Extensional Normalisation and Type-Directed Partial Evaluation
for Typed Lambda Calculus with Sums

Vincent Balat Roberto Di Cosmo Marcelo Fiore*
PPS - Université Paris 7 PPS - Université Paris 7 Computer Laboratory
and University of Cambridge

INRIA-Roquencourt

Abstract of type

We present a notion of-long B-normal term for the typed lambda ('@ ->'b) -> ("¢ ->"a) ->"¢c -> ("d, "e) sum->"b
calculus with sums and prove, using Grothendieck logidatims,
that every term is equivalent to one in normal form. Basedhim t
development we give the first type-directed partial evalusbat
constructs normal forms of terms in this calculus.

This is a typical, hard to read, example of what automatiagdin-
erated code looks like. Using commuting conversions, it lsan
transformed into the program

fun f ->fun g ->fun z -> fun x ->

Categories and Subject Descriptors: F.3.2 [Logics and Mean- match x with

ings of Programs]: Semantics of Programming Languages— Left x1 -> (match (Left z) with

partial evaluation F.4.1 [Mathematical Logic and Formal Lan- Left y1->f(gyl)

guages]: Mathematical Logictambda calculus and related sys- | Right y2 ->f(y2))

tems D.3.1 [Programming Languages]: Formal Definitions and | Right x2 ->(match Right(g z) with

Theory—semantics Left y1->f(gyl)
| Right y2 ->f(y2))

General Terms. Languages, Theory, Algorithms. which can be then optimised into the program

Keywords: Typed lambda calculus, Strong sums, Grothendieck fun f ->fun g ->funz -> fun x ->
logical relations, Normalisation, Type-Directed Parkahluation. match x with
Left x1 ->f)

(gz
. Right x2 -> f
1 Introduction | Right x (92)
that, by extensionality, can be transformed into the moaelable
Sum types and their associated case expressions are amiassen and efficient

feature of any programming language. Taking into accoumfuh funf -> fun g -> fun z -> fun x ->

range of commuting conversions in performing program ojstém f(gz) 2
tions and partial evaluation in their presence is a diffidoltt im- g
portant, task. For example, consider kjective Cambum type The commuting conversions associated to case expressiens a
] derivable from the (strongdum extensionalitgxiom; which iden-
type ("a,'b) sum= Left of "a | Right of "b tifies the programs
and the program match e with
fun f -> fun g -> fun z -> fun x -> Lef X1‘>tlLe“ ‘x| and 1 e
un f ->fun g ->funz -> fun x - -) Right x2
match (match x with | Right x2 -> /X
Left x1 -> Left z Sum types satisfying this axiom are sometimes referred $traisg
| Right x2 ->Right (gz)) 1) or categoricalsums.
with
Left yl->f(gyl) In this paper we consider sum types in the most basic founlti
| Right y2 ->f y2 type theory for functional programming: the typed lambdawdas

with sums. In particular, we tackle the problem of definingl an
*Research supported by an EPSRC Advanced Research Felcomputing normal forms in it; so that, for instance, the pgss
lowship. from (1) to (2) can be done automatically. Besides the isténgthe
typed lambda calculus with sums from the programming-laggu
Permission to make digital or hard copies of all or part o thiork for personal or viewpoint, there is also a type theoretic one, and the stfidyim
classroom use is granted without fee provided that copisiarmade or distributed types in this setting has proved challenging; see [17, 131]16

for profit or commercial advantage and that copies bear ttiseand the full citation

on the first page. To copy otherwise, to republish, o postemvess or to redistribute Tha theory ofweak sumseither without the extensionality ax-
to lists, requires prior specific permission and/or a fee.

POPL'04 January 14-16, 2004, Venice, Italy. iom (see [11]) or with the extensionality axiom restrictedtihe
Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00 caset = x (see [10]), is well understood. However, there is as yet

no known confluent and strongly normalising reduction sysfer
strong sums. Thus, we consider below normalisation withe t
whole calculus in the spirit diormalisation by EvaluatiofNBE)
andType-Directed Partial EvaluatiofiTDPE).

NBE is a normalisation technique introduced by Berger and
Schwichtenberg [4] for the simply typed lambda calculusraga
verse to the evaluation function, mapping a semantic vaitea
syntactic one in normal form. Since then, NBE has been the sub
ject of investigation in many domains: logic, type theomtegory
theory, partial evaluation (see.g, [7]).

Partial evaluation is a program transformation technigseduto
specialise functions. TDPE is a partial evaluator for fioral lan-
guages invented by Danvy [5]. It is based on the same pricipl
as NBE; it constructs code of compiled programs, acting as-a d
compiler.

An extension of NBE to the typed lambda calculus with binary
sums has been proposed by Altenkirch, Dybjer, Hofmann, and
Scott [1]. However, normalising calculi with strong sumstlie
style of TDPE was an open problem; to which this paper offers a
solution.

For the typed lambda calculus, Fiore [14] showed that we &an e
tract the NBE algorithm as an intentional version of an esitamal-
normalisation result (stating that every term equals oneoimal
form). Here, in the context of the lambda calculus with sums,
start by following this analysis and present a notion of relrfarm
with respect to which we establish an extensional-norratitia re-
sult. Afterwards, we proceed in a different direction andvdin-
sight from the proof of this result to develop a partial eedw for
the typed lambda calculus with binary sums that construmtshal
forms; the extension to incorporate the empty type does nesigmt
much difficulty. The partial evaluator, written @bjective Cam|
can be downloaded from the web.

Organisation of the paper. In Section 2, we recall the syntax and
semantics of the typed lambda calculus with sums. In Se&jon
after recalling the construction of bicartesian closeagaties of

Grothendieck relations, we present a basic lemma that geevi
both guidelines for defining the notion of normal term given i
Section 4, and the proof-skeleton for establishing thersktamal-
normalisation result of Section 5. In Section 6, we predemsblu-
tion to normalisation via TDPE for the simply typed lambd&uoa
lus with binary sums. Concluding remarks are offered in isact.

2 Typed lambda calculus with sums

We recall the syntax and categorical semantics of the sityplkyd
lambda calculus with (empty and binary) products and (erapty
binary) sums. For details see [20].

