
Simulating expansions without expansions

A propos de la simulation des expansions sans expansions

Roberto Di Cosmo
∗

Delia Kesner
§

Abstract

We add extensional equalities for the functional and product types to the typed λ-calculus
with not only products and terminal object, but also sums and bounded recursion (a version
of recursion that does not allow recursive calls of infinite length). We provide a confluent and
strongly normalizing (thus decidable) rewriting system for the calculus, that stays confluent when
allowing unbounded recursion. For that, we turn the extensional equalities into expansion rules,
and not into contractions as is done traditionally. We first prove the calculus to be weakly
confluent, which is a more complex and interesting task than for the usual λ-calculus. Then
we provide an effective mechanism to simulate expansions without expansion rules, so that the
strong normalization of the calculus can be derived from that of the underlying, traditional, non
extensional system. These results give us the confluence of the full calculus, but we also show
how to deduce confluence directly form our simulation technique, without the weak confluence
property.

Résumé

On ajoute des égalités extensionnelles pour les types flèche et produit au λ-calcul typé avec
produits, sommes, objet terminal et récursivité limitée (une forme de récursivité qui ne permet
pas des appels récursifs de longueur infinie). On fournit un système de réécriture confluent
et fortement normalisable (donc décidable), qui reste confluent quand l’on permet la récursivité
illimitée. Pour cela, on transforme les égalités extensionnelles en règles d’expansion, interprétation
différente de la traditionnelle qui les oriente comme des contractions. On prouve d’abord la
confluence faible du calcul, ce qui est plus difficile et intéressant que pour le λ-calcul usuel.
Ensuite, on donne une méthode effective pour simuler les expansions sans les règles d’expansions,
de telle façon que la normalisation forte du calcul soit réduite à celle du système non extensionnel
traditionnel sousjacent. Ces résultats ainsi obtenus nous permettent de dériver la confluence du
calcul entier, mais on montre aussi comment déduire directement la propriété de confluence à
partir de la technique de simulation, sans avoir recours à la confluence faible.

∗DMI-LIENS (CNRS URA 1347) Ecole Normale Supérieure - 45, Rue d’Ulm - 75230 Paris France
E-mail:dicosmo@dmi.ens.fr

§INRIA Rocquencourt - Domaine de Voluceau, BP 105 - 78153 Le Chesnay Cedex, France and
CNRS and LRI - Bât 490, Université de Paris-Sud - 91405 Orsay Cedex, France
E-mail:kesner@margaux.inria.fr

Contents

1 Introduction 2

2 Survey 2
2.1 Our work . 4

3 The Calculus 4
3.1 Types and Terms . 4
3.2 Equality . 5
3.3 The confluent rewriting system . 6
3.4 Influential Positions . 7
3.5 Adequacy of expansions for extensional equalities . 8
3.6 Basic Properties of the Calculus . 9

4 Weak Confluence 11
4.1 Some difficulties . 11
4.2 Solving Critical Pairs . 11
4.3 From Solved Critical Pairs to Full Weak Confluence 23

5 Strong Normalization 26
5.1 Simulating Expansions without Expansions . 27
5.2 Strong Normalization of the Full Calculus . 42

6 Strong Normalization via stability 42
6.1 Stability . 43
6.2 Properties of stability . 44
6.3 Products, sums and basic recursion . 45
6.4 Abstraction and recursion . 47

7 Strong Normalization via reducibility 49
7.1 Reducibility . 50
7.2 Properties of reducibility . 50

7.2.1 Atomic types . 50
7.2.2 Product types . 51
7.2.3 Arrow types . 51
7.2.4 Sum types . 51

7.3 Reducibility theorem . 52

8 Confluence of the Full Calculus 55

9 Adding weak extensionality for the sum type 56

10 Conclusion and Future Work 57

1

1 Introduction

Over the past years there has been a growing interest in the properties of λ-calculus extended with
various different type constructors, in particular pairs and sums, used to represent common data
types. For these type constructors it is customary to provide a set of equalities that are then turned
into computation rules: this is the case, for example, of the elimination rules for pairs:

(π1) π1(〈M,N〉) = M (π2) π2(〈M,N〉) = N

They tell us how to operationally compute with objects of these types: if we have a pair 〈M,N〉,
then we can decompose it to access its first or second component.

There is anyway something else that one likes to do with λ-calculus, besides using λ-terms as
programs to be computed: one would like to reason about programs, to prove that they enjoy certain
properties. Here is where extensional equalities come into play. In the case of functions, for example,
since the only operational way to use a function is to apply it to an argument, we do not really want
to consider a term M of function type different from the term λx.Mx where x does not occur free in
M : both terms, when applied to an argument N , give the same result MN . Similarly for pairs, the
only operational way to use a pair is by projecting out the first or the second component, so we do
not want to consider a term M of product type different from the term 〈π1(M), π2(M)〉: the result of
accessing any of these two terms via a first or second projection is the same term π1(M) or π2(M).

These facts can be incorporated in the calculus in the form of equalities, that one can read in at
least two different ways:

• an operational way: these equalities just state possible optimizations of a program. Since a term
〈π1(M), π2(M)〉 is more complex then M , but behaves the same way, it is convenient to replace
all its occurrences by M , as this transformation will yield an equivalent, but more efficient and
smaller program. Similarly, we will replace every occurrence of λx.Mx by M .

• a theoretical way: these equalities state a relation between a program and its type. They just
tell us that whenever a term M has a functional type, then it must really be a function, built
by λ-abstraction, so we ought to replace it by λx.Mx if it is not already a function. Similarly,
a term M of product type has to be really a pair, built via the pair constructor, or otherwise it
must be replaced by 〈π1(M), π2(M)〉.

As we will briefly see in the Survey, a lot of research activity has focused on the operational reading
of these equalities in the tradition of λ-calculus, while only a little on the theoretical one. In this
paper we will show how this last reading of the equalities provides a confluent and strongly normalizing
reduction system for the simply typed λ-calculus with pairs, sums, unit type (or terminal object) and
a bounded recursion operator. We also show that the same reduction system stays confluent when
allowing unbounded recursion, while of course loosing the strong normalization property.

2 Survey

Due to the deep connections between λ-calculus, proof theory and category theory, works on exten-
sional equalities have appeared with different motivations in all these fields.

By far, the best known extensional equality is the η axiom that we informally introduced above,
written in the λ-calculus formalism as

(η) λx.Mx = M provided x is not free in M

This axiom, also known as extensionality , has traditionally been turned into a reduction, carrying
the same name, by orienting the equality from left to right, interpreting operationally equality as a
contraction. Such an interpretation is well behaved as it preserves confluence [CF58].

In the early 70’s, the attention was focusing on products and the extensional rule for pairs, called
surjective pairing, which is the analog for product types of the usual η extensional rule.

(SP) 〈π1(M), π2(M)〉 = M

2

With the previous experience of the η rule, it is easy to understand how, at that time, most of the
people thought that the right way to turn such an equality into a rewrite rule was also from left
to right, as a contraction. But in 1980, J.W. Klop discovered [Klo80] that, if added to the usual
confluent rewrite rules for pure λ-calculus, this interpretation of SP breaks confluence1.

