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Abstract. We prove that confluence and strong normalisation are both modular properties for the addi-
tion of algebraic term rewriting systems to Girard’sF! equipped with either�-equality or��-equality.
The key innovation is the use of�-expansions over the more traditional�-contractions.

We then discuss the difficulties encountered in generalising these results to type theories with dependent
types. Here confluence remains modular, but results concerning strong normalisation await further basic
research into the use of�-expansions in dependent type theory.

1 Introduction

A propertyP is modular for the combination of rewrite systemsT
1

andT
2

iff whenever bothT
1

andT
2

satisfyP , then so does the combined rewrite systemT
1

[T

2

. This paper studies the modu-
larity of confluence and strong normalization for combinations of higher order lambda calculi and
algebraic term rewriting systems. That is, does the addition of a confluent algebraic TRS to a higher
order lambda calculus (with or without rewrite rules for�-conversion) produce a system which is
still confluent? Similarly, is the combination of a stronglynormalising algebraic TRS and a higher
order lambda calculus (again, with or without rewrite rulesfor �-conversion) still SN? And do
these results generalise to dependent type theories such asthe Calculus of Constructions? These
questions are important from both a theoretical point of view, where one looks for general results
on combination of rewriting systems, and from a practical point of view, when one develops higher
order semi-unification algorithms, or establishes the formal properties of algebraic-functional lan-
guages.

Tannen [9] showed that strong normalization and confluence are both moldular properties for
the combination of algebraic TRS’s with the simply typed lambda calculus equipped with�-
reduction. Gallier and Tannen [10, 11] extended these results to System F. Although strong nor-
malisation remains modular in these type theories if we workwith both�- and�-reductions, con-
fluence is no longer a modular property. For example, ifs is a base type with constantsf : s! s

and� : s and with a rewrite rulefx ) �, then) is confluent. However, the combination of
) with the contractive�-rewrite rule fails to be confluent:�x:� ( �x:fx ) f . Because
of these problems with�-contractions, later research was restricted to adding more expressive
TRSs to systems equipped only with�-reduction. In particular, translations into intersection type-
assignment systems [3, 29, 26, 6, 5, 7, 4] were used to prove the modularity of strong normalisation
andcompleteness, i.e. the property of strong normalisation and confluence together, with conflu-
ence following from strong normalisation by Newman’s lemma. As far as the authors are aware,
modularity of confluencealonewas not pursued any further and no attempts were made to study
modularity results for calculi equipped with��-equality.

This paper extends the works of Tannen and Gallier in severalways. Firstly, we shall consider
more expressive calculi such as Girard’sF! and Coquand and Huet’s Calculus of Constructions,
henceforth denoted CoC. We show that confluence is modular for the combination of algebraic
TRS’s with these calculi (without�-conversion). As mentioned earlier, these results are surpris-
ingly missing in the literature. Our second contribution isto extend these modularity results to
calculi equipped with��-equality. This is done by replacing the problematic interpretation of�-
conversion as a contractive rewrite relation with its more recent interpretation as an expansionary



rewrite rule. Eta-expansions in the simply typed�-calculus were first studied in the 70’s but only
recently they made the object of accurate study in a number ofpapers [1, 16, 13, 19, 27, 17] (for
an up-to-date survey, the interested reader can refer to [15]). This paper relies on Ghani’s recent
results on�-expansions inF! [23] and CoC [22].

2 Extensional and Non-extensionalF !

We use the standard notions of substitutions, reduction, normal form, confluence, normalization,
etc., from the theory of�-calculus and rewriting systems [8, 14]. Thefree variablesof a termM

are denotedFV (M) and we writeM� for the result of applying a substitution� to the termM .
Thedomainof a substitution� is denoteddom(�). If R is a rewrite relation with unique normal
forms, then reduction toR-normal form is denotedR # and the uniqueR-normal form oft is
denotedR(t). Finally, a relationR commutes withS iff (R

�

)

�1

;S

�

� S

�

; (R

�

)

�1 where; is
the usual composition of relations. If two confluent relations commute, then their union is also
confluent.

