformation orchestration execution, executes the chain of transformations on
the source configuration model and, if no error is encountered, a new configuration is
generated.

3.3. Failure detector

Given the current configuration model, the system upgrade is simulated by taking
into account the packages that have to be upgraded. A failure detector is then used to
check system configurations for incoherences. The coherence of a configuration model is
evaluated by means of queries which are embodied in the failure detector. In particular,
for each detectable failure, a corresponding OCL3 expression is defined and used to query
models and search for model elements denoting failures.

OCL is a declarative language that provides constraint and object query expres-
sions on models and meta-models. A sample OCL query is shown in Listing 1: given
a configuration model (IN conforming to the metamodel MM), all the instances of the
MimeTypeHandler metaclass are retrieved and those which do not have a handler specified
are considered. When the result of this query is greater than 0, an inconsistent configu-
ration has been detected. These configurations are considered to be inconsistent due to
the existence of mime types without corresponding handlers installed (e.g. the owning
package has been deleted without un-registering the handler).

3OMG Object Constraint Language (OCL): http://www.omg.org/spec/OCL/
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Figure 13: The apt-get meta-istaller: current solution

Listing 1: Fragment of the OCL query to detect missing mime type handlers

1 MM ! MimeTypeHandler . allInstancesFrom ( ’IN ’ )
2 −>select ( e |
3 e . handler . oclIsUndefined ( )
4 )−>size ( )

The failure detector is extensible in the sense that when new incoherences are iden-
tified, a corresponding OCL query can be defined and added to it. If incoherences are
identified in either the source or target configuration models, the upgrade cannot be
performed; the sysadm can then either fix the problems manually or avoid deploying the
upgrade.

3.4. Integrating Evoss with legacy environments

The integration of Evoss with legacy environments is realized by suitably extending
existing meta-installers. Figure 13 shows both the static and dynamic views of the
popular meta-installer apt-get. Its architecture is very similar to other meta-installer
architectures. As shown in Figure 13(b), apt-get receives the upgrade request from the
user, plans the upgrade to be performed, retrieves the involved packages, and invokes
dpkg for each package as needed. It is important to note that each kind of upgrade can
cause either the installation, the removal or the upgrade of the involved packages. For
each invocation of dpkg, apt-get checks the outcome of dpkg by means of its exit code.

Figure 14 shows the enhancement of existing meta-installers by means of the Sim-
ulator and the Failure Detector component provided by Evoss. The upgrade request
is sent to the Simulator component before performing the upgrade on the real system.
Figure 14(b) shows the case in which both the Simulator and the Failure Detector com-
ponents have a success as outcome. In this case the upgrade of the real system can be
performed. In case the Simulator or the Failure Detector components detect errors, then
the upgrade is stopped and the user is informed about the encountered problems.

4. Abstracting maintainer scripts

As discussed in Section 2.2, the main reason for unpredictability of failure upgrades
is the difficulty to analyze maintainer scripts in their full generality. Our solution to
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Figure 14: Meta-istallers enhanced by Evoss

improve predictability is to find a way to limit the expressive power of the language
used in maintainer scripts, without reducing the functionality of the scripts themselves.
Another possible way to improve the system reliability is to use testing approaches and
in particular integration testing. However, while testing is able to spot failures only after
upgrade deployment, Evoss aims at discovering failures before upgrade deployment.

To address this challenge, we need to first understand which part of the full-fledged
scripting language is actually used in practice. We have therefore performed an extensive
analysis of maintainer scripts used in two mainstream distributions: Debian4, a very large
distribution [20] based on the dpkg installer, and Fedora5, based on the RPM installer.

