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Abstract. We prove that confluence and strong normalisation are botutapproperties for the addi-
tion of algebraic term rewriting systems to Girard$ equipped with eitheB-equality or3n-equality.
The key innovation is the use gfexpansions over the more traditiomgtontractions.

We then discuss the difficulties encountered in generaliiase results to type theories with dependent
types. Here confluence remains modular, but results coimgestrong normalisation await further basic
research into the use gfexpansions in dependent type theory.

1 Introduction

A property P is modularfor the combination of rewrite systemys and 75 iff whenever both7;
and7; satisfy P, then so does the combined rewrite systBnu 7. This paper studies the modu-
larity of confluence and strong normalization for combioas of higher order lambda calculi and
algebraic term rewriting systems. That is, does the addaf@ confluent algebraic TRS to a higher
order lambda calculus (with or without rewrite rules fpconversion) produce a system which is
still confluent? Similarly, is the combination of a stronglgrmalising algebraic TRS and a higher
order lambda calculus (again, with or without rewrite rulesn-conversion) still SN? And do
these results generalise to dependent type theories subh &zalculus of Constructions? These
guestions are important from both a theoretical point ofwighere one looks for general results
on combination of rewriting systems, and from a practicahpof view, when one develops higher
order semi-unification algorithms, or establishes the &pnoperties of algebraic-functional lan-
guages.

Tannen [9] showed that strong normalization and conflueredath moldular properties for
the combination of algebraic TRS’s with the simply typed tata calculus equipped with-
reduction. Gallier and Tannen [10, 11] extended these teetulSystem F. Although strong nor-
malisation remains modular in these type theories if we watk both - andn-reductions, con-
fluence is no longer a modular property. For example,isfa base type with constanfs: s — s
and* : s and with a rewrite rulefz = *, then=- is confluent. However, the combination of
= with the contractiven-rewrite rule fails to be confluentz.x < Mz.fx = f. Because
of these problems witly-contractions, later research was restricted to addinge regpressive
TRSs to systems equipped only wigkreduction. In particular, translations into interseattgpe-
assignment systems [3, 29, 26, 6, 5, 7, 4] were used to prevadidularity of strong normalisation
andcompleteness.e. the property of strong normalisation and confluengetteer, with conflu-
ence following from strong normalisation by Newman’s lemrfa far as the authors are aware,
modularity of confluencalonewas not pursued any further and no attempts were made to study
modularity results for calculi equipped witin-equality.

This paper extends the works of Tannen and Gallier in sewags. Firstly, we shall consider
more expressive calculi such as Girarf’s and Coquand and Huet's Calculus of Constructions,
henceforth denoted CoC. We show that confluence is modulahéocombination of algebraic
TRS’s with these calculi (withoug-conversion). As mentioned earlier, these results arerisurp
ingly missing in the literature. Our second contributiortasextend these modularity results to
calculi equipped withgn-equality. This is done by replacing the problematic intetation ofy-
conversion as a contractive rewrite relation with its ma&eent interpretation as an expansionary



rewrite rule. Eta-expansions in the simply typeaalculus were first studied in the 70’s but only
recently they made the object of accurate study in a numbpapérs [1, 16, 13, 19, 27, 17] (for
an up-to-date survey, the interested reader can refer i [is paper relies on Ghani's recent
results orm-expansions i [23] and CoC [22].

2 Extensional and Non-extensionaF¥

We use the standard notions of substitutions, reductiommaloform, confluence, normalization,
etc., from the theory ok-calculus and rewriting systems [8, 14]. Thiee variablesof a term M
are denoted”V (M) and we writeM @ for the result of applying a substitutighto the term/.
The domainof a substitutior is denoteddom(#). If R is a rewrite relation with unique normal
forms, then reduction t&-normal form is denoted | and the uniquék-normal form oft is
denotedR(t). Finally, a relationR commutes withS iff (R*)~';S* C S*;(R*)"! where; is
the usual composition of relations. If two confluent relaiccommute, then their union is also
confluent.