Anyway, this first negative result was shortly after mitigated in [Pot81] for the simply typed λ-
calculus with η and SP contractions, by providing a first proof of confluence and strong normalization,
later on simplified in different ways (see [Tro86] or [GLT90], for example). From then on, the contrac-
tion rule for SP was not considered harmful in a typed framework, until the seminal work by Lambek
and Scott [LS86]. There, the decision problem of the equational theory of Cartesian Closed Categories
(ccc’s) is solved using a particular typed λ-calculus equipped with not only η and SP equalities, but
also with a special type T representing the terminal object of the ccc’s2. This distinguished atomic
type comes with a further extensional axiom asserting that there is exactly one term ∗ of type T:

(Top) M : T = ∗

Now, the type T has the bad property of destroying confluence, if the extensional equalities η and SP
are turned into contraction rules: the following are the critical pairs that arise immediately, as first
pointed out by Obtulowicz, (see [LS86]):

〈π1(x), π2(x)〉 ⇒SP x 〈π1(x), π2(x)〉 ⇒SP x

⇓Top ⇓Top

〈∗, π2(x)〉 〈π1(x), ∗〉

(λx : T.Mx) : T→ A⇒η M (λx : A.Mx) : A→ T⇒η M

⇓Top ⇓Top

(λx : T.M∗) : T→ A (λx : A.∗) : A→ T

It is indeed possible, but not easy, to extend the contractive reduction system in order to recover
confluence. A first step towards such a confluent system was taken by Poigné and Voss, who were
not inspired by category theory, but by the implementation of algebraic data types [PV87]. In their
paper, they study a calculus that includes λ1βηπ∗, and notice that to solve the previous critical
pairs one needs to add an infinite number of reduction rules (that can be anyway finitely described).
Then confluence of such an extended system can be proved by showing weak confluence and strong
normalization. Unfortunately, the critical pair for (λx : A.Mx) : T→ A is missing there, and the
strong normalization proof is incomplete.

More recently, Curien and the first author got interested in a polymorphic extension of λ1βηπ∗,
that arose in the study of the theory of object oriented programming and of isomorphisms of types [CDC91].
They give a complete (infinite) set of reduction rules for the calculus, which is proved confluent using
just weak confluence, weak normalization and some additional properties.

Meanwhile, in the field of proof theory, Prawitz was suggesting [Pra71] to turn these extensional
equalities into expansion rules, rather than contractions. Building on such ideas, but motivated by
the study of coherence problems in category theory, Mints gives a first faulty proof that in the typed
framework expansion rules, if handled with care, are weakly normalizing and preserve confluence of
the typed calculus [Min79]3.

This idea of using expansion rules seems to have passed unnoticed for a long time, even if the
so called η-long normal forms were well known and used in the study of higher order unification
problems [Hue76]: only in these last years there has been a renewed interest in expansion rules. In
recent work [Jay92], still motivated by category theoretic investigation, Jay explores a simply typed

1See [Bar84], p. 403-409 for a short history and references.
2This is the Unit type in languages like ML.
3The same idea is present in [Min77].

3

λ-calculus with just T and a natural number type N as base types, equipped with an induction com-
binator for terms of type N. He introduced expansion rules for η and SP that are exactly the same
as the ones originally used by Mints, and in [JG92] this calculus is proved confluent and strongly
normalizing. Category theory is also the motivation of Cubric [Cub92], who repaired the bug in the
original proof by Mints showing confluence and weak normalization (but not strong normalization).
Other recent related works are [Dou93], who provides another proof of confluence and strong nor-
malization, and [Aka93], where an interesting divide-and-conquer approach is proposed to prove the
same properties.

2.1 Our work

The present paper is inspired by all the previous works, but especially by [Jay92] and [PV87]. We
use expansion rules to provide a confluent rewriting system for the typed λ-calculus with not only
products and terminal object, but also sums and recursion. This result is derived from the confluence
of a restricted system where recursion is bounded (recursive calls of infinite length are not allowed),
which is proved to be weakly confluent and strongly normalizing.

We show that strong normalization of the full system can be reduced to that of the system
without expansion rules, for which the traditional techniques can be used (we give two proofs, one
following [GLT90], and the other following [Kri90]). For that purpose, we show that any one step
reduction in the calculus with expansions can be simulated by a non-empty reduction sequence in
the calculus without expansions. It turns out that this result is powerful enough to prove directly
also the confluence property, as shown in section 8.

Since the reduction with expansion rules is not a congruence, several fundamental properties that
hold for the well known typed λ-calculi have to be reformulated in the expansionary framework in a
different way as we will see in Section 4. For this reason we believe that the system with expansion
rules deserves to be studied much more carefully, so we will undertake the task of proving directly
weak confluence: this will lead us to uncover many of the essential features of this reduction.

We introduce now the calculus and its reduction system in section 3, then we investigate the
key properties of the new reduction system: weak confluence (section 4) and strong normalization
(section 5). In section 8 we derive the confluence property in two different ways and finally in the
conclusion we discuss some further applications of our proof techniques.

An extended abstract of this work can be found in [DCK93].

3 The Calculus

It is now time to introduce the calculus we will deal with in this paper. There are two versions,
one with bounded recursion, and the other with unbounded recursion, that differ just in the term
formation rule and in the equality rule for recursive terms. We will now introduce the calculus with
bounded recursion and then describe how the unbounded version can be obtained from it.

3.1 Types and Terms

The set of types of our calculus contains a distinguished type constant T4, a denumerable set of
atomic or base types, and is closed w.r.t. formation of function, product and sum, i.e. if A and B are
types, then also A→ B, A×B and A+B are types.

For each type A, we fix a denumerable set of variables of that type. We will use x, y, z, . . . to
range over variables, and for a term M we write M : A to mean that M is a term of type A.

The term formation rules of the calculus can then be presented as follows.

4This stands for the terminal object in ccc’s or for the Unit type in languages like ML.

4

Γ ⊢ ∗ : T

1 ≤ i ≤ n and the xi’s are pairwise distinct

x1 : A1, . . . , xn : An ⊢ xi : Ai

Γ, x : A ⊢M : B

Γ ⊢ λx : A.M : A→ B

Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢ (MN) : B

Γ ⊢M : A Γ ⊢ N : B

Γ ⊢ 〈M,N〉 : A×B

Γ ⊢M : B1 ×B2

i = 1, 2

Γ ⊢ πi(M) : Bi

Γ ⊢M : Bi

i = 1, 2

Γ ⊢ ini
B1+B2

(M) : B1 +B2

Γ ⊢ P : A1 +A2 Γ ⊢Mi : Ai → D

Γ ⊢ Case(P,M1,M2) : D

Γ, x : A ⊢M : A

i ≥ 0

Γ ⊢ (rec x : A.M)i : A

We may omit types of variables in λ-abstractions when they are clear from the context writing
λy.M instead of λy : C.M .

Notation 3.1 (Free variables, substitutions) The set of free variables of a term M will be noted
FV (M). It can be defined inductively as follows:

FV (∗) =∅
FV (x) ={x}
FV (OA) =FV (M)
FV (MN) =FV (M) + FV (N)
FV (〈M,N〉) =FV (M) + FV (N)
FV (λx : A.M) =FV (M)− {x}
FV ((rec x : A.M)i) =FV (M)− {x}
FV (in1

C(M)) =FV (M)
FV (in2

C(M)) =FV (M)
FV (π1(M)) =FV (M)
FV (π2(M)) =FV (M)
FV (Case(P,M,N))=FV (P) + FV (M) + FV (N)

We write [N1, . . . , Nn/x1, . . . , xn] (often abbreviated [N/x]) for the typed substitution mapping
each variable xi : Ai to a term Ni : Ai. We write M [N/x] for the term M where each variable xi

free in M is replaced by Ni.

3.2 Equality

Besides the usual identification of terms up to α conversion (i.e. renaming of bound variables), our
calculus is equipped with the following equalities between terms.

5

(β) (λx : A.M)N = M [N/x]
(π1) π1(〈M1,M2〉) = M1

(π2) π2(〈M1,M2〉) = M2

(ρ) Case(in1
C(R),M1,M2) = M1R

Case(in2
C(R),M1,M2) = M2R

(rec) (rec y : C.M)i+1 = M [(rec y : C.M)i/y]

(η) λx : A.Mx = M if

{
x 6∈ FV (M)
M : A→ B

(δ) 〈π1(M), π2(M)〉 = M if M : A×B
(Top) M = ∗ if M : T

The index i that is attached to each rec term is a bound on the depth of the recursive calls that
can originate from it. With such a bound, it is possible to insure the strong normalization of the
associated reduction system.

The unbounded system is obtained from the bounded one by simply erasing all the bound indexes
from the formation and equality rules (and the associated reduction rules). As we will show later, the
bounded system can simulate any finite reduction of the unbounded system, and this fact will make
it easy to extend the confluence result for the bounded system to the unbounded one. For simplicity,
we will explicitly note the bound index only when necessary, dropping it whenever the properties we
discuss hold in both systems.