In this section, two versions ofF! will be defined.ExtensionalF! uses��-equality for type
conversion whilenon-extensionalF! has only�-equality for type conversion — our presentation
is based on Gallier’s [21]. Formally, let� be a distinguished symbol and letTVar andVar be
disjoint sets of type variables and term variables. These variables are used to define thekinds,
types(also calledtype constructors) andtermsof F! as follows:

(Kinds) K := �jK ! K

(Types) T := tjT!T j8t : K:T j�t : K:T jT T

(Terms) M := xj�x : T:M jMM j�t : K:M jM [T ]

wheret 2 TVar is a type variable andx 2 Var is a term variable. A term is called anabstraction
iff it is of the form �x : T:M or�t : K:M . In order to ensure that types inhabit unique kinds, we
assign to each type variablet a unique kind and denote the set of type variables having kindK as
TVar (K). This kinding information is used to define the kinding judgements ofF! as follows

t 2 TVar (K)

t : K

s : K

2

t 2 TVar (K
1

)

(�t : K

1

:s) : K

1

! K

2

t : K

1

! K

2

s : K

1

ts : K

2

t 2 TVar (K) s : �

8t : K:s : �

t : � s : �

t!s : �

In order to give the typing judgements of extensionalF

! we define the usual��-equality relation
on well-kinded types; if two typest ands are��-equal, we denote this by writingt =

��

s. The
following lemma is proved in [23]

Lemma 1. ��-equality over types can be generated by a confluent, strongly normalizing reduction
relation containing� reduction and restricted�-expansions. The unique normal form of a typeA

is its long��-normal form and is denotedNF(A).

The typing judgements of extensionalF

! are defined by the following rules, while the typing
judgements of non-extensionalF! use only�-equality for type conversion.

x : T 2 dom(� )

� ` x : T

� `M : t t =

��

s s : K

� `M : s

�; x : t

1

`M : t

2

� ` (�x : t

1

:M) : t

1

!t

2

� `M : t

1

!t

2

� ` N : t

1

� `MN : t

2



�; t

1

: K `M : t

2

� ` �t

1

: K:M : 8t

1

: K:t

2

� `M : 8t

1

: K:t

2

� ` s : K

� `M [s] : t

2

[s=t

1

]

In the rest of this paper, we confine our attention to only those types that kind check and those
terms that type check. In addition, we increase legibility by dropping all reference to the context
in which a typing judgement occurs whenever there is no danger of confusion arising.

2.1 Eta-expansions inF!

As argued in the introduction, any robust result concerningthe modularity of confluence in the
presence of�-conversion requires its interpretation as an expansion. In the simply typed�-calculus,
one permits an expansiont) �x : A:tx providing thatt is neither a�-abstraction nor applied to
another term. This restricted expansion relation is SN, confluent and its reflexive, symmetric and
transitive closure is��-equality. Thus��-equality can be decided by reduction to normal form in
this restricted fragment.

However, defining�-expansion inF! requires further care so as to avoid pitfalls caused by
the presence of multiple typings for terms. For instance, ifan expansionM //�

�x : A:Mx

is permitted providingM : A ! B, then�-expansion alone is not even confluent as there are
rewrites

�x : A

0

:Mx

oo �

M

//�

�x : A:Mx

where we only know thatA =

��

A

0 in the type-conversion relation. Worse,�-expansion defined
this way does not have unique normal forms and hence the usualstrategy for computing long
normal forms (first contract� redexes and then perform all remaining expansions) would nolonger
be valid. For these reasons we define atype normalisedform of �-expansion as follows

M

//�

�x : A:Mx; if

8

>

>

>

<

>

>

>

:

x fresh

M : A!C;withA!C in type normal form
M is not a�-abstraction
M is not applied

(1)