21 Syntax

The set of types has a (countable) set of base types and two typ
constantd and0, the unit and empty type, and is closed under the
formation of product, function, and sum type constructoFar-
mally, types are defined by the following grammar:

T == 0 (Base types)
| 1 (Unit type)
| 11 xT2 (Product types)
| 11 —o1 (Function types)

| 0
| T1+72

(Empty type)
(Sum types)

The raw terms of the calculus are defined by the following gram
mar:

t o= x (Variables)
) (Unit)
| (t1,t2) (Pairing)
| m(t) (First projection)
| 7a(t) (Second projection)
| Ax:t.t (Abstraction)
| t9(t2) (Application)
| 1. (Absurd)
SR (First injection)
| 5T (t) (Second injection)
|

5(t,x7.t1,x2.t2) (Discriminator)

wherex ranges over (a countable set of) variables.

The unit, pairing, and abstraction are respectively thenteon-
structors for the unit, product, and function types; whilst pro-
jections and application are respectively the term desirsdor
the product and function types.

The term constructors for sum types are given by the injastio
whilst the absurd and discriminator are respectively the tde-
structors for empty and sum types. In particular, discraton
terms permit definitions by cases.

The abstraction and discriminator are binding operatdes; T. t
binds the free occurrences »fin t, andd(t,x7. t1,x2. ty) binds
the free occurrences of; in t; (i =1,2). The notions of free
and bound variables are standard, and terms are identifi¢d up
alpha conversion

Notice that we have adopted a non-standard (proof irretiwvan-
sion of absurd terms ak, rather than the standard one of the form
L<(t). This is important in the treatment of normal forms.

As usual we consider typing contexts as lists of type detitarafor
distinct variables, and say that a tetrhas typer in the context”
if the judgement” F t : T is derivable from the rules of Figure 1.

Finally, we impose the standard notion of equality on tefingdud-
ing the sum extensionality axiom, as detailed in Figure 2.

2.2 Semantics

Bicartesian closed categorig8iCCCs) are categories with finite
products {, x), exponentials£), and finite coproduct(+).

The typed lambda calculus with sums is the internal language
of BiCCCs and as such has sound and complete interpretations
in them. With respect to an interpretatidnof base types in a
BiCCC S, we write I[[t] for the interpretation of the type in-
duced by the bicartesian closed structure. That is,

I[0] = I1(0) (0 abase type)
IM] =1

It x*'] = I[7] x I[t']
It —= '] = I = I[7']

Fx:t,Mkx:7

MEt:1q

(i=1,2)

NEt:ty x12

_ i=1,2
(.1 TF (t,t2): 1 X T2 Fmo oY
Mx:tiFHt:T rt:t1—1 FHt:1
FEAx:11.t:11 > 7 MEt(ty):T
F'Et:0 M-t:my (i=1.2) M-t:t1+712 Nxi:tiFti:t (1=1,2)
M-le:t TEGT2 ()T +12 - FEo(t,x7.t1,%2.t2): T
Figurel. Typingrules.
FHt:t r—t=t':t -ty =ty:7 F-ty=t3:t
Ft=t:1 Frt'=t:t Nty =t3:7
M-=t:1
THt=():1
FHt:1 FHty:12 (1=1.2) FFt:ty x12
ka<t1,t2>:ti:n 0 rFt:<7T1(t),7Tz(t)>:T1><T2
x:tikHt:T M=t:1m FrFt:my =7
) AT — - (x ¢ FV(t))
MEAx:T.t)(t) =t[ti/x] :t THt=Ax:T1.t(x):T) =7
NFt:tg =1 Tty =t]:m Mx:mikt=t:1
FEt(t))=t(t)):7 FEAx:T1.t=Ax:T7.t 1) =1
'=1p:0 Nt:t
Nll=t:7
IEt:; Lxi:tibFti:t (1=1,2) FFt:ti4+1) Nx:t1+12Ht it

i=1,2
FF&(Lj(t),th],xz.tz):tj[t/xj]:T G=12)

TE8(t,xq .t/ [v(x1)/x] xp t/[2(x2)/x]) = t/[t/x] : «

Figure 2. Equational theory of thetyped lambda calculus with sums.

10] = 0
It +7'T = Il + 1[']

This interpretation extends to contexts in the usual manner

Ilx1:77,. . xn Tl = I[T1] X ... X I[Tnl

We write I[[I" -t : t]] for the morphismI[[I'] — I[[t] in S inter-
preting the judgemerit -t : T.

Syntactic BICCC. The syntactic BiCCC induced by the type the-
ory has objects given by types and morphisms— T, given by
equivalence classds : T1 + t: T»] of derivable judgements under
the equivalence identifyinx: t1 Ft:12) and(x’: 11 Ft' : 12)

iff the judgementx : t1 F t = t/[X/x/] : 7, is derivable in the equa-
tional theory. Composition is by substitution

X :tp bt/ itslolx Ty Ftity] = ity Ft[t/x'] T3l

with identities given bylx : T+ x : T].

3 BIiCCCsof Grothendieck relations

The class of categorical models of the typed lambda calauits
sums needed for establishing the extensional normalisaéisult
is that given by BiCCCs of Grothendieck relations [16]. Tdes
are categories defined over a site, a small categorwith a
Grothendieck topolog¥(, equipped with an arity functa: C — §
into a BICCC. They consist of objectd,R) whereA is an object
of § andR is a Grothendieck relation of ariyand have morphisms
(A,R) — (A’,R’) given by morphismg&\ — A’ in S that preserve
the relations.

We recall the formal definitions.

DEFINITION 3.1. Given a small categoryC, a (basis fo) a
Grothendieck topolog¥ on C, is given by associating to each ob-
jecta of C a collectionK(a) of covers ofu (a family of morphisms
in C with codomaina), satisfying the following conditions:

(Identity) For everya € | C |, K(a) contains the family consisting
of the identity morphism oa.

(Stability) For every{¢; : a; — alic1 € K(a), and morphism
1V :b — a, there exists afamile’ :bi — bljey € K(b) such
that everyy od;)(:bj — a factors through some; (i.e., for
everyj € J there existi € I and yy; : bj; — a; such that
Vod; = diovij).

(Transitivity) For every{¢; : a; — a}ier € K(a), and for ev-

ef(y{)}/ij}jeh € K(ay) (i€1), the family{d; ovijliet jey; €
K(a).

A small category together with a Grothendieck topology ois it
called asite

DEFINITION 3.2. For a site (C,K) and a functor s C — S, a
(C,K)-Grothendieck relatioR of arity s overA € | S | is a family
{R(c) € S(slc),A) }eec| With the following two properties.

(Monotonicity For everyy : ¢’ — cin C, and every :s(c) — A
in S, if x € R(c), thenxos() € R(c').

(Local character For every covef ¢; :ci — ¢ }ier € K(c¢) and
foreveryx:s(c) - Ain S, if xos(di) € R(cy) forall i €1,
thenx € R(c).