3.3 The confluent rewriting system

The non extensional equality rules and the rule for T can be turned into a confluent rewriting system
by orienting them from left to right, as follows

(β) (λx : A.M)N −→ M [N/x]
(πi) πi(〈M1,M2〉) −→ Mi, for i = 1, 2
(ρ) Case(ini

C(R),M1,M2) −→ MiR, for i = 1, 2
(rec) (rec y : C.M)i+1 −→ M [(rec y : C.M)i/y], for i ≥ 0
(Top) M −→ ∗ if M : T and M 6= ∗

But when we want to turn the extensional equalities for functions and pairs into expansions, as
explained very clearly by Jay, we must be careful to avoid the following reduction loops:

λx.M ❀ λy.(λx.M)y ❀ λy.M [y/x] =α λx.M
〈M,N〉 ❀ 〈π1(〈M,N〉), π2(〈M,N〉)〉 ❀ 〈M,N〉
MN ❀ (λx.Mx)N ❀ MN
πi(P) ❀ πi(〈π1(P), π2(P)〉) ❀ πi(P)

To break the first two loops we must disallow expansions of terms that are already λ-abstractions
or pairs:

(η) M −→ λx : A.Mx if

{
x 6∈ FV (M)
M : A→ B and M is not a λ-abstraction

(δ) M −→ 〈π1(M), π2(M)〉 if
{

M : A×B and M is not a pair

But this is not enough: to break the last two loops we must also forbid the η expansion of a term
in a context where this term is applied to an argument, and δ expansion of a term when such a term
is the argument of a projection. This means that we cannot define the one-step reduction relation
=⇒ on terms as the least congruence on terms containing the above reductions −→ , as is done
usually. Instead, one defines formally M =⇒M ′ starting from −→ by induction on the structure of
the term. The definition is the same as a congruence closure but for the two last cases.

We will write M
γ1,...,γn
−→ M ′ if M

γi−→M ′, for some i and
¬γ
−→ stands for a −→ step that is not

a γ step. The one-step reduction relation between terms, denoted =⇒ is defined as follows:

6

Definition 3.2 (One-step reduction)
• If M −→M ′, then M =⇒M ′

• If M =⇒M ′, then (rec x : A.M)i =⇒ (rec x : A.M ′)i

Case(M,N,O) =⇒ Case(M ′, N,O) in1
C(M) =⇒ in1

C(M
′) 〈M,N〉 =⇒ 〈M ′, N〉

Case(N,M,O) =⇒ Case(N,M,′ O) in2
C(M) =⇒ in2

C(M
′) 〈N,M〉 =⇒ 〈N,M ′〉

Case(N,O,M) =⇒ Case(N,O,M ′) λ x : A.M =⇒ λ x : A.M ′ NM =⇒ NM ′

• If M =⇒M ′ but M
¬η
−→M ′, then MN =⇒M ′N

• If M =⇒M ′ but M
¬δ
−→M ′, then πi(M) =⇒ πi(M

′) for i = 1, 2

Notation 3.3 The transitive and the reflexive transitive closure of =⇒ are noted =⇒+ and =⇒∗

respectively. Similarly we define
∞

=⇒ ,
∞

=⇒+ and
∞

=⇒∗ for the unbounded system.

We will use some standard notions from the theory of rewriting system, such as redex, normal
form, confluence, weak confluence, strong normalization, etc, without explicitly redefining them here.

3.4 Influential Positions

It is also useful to define a notion of influential positions of a term: informally, a position in a term
is influential if it prevents an expansion rule from being applied at the root of the subterm found at
that position. For example, M occurs at an influential position in the term MN , as η expansion is
forbidden on M , no matters if it is a λ-abstraction or not. Obviously, a position in a term can be
influential for η or for δ, but not for both.

Formally, we define the set P(M) of positions of a term M and we distinguish two subsets of it:
the set of influential positions for η, denoted IPη(M), that prevent the η expansion rule at a subterm
appearing at position u ∈ IPη(M) and the set of influential positions for δ, denoted IPδ(M), that
prevent the δ expansion rule at a subterm appearing at position u ∈ IPδ(M). The concatenation of
the positions u and v is denoted u.v and the concatenation of the position u with the set of positions
S is defined as {u.v | v ∈ S}. When S = ∅, u.S = ∅. Formally:

P(∗) ={ǫ}
P(x) ={ǫ}
P(M1M2) ={ǫ}+ 1.P(M1) + 2.P(M2)
P(〈M1,M2〉) ={ǫ}+ 1.P(M1) + 2.P(M2)
P(λx : A.M) ={ǫ}+ {1}+ 2.P(M)
P(π1(M)) ={ǫ}+ 1.P(M)
P(π2(M)) ={ǫ}+ 1.P(M)
P(Case(P,M,N))={ǫ}+ 1.P(P) + 2.P(M) + 3.P(N)
P((rec y : A.M)i) ={ǫ}+ {1}+ 2.P(M)
P(in1

C(M)) ={ǫ}+ 1.P(M)
P(in2

C(M)) ={ǫ}+ 1.P(M)

IPη(∗) =∅
IPη(x) =∅
IPη(M1M2) ={1}+ 1.IPη(M1) + 2.IPη(M2)
IPη(〈M1,M2〉) =1.IPη(M1) + 2.IPη(M2)
IPη(λx : A.M) ={ǫ}+ 2.IPη(M)
IPη(π1(M)) =1.IPη(M)
IPη(π2(M)) =1.IPη(M)
IPη(Case(P,M,N))=1.IPη(P) + 2.IPη(M) + 3.IPη(N)
IPη((rec y : A.M)i) =2.IPη(M)
IPη(in

1
C(M)) =1.IPη(M)

IPη(in
2
C(M)) =1.IPη(M)

7

IPδ(∗) =∅
IPδ(x) =∅
IPδ(M1M2) =1.IPδ(M1) + 2.IPδ(M2)
IPδ(〈M1,M2〉) ={ǫ}+ 1.IPδ(M1) + 2.IPδ(M2)
IPδ(λx : A.M) =2.IPδ(M)
IPδ(π1(M)) ={1}+ 1.IPδ(M)
IPδ(π2(M)) ={1}+ 1.IPδ(M)
IPδ(Case(P,M,N))=1.IPδ(P) + 2.IPδ(M) + 3.IPδ(N)
IPδ((rec y : A.M)i) =2.IPδ(M)
IPδ(in

1
C(M)) =1.IPδ(M)

IPδ(in
2
C(M)) =1.IPδ(M)

For example:

P(〈xy, 〈π1(x), zx〉〉) ={ǫ, 1, 2, 1.1, 1.2, 2.1, 2.2, 2.1.1, 2.2.1, 2.2.2}
IPη(〈xy, 〈π1(x), zx〉〉)={1.1, 2.2.1}
IPδ(〈xy, 〈π1(x), zx〉〉)={ǫ, 2, 2.1.1}

In general, we will say that u is an influential position of a term M if u ∈ IPη(M) or u ∈ IPδ(M)

3.5 Adequacy of expansions for extensional equalities

First of all, it is necessary to show that the limitations imposed on the reduction system do not make
us loose any valid equality. We will show that the reduction system just introduced really generates
the equalities we defined for the calculus. This comes from the fact that the limitations imposed on
the reductions are introduced exactly to avoid reduction loops.

Theorem 3.4 (=⇒ generates E) The equality E and the reflexive, symmetric and transitive clo-
sure R of =⇒ are the same relation.

Proof.
The fact that R is included in E is evident, as all the reductions rules are derived from the equality

axioms by orienting and restricting them.
What we are left to show is E ⊆ R. It is enough to show that whenever M = N comes from a

single equality axiom, we can either rewrite M to N or N to M (since R is reflexive, symmetric and
transitive, the other cases will follow trivially).

