
Call-by-name versus call-by-value in primitive
recursion: storage operator

Pierre Valarcher∗

Abstract

We study the call-by-value and call-by-name primitive recursion en-
coded in the framework of system T . It has been shown in [2] and [1] that
call-by-name is a better strategy than the call-by-value one when using
functionallity (level one of system T ) : the inf algorithm can not be well
encoded in call-by-value while it has a good complexity in call-by-name.
We study the level 0 of system T (encoding only primitive recursion)
and compare the two strategies. We establish then, that we can simulate
the call-by-value strategy in the call-by-name framework using a storage
operator.

1 Introduction
The set of primitive recursion functions is large enough to define most pro-
grammable functions (those which may be computed in reasonnable time com-
plexity). If we are interested in programming languages that compute this set of
functions, we know that some of them are not expressive enough to implement
efficient algorithms:

• first was done by L. Colson (see [1]) that use denotational semantics (the
used domain is the lazy integer [6]) and proved that though the function
inf that computes the minimum of two integers is obviously a primitive
recursive function (see [14] for a formal definition), there is no way to
represent (in the model of primitive recursive algorithms which are called
PR-combinators) the good algorithm, the one which decreases alternatively
both arguments. He proved an ultimate obstinacy theorem and he showed
that every PR-combinator must choose one (and only one) of its argument
and thus the alternation between arguments is impossible. A constructive
proof of this property is in [3];

• this work has been followed by R. David (see [4]) who developed a new
semantics (the trace of computation) which allows him to prove a new
property (the backtracking property) which is proved for every primitive
recursive algorithm using any kind of data types.

∗LIFAR (EA 2655), Université de Rouen, France. Electronic address:
Pierre.Valarcher@univ-rouen.fr



• L. Colson and D. Fredholm (see [7] and [2]) show that call-by-value strat-
egy (with primitive recursion over lists of integers and with primitive recur-
sion in higher types, called system T of Gödel) does not allow to compute
the good algorithm of the inf function.

• in [12], Y. Moschovakis established a linear lower bounds for the complex-
ity of non-trivial primitive recursive algorithm from piecewise linear given
functions. His main corollary is that logtime algorithms for the greatest
common divisor from such givens (such as Stein’s) cannot matched in ef-
ficiency by primitive recursive algorithms from the same given functions.
He ended by an open problem relative to the classical Euclidan algorithm
(a partial response has been found by L. Van Den Dries, see [5]).

We consider the call-by-value and call-by-name strategies in the primitive re-
cursive framework. Terms are encoded considering level 0 of system T of Gödel.

We try to simulate the behaviour (the reductions) of call-by-value within the
call-by-name strategy using storage operator. A storage operator (first consid-
ered in [10]) is some term that takes as inputs a function f and its argument
a and then computes first this argument (a reduces to some Sn(0)) and then
f Sn(0). This is the opposite of call-by-name strategy.

We will conjecture that one can simulate all call-by-value reductions of prim-
itive recursive term by a call-by-name equivalent term that has the same com-
plexity. We failed to obtain this result but we construct a simulation (a mapping
from term to term that “regularly” maps a term in the call-by-value reduction
to a term in the call-by-name reduction, the two terms computing the same
function). Similarly work has been done by G. Plotkin for the λ–calculus (see
[?]).

1.1 Outline of the paper
We first recall system T of Goedel with the two operational semantics: call-by-
value and call-by-name. We then construct two storage operators (one in level
0 and one in level 1 of system T) and we establish their complexity. Finally,
we give a mapping from terms to terms that allows us to simulate call-by-value
reduction in call-by-name strategy.

2 Goedel’s system T: syntax
Primitive recursive functionals of finite types, also known as Goedel’s T in logic
(see [8, 15]), and as typed lambda calculus with primitive recursive recursion in
higher types in computer science (see [9]), are quite important in both areas.
In the former they are used in proof-theoric studies of Peano arithmetic, in
the latter they can be used to give the formal semantics of some modern kind
(functional) computer programming languages.