DEeFINITION 3.3. For a site (C,K) and a functor sC — S, the

category of Grothendieck relations(G K,s) is defined as fol-
lows: objects are pairgA,R) consisting of an objech in § and

a (C,K)-Grothendieck relatiorR of arity s overA; morphisms
(A,R) — (A’,R’) are morphisms : A — A’ in § such that for all

objectsc in C and morphisms : s(c) — A in R(c), the composite
foxisinR’(c).

We have the following important result; see [16] for details

PrROPOSITION 3.4. For a site (C,K) and a functor sC — §
into a bicartesian closed category, the category of Grotheck
relationsG(C, K, s) is bicartesian closed and the forgetful functor
G(C,K,s) — S preserves the bicartesian closed structure.

The FUNDAMENTAL LEMMA OF GROTHENDIECKLOGICAL RE-
LATIONS follows as a corollary.

LEMMA 3.5 (FUNDAMENTAL LEMMA). For a family of
Grothendieck relationg (61, Rg))e in G(C,K,s: C — §) in-

dexed by base types, gt/ [t]l, R))~ (resp.{(I[T],Rr))r) be the
family of Grothendieck relations indexed by tygessp. contexts
induced by the bicartesian closed structuréxfC, K, s). Then, the
interpretation of termsI[["'+t: <] : I[T] — I[t] in § are mor-
phisms(I[[T'l, Rr) — (I[7], Rr) in G(C,X,s).

3.1 Basiclemma

Following the analysis of [14] we give as&ICc LEMMA that pro-
vides the proof-skeleton for both the definability resul{18] and
the extensional normalisation result (Theorem 5.1) of plaiser.

LEMMA 3.6 (Basic LEMMA). Consider a sitéC,K), a functor
s:C — Sinto a BiCCC, and an interpretation of base types its.

Let ((I[ll,L:))r and {((I[t],Ur))r be two families of
Grothendieck relations iG(C, K, s) indexed by types such that

Ly = L U =T

Loxt € LoN Ly Us N Ur € Uoxr
L0‘+T c LO'\/LT ruc\/ U C uO'+T
Loyt © Us D Ly LoD Ur C Usn

For a family of Grothendieck relationg 761, Rg))e in G(C,K,s)
indexed by base types, lef{/[t]l,R:))~ be the family of
Grothendieck relations indexed by types induced by theteisi@n
closed structure 0&(C, K, s).

If Lo C Rg C Ug for all base typed®), then
1. L C R; C U, for all typest, and thus

2. foralltermsT - t:7 (I'=x7 :71,...,xXn : Tn) and tuples
aj:s(c) = Itillin L, (c) (1 <i<n,ce|C]), we have
that I[T+t:tlo(ay,...,an):s(c) = It isin Uc(c).

The first part of the lemma follows by induction on types using
the closure properties of the hypothesis and the funcityriaf the
categorical type constructors; the second part is a corseguof
the first and the BNDAMENTAL LEMMA.

4 Normal forms

We present a notion of-long 3-normal form for the typed lambda
calculus with sums. The overall definition, which is giverFig-
ure 3, depends on four mutual inductively defined entailnsgsat
tems: -4, (pure neutral terms)-4, (neutral terms)f-,, (pure
normal terms), ané,, (normal terms). The pure neutral terms are
essentially given as in the typed lambda calculus; whilstrtbu-
tral terms are obtained from these by closing under disodhors.
The pure normal terms are essentially given as in the typatida
calculus with the addition of the sum injections, and norteains
are obtained by closing under discriminators with respegiure
neutral terms. The unique neutral and normal term in an isisen
tent context ¥iz., a context” in which the judgement - 14 :0 is
derivable) of typer is | .

The definition of normal forms has been designed guided by tha
of [1] (of which the ones here are syntactic counterparts) lan
making sure that the interpretations of neutral and normahs
provide Grothendieck relations satisfying the hypothetthe Ba-

SsiC LEMMA (see Section 3).

Note that there are syntactically different, but semaiitieuiva-
lent normal forms; like the following ones:

Ag:0—5014+02.Ah:0—03+04.A%x:0. 3
8(gx, x1.11(), x2.8(hx,y71.12(),y2.11()))

and
Ag:0—071+62.Ah:0 —-03+04.A%x:0. (4)
8(hx, y1.8(g%,x1. 11 (),x2.120)) , y2-11())

which differ only in the order in which the case analysis is-pe
formed. This situation is formalised by the relatisrin the defini-
tion below; on which the side conditiori8) and(C) of Figure 3,
allowing the closure under discriminators of normal terdepend.

DEFINITION 4.1. We let= be the least congruence such that
5(M,X.5(M],X] .N1,x2.N2),y.N)
~ 8(My,x1.0(M,x.N7,y.N), x2.8(M,x.N2,y.N))
(M, y.N,x.8(M7,x1.N7,x2.N2))
~ 8(My,x1.0(M,y.N,x.Ny),x2.6(M,y.N,x.N>))
wherex € FV(M) andx; € FV(M) (i=1,2), and

Nx:t, Mg xiT

IMEag, Mty X T2

(i=12)
I '_Mo TIZi(M) ITi

Mhga, Moty 21 Mbap Ny
IFag, MIN):T

Mg, Mt
MEge Mt

—— (I"inconsistent
r '_M J—T T ()

Mg, MiTi 412 NxiiTiFgr Myt (i=1,2)
FFM 6(M,X]. M],Xz. Mz) T

FFMOM

F}—% NiZTi (i:],Z)

r}—%o:l r}—g\&)(N],Nz):T]XTZ
M'Ear Nt
o~ (i=12)
Thag 4 2 (N) Ty + 12
Mhap Nt
o N:T

[x:71q FagN:T

N A
M A Ny ot (x e FV(C) forall C € Guard¢N)) (A)

W (T" inconsistent)

Mhapg Mitit1a DxiitibaNitt(i=1,2) /Mo Cforall C € Uiy , Guardsx;. Ny) (B)
MEac 8(M,x1. Ny, x2. Np) it N7 % Nz wheneverc; ¢ FV(N1) andx; ¢ FV(N2)

{M }UUi:],Z Guard$xi. N;) ,if N=58(M,x1.Nj,x2.N3)
Guard$N) =

0 , otherwise

Guardgx;. Ny) L' { CeGuard$N;) [x ¢FV(C) }

Figure 3. Neutral and normal terms.
(The context is assumed consistent unless stated otherwise