The basic idea of the proof is to associate to each of these equality steps a reduction step in R.
This is done in the obvious way, except in the cases that would violate one of the restrictions imposed
on the expansion rules, which we will solve using exactly the reduction loop that this restriction is
supposed to prevent.

Here are the problematic cases and how to deal with them. We use the usual context notation
C[M] to indicate a particular occurrence of a subterm M of interest in the term C[M].

• C[λx.M] =η C[λy.(λx.M)y]. We cannot associate an η reduction to this equality, as we cannot
expand something that is already an abstraction. But we can associate to it a β reduction from
C[λy.(λx.M)y] to C[λy.M [y/x]] = C[λx.M].

• C[〈M,N〉] =δ 〈π1(〈M,N〉), π2(〈M,N〉)〉]. We cannot expand something that is already a pair,
but we can use the πi’s reduction from 〈π1(〈M,N〉), π2(〈M,N〉)〉] to C[〈M,N〉].

• C[MN] =η C[(λx.Mx)N]. Here we cannot expand M , which is in an influential position, but
again we can use β to go from C[(λx.Mx)N] to C[MN] (recall that x 6∈ FV(M)).

• C[πi(P)] =δ C[πi(〈π1(P), π2(P)〉)]. We cannot expand P , but we can use the πi’s to go to
C[πi(P)] from C[πi(〈π1(P), π2(P)〉)].

✷

8

3.6 Basic Properties of the Calculus

The following two lemmas are used to show that this calculus enjoys the subject reduction property,
which guarantees that reductions preserve types.

Lemma 3.5 If Γ, x : A ⊢M : C and x 6∈ FV (M), then Γ ⊢M : C.

Proof. By induction on M . ✷

Lemma 3.6 If Γ, x : A ⊢M : C and Γ ⊢ N : A, then Γ ⊢M [N/x] : C.

Proof. We show the property by induction on the structure of M
• M ≡ ∗. We have ∗[N/x] = ∗ and Γ ⊢ ∗ : T is an axiom.

• M ≡ x. We have x[N/x] = N and the property trivially holds.

• M ≡ y 6≡ x. We have y[N/x] = y and by lemma 3.5 the property holds.

• M ≡ λy : B.P . We have (λy : B.P)[N/x] = λy : B.(P [N/x]). Since Γ, x : A ⊢ λy : B.P : B →
D comes from Γ, x : A, y : B ⊢ P : D we have by induction hypothesis Γ, y : B ⊢ P [N/x] : D
and thus Γ ⊢ λy : B.(P [N/x]) : B → D.

• M ≡ (M1M2). We have (M1M2)[N/x] = (M1[N/x])(M2[N/x]). Since Γ, x : A ⊢ (M1M2) : C
comes from Γ, x : A ⊢ M1 : A → C and Γ, x : A ⊢ M2 : A, by induction hypothesis Γ ⊢
M1[N/x] : A→ C and Γ ⊢M2[N/x] : A and thus Γ ⊢ (M1[N/x])(M2[N/x]) : C.

• M ≡ 〈M1,M2〉. We have 〈M1,M2〉[N/x] = 〈M1[N/x],M2[N/x]〉. Since Γ, x : A ⊢ 〈M1,M2〉 :
C1 × C2 comes from Γ, x : A ⊢ M1 : C1 and Γ, x : A ⊢ M2 : C2, by induction hypothesis
Γ ⊢M1[N/x] : C1 and Γ ⊢M2[N/x] : C2 and thus Γ ⊢ 〈M1[N/x],M2[N/x]〉 : C1 × C2.

• M ≡ ini
D1+D2

(P), for i = 1, 2. We have ini
D1+D2

(P)[N/x] = ini
D1+D2

(P [N/x]). Since Γ, x :

A ⊢ ini
D1+D2

(P) : D1 +D2 comes from Γ, x : A ⊢ P : Di, by induction hypothesis Γ ⊢ P [N/x] :

Di and thus Γ ⊢ ini
D1+D2

(P [N/x]) : D1 +D2.

• M ≡ πi(P), for i = 1, 2. We have πi(P)[N/x] = πi(P [N/x]). Since Γ, x : A ⊢ πi(P) : Ci

comes from Γ, x : A ⊢ P : C1 × C2, by induction hypothesis Γ ⊢ P [N/x] : C1 × C2, and thus
Γ ⊢ πi(P [N/x]) : Ci.

• M ≡ Case(P,M1,M2). We have Case(P,M1,M2)[N/x] = Case(P [N/x],M1[N/x],M2[N/x]).
Γ, x : A ⊢ Case(P,M1,M2) : C comes from Γ, x : A ⊢ P : B1 +B2, Γ, x : A ⊢M1 : B1 → C and
Γ, x : A ⊢M2 : B2 → C. By induction hypothesis Γ ⊢ P [N/x] : B1+B2, Γ ⊢M1[N/x] : B1 → C
and Γ ⊢M2[N/x] : B2 → C and thus Γ ⊢ Case(P [N/x],M1[N/x],M2[N/x]) : C.

• M ≡ (rec y : C.P)i. We have (rec y : C.P)i[N/x] = (rec y : C.P [N/x])i. Since Γ, x : A ⊢
(rec y : C.P)i : C comes from Γ, x : A, y : C ⊢ P : C, by induction hypothesis Γ, y : C ⊢
P [N/x] : C and thus Γ ⊢ (rec y : C.P [N/x])i : C.

✷

Proposition 3.7 (Subject Reduction) If Γ ⊢ R : C and R =⇒ R′, then Γ ⊢ R′ : C

Proof. We proceed by cases. Let’s see first the case of one external reduction step:

• (λx : A.M)N
β
−→M [N/x]. As Γ ⊢ (λx : A.M)N : C comes from Γ, x : A ⊢ M : C and

Γ ⊢ N : A, then Γ ⊢M [N/x] : C holds by lemma 3.6.

• M
η
−→ λx : A.Mx. As Γ ⊢ M : A → D and Γ, x : A ⊢ x : A, then Γ, x : A ⊢ Mx : D and

Γ ⊢ λx : A.Mx : A→ D.

• M
Top
−→ ∗ and Γ ⊢ ∗ : T is an axiom.

• πi(〈M1,M2〉)
πi−→Mi. We have Γ ⊢ πi(〈M1,M2〉) : Ci if Γ ⊢ 〈M1,M2〉 : C1×C2 and this holds

if Γ ⊢Mi : Ci.

• M
δ
−→ 〈π1(M), π2(M)〉. Since Γ ⊢M : C1×C2, then Γ ⊢ π1(M) : C1 and Γ ⊢ π2(M) : C2 and

thus Γ ⊢ 〈π1(M), π2(M)〉 : C1 × C2.

9

• Case(ini
B1+B2

(P,M1,M2)
ρ
−→MiP . Since Γ ⊢ Case(ini

B1+B2
(P),M1,M2) : C, then Γ ⊢

ini
B1+B2

(P) : B1 +B2, Γ ⊢M1 : B1 → C and Γ ⊢M2 : B2 → C. Then we have Γ ⊢ P : Bi and
Γ ⊢Mi : Bi → C and therefore Γ ⊢MiP : C.

• (rec y : C.M)i+1 rec
−→M [(rec y : C.M)i/y]. Since Γ ⊢ (rec y : C.M)i+1 : C, then Γ, y : C ⊢

M : C and Γ ⊢ (rec y : C.M)i : C. Applying lemma 3.6 Γ ⊢M [(rec y : C.M)i/y] : C.
Now, let’s see the case of one internal reduction step.

• If MN =⇒M ′N , where M =⇒M ′. We have Γ ⊢ MN : C if Γ ⊢ M : A→ C and Γ ⊢ N : A.
By induction hypothesis Γ ⊢M ′ : A→ C and thus Γ ⊢M ′N : C.

• If MN =⇒MN ′, where N =⇒ N ′. We have Γ ⊢ MN : C if Γ ⊢ M : A → C and Γ ⊢ N : A.
By induction hypothesis Γ ⊢ N ′ : A and thus Γ ⊢MN ′ : C.