2.1 Definition
The types of system T are given by the following inductive definition:

• N is a type (the type of natural numbers)



• if T and U are types, then T → U is a type

As usual, we assume an infinite set of typed variables xT for each type T . The
typed terms of system T are given by the following inductive definition:

• xT : T .

• 0 : N and S(t) : N if t : N.

• If t : T , then λxU t : U → T .

• If t : T → U and u : T , then (tu) : U .

• If t : N, b : T and s : N→ T → T , then recT (t, b, s) : T .

We define by induction the degree ∂(T ) of a type T as follows:

• ∂(N) = 0

• ∂(T → U) = max(∂(T ) + 1, ∂(U))

We now define the degree d(t) of a term t as the maximum degree of types T
such that recT occurs in t. We denote by T0 the set of all terms of degree 0
(those terms define primitive recursive functions) and T1 the set of all terms of
degree 1.

2.2 Examples
• Add1 xN

1 xN
2 = recN (xN

1 , xN
2 , λxNλyNS(y)) : N is a recursive definition

of addition.

• Add2 xN
1 xN

2 = recN (xN
2 , xN

1 , λxNλyNS(y)) : N is another recursive defi-
nition of addition.

• Ack xN
1 xN

2 = recN→N (xN
1 , λyNS(y), λxNλuN→NλyNw) where w is de-

fined by recN (y, (u S(0)), λzNλwN (u w))) x2) is a definition of the Ack-
erman function (which is not primitive recursive).

We now define the evaluation function that maps a program to a value if it
reduces to one.

3 Two operational semantics: call-by-value and
call-by-name

Substitutions are defined as usually.

3.1 Call-by-value reductions
We first define the set of values:

• variables are values;

• Sk(0) is a value (with k > 0);

• λx.t is a value (to allow for weak reduction)



Then, we define the call-by-value one-step-reduction relation between terms as
the smallest relation ⇒ verifying (v, v1, v2 denote values):

(λx.t v)⇒ t[v/x]

recT (0, v1, v2)⇒ v1

recT (S(v), v1, v2)⇒ (v2 v recT (v, v1, v2))

compatible with the context: that is if t⇒ u then

• S(t)⇒ S(u)

• (w t)⇒ (w u)

• (t v)⇒ (u v)

• recT (t, b, s)⇒ recT (u, b, s)

• recT (v, t, s)⇒ recT (v, u, s)

• recT (v, v1, t)⇒ recT (v, v1, u)

We note ⇒∗ the transitive and reflexive closure of ⇒ and ⇒n the nth power of
⇒.

We define the reduction cost (costv (t)) of a term t as the minimal number
of call-by-value one-step-reduction needed to reduce t to its normal form. Recall
that a term is in normal form if there is no more reduction possible.

3.2 Call-by-name reductions
We first define the set of values:

• S(t) is a value for any term t : N

• λx.t is a value

Then, we define the call-by-name one-step-reduction relation between terms as
the smallest relation ⇓ verifying :

(λx.t u) ⇓ t[u/x]

recT (0, b, s) ⇓ b

recT (S(t), b, s) ⇓ (s t recT (t, b, s))

compatible with the context: that is if t ⇓ u then

• S(t) ⇓ S(u)

• (t w) ⇓ (u w)

• recT (t, b, s) ⇓ recT (u, b, s)



We denote by ⇓∗ the reflexive transitive closure of ⇓ and ⇓n the nth power
of ⇓. We define the reduction cost (costn (t)) of a term t as the minimal
number of call-by-name one-step-reduction needed to reduce t to its normal
form. We define costS

n (t) (for t : N) by the minimal number of call-by-name
one-step-reduction needed to reduce t to the first term beginning by a new
S (Sk(t) ⇓costS

n (t) Sk(S(t′)) for k ≥ 0) or, if valueOf(t) = 0 we put costS
n

(t) = costn(t).
Let a0, . . . , ap be a finite sequence such that a = a0, ap = 0 and for all

i 6 p− 1, ai ⇓cost
S
n(ai) S(ai+1) and ap ⇓costn (ap) 0. Then, we have costn(a) =∑i=p

i=0 costS
n(ai).