N~ N’

unique normal form the term
5(M,x.N,y.N) =N

Ax:07+0;.
wherex ¢ FV(N) andy ¢ FV(N/). 5(x
If desired, unique representatives for normal terms carhiosen. X1. Ay:07+65.
Indeed, in [1] this is done by considering a generalised fofm 5y,
discriminator construct allowing simultaneous case aisly Al- y1. (v (x1),01(y1))
ternatively, one could proceed by both fixing a canonicahtion y2.(t1(x1),2(y2)))

for binders and a linear order on pure neutral terms to beetsg

. ST . . X . . Ay:05+el.
in nested discriminators. This, we believe, yields uniqoemal x2- AY:07 406

forms. For instance, adopting the canonical notation fodérs 5(v,

provided by de Bruijn levels, the normal form for the term$ (3 yi1-(2(x2),u(yr)),

and (4) under the linear order in whié¢g({,) precedeg ({,) is y2.-(12(x2),12(v2)))
AMp:0—01+02.A8;:0—03+04.A0,:0. EXAMPLE 4.3. LetA=11(11()),B=11(12()),C=12(11{)), and

8(Lo(L2), €3.11 (), £3.0(£1(£2),84.120),84-11())) D= t2(12()) of type(1+1) +(1+1).

Examples. We conclude the section with examples of terms and 1. The term

their normal forms that will help to elucidate the notion. Ax:07+05.5(5(x,x1.A,%2.D) , y7.12(y1), y2.11(y2))

To grasp the role of the side conditions in Figure 3 note thaft- is not a normal term because

dition (A) fixes the relative position of abstractions and discrimina- . .

tors; condition(B) forbids dead branches (that is, when the same x101+02 Vag, 8(x,x1.A%2.D): (1+1)+(1+1)

case analysis is performed more than once, and hence becemes Its normal form is the term

dundant); and conditiofC) forbids the two branches of a discrimi-

nator to be the same (as in such case the discriminator indedt). Ax:07+05.5(x,%x1.C,x2.B)

EXAMPLE 4.2. 1. The identity termAx:0.x of typed® — 0 is
a normal term. 2. The term

Af:0— (07+62).Ax:0.Ag:0 — (8] +65).Ay:6.

2. The identity termAx : 01 + 05.x of type
Y 1 E2. X OTP 5(gy , x1.5(f%,y1.AU2.B) , x2.5(gx,21.C,22.D))

(01+02)— (87 +02) . e -
is not a normal term because conditi¢A) is not satisfied.

is not a normal term; its normal form is Its normal form is the term
AXZG]‘}'GZ.&(X,X].L](X]),XZ.LZ(XZ)) AfGH(Gl—Q—OZ))\XG
5(fx
3. The identity termAx: (87 +62)x (87 +65).x of type y1. Ag:0— (0] +05%).
(01 +02) x (8 +8%) — (67 +62) x (85 +05) has two 5(gx,
equivalent normal terms: z21.Ay:0.8(gy,x1.A,x2.C),
Ax: (07 +0,) x (94 +9£)- zz.Ay/:G.él(gy,m.A,xz.D)),
5 Yy2. Ag:0—(87+063).
(mi(x), 5(gx
x1-8 :/Z(ZCL)] ,(X]) " (X/)> z1.Ay:0.8(gy,x71.B,x2.C),
)' J) J 2.2y :0.56(gy,x1.B,x2.D)))
x5 (t(x1),12(x5)))
x2.6(ma(x)
X7 (2(x2),u(x})), 3. The term
xh. (a(x2),12(x5))) Af:((0—=07+62)— (0 —03+04)—>0—(14+1))
q — 05+ 0.
an . 5(f(Ag:0—07+0,.Ah:0—03+04.Ax:0.
Ax:(07+02)x (0] +065). 5(gx ,
8(ma(x), x1.u(),
xp.8(mi(x), / x2.8(e, yr2(), v2eu (),
x1. (11 (x1), 11 (x7)) s Z1.A,
x2. (L2 (x2), 11 (x}))) 25.5(f(Ag:0—0874+62.Ah:0 — 03+0,4.Ax:6.
x5.8(mi(x), 5(hx,
x1. (1 (x1),12(x5)) y1.8(gx, x1.11(), x2.12()),
x2.(12(x2),12(x5))) v2.u())),
z1.B,
z5.C))

4. The curried identity termix : 81 4+ 0,.Ay : 87 +85. (x,y) of
type(81+02) — (85 +0%) — (61 +8,) x (8] +65) hasas does not satisfies conditidi8) and so is not a normal term.

Its normal forms are
Af:((0—=07+62)— (0 —034+04) 60— (141))

— 05+ 60¢.
5(f(Ag:0—=07+602.Ah:0—03+604.Ax:0.
8(gx,
X].L]<>,
x2.8(hx, y1.2(), v2.1()))),
z1.A,
z5.C)
and
Af:((0—=07+62)— (0 —034+04) 06— (141))
— 05+ 60¢.
5(f(Ag:0—=07+62.Ah:0—03+604.Ax:0.
5(hx,
y1.0(gx, x1.11(), x2.12()),
v2.u())),
z1.A,
25.C)
4. The term

Af:0—=0.Ax:0+0.5(x, x7.x7, x2.1g)
is not normal, as
:020,x:0+0,x7:0 Vo x1:0
because the context is inconsistent. The equivalent term
Af:0—=0.Ax:0+0.8(x,x7.Lg,x2.19)

is not normal either because conditig€) is not satisfied.
The normal form of these two terms is

Af:0—0.Ax:0+0. Lg

EXAMPLE 4.4. The normal form of the term
Af:07 —0.Ax:07+62.Ag:0, = 07.Ay:0.
8(x, x1.Le; , x2.9(x2))
is
Af:07 —0.Ax:07+06,.
&(x,x1.L(g,0,)m0-0, » X2.-A9:02 = 07.Lg_0,)

5 Extensional normalisation

Following [14], we establish
normalisation result.

the following extensional-

THEOREM5.1 (EXTENSIONAL NORMALISATION). For every

term of the typed lambda calculus with sufts t : T there exists a
normal terml” =4 N : T such thatl" -t = N : T is provable in the
equational theory of the calculus.

The proof is along the following lines.

e We define an appropriate syntactic sit&, K) together with
an arity functorl : C — S into a BiCCC canonically induced
by astableinterpretation/ of base types. (See Section 5.1.)

e We establish that the interpretation of neutral and normal
terms define Grothendieck relations if@GK, I) satisfying
the hypothesis of the Bs1c LEMMA. (See Section 5.2.)

e As a direct consequence we have the semantic result that for
every ternT" - t : T there exists a normal terfit-, N : T such

thatI[TFt:t] = IMMEN:1]: I[T]— I[t]inS.

e The syntactic result of Theorem 5.1 follows from the senzanti
one by embedding the syntactic BiCCC induced by the type
theory into a BiCCC in which the sums become stable.