In this section, two versions df“ will be defined.ExtensionalF™” usesgn-equality for type
conversion whilenon-extensionaF“ has only3-equality for type conversion — our presentation
is based on Gallier's [21]. Formally, letbe a distinguished symbol and [EVar andVar be
disjoint sets of type variables and term variables. Thesiahlas are used to define thends
types(also calledype constructonsandtermsof F'“ as follows:

(Kinds) K :=*K - K
(Types) T :=t|T—T\NVt: KT\t : KT|TT
(Terms) M :=z| z: T.M|M M|At : K.M|M[T]
wheret € TVar is a type variable and € Var is a term variable. A term is called astraction
iff it is of the form Az : T.M or At : K.M. In order to ensure that types inhabit unique kinds, we

assign to each type variabl@ unique kind and denote the set of type variables having Kira
TVar (K). This kinding information is used to define the kinding judmnts of ' as follows

teTVar(K) s: Ky teTVar(Kl) t: K1 > Ky s:K;
t: K (At:Ky.8): K1 — Ky ts: Ko

teTVar(K) s:x tix s:%

Vt: K.s: x t—s %

In order to give the typing judgements of extensioR&l we define the usuan-equality relation
on well-kinded types; if two types ands are 3n-equal, we denote this by writing=g3, s. The
following lemma is proved in [23]

Lemmal. Sn-equality over types can be generated by a confluent, syyoragimalizing reduction
relation containings reduction and restricteg-expansions. The unique normal form of a type
is its longsn-normal form and is denoteF(A).

The typing judgements of extensional are defined by the following rules, while the typing
judgements of non-extension&l use onlys-equality for type conversion.

z: T e dom(I") I'-M:t t=g,s s:K
I'-z:T I'-M:s
Iz:t1FM:ty I'-M:ti;—ty I'EN:t
't (Az:t1.M) : t1—ty I'MN :t,y




Ity : KEM :ts I'EM:Vt1: Kty I'kFs: K
I'E Aty : K.M : VYt : K.ty I'= M[s] : to[s/t]

In the rest of this paper, we confine our attention to only ¢htypes that kind check and those
terms that type check. In addition, we increase legibiliydbopping all reference to the context
in which a typing judgement occurs whenever there is no dapigeonfusion arising.

2.1 Eta-expansions inF*

As argued in the introduction, any robust result concernimgmodularity of confluence in the
presence ofi-conversion requires its interpretation as an expansiotd simply typed-calculus,
one permits an expansian=- Az : A.tz providing thatt is neither a\-abstraction nor applied to
another term. This restricted expansion relation is SNfleent and its reflexive, symmetric and
transitive closure igin-equality. Thusin-equality can be decided by reduction to normal form in
this restricted fragment.

However, defining;-expansion inF“ requires further care so as to avoid pitfalls caused by
the presence of multiple typings for terms. For instancenifexpansiol —— Az : A.Mx
is permitted providingVf : A — B, thenn-expansion alone is not even confluent as there are
rewrites

e A Mz ~"—M—">X\¢: AMz

where we only know thal =g, A’ in the type-conversion relation. Worsgexpansion defined
this way does not have unique normal forms and hence the sta#tgy for computing long
normal forms (first contragt redexes and then perform all remaining expansions) wouldnger
be valid. For these reasons we defing@e normalisedorm of n-expansion as follows

x fresh

M : A—C,with A—C' in type normal form
M is not ah-abstraction

M is not applied

M —= )z : A.Mz, if (1)

Note that the existence of type normal forms is assured bynlerh. There is no need for a type-
normalised form of the higher orderrewrite rule because if a term inhabits the typeés K.A
andvt : K'.A’, then we must hav& = K'. Hence our higher order-expansion is:

t fresh

M : (Vt: K.A)

M is not a polymorphic\-abstraction
M is not applied

M ——= (At : K.M[t]) if 2

Definition 2. Let 8 be the rewrite relation consisting of d@lreductions on types and term. Also,
let 7 be the rewrite relation consiting of all restricted expansion types and those expansions
given in rules 1 and 2. The relationis defined by ommiting the restriction to type normal forms
in rule 1. Finally defingsrp = gum andgn = gUn.