Note that the existence of type normal forms is assured by lemma 1. There is no need for a type-
normalised form of the higher order�-rewrite rule because if a term inhabits the types8t : K:A

and8t : K 0

:A

0, then we must haveK = K

0. Hence our higher order�-expansion is:

M

//�

(�t : K:M [t]) if

8

>

>

>

<

>

>

>

:

t fresh

M : (8t : K:A)

M is not a polymorphic�-abstraction
M is not applied

(2)

Definition 2. Let � be the rewrite relation consisting of all�-reductions on types and term. Also,
let � be the rewrite relation consiting of all restricted expansions on types and those expansions
given in rules 1 and 2. The relation� is defined by ommiting the restriction to type normal forms
in rule 1. Finally define�� = � [ � and�� = � [ �.

Results such as the modularity of confluence and strong normalisation are proven first for�� and
then lifted to the more general�� via the following lemma.

Lemma 3. The reflexive, symmetric and transitive closure of //��

and //��

are both the
usual��-equality over terms ofF!.

Proof. Firstly, all � equalitiesM = �x : A:Mx that seem to be forbidden by the restrictions of
//��

can be obtained by�-reduction of�x : A:Mx. Thus the reflexive, symmetric, transitive
closure of //�� is��-equality. For the second part of the lemma, notice that //�� -expansions
are examples of //�� -expansions. In addition, ifM //��

�x : A:Mx, but A is not a type
normal form, then both of these terms //�� -reduce to�x : NF(A):Mx.



The major theorems concerning�� and�� are

Theorem 4. The rewrite relations�� and�� are confluent and strongly normalizing to the long
��-normal forms. The long��-normal form of a term may be calculated by first contracting all
�-redexes and then performing any remaining type-normalised �-expansions.

3 Modularity Results for F !

In this section we define algebraic TRSs and show the modularity of confluence and strong nor-
malisation for the unions of algebraic TRSs withF!. First some definitions.

Definition 5. A signature� consists of disjoint setsT of base typesandF of function symbols
together with a function which assigns to every function symbol f 2 F , a typing of the form
f : �

1

! : : :! �

n

! �, where�
1

; : : : ; �

n

; � 2 T andn � 0. We say thearity of f is n.

Definition 6. An algebraic rewrite ruleis an ordered pair(T;U) of algebraic terms such thatT is
not a variable, and every variable ofU also appears inT . An algebraic term rewriting systemT is
a finite setf(T

i

; U

i

)g

n

i=1

of algebraic rewrite rules.

Definition 7. Given an algebraic TRST , the associatedalgebraic rewrite relationis the least
binary relation //T on terms such that if(T;U) 2 T , � is a substitution andC is a context,
thenC[T�]

//T

C[U�]

Given an algebraic TRS, its union with calculi such asF

! is defined as expected. A term of the
union of an algebraic TRS andF! is algebraicif it is either a variable of base type or has the form
f t

1

: : : t

n

, wheref 2 F has arityn, and everyt
i

is an algebraic term. Note that an algebraic term
is always of base type. The key concept in modular term rewriting is thelayer structure, i.e. the
ability to decompose a term constructed from symbols in the union of two disjoint signatures into
a term constructed from symbols in only one signature and strictly smaller subterms whose head
symbol comes from the other signature. We follow [10] in using the following defintions relating
to layer structure.

Definition 8. A typing judgement� ` M : s is calledtrunk iff M is of the formfM

1

; : : : ;M

k

wheref is a constant of arityk, otherwise it is callednon-trunk.

Definition 9. An algebraic trunk decompositionof a typing judgement� ` M : s consists of a
typing judgement� ` A : s, whereA is an algewbraic term, and a term-valued substitution�

such thatM = A�, dom(�) = FV (A) and

– Each free variable inA occurs only once

– For eachx 2 FV (A), the typing judgement� ` �(x) : s is non-trunk.