• λ x : A.M =⇒ λ x : A.M ′, where M =⇒M ′. We have Γ ⊢ λ x : A.M : A → B if Γ, x : A ⊢
M : B. By induction hypothesis Γ, x : A ⊢M ′ : B and thus Γ ⊢ λ x : A.M ′ : A→ B.

• 〈M,N〉 =⇒ 〈M ′, N〉 ifM =⇒M ′. We have Γ ⊢ 〈M,N〉 : C1×C2 if Γ ⊢M : C1 and Γ ⊢ N : C2.
By induction hypothesis Γ ⊢M ′ : C1 and thus Γ ⊢ 〈M ′, N〉 : C1 × C2.

• 〈M,N〉 =⇒ 〈M,N ′〉 if N =⇒ N ′. We have Γ ⊢ 〈M,N〉 : C1×C2 if Γ ⊢M : C1 and Γ ⊢ N : C2.
By induction hypothesis Γ ⊢ N ′ : C2 and thus Γ ⊢ 〈M,N ′〉 : C1 × C2.

• πi(M) =⇒ πi(M
′), for i = 1, 2 where M =⇒M ′. We have Γ ⊢ πi(M) : Ci if Γ ⊢M : C1 ×C2.

By induction hypothesis Γ ⊢M ′ : C1 × C2 and thus Γ ⊢ πi(M
′) : Ci.

• ini
D1+D2

(M) =⇒ ini
D1+D2

(M ′), for i = 1, 2 where M =⇒M ′. We have Γ ⊢ ini
D1+D2

(M) :

D1 + D2 if Γ ⊢ M : Di. By induction hypothesis Γ ⊢ M ′ : Di and thus Γ ⊢ ini
D1+D2

(M ′) :
D1 +D2.

• Case(P,M,N) =⇒ Case(P ′,M,N), where P =⇒ P ′. We have Γ ⊢ Case(P,M,N) : C if
Γ ⊢ P : A+ B, Γ ⊢ M : A → C and Γ ⊢ N : B → C. By induction hypothesis Γ ⊢ P ′ : A+ B
and thus Γ ⊢ Case(P ′,M,N) : C.

• Case(P,M,N) =⇒ Case(P,M ′, N), where M =⇒M ′. We have Γ ⊢ Case(P,M,N) : C if
Γ ⊢ P : A+B, Γ ⊢M : A→ C and Γ ⊢ N : B → C. By induction hypothesis Γ ⊢M ′ : A→ C
and thus Γ ⊢ Case(P,M ′, N) : C.

• Case(P,M,N) =⇒ Case(P,M,N ′), where N =⇒ N ′. We have Γ ⊢ Case(P,M,N) : C if
Γ ⊢ P : A+B, Γ ⊢M : A→ C and Γ ⊢ N : B → C. By induction hypothesis Γ ⊢ N ′ : B → C
and thus Γ ⊢ Case(P,M,N ′) : C.

• (rec x : C.M)i =⇒ (rec x : C.M ′)i, where M =⇒M ′. We have Γ ⊢ (rec x : C.M)i : C if
Γ, x : C ⊢M : C. By induction hypothesis Γ, x : C ⊢M ′ : C and thus Γ ⊢ (rec x : C.M ′)i : C.

✷

Another remarquable property of this calculus can be stated as follows:

Lemma 3.8 If M is in normal form w.r.t. the system without the η, δ and Top rules and M
η,δ,Top
=⇒ R,

then R is in normal form w.r.t. the system without η, δ and Top.

Proof. Suppose M has no β, πi, ρ or rec redexes. Notice first that a ρ redex cannot be created in
R as there is no way to introduce an ini expression using the η, δ and Top rules. The same for rec.
We are left with the following two cases:

• Suppose R has a β redex. Then R ≡ C[(λx.P)N] and since M contains no β redexes, we
have necessarily M ≡ C[SN], P ≡ Sx and S

η
−→ λx.Sx. But this is not possible because η

expansions are not allowed on terms appearing in influential positions for η.

• Suppose R has a πi redex. Then R ≡ C[πi(〈M,N〉)] and since M contains no πi’s redexes, we

have necessarily M ≡ C[πi(T)], M ≡ π1(T), N ≡ π2(T) and T
δ
−→ 〈π1(T), π2(T)〉. But this is

not possible because δ expansions are not allowed on terms appearing in influential positions
for δ.

10

✷

Corollary 3.9 If M is in normal form with respect to the system without the η, δ and Top rules,
then the η − δ − Top normal form of M is in normal form.

4 Weak Confluence

In this section we set off to prove that the reduction system proposed above is actually weakly
confluent, i.e. that whenever M ′ ⇐=M =⇒M ′′ we can find a term M ′′′ s.t. M ′ =⇒∗M ′′′ ∗⇐= M ′′.
The proof is fairly more complex here than in the case of λ-calculus where extensional equalities are
interpreted as contractions, and this is due to the fact that the reduction relation =⇒ introduced
above is not a congruence on terms.

4.1 Some difficulties

In particular, in the simply typed λ−calculus whenever M =⇒∗M ′ then πi(M) =⇒∗ πi(M
′), and

if also N =⇒∗ N ′, then MN =⇒∗M ′N ′, but this is no longer true now: indeed, we have x :
A→ B =⇒ λz : A.xz, but xN cannot reduce to (λz : A.xz)N .

These properties still hold for those reduction sequencesM =⇒∗M ′ that do not involve expansions
at the root:

Remark 4.1

• Let M ≡M0 =⇒M1 =⇒ . . . =⇒Mn−1 =⇒Mn ≡M ′ be a reduction sequence and let N =⇒∗ N ′,
where in the first reduction sequence there are no expansions applied at the root positions of the
Mi’s. Then, MN =⇒∗M ′N ′.

• Let M ≡ M0 =⇒M1 =⇒ . . . =⇒Mn−1 =⇒Mn ≡ M ′ be a reduction sequence where none of
the M ′

is is expanded at the root. Then πi(M) =⇒∗ πi(M
′), for i = 1, 2.

Proof.

• Take the reduction M ≡M0 =⇒ M1 =⇒ . . . =⇒ Mn−1 =⇒ Mn ≡M ′: since there are no
η expansions at the root we can form the reduction sequence MN =⇒ M1N =⇒ . . . =⇒
Mn−1N =⇒MnN ≡M ′N . Then, we take the sequenceN =⇒ N1 =⇒ . . . =⇒ Np−1 =⇒ Np ≡
N ′ and we propagate it on the right of M ′, i.e, M ′N =⇒ M ′N1 =⇒ . . . =⇒ M ′Np−1 =⇒
M ′Np ≡M ′N ′.

• Take the reduction M =⇒M1 =⇒ . . . =⇒Mn−1 =⇒Mn ≡ M ′. Since there are no δ expan-
sions at the root, we can form the reduction sequence πi(M) =⇒ πi(M1) =⇒ . . . =⇒
πi(Mn−1) =⇒ πi(Mn) ≡ πi(M

′).

✷

4.2 Solving Critical Pairs

In this calculus, it is no longer true that reduction is stable by substitution, as in the traditional
λ-calculus:

Remark 4.2
If P =⇒ P ′, N =⇒ N ′, it is not true in general that P [N/x] =⇒∗ P ′[N/x] and P [N/x] =⇒∗ P [N ′/x].

Indeed, x : A→ B =⇒ λz : A.xz, but x[λy : A.w/x] = λy : A.w cannot reduce in our system to
λz : A.(λy : A.w)z = λz : A.xz[λy : A.w/x], and (yM)[x/y] = xM cannot reduce to (λz : A.xz)M =
(yM)[λz : A.xz/y].

We can prove some weaker properties: if P =⇒ P ′, then P [N/x] and P ′[N/x] have a common
reduct (Lemma 4.5), and similarly P [N/x] and P [N ′/x] when N =⇒ N ′ (Lemma 4.6). This suffices
for our purpose of proving weak confluence of the reduction system.

First of all it is useful to recall here a basic property of substitutions that do hold in our calculus.