Results such as the modularity of confluence and strong risatian are proven first fofn and
then lifted to the more general, via the following lemma.

Lemma 3. The reflexive, symmetric and transitive closure of?™ and —> are both the
usualgn-equality over terms of™.

Proof. Firstly, all , equalitiesM = Az : A.Mz that seem to be forbidden by the restrictions of
—52~ can be obtained bg-reduction ofAz : A.Mz. Thus the reflexive, symmetric, transitive
closure of —22~ s Bn-equality. For the second part of the lemma, notice thaf™ -expansions
are examples of —?~ -expansions. In addition, i/ —~ Az : A.Mz, but A is not a type
normal form, then both of these terms~> -reduce to\z : NHA).Mz.



The major theorems concerniglgy and 57 are

Theorem 4. The rewrite relations3i and 5n are confluent and strongly normalizing to the long
Bn-normal forms. The longn-normal form of a term may be calculated by first contractifig a
[-redexes and then performing any remaining type-normalisexpansions.

3 Modularity Results for F«“

In this section we define algebraic TRSs and show the motlulafriconfluence and strong nor-
malisation for the unions of algebraic TRSs witH. First some definitions.

Definition 5. A signatureX’ consists of disjoint set$ of base typeand F of function symbols
together with a function which assigns to every function bginf € F, atyping of the form
fra1 — ... = a, = a,whereay,...,a,,a € T andn > 0. We say tharity of f isn.

Definition 6. An algebraic rewrite ruleis an ordered paifT, U) of algebraic terms such thatis
not a variable, and every variable Gfalso appears ifi". An algebraic term rewriting syster is
afinite set{ (7}, U;) }7, of algebraic rewrite rules.

Definition 7. Given an algebraic TRT', the associatedlgebraic rewrite relationis the least
binary relation — on terms such that if7,U) € T, 6 is a substitution and is a context,
thenC[T0] —— C[U¥]

Given an algebraic TRS, its union with calculi such#&sis defined as expected. A term of the
union of an algebraic TRS arfd” is algebraicif it is either a variable of base type or has the form
f t1...1,, Wwheref € F has arityn, and every; is an algebraic term. Note that an algebraic term
is always of base type. The key concept in modular term ringris thelayer structure i.e. the
ability to decompose a term constructed from symbols in tlieruof two disjoint signatures into
a term constructed from symbols in only one signature anctlgtsmaller subterms whose head
symbol comes from the other signature. We follow [10] in gdine following defintions relating
to layer structure.

Definition 8. A typing judgementl” - M : s is calledtrunk iff M is of the formf My, ..., M,
wheref is a constant of arity, otherwise it is callechon-trunk

Definition 9. An algebraic trunk decompositioaf a typing judgemeni” - M : s consists of a
typing judgementA + A : s, whereA is an algewbraic term, and a term-valued substitution
such thatM = A¢, dom(¢) = FV(A) and

— Each free variable ial occurs only once
— For eachr € FV(A), the typing judgement’ - ¢(z) : s is non-trunk.

Note that all judgement$’ - M : s are either trunk or non-trunk becausé is of base-
sort. Induction shows that all typing judgememts- M : s have algebraic trunk decompositions
which are unique upto the renaming of the free variabled.olVe therefore write\l = A[¢] for
an algebraic trunk decomposition &f and refer tod as a trunk of the termy/.

Example 1.If f is a binary function symbol andis a non-trunk term, then a trunk decomposition
for the termfaa is fryla/x,a/y]. If g is a unary function symbol andis a constant, then a trunk
decomposition of((Az : s.z)(a)) is gy[(Azx : s.z)(a)/y]

Definition 10. A reductionM = A[¢] —— N is atrunk reduction iff the redex contracted is not
a subterm of one of the(z)’s, otherwise it is anon-trunkreduction.



Example 2.Using the terms of example 1, and given a rewrite ride: — z, there is a trunk
reductionfaa —— a. There is a non-trunk reductigf{(\z : s.z)(a)) —= ga.