This analysis allowed both the identification of recurring templates in maintainer
scripts and the collection of them in a limited number of clusters. The adopted procedure
and results can be found in [15] and we summarize here the relevant results: for Debian,
we have analysed all the 25,440 maintainer scripts belonging to the Lenny release, discov-
ering that 16,348 (64.3%) scripts are entirely generated by means of debhelper6 templates,
and only 9,061 (35.6%) contain snippets written by hand. After further investigations of
the hand written snippets, we discovered a few additional templates, reaching a coverage
of 66% maintainer scripts that can be entirely written using templates only. Concerning
Fedora, we have considered all the available 2,038 maintainer scripts used in Fedora 11.
The analysis has shown that 1,962 (93.6%) scripts are automatically generated starting
from recurring templates. Fedora templates turned out not to be significantly different
from Debian templates. At the end, we came up to 52 different templates [14]. Each one
of those templates contains statements that are executed as a whole. Listing 2 shows
a template example consisting of statements which get executed after the removal of

4http://www.debian.org
5http://fedoraproject.org
6Debhelper is a suite of utilities to streamline the maintenance of Debian-like packages. For more

information please refer to http://packages.debian.org/sid/debhelper.
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GNOME7 components which ship GNOME configuration schemata.

Listing 2: Example of template

1 i f [ " $1 " = purge ] ; then
2 OLD_DIR=/etc / gconf / schemas
3 SCHEMA_FILES="# SCHEMAS #"
4 i f [ −d $OLD_DIR ] ; then
5 for SCHEMA in $SCHEMA_FILES ; do
6 rm −f $OLD_DIR / $SCHEMA
7 done
8 rmdir −p −−ignore−fail−on−non−empty $OLD_DIR
9 f i

10 f i

Another example of templates is the management of alternatives which allow dis-
tribution and package owners to group and categorize packages that provide similar
functionalities. For instance, different Java virtual machines installed on a same system
are managed by means of an alternative named java which can point to a java executable
among all the java executables registered within the alternative framework. This way the
sysadm can freely chose which virtual machine will be launched by default. Due to the
frequency of alternative management snippets, it would be profitably to have high-level
statements to mimic alternative management functionalities during simulation.

We have then defined a DSL that captures all the recurring templates and contains
limited control flow operations. The limited expressive power of the DSL is the price to
be paid to have the DSL amenable to automated analysis. However, the DSL has also a
tagging mechanism that allows us to specify the behaviour of script parts which cannot
be completely specified with DSL statements. This way, script authors (usually package
maintainers) can specify how such parts affect the configuration model and enable their
simulation.

As usual for a programming language, our DSL has both abstract and concrete syn-
taxes. The abstract syntax of the DSL is part of the metamodel shown in Figure 6. The
Statement metaclass represents an abstraction of the commands that can be executed

7GNOME: The Free Software Desktop Project - http://http:www.gnome.org

Figure 15: Fragment of the DSL grammar
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by a given script to affect the environment, e.g. the file system or the package settings
of a given configuration. A fragment of the concrete syntax is shown in Figure 15: we
can see that programs are built by composing primitive statements, which include both
the 52 templates identified during script analysis and a few other primitive operations
on the system model. All syntax details can be found in Chapter 4 of [16].

Besides simple command sequencing, compound statements can use a very limited set
of control and iterator constructs. Control statements consist of a simple case instruction
and a few instructions to abort script execution, but no other tests, jumps or loops are
allowed. To counter the absence of general control flow operations, we provide various
kinds of iterators, specialised on the data structures typically manipulated by maintainer
scripts: (i) directory iterator, which enables to iterate on the files contained in a given
directory, (ii) line iterator, which specifies iterations on the lines of a given file, (iii)
enumeration iterator, which takes an enumeration iterator to work on an ordered set
of indexes, (iv) argument iterator, which iterates through each command line argument,
and (v) word iterator, which takes a string as input and repeats a set of statements for
each word contained in the string.

Most of the code snippets found in maintainer scripts can be captured directly using
the DSL constructs. Nevertheless there are still a few scripts containing commands
that are not covered by templates represented in the DSL (as we remarked above, a
tiny number of Fedora and a certain amount of Debian scripts are not covered by our
52 templates). To circumvent this limitation, we have included in our DSL a set of
extra primitive statements (the OTHER_PRIM_STATEMENT in Figure 15), which allows us
to describe arbitrary modifications of the system model, and can be used to capture
the behavior of those commands that cannot be recoded in the DSL using the standard
templates. These other primitive statements are classified into additions and deletions
and can be used to specify the deltas [8] between two configuration models, encoding the
semantics of script snippets that escape standard templates.