Note that all judgements� ` M : s are either trunk or non-trunk becauseM is of base-
sort. Induction shows that all typing judgements� ` M : s have algebraic trunk decompositions
which are unique upto the renaming of the free variables ofA. We therefore writeM = A[�] for
an algebraic trunk decomposition ofM and refer toA as a trunk of the termM .

Example 1.If f is a binary function symbol anda is a non-trunk term, then a trunk decomposition
for the termfaa is fxy[a=x; a=y]. If g is a unary function symbol anda is a constant, then a trunk
decomposition ofg((�x : s:x)(a)) is gy[(�x : s:x)(a)=y]

Definition 10. A reductionM = A[�]

//T

N is atrunk reduction iff the redex contracted is not
a subterm of one of the�(x)’s, otherwise it is anon-trunkreduction.



Example 2.Using the terms of example 1, and given a rewrite rulefxx

//T

x, there is a trunk
reductionfaa //T

a. There is a non-trunk reductiong((�x : s:x)(a))

//�

ga.

Example 2 show two undesirable properties of reduction. Firstly, the presence of non-left linear
rewrite rules means that trunk reductions do not induce reductions of the trunk of the redex. For
instancefaa //T

a but there is no reductionfxy //T

x. Also �-reduction may collapse the
layer structureof a term and hence a non-trunk reduction need not preserve the trunk of the redex,
eg the trunk ofg((�x : s:x)(a)) is gy but the trunk ofga is ga. We solve the first problem by
introducing a special term variable|s for each sort and then defining a special substitution| which
maps every term variable of types to |s. There is also solution for the second problem.

Lemma 11. LetA� be a trunk decomposition forM

– If M //T

N is not a trunk reduction, then there is an algebraic trunk decompositionN =

A�

0 such that for somex 2 FV (A), �(x) //T

�

0

(x), while for all othery 2 FV (A),
�(y) = �

0

(y).

– If M //T

N is a trunk reduction, then there is an algebraic trunk decompositionN = A

0

�

0

such thatA| //T

A

0

| and for everyy 2 FV (A

0

), there exists anx 2 FV (A) such that
�

0

(y) = �(x).

– If M //��

N , then there is an algebraic trunk decompositionN = A

0

�

0 and for everyy 2
FV (A

0

), there exists anx 2 FV (A) such that either�(x) //��

N

x

and�0(y) is a subterm
ofN

x

, or �(x) = �

0

(y)

Proof. The lemma is proved by induction on the termM .

3.1 Modularity of Confluence

The proof strategy of [11] is used to show the modularity of confluence for the combination of
algebraic TRSs with both extensional and non-extensionalF

!. In particular, reduction to long
��-normal form inF! commutes with algebraic reductions.

Lemma 12. If T is a confluent algebraic rewriting system (over algebraic terms), then it is con-
fluent over the terms ofF!

[ T (mixed terms).

Proof. This proof of [11] generalises toF! and CoC because theonlyproperty required of mixed
terms is that the trunk of a term is preserved by non-trunk, algebraic reductions, as proven in
lemma 11.

Lemma 13. Reduction to� normal form commutes w.r.t. algebraic reduction, i.e.

//T

��

�# �#

��
✤

✤

✤

✤

T // //❴❴❴❴

Proof. See lemma 31 in the appendix for the proof.

These lemmas allow us to derive our first modularity result, namely that of confluence for the
addition of algebraic TRSs to non-extensionalF

!. This is a new result as it shows modularity of
confluence alone, and not of confluence and strong normalization together as in [7]:

Corollary 14. The union of non-extensionalF! with a confluent algebraic TRS is confluent.



Proof. By lemma 13, ift =

�[T

t

0, then�(t) =

T

�(t

0

). By lemma 12,T is confluentover mixed
terms. Hence�(t) and�(t0) have a commonT -reduct and hencet andt0 have a common reduct.