3.3 Example
Let twice be defined by λxN . add1 x x (= λx.recN (xN , xN , λzNλyN .S(y))) that
computes the twice of natural integers. Let’s compute twice(S2(0)) first with
call-by-value:

⇒ recN (S2(0), S2(0), λzNλyN .S(y))
⇒ (λzλy.S(y)) S(0) recN (S(0), S2(0), λzNλyN .S(y))
⇒ (λzλy.S(y)) S(0) ((λzλy.S(y)) 0 recN (0, S2(0), λzNλyN .S(y)))
⇒ (λzλy.S(y)) S(0) ((λzλy.S(y)) 0 S2(0))
⇒2 (λzλy.S(y)) S(0) S(S2(0))
⇒2 S(S(S2(0))

We have costv(twice(S2(0))) = 8 (in fact 3n + 2 for Sn(0)).
And second in call-by-name twice(S2(0)):

⇓ recN (S2(0), S2(0), λzNλyN .S(y))
⇓ (λzλy.S(y)) S(0) recN (S(0), S2(0), λzNλyN .S(y))
⇓2 S(recN (S(0), S2(0), λzNλyN .S(y)))
⇓ S(λzλy.S(y)) 0 recN (0, S2(0), λzNλyN .S(y)))
⇓2 S(S(recN (0, S2(0), λzNλyN .S(y))))
⇓ S(S(S2(0)))

and we have again costn(twice(S2(0))) = 8 (also 3n + 2).
But we can in the following term:

twice(twice(S2(0))) ⇒8 twice(S4(0))
⇒14 S8(0)

and costv(twice(twice(S2(0)))) = 22 (in fact, costv(twice2(Sn(0)))=9n+4) but



twice(twice(S2(0)))

⇓ recN (twice(S2(0)), twice(S2(0)), λzNλyN .S(y))
⇓ recN (recN (S2(0), S2(0), λzNλyN .S(y))), twice(S2(0)), λzNλyN .S(y))
⇓3 recN (S(recN (S(0), S2(0), λzNλyN .S(y))), twice(S2(0)), λzNλyN .S(y))
⇓ (λzNλyN .S(y))recN (S(0), S2(0), λzNλyN .S(y))

recN (recN (S(0), S2(0), λzNλyN .S(y)), twice(S2(0)), λzNλyN .S(y))
⇓2 S(recN (recN (S(0), S2(0), λzNλyN .S(y)), twice(S2(0)), λzNλyN .S(y)))
⇓3 S(recN (S(recN (0, S2(0), λzNλyN .S(y))), twice(S2(0)), λzNλyN .S(y)))
⇓3 S(S(recN (recN (0, S2(0), λzNλyN .S(y)), twice(S2(0)), λzNλyN .S(y)))
⇓ S(S(recN (S2(0), twice(S2(0)), λzNλyN .S(y)))
⇓7 S(S(S(S(twice(S2(0))))))
⇓8 S(S(S(S(S4(0))))

and we have costn(twice(twice(S2(0)))=30 (we have costn(twice2(Sn(0))=12n+
6).

3.4 Known results
Definition 1 We say that a term t is strongly normalisable iff all sequences
of reduction starting by t are finite.

Theorem 1 All terms of system T are strongly normalisable.

Theorem 2 There is no term in T0 that computes (by name or by value) the
minimum of two natural numbers in O(min).

Theorem 3 There is no term in T1 that computes (by value) the minimum of
two natural numbers in O(min).