Example 2. Let us suppose the maintainers write the following code:

1 i f [ −e / etc / a p a c h e 2 / a p a c h e 2 . c o n f ] ; t hen
2 a 2 e n m o d p h p 5 >/dev / n u l l | | t r u e
3 r e l o a d _ a p a c h e
4 f i

The current version of the DSL does not allow to directly recode this snippet, as we did not find
it relevant enough to justify the need for a specific metaclass. Still, maintainers can specify its
behavior as follows:

1 # <%
2 addPackag eSe t t i n g d ep endenc e s ( apache2 , p h p 5 ) ;
3 addEnv i ronmen t runn ingServ i c e s ( env , a p a c h e 2 ) ;
4 # % if [ - e / etc / a p a c h e 2 / a p a c h e 2 . c o n f ] ; t h e n
5 # % a 2 e n m o d p h p 5 >/ dev / n u l l || t r u e
6 # % r e l o a d _ a p a c h e
7 # % fi
8 # % >

In Example 2, the maintainer specifies the behaviour of the script code by enclosing it
in a #<%. . . #%> block. Immediately after #<%, a sequence of statements are given in order
to specify how the configuration model changes if the considered script code is executed.
Here, the execution of a2enmod php5 >/dev/null || true modifies the configuration model
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by adding a new dependency between the package settings of the apache2 and php5

packages (line 2 above). Then apache2 is reloaded and this entails the addition of apache2
as a running service in the environment (line 3 above).

These specific statements allow us to define rules capable of checking if the removal
of a package leads to an inconsistent state. For instance, in this example, a rule can be
defined to check if the removal of the php5 package does not forget to disable the php5 in
the Apache configuration.

This class of statements is intended to ensure full compatibility with existing distri-
butions, and ease translation of maintainer scripts to the DSL. During the transition,
the set of templates will grow to accommodate all the needs of package maintainers. As
soon as all maintainer scripts will be written in terms of templates, it will be possible to
remove these special statements from the DSL.

The semantics of the DSL is specified in an operational way in terms of model-to-
model transformations (given in ATL8). For each command, a corresponding transfor-
mation is given to describe the exact command behavior when executed on the source
configuration. In particular, each statement consists of a precondition to be evaluated
on the source configuration and of a model transformation to be performed if the pre-
condition is satisfied to produce an updated configuration (e.g., see Example 3).

Example 3. The semantics of the statement rm alternative is shown in Listing 3: the
execution of the rm alternative(name, location) removes the executable in location

from the alternative name. If the alternative being removed does not exist in the source
configuration, an error is raised (see lines 3-5), otherwise the alternative is not copied to
the target configuration model.

Listing 3: Fragment of the rm alternative semantics

1 r u l e r m _ a l t e r n a t i v e ( name , l o c a t i o n ) {
2 do {
3 i f ( I N C o n f i g u r a t i o n ! A l t e r n a t i v e . a l l I n s t a n c e s ( ) −> s e l e c t ( a | a . n a m e =

↪→ n a m e ) −> i s E m p t y ( ) ) {
4 ’ E R R O R :  The  a l t e r n a t i v e ’ + n a m e + ’  d o e s  not  e x i s t ’ . p r i n t l n ( ) ;
5 } e l s e {
6 - - The a c t i o n b l o c k is empty , no a c t i o n is e x e c u t e d and h e n c e
7 - - the A l t e r n a t i v e n a m e is not c o p i e d to t a r g e t c o n f i g u r a t i o n
8 }
9 }

10 }

5. Experimental validation

We have validated the Evoss approach by applying it on Fedora and Debian-based
systems consisting of ≈1400 installed packages. After the automatic model generation
from the running system (see Section 5.1), a static and dynamic analysis has been per-
formed on the obtained models (see Section 5.2). The experiment shows the feasibility
of the approach and how it is able to discover upgrade failures belonging to the failure
classes discussed in Section 2.