11

Lemma 4.3 If x 6≡ y and x 6∈ FV (L), then

M [N/x][L/y] = M [L/y][N [L/y]/x]

Lemma 4.4 If P
η,δ,Top
−→ P ′, then P [N/x] =⇒∗ P ′[N/x] or P ′[N/x] =⇒∗ P [N/x]. Moreover, if the

expansion does not take place at the root of P , then there are no expansions at root positions in the
sequences P [N/x] =⇒∗ P ′[N/x] and P ′[N/x] =⇒∗ P [N/x].

Proof.

• P
η
−→ λz.Pz. Then P is not a λ−abstraction, P ′[N/x] = λz.P [N/x]z and there are two possible

cases:

– If P [N/x] is not a λ−abstraction, P [N/x]
η
−→ λz.P [N/x]z since P is of type → and so

P [N/x] is also of type → by lemma 3.6.

– If P [N/x] is a λ−abstraction, then P ≡ x, N ≡ λy.N ′ and:

(λz.xz)[λy.N ′/x] = λz.(λy.N ′)z
β
−→ λz.(N ′[z/y]) =α λy.N ′ = x[λy.N ′/x].

• P
δ
−→ 〈π1(P), π2(P)〉. Then P is not a pair, P ′[N/x] = 〈π1(P [N/x]), π2(P [N/x])〉 and there

are two possible cases:

– If P [N/x] is not a Pair, P [N/x]
δ
−→ 〈π1(P [N/x]), π2(P [N/x])〉 since P is of type × and so

P [N/x] is also of type × by lemma 3.6.

– If P [N/x] is a pair, then P ≡ x and N ≡ 〈N1, N2〉 and:

〈π1(x), π2(x)〉[〈N1, N2〉/x] x[〈N1, N2〉/x]
= =

〈π1(〈N1, N2〉), π2(〈N1, N2〉)〉
π1=⇒ 〈N1, π2(〈N1, N2〉)〉

π2=⇒ 〈N1, N2〉

• P
Top
−→ ∗. Then P [N/x]

Top
−→ ∗ = ∗[N/x] since P is of type T and so P [N/x] is also of type T by

lemma 3.6.

✷

Using the previous Lemma, we can precisely describe the interaction between reductions and
substitutions.

Lemma 4.5 (Substitution Lemma (i))
If P =⇒ P ′, then P [N/x] =⇒∗ P ′[N/x] or P ′[N/x] =⇒∗ P [N/x]. Moreover, if no expansion take
place at the root position of P , then there are no expansions at root positions in the reduction sequences
P [N/x] =⇒∗ P ′[N/x] and P ′[N/x] =⇒∗ P [N/x].

Proof. We show the property by induction on the structure of P .

1. P ≡ ∗. The term ∗ is in normal form and there is no possible reduction.

2. P ≡ y. In this case P
η,δ,Top
−→ P ′ and by lemma 4.4 the property holds.

3. P ≡ λy.Q. Since P
η
−→ P ′ is not possible because P is a λ−abstraction , P

δ
−→ P ′ is neither

possible because P is not of type ×, and P
Top
−→ ∗ is neither possible since P is not of type T,

we have P ′ ≡ λy.Q′, where Q =⇒ Q′. By i.h. Q[N/x] =⇒∗ Q′[N/x] or Q′[N/x] =⇒∗ Q[N/x].

If the first case,

(λy.Q)[N/x] = λy.(Q[N/x]) =⇒∗ λy.(Q′[N/x]) = (λy.Q′)[N/x]

In the second case,

(λy.Q′)[N/x] = λy.(Q′[N/x]) =⇒∗ λy.(Q[N/x]) = (λy.Q)[N/x]

12

4. P ≡ P1P2.There are several cases to consider:

• If P
η,δ,Top
−→ P ′ the property holds by lemma 4.4.

• If P ≡ (λz.P3)P2, then (λz.P3)P2
β
−→ P3[N/x] and

(λz.P3)P2[N/x] = (λz.P3[N/x])P2[N/x]
β
−→ P3[N/x][P2[N/x]/z] =lemma 4.3 P3[P2/z][N/x]

• If P ′ ≡ P
′

1P2, where P1 =⇒ P
′

1. By i.h. P1[N/x] =⇒∗ P
′

1[N/x] or P
′

1[N/x] =⇒∗ P1[N/x].
Suppose the first case holds. Since P1P2 =⇒ P

′

1P2, then P1
η
−→ P

′

1 is not possible and
by lemma 4.4 there are no η expansions at the root positions of the terms appearing in
P1[N/x] =⇒∗ P

′

1[N/x]. We have

(P1P2)[N/x] = P1[N/x]P2[N/x] =⇒∗ P
′

1[N/x]P2[N/x] = (P
′

1P2)[N/x]

In the same way the property holds for the case P
′

1[N/x] =⇒∗ P1[N/x].

• If P ′ ≡ P1P
′

2, where P2 =⇒ P
′

2. By i.h. P2[N/x] =⇒∗ P
′

2[N/x] or P
′

2[N/x] =⇒∗ P2[N/x].
Suppose the first case holds, then

(P1P2)[N/x] = P1[N/x]P2[N/x] =⇒∗ P1[N/x]P
′

2[N/x] = (P1P
′

2)[N/x]

In the same way the property holds for the case P
′

2[N/x] =⇒∗ P2[N/x].

5. P ≡ ini
C1+C2

(Q). Since ini
C1+C2

(Q) is of type C1 +C2, then P
η,δ,Top
−→ P ′ is not possible. There-

fore P ′ ≡ ini
C1+C2

(Q′), where Q =⇒ Q′ and by induction hypothesis Q[N/x] =⇒∗ Q′[N/x] or
Q′[N/x] =⇒∗ Q[N/x].

If the first case,

ini
C1+C2

(Q)[N/x] = ini
C1+C2

(Q[N/x]) =⇒∗ ini
C1+C2

(Q′[N/x]) = ini
C1+C2

(Q′)[N/x]

In the second

ini
C1+C2

(Q′)[N/x] = ini
C1+C2

(Q′[N/x]) =⇒∗ ini
C1+C2

(Q[N/x]) = ini
C1+C2

(Q)[N/x]

6. P ≡ 〈P1, P2〉. Since P
δ
−→ P ′ is not possible because P is a pair, P

η
−→ P ′ is neither possible

because P is not of type →, and P
Top
−→ P ′ is neither possible because P is not of type T, we

have P ′ ≡ 〈P
′

1, P2〉, where P1 =⇒ P
′

1 or P ′ ≡ 〈P1, P
′

2〉, where P2 =⇒ P
′

2.

In the first caseP1[N/x] =⇒∗ P
′

1[N/x] or P
′

1[N/x] =⇒∗ P1[N/x] hold by induction hypothesis
and then either

〈P1, P2〉[N/x] = 〈P1[N/x], P2[N/x]〉 =⇒∗ 〈P
′

1[N/x], P2[N/x]〉 = 〈P
′

1, P2〉[N/x]

or
〈P

′

1, P2〉[N/x] =⇒∗ 〈P1, P2〉[N/x]

In the second case P2[N/x] =⇒∗ P
′

2[N/x] or P
′

2[N/x] =⇒∗ P2[N/x] hold by induction hypothesis
and then

〈P1, P2〉[N/x] = 〈P1[N/x], P2[N/x]〉 =⇒∗ 〈P1[N/x], P
′

2[N/x]〉 = 〈P1, P
′

2〉[N/x]

or
〈P1, P

′

2〉[N/x] =⇒∗ 〈P1, P
′

2〉[N/x]

13

7. P ≡ πi(Q). If P
η,δ,Top
−→ P ′ the property holds by lemma 4.4. If not, P ′ ≡ πi(Q

′), where
Q =⇒ Q′ and by induction hypothesis Q[N/x] =⇒∗ Q′[N/x] or Q′[N/x] =⇒∗ Q[N/x]. Since
πi(Q) =⇒ πi(Q

′), then Q −→ Q′ is not a δ-expansion and thus there are no δ-expansions ap-
pearing at the root positions of the terms in Q[N/x] =⇒∗ Q′[N/x] and Q′[N/x] =⇒∗ Q[N/x]
(first and second case resp.). Therefore either

πi(Q)[N/x] = πi(Q[N/x]) =⇒∗ πi(Q
′[N/x]) = πi(Q

′)[N/x]

or
πi(Q

′)[N/x] =⇒∗ πi(Q)[N/x]

8. P ≡ Case(Q,M1,M2). If P
η,δ,Top
−→ P ′ the property holds by lemma 4.4. If not, there are five

possibilities:

• Q ≡ ini
B1+B2

(R) and Case(ini
B1+B2

(R),M1,M2)
ρ
=⇒∗MiR. Since

Case(ini
B1+B2

(R),M1,M2)[N/x] = Case(ini
B1+B2

(R[N/x]),M1[N/x],M2[N/x])

and this last term reduces by a ρ-rule to Mi[N/x]R[N/x] = (MiR)[N/x] the property
holds.