Example 2 show two undesirable properties of reductiorstllyjithe presence of non-left linear
rewrite rules means that trunk reductions do not induceatimhs of the trunk of the redex. For
instancefaa — a but there is no reductiofizy ——> z. Also 3-reduction may collapse the
layer structureof a term and hence a non-trunk reduction need not presesveuik of the redex,
eg the trunk ofg((Az : s.z)(a)) is gy but the trunk ofga is ga. We solve the first problem by
introducing a special term variabjé for each sort and then defining a special substitutiaich
maps every term variable of typeto 7°. There is also solution for the second problem.

Lemma ll. Let A¢ be a trunk decomposition fav/

— If M —T= N is not a trunk reduction, then there is an algebraic trunkatepositionN =
A¢' such that for some: € FV(A), ¢(z) — ¢'(z), while for all othery € FV(A),

P(y) = ¢'(y)-

— If M —= N is a trunk reduction, then there is an algebraic trunk decosifion N = A’¢’
such thatAd; — A’y and for everyy € FV(A'), there exists an: € FV(A) such that

¢'(y) = ().

— If M —2~ N, then there is an algebraic trunk decompositibh= A’¢' and for everyy €
FV(A'), there exists am € FV (A) such that eithers(z) — N, and ¢’ (y) is a subterm

of N, or ¢(x) = ¢,(y)

Proof. The lemma is proved by induction on the tefrh

3.1 Modularity of Confluence

The proof strategy of [11] is used to show the modularity affaegence for the combination of
algebraic TRSs with both extensional and non-extensidtal In particular, reduction to long
Bn-normal form inF“ commutes with algebraic reductions.

Lemmal2. If T is a confluent algebraic rewriting system (over algebraieris), then it is con-
fluent over the terms df“ U 7 (mixed terms).

Proof. This proof of [11] generalises tB“ and CoC because tloaly property required of mixed
terms is that the trunk of a term is preserved by non-trunetadaic reductions, as proven in
lemma 11.

Lemma 13. Reduction tg3 normal form commutes w.r.t. algebraic reduction, i.e.

T

Bl Bl

!
!
!

7—_L\V

Proof. See lemma 31 in the appendix for the proof.

These lemmas allow us to derive our first modularity resatnely that of confluence for the
addition of algebraic TRSs to non-extensioi&l. This is a new result as it shows modularity of
confluence alone, and not of confluence and strong normalizetgether as in [7]:

Corollary 14. The union of non-extension&l” with a confluent algebraic TRS is confluent.



Proof. By lemma 13, ift =gy t', theng(t) =7 5(t'). By lemma 12,7 is confluentover mixed
terms Henceg(t) and3(t') have a commofi -reduct and henceandt’ have a common reduct.

Proving that confluence is modular for the addition of algébTRSs to extensiondl™ re-
quires us to relate algebraic rewriting to expansive noiforahs, extending [17]:

Lemma 15. Reduction ta; normal form commutes w.r.t. algebraic reduction, i.e.

Proof. The proof is by induction on the structure of terms. The faeat then normal form of a
term is unigue is necessary for the lemma to hold with anyiff&Ss and not only left-linear ones.

As a consequence of the previous lemmas, we have the foljowin

Corollary 16. Reduction tg77 normal form commutes with algebraic reduction, i.e.

T

B B0l
T 4

—_ - — A

Proof. By theorem 4, the longdn-normal form of a term can be computed by first contracting
all g-redexes and then performing any remaining (restrictedkpansions. Thus the corollary
follows from lemma 13 and lemma 15.

Theorem 17. The union of3i with a confluent algebraic TRS is confluent.
Proof. As in corollary 14 using corollary 16.

Corollary 18. The union ofsn (wheren is not restricted to type normal forms) with a confluent
algebraic TR is confluent.

Proof. If two terms areT’ U 8n equivalent, they ar@ U 57 equivalent and hence by theorem 17
there is d' U 577 completion for these terms. But this is als@ & Bn completion.

3.2 Modularity of Strong Normalization

The relationsgr and 6n were proved confluent and SN in [23] by a modified reducibitty
gument, adapted from traditional reducibility proofs tgeawith the presence of expansionary
n-rewrite rules. Reducibility arguments are designed teeomjth the higher order features at the
level of kinds and type constructors, while the effect ofiagdalgebraic TRSs is only felt at the
level of base types. Thus these reducibility argumentsrgéise to prove the modularity of strong
normalisation for the combination of algebraic TRSs witteasionalF™>.