8Atlas Transformation Language: http://www.eclipse.org/m2m/atl/
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5.1. Injection of Debian-based systems

To implement an injector for supporting a new Linux distribution, one should start
from the infrastructure presented in Section 3.1, extend the provided classes, and im-
plement their abstract methods. According to such recipe, we implemented the Ubuntu
9.10 injector. This module is also able to retrieve information not directly available,
which needs to be identified by means of a complex navigation on the real system. The
identification of the dependencies between the configuration files is an example.

Generated by the Ubuntu Package Manager

Generated by the Ubuntu FileSystem 

Manager

Generated by the Ubuntu Alternatives 

Manager

Generated by the Ubuntu User and Group 

Managers

Generated by the Ubuntu 

MimeTypeHandlerCache Manager

Figure 16: Fragment of an injected Ubuntu configuration

Figure 16 reports a small fragment of a configuration model generated by executing
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Figure 17: Timing injection of an Ubuntu 9.10 system on a test machine

the Ubuntu 9.10 injector on a running system. The model is shown by using a tree-based
editor which is part of the Evoss model management layer.

The whole injection process has been tested on two different machines: a first ex-
periment has been performed on an Ubuntu 9.10 system running on a machine with a
quad-core processor, 2.83Ghz, 4GB of RAM with ≈1.400 installed packages. The whole
injection process and the execution of the failure detector described in Section 5.2.2, have
been completed in less than 240 seconds, as shown in Figure 17. Another experiment has
been performed on an Ubuntu 9.10 system, running on a virtual machine with 512MB
of RAM upon Virtual Box9. In this case the process took longer due to the limited
hardware resources. It has been completed nevertheless in ≈1000 seconds.

5.2. Dealing with upgrade failures

In this section we show how Evoss is able to detect some typical upgrade failures
belonging to the classes presented in Section 2.2, which can not be detected by means
of currently available tools. In particular, Section 5.2.1 shows an example of dynamic
deploy-time failure which can be detected on a Fedora 11 system by means of the Evoss
simulator, while Section 5.2.2 sets out some examples of undetected failures which can
be detected by means of the Evoss failure detector on an Ubuntu 9.10 system.

5.2.1. Dynamic deploy-time failures

Dynamic deploy-time failures can be detected by means of the Evoss simulator. We
perform the simulation by executing each DSL statement on the configuration model, the
outcome is an updated configuration model. Before executing the model transformation
corresponding to the statement being executed, a transformation guard is evaluated; an
error is raised if the check fails and the simulation is stopped.

Example 4. When upgrading from the Debian Woody to Lenny a failure can occur due to the
package tetex-bin. In particular, the Woody version of tetex-bin used to register the oxdvi.bin

9http://www.virtualbox.org/.
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alternative whereas the later version did not. To clean up the old alternative, upon upgrade, the
maintainer uses the following postinst snippet:

1 case $ a c t i o n in
2 c o n f i g u r e | r e c o n f i g u r e )
3 # u p g r a d e f r o m w o o d y
4 # s i n c e o x d v i is now i n t e g r a t e d i n t o xdvi , r e m o v e the a l t e r n a t i v e
5 update−a l t e r n a t i v e s −−remove−all o x d v i . bin
6 . . .

The alternative is removed without checking if it were registered; if it is not (e.g. when
installing tetex-bin from scratch) the script will fail.

We are able to detect the failure in Example 4 thanks to the precondition of the
rm alternative DSL statement (see Example 3).

5.2.2. Failures undetected by existing approaches

In this section we show how the failure detector component of Evoss is able to check
the coherence of a running system by checking the corresponding configuration model
with respect to some possible failures.