Proving that confluence is modular for the addition of algebraic TRSs to extensionalF! re-
quires us to relate algebraic rewriting to expansive normalforms, extending [17]:

Lemma 15. Reduction to� normal form commutes w.r.t. algebraic reduction, i.e.

//T

��

�# �#

��
✤

✤

✤

✤

T //❴❴❴❴

Proof. The proof is by induction on the structure of terms. The fact that the� normal form of a
term is unique is necessary for the lemma to hold with arbitrary TRSs and not only left-linear ones.

As a consequence of the previous lemmas, we have the following

Corollary 16. Reduction to�� normal form commutes with algebraic reduction, i.e.

//T

��

��# ��#

��
✤

✤

✤

✤

T // //❴❴❴❴

Proof. By theorem 4, the long��-normal form of a term can be computed by first contracting
all �-redexes and then performing any remaining (restricted)�-expansions. Thus the corollary
follows from lemma 13 and lemma 15.

Theorem 17. The union of�� with a confluent algebraic TRS is confluent.

Proof. As in corollary 14 using corollary 16.

Corollary 18. The union of�� (where� is not restricted to type normal forms) with a confluent
algebraic TRST is confluent.

Proof. If two terms areT [ �� equivalent, they areT [ �� equivalent and hence by theorem 17
there is aT [ �� completion for these terms. But this is also aT [ �� completion.

3.2 Modularity of Strong Normalization

The relations�� and�� were proved confluent and SN in [23] by a modified reducibilityar-
gument, adapted from traditional reducibility proofs to cope with the presence of expansionary
�-rewrite rules. Reducibility arguments are designed to cope with the higher order features at the
level of kinds and type constructors, while the effect of adding algebraic TRSs is only felt at the
level of base types. Thus these reducibility arguments generalise to prove the modularity of strong
normalisation for the combination of algebraic TRSs with extensionalF!.

Lemma 19. If T is a SN algebraic TRS, then its extension toF

! is also SN.

Proof. The lemma is proved by induction on the structure of terms with the only interesting case
being a trunk termM = A�. By lemma 11, any infinite reduction sequence ofM induces either an
infinite reduction sequence of a�(x), or an infinite reduction sequence ofA|. The first possiblity
is impossible by the induction hypothesis, while the secondpossibility is also impossible asT is
SN on algebraic terms andA| is algebraic.



We now prove the main result of this section, namely that the union of a SN algebraic TRS
and��-reduction inF! is SN. The proof follows the modified reduciblity argument of[23] and
thus we only sketch the general reducibility argument and concentrate instead on the particular
novelties which arise via the addition of algebraic TRSs. One defines a notion ofreducibility
candidateandreducibility parameterexactly as in [23] and proves that ifT is a type and� is a
reducibility parameter, thenT� is a reducibility candidate. The only new case is whenT is a sort
s and here the reducibility candidates� is defined to be the SN terms of types. The following pair
of lemmas are the key to completeing the proof.

Lemma 20. If the termst
1

; : : : ; t

n

are SN, then so isft
1

: : : t

n

.

Proof. That there are no infinite�� reduction sequences is proved in [23]. By corollary 16, a
rewriteft

1

: : : t

n

= M

//T

N induces a sequence of rewritesM
0

//T

�

N

0

whereM
0

andN
0

are the long��-normal forms ofM andN . Close inspection of the proof shows that if the initial
rewrite is of the trunk, then this induced rewrite sequence is of length at least one. Hence there
can be no infinite reduction sequences containing an infinitenumber of trunk rewrites. By lemma
11, all other infinite reduction sequences offt

1

: : : t

n

induce infinite reduction sequences of one
of the termst

i

which is prohibited by assumption.

Lemma 21. If t
i

is a SN term of sorts
i

for i = 1; � � � ;m, andf has types
1

! : : : ! s

n

where
m < n, thenft

1

: : : t

m

is reducible.