We can find proofs in [1] and [2]. But one can construct a T1 term that has the
good complexity in the call-by-name strategy. We show that in the framework
of imperative programming same behaviours occur (see [16] and [13]).

4 Storage Operator
If a : N reduces to the normal form Sn(0), we define valueOf(a) = n. The
notion of storage operator in λ–calculus was introduced by J.L. Krivine in [10]
[11]. It is a term that computes first arguments of term application in call-by-
name strategy:

Definition 2 A storage operator M : (N → T ) → (N → T ) is a term such
that for all term f : N → T and all term a : N if valueOf(a) = n then M f a
⇓∗ f Sn(0).

Proposition 1 Storage operator exists in system T0.



Proof Let M0 be defined by (in equational notation first):

map(f, 0) = 0
map(f, S(n)) = f(n)

mk(0) = S(0)
mk(S(n)) = incr(mk(n))

incr(0) = S(0)
incr(S(n)) = S(S(n))

M0 = λfλa. map(f,mk(a))

In system T this give us:

M0 ≡ λfλa.recN (recN (a, S(0), λxλy.incr(y)), 0, λx2λy2.(f x2))

with incr(y) = recN (y, S(0), λx1λy1.S(S(x1))).
We show first that, if valueOf(a) = n then:

recN (a, S(0), λxλy.incr(y)) ⇓costn(a)+6n+1 Sn+1(0)

1. if valueOf(a) = 0 then

recN (a, S(0), λxλy.incr(y)) ⇓costn(a) recN (0, S(0), λxλy.incr(y)) ⇓ S(0)

2. If valueOf(b) = n and a ⇓costS
n(a) S(b), then recN (a, S(0), λxλy.incr(y))

⇓costS
n(a) recN (S(b), S(0), λxλy.incr(y))

⇓3 incr(recN (b, S(0), λxλy.incr(y)))
⇓costn(b)+6n+1 incr(Sn+1(0)) by HR
⇓3 S(S(Sn(0)))

And finally, we can prove that M0 is a storage operator: M0fa

⇓2 recN (recN (a, S(0), λxλy.incr(y)), 0, λx2λy2.(fx2))
⇓costn(a)+6n+1 recN (Sn+1(0), 0, λx2λy2.(fx2))

⇓ λx2λy2.(fx2)Sn(0)recN (Sn(0), 0, λx2λy2.(fx2))
⇓2 fSn(0)

�

Corollary 1 The storage operator M0 is in T0 and if valueOf(a) = n then

M0fa ⇓costn(a)+6n+6 fSn(0)

One can reduce the complexity of the reduction using one level of system T .

Proposition 2 There exists a strorage operator in T1.



Proof Let M1 ∈ T1 defined by (in equational definition first):

M1 = λfλa.M ′
1(f, a, 0)

M ′
1(f, 0, p) = f(p)

M ′
1(f, S(n), p) = M ′

1(f, n, S(p))

Which, in T1, gives1:

M1 ≡ λfλa.(recN→N (a, λz.fz, λxλyλz.y S(z)) 0)

Let M ′
1 = λfλa.recN→N (a, λz.f z, λxλyλz.y S(z)) then we prove that, if

valueOf(a) = n

then

for all p recN→N (a, λz.fz, λxλyλz.y S(z)) p ⇓costn(a)+4n+2 f Sn(p)

by induction on valueOf(a).

1. If valueOf(a) = 0 then recN→N (a, λz.f z, λxλyλz.y S(z)) p

⇓costn(a) recN→N (0, λz.f z, λxλyλz.y S(z)) p
⇓ (λz.f z) p
⇓ f p

2. if valueOf(b) = n and a ⇓costS
n(a) S(b) with

recN→N (b, λz.f z, λxλyλz.y S(z)) q ⇓costn(b)+4n+2 Sn(q)

then recN→N (a, λz.f z, λxλyλz.y S(z)) p

⇓costS
n(a) recN→N (S(b), λz.f z, λxλyλz.y S(z)) p

⇓ (λxλyλz.y S(z)) brecN→N (b, λz.f z, λxλyλz.y S(z)) p

⇓3 recN→N (b, λz.f z, λxλyλz.y S(z)) S(p)
⇓costn(b)+4n+2 fSn(S(p)) by HR

≡ fSn+1(p)