5.1 Thesyntactic siteand itsarity functor

The syntactic site. Following [16] in the light of [1], we will use
a site of constrained contextsz; the intuition is that we consider
the context” under the constrainfs.

DEFINITION 5.2. Constrained contexsse defined by the follow-
ing rules

r=

Ox:TlZ,x = x

010

M=

RX:Ti|E»Li(X) =T1+7T2 M

MEa Mt +712

(i=1,2)

r=z M-t:ty+12

Nx T2, 4 (%) =1, 41, t

(T"inconsistent (i=1,2)

wherex ¢ dom(T").

DEFINITION 5.3. The categoryC has objects given by con-
strained contexts and morphisri¢=’ — T|= given by injective
renamingsp : dom(T") > dom(T"’) that preserve typindi.e. if
(x:1) €T, then(p(x) :) €T’) and constraintgi.e. ift = t' € =,
thent[p] =1 t'[p] € Z').

DEFINITION 5.4. The family of coverk(T'|=) of a constrained
contextl"|Z is defined by the following rules:

m (I inconsistent

{idgom(ry } € K(TIZ)

{pj eyU{p:T'[E' = TIZ} eK(TIZ)

{pj Jey Ul popi:T{IZl 5 TIZ)iz 2

where, fori = 1,2, the constrained contexlg\E{ are of the form
(I x} :il= 1 (x]) =<, 41, t) and the renamingsp; are the in-
clusionsl’/|={ >—T"|=".

PROPOSITION 5.5. The pair(C,K) is a site.

Thearity functor. We restrict attention tetable interpretationsf
types;i.e., interpretationd of base types in a BICCC such that, for
all pair of typest; andt,, the coproduct/[[t;] + I[[T>] is stable
under pullbacks.

For a stable interpretation, we define the semantic int&apoa of
the constrained contek{= as a subobject of the semantic interpre-
tation of the context.

DEFINITION 5.6. With respect to a stable interpretatidnof base
types in a BiCCC, we associate to every constrained comtéxt
its interpretation[[I"|=]] given by the domain of a monomorphism
mpz : I["Z]>— I[T'] inductively defined as follows.

e my): 1>—1is defined asd;.

o M yerz e : LITIE] x Il —> I[T] x I{ix] is defined
aSTT‘LrE X Idl[[ﬂ] .

mrvX:Ti‘E»Li(X):T] +’rzt :
I x 42,04 (%) =1 41, =TT x Il7;]
is defined agmp =z opy,qi) where the following square

TN x : T2, 1 (%) =1, 1oy] — > I[T)Z]

mr|z

di Ir]
I[[THt:ty +712]]
Il — 0 Ity + Izl

is a pullback.

By stability, the family

[N TlE b (x) =y 4,] ——= TIPE] Jizt

is a coproduct, and for every
M= =(x1:71, 0 Xn 1 Tnlt =], tn =1, ty)
we have an equaliser diagram

mr= (IlTteti)1<icn
HMEIS 1)~ 117} x .. x Il]
(IITHtTi) 1 <icn

The definition of the arity functor induced by a stable intetation
follows.

DEFINITION 5.7. With respect to a stable interpretatidnof base
types in a BiCCCS, the arity functorl : C — S is defined as fol-
lows.

def

On objects:I(T'|Z) = I[T|=].

On morphisms: fop : T’'|=" — T'|Z, we definel (p) as the unique
mapI[I'’|='T] — I[|Z] such that

r=z

TR 2

](Q)T T<”p(x)>xedom(l‘)

IM 2T == T[] =T cdom(rr) ZIT (x)]

mrp/ =/

1] = nxedom(l") Ir)0

5.2 Extensional-normalisation result

For a stable interpretatiohof base types in a BiCCG the defini-
tions

M (T[Z)
N (TE) =

respectively identify the sets of neutral and normal mapts in
S(IITI=0, 7l=l).-

{IMFM:tllompz [Thg4 M:T}
{I[IFFNZT]]OTTIHE‘F}_NNZT}

PrROPOSITION 5.8. Let I be a stable interpretation of base types
in a BiCCC. For all typest, (I[t],M:) and (I[t],A\;) are
Grothendieck relations i6(C,K, I).

THEOREM 5.9. The Grothendieck relations of neutral and normal
morphisms satisfy the following closure properties.

My = L N=T
Moxr © Mo N\ M No ANz € Noxr
Moir C MgV M NoV ANz € Nosr
Mo—x C No D M Ms DN € No—r
and
My C Np (6 a base typg

The proof of the theorem relies on the next two lemmas; whose
proofs embody the algorithmic idea underlying the nornagiés
program of Section 6.

LEMMA 5.10. 1. For every neutral terni 4, M : 11 X T2
there exist neutral termB -, My : 1ty and Tl 4, M 1)
suchthat" Fm(M)=M;:1; (1=1,2).

2. For every neutral ternf' -4, M : 11 — T and normal term
' N i1y, there exists a neutral terfil-,, M’ : T such

thatl' - M(N)=M"': 1.
LEMMA 5.11. 1. Foreveryterni' i, C:tderivable accord-
ing to the following rules
IMEap N:T

W (F ConSIStenX

Mg, Mt 412
r‘,XiZTi}—% CiZT (i:],Z)
r'—% 5(M,X].C],X2,C2):T

(T" consistent

— (Ti ist
Fra Lot (T inconsistent

there exists a normal termkg\(N:tsuchthal'FC=N:T.

2. For every pair of normal term§ Fo¢ Ni:Tq i=1,2),
there exists a normal ternft k5 N : 77 x T2 such that
FF<N1,N2>:N:T1 XT2.

3. For every normal ternit Fa N:Ti (ie{1,2}), there exists a

normal terml" 5, N’ : 17 + 72 such thatl" - 1;(N) = N':
T +7T2.

4. For every normal ternfi x : ¢ FaN1:T, there exists a nor-

mal terml’" 4, N : 77 — T such that" = Ax:t7. Ny =N
T — T.

Since forT" = (x7 : T1,...,Xn : Tn) We have that the projection
IMMExq 7l (1 <i<n),isaneutral morphisni[[I'] — Iti]lin
M, (T|Ar) whereAr = (x1 =, X1,...,Xn =<, Xn), it follows
from Theorem 5.9 and theA%I1c LEMMA that the interpretation

IMMFtea] = IMMEtetlo(IMTExy], ..., IMT X : Tall)

of the termT F t : T is a normal morphismi[[I'] — I[t] in
Nz (T|Ar). Thus we have the following corollary.