Proof. The proof is by induction on the type of the termft
1

: : : t

m

. If this type is a sort, then
we must show thatft

1

: : : t

m

is SN under the assumption that each of thet

i

are SN. But this is
precisely lemma 20. If however the type offt

1

: : : t

m

is of the forms ! T , then we must show
that if t is a reducible term of types, thenft

1

: : : t

m

t is reducible. Since the reducible terms of
types are exactly the SN ones, this follows from the induction hypothesis.

Lemma 22. If T is a SN algebraic TRS, then so are�� [ T and� [ T .

Proof. Having defined reducibility candidates as in [23], the proofconcludes by showing that ift
is an arbitrary term,� is a reduciblity parameter, the free term variables oft are amongx

j

: T

j

and
u

j

are members of the reducibility candidateT
j

�, thent[j�j][u
j

=x

j

] is a member of the reducibility
candidateT� (notej�j is the type-valued substitution underlying the reduciblity parameter�).

The only new case is whent is of the formft
1

: : : t

n

and one must show(ft
1

: : : t

n

)[j�j][u

j

=x

j

]

is reducible when each of the termst
i

[j�j][u

j

=x

j

] is reducible. But this follows from lemma 21.
Strong normalisation of��[T follows by taking the identity substitution and identity reducibility
parameter, while strong normalisation of� [ T follows as this is a subrelation of�� [ T .

There is a simple trick to extend strong normalisation of�� [ T to �� [ T . If t is a term,
let TNF(t) be thetype normal formof t, ie the term that is obtained by normalising all the types
occuring as subterms and in�-abstractions int. A reductiont //��

t

0 is calledtype inducediff
the redex contracted occurs inside a subterm oft which is actually a type.

Lemma 23. If there is a rewritet //�� [ T

t

0, then there is a rewriteTNF(t) //�� [ T

�TNF(t0). If the
original rewrite is not type induced then the final rewrite sequence is not of zero length.

Proof. The lemma is proved exactly as in [23]

Corollary 24. If T is a SN algebraic TRS, then�� [ T is also SN.

Proof. There are no infinite sequences of type induced reductions because reduction on types is
SN. In addition, ift //��

t

0 is type induced, thenTNF(t) = TNF(t0). Thus any infinite�� [ T
reduction sequence is mapped by type normalisation to an infinite�� [ T reduction sequence.



4 Modularity for Algebraic TRS and CoC

We have proven a series of modularity results concerning theaddition of algebraic TRSs toF!.
The next logical step is to apply the same ideas to the much more powerful Calculus of Con-
structions [12]. Due to lack of space, we cannot introduce ithere in detail, but we recall that the
most important feature is that the distinction between types and terms is blurred and types can
contain terms embedded within them; let� and� refer to the Calclulus of Constructions rules
in this section. Type dependency introduces infinite reduction sequences which are not present in
non-dependent type theories. For example, if we define expansions by

� ` t : �x : A:B

� ` t) �x : A:tx

and define the termB(x) = (�z : X ! X:X)(x), then there is a typing judgementX : �; x :

X ! X ` x : �z : B(x):X and hence an infinite reduction sequence

X : �; x : X ! X ` x) �z : B(x):xz ) �z : B(�z : B(x):xz):xz ) : : :

Notice that this example does not use any higher order types and so can be formulated in simpler
dependent type theories such as LF. The existence of infinitereduction sequences such as the one
above forces us to restrict our attention to a type normalised form of restricted�-expansion which
we again denote by�. Further, let�� be the rewrite relation containing all�-reductions and type
normalised restricted expansions and�� be defined as in�� but without the type normal form
requirement.

In F

! the existence of type normal forms is easy to prove as reduction at the level of types is
defined independently to reduction at the level of terms. However in a dependent type theory such
as CoC the existence of long��-normal forms is much harder to prove. One can either use the
standard theory of�-contractions as in [20] or prove their existence while simultaneously devel-
oping the theory of expansions as in [22]. The following lemma is proved in [22] – we conjecture
that�� is actually SN but a proof awaits further research.