And since M1 f a = M ′
1 f a 0 we get M1 f a ⇓costn(a)+4n+4 fSn(0). �

Corollary 2 The storage operator M1 is in T1 and if valueOf(a) = n then

M1fa ⇓costn(a)+4n+4 fSn(0)
1In fact, we can translate a primitive recursive definition with variable parameters (PRV

for short, [14]) in a term representable in T1. Let f be defined by:

f(0, y) = g(y)

f(S(n), y) = h(n, f(n, j(n, y)), y)

with g, h and j in PRV. Then f is computable by the term: f̂ =
recN→N (n, λz.g z, λxλyλz.h x (y (j x z)) z.



Remark 1 It is an open problem to find a better storage operator in this frame-
work.

Example 1 Let us recall the twice term, then we have:

λx. twice(twice(Sp(0))⇒3p+2 λx. twice(S2p(0))

⇒6p+2+1 S4p(0)(which gives 9p + 5 steps)

and
M1λx. twice(twice(Sp(0))) ⇓3p+2+8p+4 λx. twice S2p(0)

⇓6p+2+1 S4p(0)(17p + 9 steps)

Notice that
λx. twice(twice(Sp(0)) ⇓12p+6 S4p(0)

As we can note, our storage operator doesn’t allow us to simulate call-by-
value without loss of complexity in the call-by-name framework. That is a
challenge to find a map φ from term to term such that

costn(φ(t)) ∈ O(costv(t))

Despite this, we show a translation from term to term that allows us to simulate
the call-by-value reduction in the call-by-name one in T0 using this storage
operator (Primitive recursion framework).

5 Application : Simulating cbv Primitive Recur-
sion

We say that a term t′ simulates another term t if sufficiently enough the reduces
of t “match“ reduces of t′. More formally

Definition 3 Let →a and →b be two distincts reductions (strategies), let t and
t′ be two closed terms and φ a mapping from term to term. We say that t′

simulates t if there exists t1, . . . , tn such that t = t1 →∗
a t2 →∗

a . . . →∗
a tn =

valueOf(t) then there exists u1, . . . , un such that if t′ = u1 →∗
b u2 →∗

b . . . →∗
b

un = valueOf(t) and ui = φ(ti) (we say then that ui φ-matches ti).

Remark 2 Two terms that are extensionally equals simulate one each other.
More is the size of the set of matches terms more the simulation is fine. (See [16]
for a step-lock simulation of call-by-value Loop programming and call-by-value
T ).

From now on, we try to translate a term t in T0 into another term t′ (in T0

or T1) such that t′ evaluated by name has the similar behaviour than term t
evaluated by value. We define the ∗ translation from β-normal form term (of
type N) to term by induction:

x∗i = xi

0∗ = 0
S(t)∗ = S(t∗)

recN (n, b, λyλz.s)∗ = M0(λn.M0(λb.recN (n, b, λy.M0(λz.s∗)))b∗)n∗



Theorem 4 If t : N is a closed β-normal term in T0 then t∗ is in T0 and t∗

by-name simulates t by-value.