Lemma 19. If 7 is a SN algebraic TRS, then its extensiorFtois also SN.

Proof. The lemma is proved by induction on the structure of termb wie only interesting case
being atrunk termd/ = A¢. By lemma 11, any infinite reduction sequencéinduces either an
infinite reduction sequence of¢dx), or an infinite reduction sequence 4§. The first possiblity
is impossible by the induction hypothesis, while the seqoossibility is also impossible &5 is
SN on algebraic terms ardl) is algebraic.



We now prove the main result of this section, namely that thieruof a SN algebraic TRS
and g7i-reduction inF“ is SN. The proof follows the modified reduciblity argument23] and
thus we only sketch the general reducibility argument anttentrate instead on the particular
novelties which arise via the addition of algebraic TRSse @efines a notion ofeducibility
candidateandreducibility parameterexactly as in [23] and proves thatdf is a type and is a
reducibility parameter, thefd is a reducibility candidate. The only new case is wiieis a sort
s and here the reducibility candida¢é is defined to be the SN terms of typeThe following pair
of lemmas are the key to completeing the proof.

Lemma 20. If the termstq, ..., t, are SN, then so i$t; ... t,.

Proof. That there are no infinitg7n reduction sequences is proved in [23]. By corollary 16, a
rewrite ft; ...t, = M — N induces a sequence of rewritd§ — N, whereM, and N,

are the longsn-normal forms ofM and N. Close inspection of the proof shows that if the initial
rewrite is of the trunk, then this induced rewrite sequerscefilength at least one. Hence there
can be no infinite reduction sequences containing an infiniteber of trunk rewrites. By lemma
11, all other infinite reduction sequencesfaf .. . ¢, induce infinite reduction sequences of one
of the termst; which is prohibited by assumption.

Lemma?2l. If ¢; is a SN term of sort; fori = 1,---,m, and f has types; — ... — s, where
m < n, thenft, ...t is reducible.

Proof. The proof is by induction on the type of the terfa, ... ¢,,. If this type is a sort, then
we must show thaft; ...t,, is SN under the assumption that each of thare SN. But this is
precisely lemma 20. If however the type ff; ... %,, is of the forms — T, then we must show
that if ¢ is a reducible term of type, then ft, ...%,t is reducible. Since the reducible terms of
type s are exactly the SN ones, this follows from the induction higpeis.

Lemma?22. If T is a SN algebraic TRS, thenso &g U7 andB U T.

Proof. Having defined reducibility candidates as in [23], the promfcludes by showing that if
is an arbitrary termy is a reduciblity parameter, the free term variables afe among; : T and
u; are members of the reducibility candiddig, thent[|0|][u;/z;] is a member of the reducibility
candidateT'd (note|d| is the type-valued substitution underlying the redugigiarametep).

The only new case is whetis of the formft; .. . t,, and one must show ¢, .. . t,)[|0]][u; /z;]
is reducible when each of the termy$|f)||[«;/z;] is reducible. But this follows from lemma 21.
Strong normalisation gf77U T follows by taking the identity substitution and identitydreibility
parameter, while strong normalisation/®t) 7 follows as this is a subrelation ¢f; U 7.

There is a simple trick to extend strong normalisatiornggfu 7 to gn U 7. If t is a term,
let TNKt) be thetype normal fornof ¢, ie the term that is obtained by normalising all the types
. . : . B ., ;
occuring as subterms and Mabstractions irt. A reductiont t" is calledtype inducedff
the redex contracted occurs inside a subtermvaifich is actually a type.

Lemma23. If there is a rewritet —2%“7, then there is a rewritd NH(t) — Y ITNF(t’). If the
original rewrite is not type induced then the final rewrit&jgence is not of zero length.

Proof. The lemma is proved exactly as in [23]
Corollary 24. If T is a SN algebraic TRS, thedny U T is also SN.