Theorem 25. �� and�� are confluent and weakly normalising to the long��-normal forms.

4.1 Modularity of Confluence

As we have described above, the theory of strong normalization for �-expansions in Coc is not
settled. Nevertheless, we can use confluence and weak normalization of�� to good avail and get
the modularity of confluence for the union of algebraic TRSs with CoC.

Lemma 26. Algebraic reduction commutes with�-normalization in CoC.

Proof. As in [11]. Again, see lemma 31.

Corollary 27. If T is a confluent algebraic TRS, then� [ T is also confluent

Proof. As in corollary 14 and using lemma 26

Proving that confluence is modular for the union of algebraicTRSs with extensional CoC
requires another commutation lemma.

Lemma 28. Algebraic reduction commutes with�-normalisation.

Proof. Similar to lemma 15.

Corollary 29. If T is a confluent algebraic TRS, then�� [ T and�� [ T are also confluent.

Proof. �� [ T is proven confluent by a similar argument to theorem 17 using the commutation
lemmas 26 and 28. The confluence of�� [ T is proved as in corollary 18.



5 Conclusions

We have proved a variety of modularity results for the combination of algebraic TRSs with higher
order typed�-calculi. In generalising the previous results in the literature, our key innovation is
the use of�-expansions instead of the more problematic�-contractions.

There are several directions in which we wish to persue this research. Most importantly we
want a modularity result for strong normalisation for the addition of algebraic TRSs to CoC. As
we remarked in the paper, this research awaits further basicresearch into the use of�-expansions
in CoC. In particular we conjecture that�� is SN and we further conjecture that the combination
of a SN algebraic TRS with�� remains SN.
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A Commutation of algebraic reduction with reduction to � or Coc normal form.

In this section we simply reformulate lemma 4.1 of [11] in theframework of non extensionalF!

andCoc. It is to be noticed that there is really nothing new in the proof, as the clever argument
used in that lemma is tight enough to only involve the first order fragment of the caculi, so that
extensions to other calculi is straightforward.

In the following, letA //r

B be an algebraic rewrite rule, withs being the sort of the al-
gebraic termA (andB) and�!x = x

1

: s

1

; : : : ; x

n

: s

n

= FV (A) [ FV (B) with the s
i

’s
being the sorts of the variables used in the algebraic rule. Let alsoz be a chosen variable of type
s

1

! : : : ! s

n

! s. We also suppose a given typing and kinding context that we omit for read-
ability.

We say that a term has thez-algebraic property if all occurrences of the variablez in it are
fully applied, i.e. at the head of a subtermzP

1

: : : P

n

that possesses the types with all theP
i

’s
possessing the types

i

. This property is clearly inherited by subterms.

The central property which is needed is the following (whereby � � n:f: we mean reduction
to n.f. only w.r.t. the first order rule� while F

! (resp.Coc)-n.f. is w.r.t the full non extensional
reduction system, which we will also callfull normal form):

Proposition 30. If Z is anF! (resp.Coc) normal form having thez-algebraicproperty, then

X � � � n:f:(Z[�

�!

x :

�!

s :A=z]) and Y � � � n:f:(Z[�

�!

x :

�!

s :B=z])

areF! (resp.Coc) normal forms and moreoverX //r //
Y .