Implicit dependencies among packages. These are dependencies that are not declared in
package meta-information but occur because of implicit dependencies between configu-
ration files belonging to different packages. These become explicit in the configuration
models and consequently can be easily discovered by means of simple OCL expressions.
For instance, Listing 4 reports the OCL helper isImplicitDependence which returns true
if the input package settings have a dependency between them, false otherwise. The
detection of implicit package dependencies relies on this helper which is invoked for each
pair of installed packages.

Example 5. By considering the configuration model in Figure 8, the dependence between the
apache2 and php5 package settings is detected even if the corresponding packages do not depend
explicitly on each other as described in Section 2. In fact there is no dependence between the
package elements p1 and p2 shown in Figure 8.

Listing 4: Fragment of the OCL query to detect implicit package dependencies

1 h e l p e r d e f : i s I m p l i c i t D e p e n d e n c e ( ps1 : P a c k a g e S e t t i n g , ps2 : P a c k a g e S e t t i n g ) :
↪→Boolean =

2 i f ps1 . depends−>i n c l u d e s ( ps2 ) or ps2 . depends−>i n c l u d e s ( ps1 ) t hen
3 t r u e
4 e l s e
5 f a l s e ;

In Evoss the detection of such dependences is very simple since it consists of querying
the configuration model and checking the existence of references between package setting
elements. In current distributions, the available tools are unable to extract such depen-
dencies between configuration files. In the following we describe some of the failures that
can be currently detected by Evoss:

Missing configuration files. The system configuration model can easily identify the con-
figuration files that are required, but not actually available in the system. For instance in
Figure 18 the file /etc/ldap/ldap.conf is required by the installed package libldap-2.4-2

but it is actually missing in the injected configuration model;
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Figure 18: Some failures detected by static analysis of a system configuration model

Mime-type dangling handlers. The models allow us to identify the mime types that the
system should be able to manage, but whose handler is missing from the system. For
instance, in the configuration considered in Figure 18 the executable “dia” handling the
mime type “application/x-dia-diagram” is missing, while according to the configuration
model this mime type should be manageable;

Missing services. The /etc/init.d directory contains all services that are available on
a Linux system. The /etc/rc*.d directories specify which services should be started in
which “runlevel”. These queries identify services that are not configured to be active in
the current system.

6. Discussion

In this section we provide some considerations on Evoss, revolving around three
topics: community support, flexibility, supporting tools, and performance.

Community support. We are aware that the failure detection abilities of Evoss are not
complete with respect to all possible upgrade failures; what has been presented here is
rather just a representative subset of failures that have been found to be common during
package upgrades. We hope for a community participation in the iterative and probably
never ending improvement of failure detection abilities. In fact, adding a new class of
detectable errors is relatively straightforward in Evoss: it is enough to add the corre-
sponding OCL queries to the failure detector, and queries turn out to be quite concise.
Even though OCL is not a language with which sysadms are necessarily familiar, similar
experiences (such as QWG templates in Quattor [6]) show that, once the usefulness of a
tool has been proven, the interest of the sysadm community easily grows around it, even
when the learning curve is steep.
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Evoss adoption and flexibility. We have shown how Evoss represents a clear advance-
ment in dealing with reliable upgrades for FOSS distribution installations. The price for
this advancement includes the effort required to integrate Evoss in real environments
and the loss of flexibility when compared to a maintainer being able to use a general
scripting language for maintainer scripts.

By focusing on the integration of Evoss in real environments, two aspects should
be considered: (i) in Section 3.1 we introduced the model injector that promotes the
use of Evoss in practice since thanks to this module the needed models (included DSL
statements representing the maintainer scripts) are automatically extracted from the
actual system; (ii) as discussed in the previous item we hope that the community of
users will be involved in the definition of common errors thus increasing the capabilities
of the failure detector.