COROLLARY 5.12. Let I be a stable interpretation of base types
in a BiCCCS. For every ternT -t : T, there exists a normal term
r Foag Nt such thatI[T+t:7t] = I[TFN:x]: I[T] — I[<]
inS$.

Theorem 5.2 is obtained from this corollary by producing @8C

embeddingT — T, of the syntactic BiCCCT into a BiCCCT,
mapping sums to stwable sums, and considering the canonteal i

pretation of types it .

6 Type-Directed Partial Evaluation with sums

We show how to build a normalisation algorithm based on Type-
Directed Partial Evaluation that puts terms in the normainfof
Section 4. In fact, we use a version of TDPE written for the lan
guageObjective Caml(see [2]) slightly modified to allow the use
of certain powerful control operators.

An interesting point of this work is that the optimisationg \n-
troduce will be usable in some other cases of partial evialuat
Here, however, we are only concerned in normalising funetio
programs corresponding to terms in the typed lambda calauiti
binary sums with respect to the equational theory of theubadc In
particular, note that the normalisation of a program maeteadif-
ferent observational semantics (within the programmimgyleage
that is) than the original program; as, for instance, théuaen
order may not be preserved.

6.1 Theoriginal TDPE

We recall the basic elements of the original TDPE algorittiar
details see [5, 6].

NBE is based on an-expansion of the term using a two-level lan-
guage, which in our case is defined as follows:

t o= s (Static terms)

[d (Dynamic terms)
S = X

I Q) | pair(ty, t2) | m(t) | ma(t)

| Ax.t |t @ty

Iou(t) [wlt) |8t xq-tr, x2. t2)
d = x

() | pair(ty, t2) | mp(t) | ma(t)

[>

| x.t |t @t
[v | wt) | a(t, x1.t1, x2. t2)

wherex (resp.x) ranges over (a countable set efatic (resp.dy-
namiqg variables. Thea-terms are said to b&taticand thed-terms

to bedynamic In implementations, dynamic terms are often rep-
resented by data structures, whereas static terms areswaflube
language itself.

The TDPE algorithm without let insertion is presented inufe4.
It inductively defines two functions for each type. One, terit| ,
is calledrei fy and the other one, writteh, is calledref | ect .
The functions| andT are basically two-level-expansions.

To normalise a static valué of type, first apply the function ™
to V, and then reduce the static part, obtaining a fully dynasrimt

in normal form. The reduction of static parts is performetbenat-
ically by the abstract machine of the programming langudge
control operatorshift andreset are used to placgin the right place
in the final result.

Shift and reset. We briefly explain the way in whickhift andreset
work with an example. For details see [8, 9].

The operatoreset is used to delimit a context of evaluation, and
shift abstracts this context in a function. Thus the term

1+reset (2 + shiftc. (3 + (c4) + (¢5)))

reducestd + 3 + (2+4)+(2+ 5). Indeed, the operatoeset
delimits the contex2 + [J, which is abstracted into the functien
the values 4 and 5 are successively inserted in this contektiee
resulting expression is evaluated.

6.2 Producing normal terms

The original TDPE algorithm without let insertion produdesms
following the inference system of Figure 3 without takingpimc-
count the side condition®), (B), (C) there in.

For example, the evaluation of the term

AZAXAES((F@x%), x1. Ay.11(y)), x2. Ay.T@2z))

of type
0—-50—-(0—501+602) =07 —(07+0>2)

yields the term

L), ®)

3 ((F@2), ;- ulyy), vy 1(y,)))

which does not satisfy conditiofA) sincef @ z does not contain
the variabley.

In the following, we propose three modifications of TDPE tketa
the conditiondA), (B), (C) into account.

6.2.1 Remove dead branches

To ensure the conditiofiB) we will use the following derivable
equations:

8(t, x. 8(t, x7.t1, X2 t2), y. to) = 8(t, x. t;[¥/x1], u. to)

S(t, x. to, y. 8(t, x1.t7, x2.t2)) o(t, x. to, y. tz[y/XZ])
To apply these transformations, notice that the residuadgnam is
an abstract syntax tree built in depth-first manner, frortéefight,
the evaluation being done in call by value. The idea consists
maintaining a global table accounting for the conditionarzhes
in the path from the root of the residual program to the cumpemt
of construction. This table associates a flago(R) and a variable

1°v = Vv (0abasetype)

v =9
1°7TV = letx be afresh variabli Ax.reset(]T (V@ 1T° x))
[TV = pair(["T (m(V), 172 (m2(V)
IRV = (Vo u (T), e (7 x))
M = M (6 a base type)
"Moo= ()
TT7TM = AT (M@)
TO1X02 M = paifT%! (m (M), T°2 (m2(M)))
791192 M = letx; andx, be fresh variables

inshiftc. §(M, x7.reset(c @1 (T9" x71)), x5 reset(c @ 12(T92 x5)))

Figure 4. Type-directed partial evaluation without let insertion.

to an expression in the following way:
TO‘] +02 M =
if M is globally associated to (lz) modulo~
then 11(T°" 2)
else if M is globally associated to (R) modulo~
then 12(7°2 z)
else shift c.
let x; andx, be fresh variables,
associatéM to (L,x;) while computing
ny =reset(17 (T°" x1)),
associatéM to (R,x,) while computing
ny =reset(12(T92 x;)),
in é(M)&]'“]»EZ““Z)

(Note that the test of global association is done moduldhis is
explained in the next section.)

This optimisation, associated with let insertion and otim&mo-
ization techniques, has been used for building a fully laastigl
evaluator from TDPE; see [3].

6.2.2 Forbid redundant discriminators

To enforce the conditiofiC), we write a test of membership of free
variables and implement a test of the congruerscef two normal
terms. There are different ways in which to implement this la
ter test. One method is to define, in a mutually recursiveidash
three testsv,, , ~4;, and~,, that respectively test the equiva-
lence between pure neutral terms, pure normal terms, amdahor
terms along the following lines.

e The test~,, is done by structural recursion, using the test
~q in the case of applications.

e The testr, . is done by structural recursion, using the test
~q in the case of abstractions.

e The testN ~,, N’ inspects the set of paths given by all
possible branchings in discriminators containing the dsiar

of N, and collects the sequence of guards together with the

end pure normal formN,. For each of these paths, it

proceeds according to the following sub-testNif is a pure
normal term then check whethdl, ~,. N’, otherwise, for
N’ of the forms(M',x. N/ ,y.N}), there are three possibil-
ities: if M/ is in the pathp up to ~ 4y, and the path branches
left (resp. right) the sub-test is repeated %} (resp.N}) in-
stead ofN’, however, ifM" is not in the pattp up to=,,,
the sub-test is repeated for bath; and N} instead ofN’,
succeeding if both of these sub-tests do.