• P ′ ≡ Case(Q′,M1,M2), where Q =⇒ Q′. By induction hypothesis Q[N/x] =⇒∗ Q′[N/x]
or Q′[N/x] =⇒∗ Q[N/x].

In the first case

Case(Q,M1,M2)[N/x] Case(Q′,M1,M2)[N/x]
= =

Case(Q[N/x],M1[N/x],M2[N/x]) =⇒∗ Case(Q′[N/x],M1[N/x],M2[N/x])

In the second case Case(Q′,M1,M2)[N/x] =⇒∗ Case(Q,M1,M2)[N/x].

• P ′ ≡ Case(Q,M
′

1,M2), whereM1 =⇒M
′

1. By induction hypothesisM1[N/x] =⇒∗M
′

1[N/x]
or M

′

1[N/x] =⇒∗M1[N/x].

In the first case

Case(Q,M1,M2)[N/x] Case(Q,M
′

1,M2)[N/x]
= =

Case(Q[N/x],M1[N/x],M2[N/x]) =⇒∗ Case(Q[N/x],M
′

1[N/x],M2[N/x])

In the second case Case(Q,M
′

1,M2)[N/x] =⇒∗ Case(Q,M1,M2)[N/x].

• P ′ ≡ Case(Q,M1,M
′

2), whereM2 =⇒M
′

2. By induction hypothesisM2[N/x] =⇒∗M
′

2[N/x]
or M

′

2[N/x] =⇒∗M2[N/x].

In the first case

Case(Q,M1,M2)[N/x] Case(Q,M1,M
′

2)[N/x]
= =

Case(Q[N/x],M1[N/x],M2[N/x]) =⇒∗ Case(Q[N/x],M1[N/x],M
′

2[N/x])

In the second case Case(Q,M1,M
′

2)[N/x] =⇒∗ Case(Q,M1,M2)[N/x].

9. P ≡ (rec y : B.Q)i. If P
η,δ,Top
−→ P ′ the property holds by lemma 4.4. If not there are two cases

to consider:

• P ′ ≡ Q[(rec y : B.Q)i−1/y]. We have (rec y : B.Q)i[N/x] = (rec y : B.Q[N/x])i and
this last term reduces to Q[N/x][(rec y : B.Q[N/x])i−1/y] that is equal to Q[(rec y :
B.Q)i−1[N/x]/y][N/x] = Q[(rec y : B.Q)i−1/y][N/x] by lemma 4.3.

14

• P ′ ≡ (rec y : B.Q′)i, where Q =⇒ Q′. By induction hypothesis Q[N/x] =⇒∗ Q′[N/x] or
Q′[N/x] =⇒∗ Q[N/x] and thus

(rec y : B.Q)i[N/x] = (rec y : B.Q[N/x])i =⇒∗ (rec y : B.Q′[N/x])i = (rec y : B.Q′)i[N/x]

or

(rec y : B.Q′)i[N/x] =⇒∗ (rec y : B.Q)i[N/x]

✷

Lemma 4.6 (Substitution Lemma (ii))

If N
R
=⇒ N ′, then M [N/x] =⇒∗M ′′ ∗⇐= M [N ′/x] for some term M ′′. These reduction sequences

contain expansions at the root only if M ≡ x and R is an expansion applied at the root of N .

Proof. We will show that M [N/x]
R
=⇒∗M ′′ ∗⇐= M [N ′/x] for some term M ′′ and that these

reduction sequences contain expansions at the root only if M ≡ x and R is an expansion applied at
the root of N .

This is a very common lemma in the theory of λ-calculus, where the term M ′′ is always M [N ′/x]
and the proof is straightforward context closure of the reduction R. Here the conditions imposed on
the expansion rules make it necessary to state the lemma this way. Effectively, the only interesting
cases of the proof are the ones for application and projections, where we cannot always apply context
closure for the reduction R, and have to make some steps backwards from M [N ′/x] to M [N/x].

Notice that every time the required reductions are built by context closure, there is no rule applied
at the root and we state this fact here once for all. We proceed by induction on M :

• M ≡ x
M [N/x] = N

R
=⇒ N ′ = M [N ′/x] (in this case our M ′′ is N ′)

• M ≡ y 6≡ x or M ≡ ∗ : T
Then M [N/x] = M = M [N ′/x] (in this case our M ′′ is M)

• M ≡ (M1M2)
We find by induction hypothesis terms M ′′

1 and M ′′
2 such that

M1[N/x]
R
=⇒∗M ′′

1
∗⇐= M1[N

′/x], and M2[N/x]
R
=⇒∗M ′′

2
∗⇐= M2[N

′/x].

Here M1 is in an influential position for η, so we have to be careful about the reductions

occurring in M1[N/x]
R
=⇒∗M ′′

1
∗⇐= M1[N

′/x]. We have the following cases:

– If M1 6≡ x, or R is not an expansion at the root of N , we know by inductive hypothesis

that the reductions M1[N/x]
R
=⇒∗M ′′

1
∗⇐= M1[N

′/x] do not contain any expansions, and
in particular no η rule, at the root position, so we can apply context closure for application
and get

(M1M2)[N/x]
=

(M1[N/x]M2[N/x])
R
=⇒∗ (M ′′

1 M
′′

2)
∗⇐=

(M1M2)[N
′/x]

=
(M1[N

′/x]M2[N
′/x]).

– If M1 ≡ x, and the expansion rule R is η at the root of N , then N ′ ≡ λz.Nz and we can
close our diagram as follows

(x[N/x]M2[N/x])
=

(NM2[N/x])

(x[λz.Nz/x]M2[λz.Nz/x])
=

((λz.Nz)M2[λz.Nz/x])
‖
⇓

‖
⇓

(NM ′′

2) ⇐=====
β
========= (λz.Nz)M ′′

2

15

Here, the vertical reductions are built by context closure, while the horizontal one is a β, so no
expansion rule is applied at the root in the overall reduction sequence.

• M ≡ λz : A.M1

If x 6= z, the result follows from (λz : A.M1)[N/x] = λz : A.M1 = (λz : A.M1)[N
′/x]. Other-

wise, by induction hypothesis there is a term M ′′
1 such that M1[N/x]

R
=⇒∗M ′′

1
∗⇐= M1[N

′/x],
so we can apply the context closure rule for abstraction and get that

(λz : A.M1)[N/x]
=

(λz : A.M1[N/x]) =⇒∗ λz : A.M ′′

1
∗⇐=

(λz.M1)[N
′/x]

=
(λz : A.M1[N

′/x])

• M ≡ πi(M1)
We find by induction hypothesis a term M ′′

1 such that

M1[N/x]
R
=⇒∗M ′′

1
∗⇐= M1[N

′/x].

Here M1 is in an influential position for δ, so we have to be careful about the reductions

occurring in M1[N/x]
R
=⇒∗M ′′

1
∗⇐= M1[N

′/x]. We have the following cases:

– If M1 6≡ x, or R is not an expansion at the root of N , we know by inductive hypothesis

that the reductions M1[N/x]
R
=⇒∗M ′′

1
∗⇐= M1[N

′/x] do not contain any expansions, and
in particular no δ rule, at the root position, so we can apply context closure for projections
and get

πi(M1)[N/x]
R
=⇒∗ πi(M

′′

1)
∗⇐= πi(M1)[N

′/x].