Regarding the loss in flexibility it is interesting to note that from the analysis we
performed we realized that often maintainers do not really need a full-fledged language
as POSIX shell to write maintainer scripts. Nevertheless, in some cases they do need
more flexibility. For this reason we added the tagging mechanism (see Section 4) that
allows maintainers to write more complex scripts by using any language. While minimal
knowledge about models and their manipulation is needed to do that, maintainers are
only asked to add tagging information about changes that scripts make on a configuration
when executed.

To sum up, Evoss is flexible since (i) it allows maintainers to write scripts with tradi-
tional scripting languages or by means of DSL statements; (ii) the tagging mechanism of
the DSL is another dimension of this flexibility allowing the definition of complex scripts.

Status of the Evoss supporting tools. The Evoss supporting tool consists of differ-
ent components: (i) the system configuration injector, (ii) the package (including the
maintainer scripts) injector, (iii) the DSL and the simulator, and finally (iv) the failure
detector. In the following we explain the implementation status of each component:

1. System configuration injector: this part is complete with respect to the system
configuration concepts that have been considered for defining the DSL and its
simulator. This means that a refinement of the DSL (performed for example to
better cover the set of existing scripts) will probably require a revision of the
metamodels and then of the system configuration injector;

2. Package (including the maintainer scripts) injector: we have a prototype of this
component that makes use of the Gra2MoL language [5]. It is in an alpha state:
for more details please refer to the deliverable D2.2 [13];

3. Mancoosi DSL and Simulator: we have a prototype of the DSL and of the simulator
components. Even though these components are in a more advanced state than
the package injector, we are still testing them on real distributions;

4. Failure detector: the failure detector is complete with respect to the failures men-
tioned in Section 5.2.2.

The supporting tools provided with a working Eclipse bundle can be found at http:
//www.mancoosi.org/software/evoss.tar.gz. It consists of the components 1 and 4.
However, according to the description of work of the Mancoosi project all the components
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previously described have to be finalized and integrated with existing Linux distributions
such as Debian10 and Caixa Mágica11 by the end of the project.

Performance of Evoss. Our empirical tests show that simulation and failure detection
do not add significant overhead to the upgrade process (which is anyhow usually dom-
inated by other factors, such as download times). The most expensive task of Evoss
is model injection. The performance of this module when injecting an Ubuntu system
is reported in Section 5; injection takes less than 4 minutes. However, it is important
to note that the measurement represents the performance required to build models from
scratch. Typically the model update is performed by means of simulation which modi-
fies models accordingly to the real system. However, it is always possible for the model
and the real system to be slightly out-of-sync. For instance, we cannot forbid a user
to manually delete files or to manually change configuration aspects. In those cases the
model injection must be performed again. We are currently investigating optimizations
of the injection performance by exploiting the existent configuration model and doing
“diff”-updates.

7. Related work

Configuration management research has already faced the challenge of maintaining
and deploying the configuration of (*nix) machines over time. Several approaches and
Configuration Management Tools (CMTs) exist to that end, the most relevant ones being:
Bcfg2 [11], LCFG [1], PoDIM [10], Quattor [6], and Puppet [23, 22]. A widespread recent
trend among CMTs is the use of declarative configuration languages (as opposed to what
pioneers like cfengine [4] used to offer); such languages offer in some cases the ability to
express finer grained dependencies than those of FOSS packages. Nonetheless, CMTs
seem to invariably suffer from two important shortcomings with respect to our approach:

1. The sysadm has to specify explicitly, by means of the declarative language, all the
aspects of a system configuration. The possibility to spot implicit dependencies
is nullified, since only the specified configuration aspects will be checked. Addi-
tionally, model injection facilities provided by Evoss enable the detection of those
dependencies which are not appreciated by the sysadm. That makes Evoss more
suitable for regular user machines, where CMTs are rarely used and users often
lack system administration skills.

2. The second shortcoming is that existing CMTs are only able to grasp some of the
static aspects of a system that might induce upgrade failures; such tools are not
able to manage relevant dynamic aspects of maintainer scripts and hence cannot
shield users from upgrade failures due to them.