Proof. This is by induction on the size ofZ. SinceZ is a normal form, it must be of the shape
�v

1

: : : v

k

:hT

1

: : : T

m

with v

i

being either a term variablex
i

: S

i

with S

i

a normal form, or a type
variablet

i

: K.
We have now two cases:



h 6� z thenX � � � n:f:(Z[�

�!

x :

�!

s :A=z]) = �

�!

v :hT

A

1

: : : T

A

m

andY � � � n:f:(Z[�

�!

x :

�!

s :B=z]) = �

�!

v :hT

B

1

: : : T

B

m

with T

A

i

= � � n:f:(T

i

[�

�!

x :

�!

s :A=z]) and TB

i

= � �

n:f:(T

i

[�

�!

x :

�!

s :B=z]). ButT
i

is still a full normal form, of size strictly smaller thanZ (as at
leasth is removed), and it still possesses thez-algebraic property as it is a subterm ofZ. So,
by induction hypothesis,TA

i

is a full normal form andTA

i

//r //
T

B

i

, henceX is a full normal
form andX //r //

Y .

h � z In this case,k = m and we have that

Z[�

�!

x :

�!

s :A=z]) = �

�!

v :(�

�!

x :

�!

s :A)T

1

: : : T

m

//� //
�

�!

v :A[T

1

=x

1

: : : T

m

=x

n

]

and

Z[�

�!

x :

�!

s :B=z]) = �

�!

v :(�

�!

x :

�!

s :B)T

1

: : : T

m

//� //
�

�!

v :B[T

1

=x

1

: : : T

m

=x

n

]

Then, since no�-reduction can take place at the junction points of theT

i

with A, as they
have as type a base sort,X � � � n:f:(Z[�

�!

x :

�!

s :A=z]) = �

�!

v :A[T

A

1

=x

1

: : : T

A

m

=x

n

] and
Y � � � n:f:(Z[�

�!

x :

�!

s :B=z]) = �

�!

v :B[T

B

1

=x

1

: : : T

B

m

=x

n

]. As above, theTA

i

(resp.
T

B

i

) are smaller normal forms thanX (resp.Y ), so by induction hypothesis we have that the
T

A

i

andTB

i

are full normal forms and thatTA

i

//r //
T

B

i

. Then, bothX andY are full nor-
mal forms and moreoverX � �

�!

v :A[T

A

1

=x

1

: : : T

A

m

=x

n

]

//r //
�

�!

v :A[T

B

1

=x

1

: : : T

B

m

=x

n

]

//r

�

�!

v :B[T

B

1

=x

1

: : : T

B

m

=x

n

]. We are done.

Using this crucial result it is then quite easy to show the equivalent of Lemma 4.1 of [11]:

Lemma 31. LetA //r

B be an algebraic rewrite rule. IfM //r

N , thenfnf(M)

//r //
fnf(N),

wherefnf(M) is the full non-extensional normal form w.r.t.F! or Coc.

Proof. If M //r

N , thenM � C[A�] andN � C[B�] with � a substitution[P
1

=x

1

; : : : ; P

n

=x

n

].
Then, for a suitable variablez of types

1

! : : : ! s

n

! s, we can write terms

M

0

� C[zP

1

: : : P

n

][�

�!

x :

�!

s :A=z] and N

0

� C[zP

1

: : : P

n

][�

�!

x :

�!

s :B=z]

s.t.M 0

//� //
M andN 0

//� //
N . Now,C[zP

1

: : : P

n

] has the z-algebraic property, and since
this property is preserved by the non-extensionalF

! andCoc reductions, alsofnf(C[zP

1

: : : P

n

])

has it.
Now, we can apply the previous theorem to such a full normal form and obtain thatM 00

=

� � n:f:(fnf(C[zP

1

: : : P

n

])[�

�!

x :

�!

s :A=z]) andN 00

= � � n:f:(fnf(C[zP

1

: : : P

n

])[�

�!

x :

�!

s :B=z]) are full normal forms and thatM 00

//r //
N

00. SinceM 0

////
M

00 (resp.N 0

////
N

00)
andM 0

//� //
M (resp.N 0

//� //
N ), we have, due to confluence ofF! andCoc, thatM 00

=

fnf(M) andN 00

= fnf(N), and we are done.

This article was processed using the LATEX macro package with LLNCS style