Note that conditionC) does not need to be checked recursively
within the branches of the discriminator; since, as TDPHdsuthe
normal form in depth-first manner, it is known that each bhanc
satisfies it.

6.2.3 Fix the relative positions of abstractions and
discriminators

To obtain terms in normal form, we must also check the condi-
tion (A) concerning the guards of abstractions.

For that, let us look at the example in (5). We want to intraduc
thed(g @t, ...) aboveldy ... However ashift always returns to
the precedingeset. Thus, it would be necessary to be able to name
eachreset and to choose the best one at the time of introducing the
b. This is what the control operatocspto/set, introduced in [19],
allow us to do.

Set and cupto. The control operatorset andcupto are very pow-
erful, and generalise exceptions and continuations. Hergive
the idea of how they work on an example. For details see [19, 18

The operatorset/cupto rely on the concept gbrompt that allows
marking the occurrences eét. New prompts can be created upon
request. For two prompts; andp,, one can write an expression
like the following one

1+setpyjin2+setpyin3 4 cuptopyascin(4 + (¢5))
which evaluates té + 4 + (2 + 3 +5).

Application to TDPE. To useset/cupto to address the problem of

fixing the relative position of abstractions and discrinima, we
must create a new prompt with each created dynami€urther,
we maintain a global list associating to each prompt a setnf v
ables. To introduce a ne®, we look for all the free variables of
its condition, and look in this list for the last prompt inteced to
which one of these variables is associated. Since the tdomilisn
depth first manner and from left to right, one obtains a cldeeti.

We thus modify the algorithm of TDPE in the following way:

1°7TV = et x be afresh variable andbe a new prompt
in Ax.setpin T (V@7T° x)
T91+t%2 M = let m be the best prompt for M

in cupto m as c
in let x; andx, be fresh variables,
ny =setmin(c@u (77" x1)),
ny =setmin (c @ 12(T°2 x3)),
in 8(M, x7.n1, x3.12)

The complete algorithm is presented in Figure 5.

6.2.4 Two examples

1. We show the application of the optimised partial evaluatahe
example of the introduction.

let exanple f g z x =
match (match x with
Left x1 -> Left z
| Right x2 ->Right (g 2))
with
Left y1 -> (f (g y1))
| Right y2 -> (f y2);;

val exanple :
("a->'b) ->('c->"a) ->
'c->('d, 'e) sum->"b = <fun>

To use a type directed partial evaluator, one has to pase tevtil-
uator a representation of the type of the term to be evaludteere

are different approaches to representing types. Here wdhase

approach pioneered by Filinski, who represents types vigbia-
tors, so that
("a->"b) ->('c

->'a) ->'c->('d, 'e) sum->"b

becomes

((base **-> base) **->
((base **-> base) **->
(base **-> ((sum (base, base)) **-> base))))

which we abbreviate below asnbi nat ort ype.

The application of the partial evaluator basedsbift/reset yields:

tdpesr conbinatortype exanple;;
- . Shiftreset.ans =
(fun vO vl v2 v3 ->
(match v3 with
| Left v4 -> (vO (vl v2))
| Right v4 ->(v0 (vl v2))))

whilst the partial evaluator based on cupto produces thieadkes

result:

tdpecupto conbinatortype exanple;;
Nor mal . normal =

(funf gz x->(f (g2))

2. We now test the partial evaluator on an example suggestesl to u
by Filinski.

For every endofunctiofi on a two-element set, the identify = f
holds. We give a proof of this fact in the equational theoryhef
typed lambda calculus with sums by establishing the idgntit

Af:(14+1) = (1+1).Ax: 1+ 1. £(f(fx))
= AM:(141) > (1+1).f

in the equational theory using the partial evaluator.
Defining

let fff f x =
val fff : ("a->

FOf(F X))

a) ->'a->"a = <fun>

and

let bool = sum (unit,unit);;

we want that the normalisation bff of type
(bool -> bool) -> bool -> bool

is (the normal form of) the identity.

Normalisingf f f by the TDPE withshift/reset gives the following
(uninformative) result.

tdpesr
((bool **-> bool) **-> (bool **-> bool)) fff;;
. Shiftreset.ans = (fun v0 vl ->
(match vl with

| Left v2 ->
(match (vO (Left ())) with
| Left vi10 ->

(match (vO (Left
| Left

())) with
v14 -> (match (v0 (Left

| Left ()
| Right vié -> (Right ()

())) wit

1

| Right vi4 -> (match (vO (Right ())) with
)

)

v16 -> (Left

| Left v15 -> (Left
| Right vi5 -> (Right
| Right v10 ->
(match (vO (Right ())) with

| Left wv11 -> (match (vO (Left ())) wi

t
| Left vi13 -> (Left ())
| Right vi3 -> (Right ()))
| Right vil -> (match (vO (Right ())) with
| Left vi12 -> (Left ())
| Right vi2 -> (Right ()))))
| Right v2 ->
(match (vO (Right ())) with
| Left v3 ->

(match (vO (Left
| Left

())) with
v7 -> (match (vO (Left ()))

Wi
| Left v9 -> (Left ())
| Right v9 -> (Right ())

| Right v7 -> (match (vO (Right ())) wi

| Left v8 -> (Left ())

1°v = v

v =9
1°7TV = et x be afresh variable angda new promptin Ax.setpin|™ (V@ T° x)
[TV = pair([™" (m(V), 72 (m2(V))
1TV = 5(Vix ull™ x), x2. 12(172 x2))
M = M
"Moo=)
T77TM = AT (M@ x)
T2 M = pai(T! (m (M), 192 (m2(M)))
T91t92 M = if M is globally associated to (lz) modulo~
then (T z)
else if M is globally associated to (R) modulo~
then (772 z)
else let m be the best prompt for M
in cuptomasc
in let x; andx, be fresh variables
associatéM to (L, x7) while computingn; = setmin (¢ @ t1(T°" x7))
associatéM to (R, x,) while computingn, = setmin (c @ (7°2 x,))
in if x1 €FV(n1),x2 € FV(ny), andny ~n,
then m;
else é(M> X1.M71, X2. le)
Figure 5. Optimised type-directed normalisation.
| Right v8 -> (Right ()))) 7 Concluding remarks
| Right v3 ->
(match (vO (Right ())) with We have presented a notion of normal term for the typed lambda
| Left v4 -> (mtch (vO (Left ())) with calculus with sums and proved that every term of the calcidus
| Left v6 -> (Left ()) equivalent to one in normal form. Further, we have used ties t
| Right v6 -> (Right ())) oretical development as the basis to implement a partidieiar
| Right v4 -> (match (vO (Right ())) with that provides a reductionless normalisation proceduréhtyped

| Left v5 -> (Left ())
0)

| Right v5-> (Right ()))))))