An additional shortcoming is that the attention of such tools for configuration valida-
tion seems to be lower than what we propose with Evoss, where the key is validation. As
a consequence, Evoss appears to be more easily extensible with new failure predicates
(it only requires adding new OCL queries) than existing CMTs.

10http://www.debian.org
11http://www.caixamagica.pt
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In spite of the above differences, there are potential synergies between Evoss and
declarative CMTs. In particular, when the configuration described in CMTs can be
trusted12, model injection can be extended by grasping new dependencies that are known
to the CMT.

Letting aside CMTs, we are aware of four contributions which are more specifically
comparable to Evoss. Conary [21] is a system that manages package upgrades via
automated dependency resolution against distributed on-line repositories. To replace
maintainer scripts Conary introduces the notion of dynamic tags, which are analysed to
detect similar operations performed by package installation, and groups them together.
In the end, these operations are performed on the system, just like maintainer scripts,
and the issue of predicting and preventing failures is still there.

McQueen [28] proposed to instrument the upgrade process to monitor the files that
are actually being modified, to be able to restore them in case of failures. Unfortunately,
it is not always possible to undo an upgrade by simply restoring the old copy of all
touched files, and it is necessary to consider also the system configuration, the running
services, etc., as taken into account by our metamodels. This kind of tools can be ideally
combined with Evoss to detect discrepancies between the model and the actual system.
That can be done by comparing execution traces of the DSL with the actual maintainer
scripts. Each discrepancy will lead to refining the DSL, hence improving the simulation
provided by Evoss.

NSIS13 is an open source system to build auto-installers for Windows. NSIS rec-
ognizes the importance of providing specific primitives to write maintainer scripts, and
makes some steps towards defining a useful domain specific language. However the lan-
guage contains full-fledged conditionals, functions, labels, gotos, and arbitrary integer
expressions, which make it Turing-complete, missing completely the advantages of our
DSL.

Finally, NixOS [17] is a purely functional distribution, where static parts of a system
(packages, configuration files, boot scripts, etc.) are built from pure functions. The
approach promises to render upgrade failures irrelevant, as they can be easily undone.
Unfortunately this is not always the case, as some operations can not be made purely
functional (e.g. user database management).

Our work can also be related with techniques for static analysis of scripting languages,
like [36] which deals with SQL injection detection for a limited subset of PHP scripts,
or [27] which provides a mechanism to detect argument arity bugs in a limited subset of
shell scripts. Both works clearly show the great difficulties one has in handling scripting
languages in their generality, and cannot be reused in our framework.

Our approach can also be considered as a specific case of software modernization,
where significant work has been done by the OMG via the Architecture Driven Modern-
ization (ADM) task force [32] that aims at building standard metamodels and tools for
supporting software renewal, and Reus et al. in [34, 19] propose similar MDA processes
for software migration. Nevertheless, these works are mostly focused on building UML
models, which is a very different focus from our goal.

12Note that here trust is a matter of correctness guarantees, not of security concerns.
13http://nsis.sourceforge.net/Main_Page
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8. Conclusions and future work

We have discussed how current technology used to manage FOSS distributions leaves
many types of upgrade failures undetected. We have then shown how to significantly
enlarge the class of detectable failures by adopting a novel model-based approach. The
approach—called Evoss—takes into account both fine-grained static aspects of system
configurations (e.g. dependencies among configuration settings) and dynamic aspects of
upgrades (e.g. configuration scripts and their effect on the system state). Both aspects
are currently ignored by state of the art package managers. An essential component of
Evoss is a DSL capturing all essential operations performed by configuration scripts,
and yet is simple enough to be amenable to analysis and simulation.

This approach has been practically validated instantiating it on two widely used FOSS
distributions. Evoss has been designed with continuous refinement in mind, with the
explicit intention of involving the system administrator FOSS community in iteratively
adding primitives to the DSL.

As a future research direction, we will investigate how Evoss and suitable transac-
tional logs can be used to drive at run-time the roll-back of residual effects of failed or
undesired upgrades.
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