Proof. There are no infinite sequences of type induced reductiocaulse reduction on types is
SN. In addition, ift —2*~ #' is type induced, theANF(#) = TNF#'). Thus any infinite3n U T
reduction sequence is mapped by type normalisation to amt@afiz7 U 7 reduction sequence.



4 Modularity for Algebraic TRS and CoC

We have proven a series of modularity results concerningdiaition of algebraic TRSs t6“.
The next logical step is to apply the same ideas to the mucte pawerful Calculus of Con-
structions [12]. Due to lack of space, we cannot introduderit in detail, but we recall that the
most important feature is that the distinction between dyaed terms is blurred and types can
contain terms embedded within them; Jetand n refer to the Calclulus of Constructions rules
in this section. Type dependency introduces infinite radncdequences which are not present in
non-dependent type theories. For example, if we define aimpas by

I'+t:x: AB
I'Ft=Xz: Atz

and define the terniB(z) = (Az : X — X.X)(z), then there is a typing judgement : *, z :
X - X Fz:IIz: B(z).X and hence an infinite reduction sequence

X:xz: X > XFzx=Az:B(zx)rz= X\z: B(Az: B(z).x2).22 = ...

Notice that this example does not use any higher order types@can be formulated in simpler
dependent type theories such as LF. The existence of infadigction sequences such as the one
above forces us to restrict our attention to a type nornalisem of restrictedy-expansion which
we again denote by. Further, let37 be the rewrite relation containing g#treductions and type
normalised restricted expansions gl be defined as iff7 but without the type normal form
requirement.

In F¥ the existence of type normal forms is easy to prove as remtueti the level of types is
defined independently to reduction at the level of terms. él@rin a dependent type theory such
as CoC the existence of longy-normal forms is much harder to prove. One can either use the
standard theory af-contractions as in [20] or prove their existence while dtameously devel-
oping the theory of expansions as in [22]. The following leaisproved in [22] — we conjecture
that 37 is actually SN but a proof awaits further research.

Theorem 25. 57 and n are confluent and weakly normalising to the lgbwg-normal forms.

4.1 Modularity of Confluence

As we have described above, the theory of strong normadizdtir n-expansions in Coc is not
settled. Nevertheless, we can use confluence and weak rratital of 577 to good avail and get
the modularity of confluence for the union of algebraic TR&&@oC.

Lemma 26. Algebraic reduction commutes withnormalization in CoC.
Proof. Asin [11]. Again, see lemma 31.

Corollary 27. If T is a confluent algebraic TRS, théru 7 is also confluent
Proof. As in corollary 14 and using lemma 26

Proving that confluence is modular for the union of algebRSs with extensional CoC
requires another commutation lemma.

Lemma 28. Algebraic reduction commutes withnormalisation.
Proof. Similar to lemma 15.
Corollary 29. If T is a confluent algebraic TRS, théy U 7 and8n U T are also confluent.

Proof. 877 U T is proven confluent by a similar argument to theorem 17 ugiegcommutation
lemmas 26 and 28. The confluencedafu T is proved as in corollary 18.



5 Conclusions

We have proved a variety of modularity results for the coratiom of algebraic TRSs with higher
order typedi-calculi. In generalising the previous results in the &tere, our key innovation is
the use ofj-expansions instead of the more problematimontractions.

There are several directions in which we wish to persue #ssarch. Most importantly we
want a modularity result for strong normalisation for thelitidn of algebraic TRSs to CoC. As
we remarked in the paper, this research awaits further bas@arch into the use gfexpansions
in CoC. In particular we conjecture thaf is SN and we further conjecture that the combination
of a SN algebraic TRS wit77 remains SN.
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A Commutation of algebraic reduction with reduction to 3 or Coc normal form.

In this section we simply reformulate lemma 4.1 of [11] in frmework of non extensiona™
andCoc. It is to be noticed that there is really nothing new in thegbr@as the clever argument
used in that lemma is tight enough to only involve the firsteorilagment of the caculi, so that
extensions to other calculi is straightforward.