Proof by induction on t:

t = xi it’s OK by definition of ∗.

t = S(t′) idem.

t = recN (n, b, λyλz.s) Recall that n̄ = valueOf(n),

recN (n, b, λyλz.s) ⇒∗ recN (n̄, b̄, λyλz.s)
⇒ λyλz.s(n− 1)recN (n− 1, b̄, λyλz.s)
⇒∗ λyλz.s(n− 1)m̄
⇒2 s[y ← n− 1, z ← m̄]

and
t∗ = M0(λn.M0(λb.recN (n, b, λy.M0(λz.s∗)))b∗)n∗

⇓∗ M0(λb.recN (n̄, b, λy.M(λz.s∗)))b∗ by HR
⇓∗ recN (n̄, b̄, λy.M0(λz.s∗))
⇓∗ M0(λz.s∗[y ← n− 1])recN (n− 1, b̄, λy.M0(λz.s∗))
⇓∗ λz.s∗[y ← n− 1]m̄
⇓∗ s∗[y ← n− 1, z ← m̄]

�

We can establish a complexity result, that indicates the problem with the ∗

mapping.

Definition 4 We define the mapping ◦ from term to term by induction on t:

0◦ = 0
x◦i = xi

S(t)◦ = S(t◦)
recN (n, b, λyλz.s)◦ = recN (n◦, b◦, λy.λz.R s◦))

The term R has the effect to reconstruct a natural: recN (n, 0, λyλz.S(z)).
If n is in normal form then costv(R n) ∈ O(n). Then we have:

Theorem 5 Let t : N a closed β-normal term in T0, then t∗ by-name simulates
t◦ by-value and costn(t∗) ∈ O(costv(t◦)).

6 Conclusion and future works
We construct a storage operator in the framework of primitive recursion (rep-
resented by level 0 terms of Gödel system T) and we show that call-by-value
strategy may be simulated by call-by-name strategy using this storage operator.
Unfortunatly, we failed to construct a simulation that preserve complexity.

It is yet an open problem to establish if call-by-name strategy is a better
strategy or not in the framework of primitive recursion or if the two stategies
are incompatible.



References
[1] L. Colson. About primitive recursive algorithms. Theoretical Computer

Science, 83, pp57-69, 1991.

[2] L. Colson and D. Fredholm. System t, call-by-value and the minimum
problem. Theoretical Computer Science, 206, 1998.

[3] T. Coquand. Une preuve directe du théclvorème d’ultime obstination.
Compte Rendus de l’Académie des Sc., 314, Serie I, 1992.

[4] R. David. On the asymptotic behaviour of primitive recursive algorithms.
Theor. Comput. Sci., 266(1-2):159–193, 2001.

[5] L. Van Den Dries. Generating the greatest common divisor, and limitations
of primitive recursive algorithms. to appear in Foundations of Computa-
tional Mathematics, 2003.

[6] Martin Hotzel Escardo. On lazy natural numbers with applications.
SIGACT News, 24(1), 1993.

[7] D. Fredholm. Computing minimum with primitive recursion over lists.
Theoretical Computer Science, 163, 1996.

[8] K. Gödel. On a hitherto unexploited extension of the finitary standpoint.
J. Philos. Logic, 9, 1980.

[9] P. Taylor J.Y. Girard, Y. Lafont. Proofs and Types, volume 7. Cambridge
Tracts in Theorical Comp. Sci., 1989.

[10] Jean-Louis Krivine. A general storage theorem for integers in call-by-name
lambda-calculus. Theoretical Computer Science, 129(1):79–94, 1994.

[11] Jean-Louis Krivine. About classical logic and imperative programming.
Annals of Mathematics and Artificial Intelligence, 16:405–414, 1996.

[12] Yiannis N. Moschovakis. On primitive recursive algorithms and the greatest
common divisor function. Theor. Comput. Sci., 301(1-3):1–30, 2003.

[13] B. Patrou P. Andary and P. Valarcher. About implementation of primitive
recursive algorithms. in ASM 2005 workshop, 2005.

[14] Roza Peter. Recursive Functions. Academic Press, 1968.

[15] G. Plotkin. Call-by-name, call-by-value and the lambda–calculus. TCS,
1975.

[16] K. Schütte. Proof theory. Addison Wesley, 1967.

[17] S. Lacas T. Crolard and P. Valarcher. On the expressive power of for-
language. to be submitted to Science of Computer Programming.