The result of normalisingf f with the partial evaluator based on
cupto is the residualisation of the identity:

tdpecupto
((bool **-> bool) **-> (bool **-> bool)) fff;;
Nor mal . normal =

(fun v0 ->
(match (vO (Left ())) with
| Left v4 ->

(match (vO (Right ())) with
| Left v6 -> (fun vl -> (Left
| Right v7 ->
(fun vl -> (match vl with
| Left v2 -> (Left ())
| Right v3 -> (Right ()))))

0))

| Right v ->
(match (vO (Right ())) with
| Left vi10 ->
(fun vl -> (match vl with

| Left v2 -> (Righ
| Right v3 -> (Left
| Right vil -> (fun vl -> (Right ())

t

(
())))
))))

lambda calculus with binary sums.

Our partial evaluator is in the style of TDPE. Thus, it can taftgd

on any suitable interpreter, and does not need to examirsrine

ture of the compiled code during normalisation. Its mairgiol-

ity is the use of the control operatosst/cupto to fix the relative
position of abstractions and discriminators. This is thst firon-
trivial exploitation of the extra expressive powersaft/cupto over
shift/reset. The effectiveness of the partial evaluator has been tested
on the very sophisticated terms that come from the studyaf is
morphisms in the typed lambda calculus with sums [15], thedten
previously existing partial evaluators explode.

The new algorithm does not use all the power of the operators
set/cupto. In particular we do not use their ability to code excep-
tions. One could thus use only a restricted version of thpseae
tors. There is, for example, a hierarchical versiosloft/reset [8],

that allows several, but fixed, levels of control. An impleraion
with shift/reset (hierarchical or not) is not obvious.

Acknowledgements. Thanks are due to Xavier Leroy for the
cal I/ cc for Objective Camland to Olivier Danvy, Andrzej Fil-
inski, and Didier Rémy for interesting discussions abauntml
operators.

8 References

(1]

T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Nor-
malization by evaluation for typed lambda calculus with co-
products. InSixteenth Annual IEEE Symposium on Logic in
Computer Sciengepages 203—-210. IEEE Computer Society
Press, 2001.

[2] V.Balatand O. Danvy. Strong normalization by type-diesl

partial evaluation and run-time code generation. Sktond
International Workshop on Types in Compilationumber
1473 in Lecture Notes in Computer Science, pages 240-252.
Springer-Verlag, 1998.

[3] V. Balat and O. Danvy. Memoization in type-directed par-

(4]

(5]

(6]

(7]

(8]

(9]

[10]

tial evaluation. InACM SIGPLAN/SIGSOFT Conference

on Generative Programming and Component Engineering
(GCSE/SAIG)number 2487 in Lecture Notes in Computer

Science, 2002.

U. Berger and H. Schwichtenberg. An inverse of the evalu-
ation functional for typed\-calculus. InSixth Annual IEEE
Symposium on Logic in Computer Scienpages 203—-211.
IEEE Computer Society Press, 1991.

O. Danvy. Type-directed partial evaluation. Taventy-Third
Annual ACM Symposium on Principles of Programming Lan-
guages pages 242-257. ACM Press, 1996.

O. Danvy. Type-directed partial evaluation. Partial Evalu-
ation — Practice and Theory; Proceedings of the 1998 DIKU
Summer Schophumber 1706 in Lecture Notes in Computer
Science, pages 367—411. Springer-Verlag, 1998.

O. Danvy and P. Dybjer, editorsPreliminary Proceedings
of the APPSEM Workshop on Normalization by Evalugtion
BRICS Note NS-98-1. Department of Computer Science,
University of Aarhus, 1998.

0. Danvy and A. Filinski. Abstracting control. IACM Con-
ference on Lisp and Functional Programmjngages 151—
160. ACM Press, 1990.

0. Danvy and A. Filinski. Representing control, a studiyre
CPS transformationMSC$ 4(2):361-191, December 1992.

R. Di Cosmo and D. Kesner. Simulating expansions withou
expansions. Mathematical Structures in Computer Science
4:1-48, 1994.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

D. Dougherty. Some lambda calculi with categorical sum
and products. 15t International Conference on Rewriting
Techniques and Applications (RTA-98plume 690 ofLec-
ture Notes in Computer Sciencpages 137-151. Springer-
Verlag, 1993.

D. Dougherty and R. Subrahmanyam. Equality between-fun
tionals in the presence of coproducts. Tenth Annual IEEE
Symposium on Logic in Computer Scienpages 282—-291.
IEEE Computer Society Press, 1995.

D. Dougherty and R. Subrahmanyam. Equality between-fun
tionals in the presence of coproductaformation and Com-
putation 157:52-83, 2000. (An earlier version appeared
as [12]).

M. Fiore. Semantic analysis of normalisation by evalua
tion for typed lambda calculus. Wi International Confer-
ence on Principles and Practice of Declarative Programming
(PPDP 2002) ACM Press, 2002.

M. Fiore, R. Di Cosmo, and V. Balat. Remarks on isomor-
phisms in typed lambda calculi with empty and sum types. In
Seventeenth Annual IEEE Symposium on Logic in Computer
Sciencepages 147-156. IEEE Computer Society Press, 2002.

M. Fiore and A. Simpson. Lambda-definability with sunia v
Grothendieck logical relations. Ifiyped Lambda Calculus
and Applicationsnumber 1581 in Lecture Notes in Computer
Science, pages 147-161. Springer-Verlag, 1999.

N. Ghani.n-equality for coproducts. Iityped Lambda Cal-
culus and Applicationsiumber 902 in Lecture Notes in Com-
puter Science, pages 171-185. Springer-Verlag, 1995.

C. A. Gunter, D. Remy, and J. G. Riecke. Return types for
functional continuations. 1998. (An earlier version appda
as [19]).

C. A. Gunter, D. Remy, and J. G. Riecke. A generalizatib
exceptions and control in ML. IACM Conference on Func-
tional Programming and Computer Architectufe95.

J. Lambek and P. Scotintroduction to higher order categor-
ical logic, volume 7 ofCambridge studies in advanced math-
ematics Cambridge University Press, 1986.