In the following, letA —— B be an algebraic rewrite rule, withbeing the sort of the al-
gebraic termA (andB) and @ = =z : S1,...,2, : S, = FV(A) U FV(B) with the s;’s
being the sorts of the variables used in the algebraic r@ealsoz be a chosen variable of type
s1— ... = s, — s. We also suppose a given typing and kinding context that wi¢ fomread-
ability.

We say that a term has the-algebraic property if all occurrences of the variabtdn it are
fully applied, i.e. at the head of a subtem¥; ... P, that possesses the typewith all the P;’'s
possessing the typg. This property is clearly inherited by subterms.

The central property which is needed is the following (wHeyes — n.f. we mean reduction
to n.f. only w.r.t. the first order rul@ while F'“ (resp.Coc)-n.f. is w.r.t the full non extensional
reduction system, which we will also cdillll normal form):

Proposition 30. If Z is an F“ (resp.Coc) normal form having thez-algebraic property, then
X=p-nf(Z % :7.A)2]) and Y =pB—n.f(Z]\T :5.B/2))
are F* (resp.Coc) normal forms and moreoveY ——> Y.

Proof. This is by induction on the size df. SinceZ is a normal form, it must be of the shape
vy ... vg.hTh ... Ty, With v; being either a term variable; : S; with S; a normal form, or a type
variablet; : K.

We have now two cases:



h#zthenX = B —n.f(Z\T : §.A/z]) = \0.hT{ ... T2 andY = B — n.f.(Z\7 :
F.B/z]) = \NU.ATE ... TE with TA = g — n.f.(T;\T : F.4/2]) andTP = 3 —
n.f. (T} @ : 7.B/z]). ButT; is still a full normal form, of size strictly smaller thaii (as at
leasth is removed), and it still possesses thealgebraic property as it is a subterm df. So,
by induction hypothesig! is a full normal form and;* —— TP, henceX is a full normal
formandX ——>Y.

h = z Inthis casek = m and we have that
ZINT 1 F.A)2]) = AT.(AT : FAT ... Ty, — 25 AT.A[T) 21 ... Ty /2]

and
ZINT : §.B/2]) = AT.(\T : §.B)T}... Ty, == AT .B[T\/z1 ... Ty /0]

Then, since ng3-reduction can take place at the junction points of Thewith A, as they
have as type a base soi, = § — n.f.(Z[\7 : 7.A4/z]) = AT .A[T{ )z, ... T2 /z,] and

Y = B —n.f(Z\T : F.B/2]) = \U.B[Tf/z1...TE /z,]. As above, theT” (resp.
T;B) are smaller normal forms thaki (resp.Y’), so by induction hypothesis we have that the
TA and TP are full normal forms and tha&t* —= T.P. Then, bothX andY are full nor-
mal forms and moreovek = AT .A[T{ /... T2 /z,] —=> \T.A[TF/z,... TP /z,]
—— \U.B[T8/z1...TE /x,]. We are done.

Using this crucial result it is then quite easy to show the\edent of Lemma 4.1 of [11]:

Lemma31l. LetA —— B be an algebraic rewrite rule. %/ —— N,thenfnf(M) —=> fnf(N),
wherefn f (M) is the full non-extensional normal form w.t&* or Coc.

Proof. If M —— N, thenM = C[A¢]andN = C[B¢] with ¢ a substitution P, /z1, ..., P,/zy].
Then, for a suitable variableof types; — ... — s, — s, we can write terms

M' =C[zP; ... P)A\T : §.A4/2] and N' =C[zP...P,][]\7 : §.B/7]

s.t. M’ —2= M and N’ =2 N. Now, C[zP; ... P,] has the z-algebraic property, and since
this property is preserved by the non-extensidritalandCoc reductions, alsgn f(C[zP; ... P,])
has it.

Now, we can apply the previous theorem to such a full normahfand obtain that\/” =
B —n.f.(fnf(ClzP...P))\T : .A/z]) andN" = B — n.f.(fnf(ClzP;... B))[\7T :
5 .B/z]) are full normal forms and that/” —== N". SinceM' —> M" (resp.N' —> N"))
and M’ —2> M (resp.N’ —L N), we have, due to confluence 6% and Coc, that M" =
fnf(M)andN" = fnf(N), and we are done.
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