– If M1 ≡ x, and the expansion rule R is δ at the root of N , then N ′ ≡ 〈π1(N), π2(N)〉 and
we can close our diagram as follows

πi(x[N/x])
=

πi(N) ⇐=
π
==

πi(x[〈π1N, π2N〉/x])
=

πi〈π1N, π2N〉

Here, the vertical reductions are built by context closure, while the horizontal one is a π,
so no expansion rule is applied at the root in the overall reduction sequence.

• M ≡ 〈M1,M2〉

We find by induction hypothesis termsM ′′
1 andM ′′

2 such thatM1[N/x]
R
=⇒∗M ′′

1
∗⇐= M1[N

′/x]

and M2[N/x]
R
=⇒∗M ′′

2
∗⇐= M2[N

′/x]. So, we can apply the context closure rule for application
and get that

(〈M1,M2〉)[N/x]
=

〈M1[N/x],M2[N/x]〉

(〈M1,M2〉)[N
′/x]

=
〈M1[N

′/x],M2[N
′/x]〉

∗‖
⇓

‖
⇓
∗

〈M ′′

1 ,M
′′

2 〉 = 〈M ′′

1 ,M
′′

2 〉

• M ≡ ini
C(M1)

We find by induction hypothesis a term M ′′
1 such that M1[N/x]

R
=⇒∗M ′′

1
∗⇐= M1[N

′/x]. so
we can apply the context closure rule for ini and get that

ini
C(M1[N/x])

=
ini

C(M1)[N/x] =⇒∗ ini
C(M

′′

1)
∗⇐=

ini
C(M1[N

′/x])
=

ini
C(M1)[N

′/x]

16

• M ≡ Case(P,M1,M2)

We find by induction hypothesis P ′′, M ′′
1 and M ′′

2 such that P [N/x]
R
=⇒∗ P ′′ ∗⇐= P [N ′/x] and

M1[N/x]
R
=⇒∗M ′′

1
∗⇐= M1[N

′/x] andM2[N/x]
R
=⇒∗M ′′

2
∗⇐= M2[N

′/x]. So, we can apply the
context closure rule for Case and get that

Case(P,M1,M2)[N/x]
=

Case(P [N/x],(M1)[N/x],(M2)[N/x])

Case(P,M1,M2)[N
′/x]

=
Case(P [N ′/x],(M1)[N ′/x],(M2)[N ′/x])

∗‖
⇓

‖
⇓
∗

Case(P ′′,M ′′

1 ,M
′′

2) = Case(P ′′,M ′′

1 ,M
′′

2)

• M ≡ (rec z : A.M1)
i

We assume z 6≡ x (otherwise the result trivially holds). We find by induction hypothesis a term

M ′′
1 such that M1[N/x]

R
=⇒∗M ′′

1
∗⇐= M1[N

′/x]. so we can apply the context closure rule for
rec and get that

(rec z : A.M1)
i[N/x]

=
(rec z : A.M1[N/x])i =⇒∗ (rec z : A.M ′′

1)
i ∗⇐=

(rec z : A.M1)
i[N ′/x]

=
(rec z : A.M1[N

′/x])i

✷

Example 4.7 Take M = 〈xy, x〉, N = w and N ′ = λz : A.wz. Then

M [N/x] = 〈wy,w〉 =⇒ 〈wy, λz : A.wz〉 ⇐=〈(λz : A.wz)y, λz : A.wz〉 = M [N ′/x]

Looking carefully through the proof of the previous Lemma 4.6, one can see that the only cases
where it is needed to apply a reverse reduction are those corresponding to an expansion rule applied
at the root of N and to the presence in M of some free occurrences of x in influential positions. So,
we can also state the following

Corollary 4.8 (Reverse reductions) Let N
R
=⇒ N ′. In case R is not an expansion rule applied at

the root of N (an external expansion rule) or x does not occur at an influential position in M , then

M [N/x]
R
=⇒∗M [N ′/x]

Lemma 4.5 and 4.6 suffice to prove that all critical pairs arising from a term M by a β-reduction
and another reduction rule can be solved. We can then state the following:

Proposition 4.9 (Critical Pairs are solvable)
If M →M ′ and M =⇒M ′′, then ∃R such that M ′ =⇒∗ R and M ′′ =⇒∗ R.

Proof. We consider every possible case of reduction from M to M ′.

1. M
β
−→M ′. Thus M ≡ (λx.P)N .

1.1. If M =⇒M ′′ is internal, there are two cases:

1.1.1. P =⇒ P ′

(λx.P)N ===⇒ (λx.P ′)N

β
∨

β
∨

P [N/x] P ′[N/x]

By lemma 4.5 we have P [N/x] =⇒∗ P ′[N/x] or P ′[N/x] =⇒∗ P [N/x].

17

1.1.2. N =⇒ N ′

(λx.P)N ===⇒ (λx.P)N ′

β
∨

β
∨

P [N/x] P [N ′/x]

By lemma 4.6 there is a term R such that P [N/x] =⇒∗ R and P [N ′/x] =⇒∗ R.

1.2. If M =⇒M ′′ is external:

1.2.1. M ≡ (λx.P)N
η
−→ λy.((λx.P)N)y ≡M ′′

1.2.1.1. If P [N/x] is not a λ−abstraction:

(λx.P)N
η
> λy.((λx.P)N)y

β
∨

β‖
⇓

P [N/x]
η

> λy.P [N/x]y

1.2.1.2. If P [N/x] is a λ−abstraction we have two cases:

1.2.1.2.1. If P is a λ−abstraction:

(λx.(λz.P ′))N
η
> λy.((λx.(λz.P ′))N)y

β

∨

β‖
⇓

λy.((λz.P ′)[N/x])y

=

(λz.P ′)[N/x] λy.(λz.(P ′[N/x])y)

= β‖
⇓

λz.(P ′[N/x]) = λy.P ′[N/x][y/z]

1.2.1.2.2. If P = x and N is a λ−abstraction λz.N ′:

(λx.x)λz.N ′
η
> (λy.((λx.x)λz.N ′)y)

β

∨

β‖
⇓

λy.(λz.N ′)y

β‖
⇓

λz.N ′ = λy.N ′[y/z]

1.2.2. M ≡ (λx.P)N
δ
−→ 〈π1((λx.P)N), π2((λx.P)N)〉 ≡M ′′

1.2.2.1. If P [N/x] is not a pair we have:

(λx.P)N
δ
> 〈π1((λx.P)N), π2((λx.P)N)〉

β

∨

β‖
⇓

〈π1(P [N/x]), π2((λx.P)N)〉

β‖
⇓

P [N/x]
δ

> 〈π1(P [N/x]), π2(P [N/x])〉

18

1.2.2.2. If P [N/x] is a pair we have two more cases:

1.2.2.2.1. P is also a pair 〈P1, P2〉:

(λx.〈P1, P2〉)N
δ
> 〈π1((λx.〈P1, P2〉)N), π2((λx.〈P1, P2〉)N)〉

β

∨

β‖
⇓

〈π1(〈P1, P2〉[N/x]), π2((λx.〈P1, P2〉)N)〉

β‖
⇓

〈π1(〈P1, P2〉[N/x]), π2(〈P1, P2〉[N/x])〉

π1‖
⇓

〈P1[N/x], P2[N/x]〉 ⇐=
π2
======== 〈P1[N/x], π2(〈P1, P2〉[N/x])〉

1.2.2.2.2. P = x and N is a pair 〈N1, N2〉:

(λx.x)〈N1, N2〉
δ
> 〈π1((λx.x)〈N1, N2〉), π2((λx.x)〈N1, N2〉)〉

β

∨

β‖
⇓

〈π1(〈N1, N2〉), π2((λx.x)〈N1, N2〉)〉

β‖
⇓

〈π1(〈N1, N2〉), π2(〈N1, N2〉)〉

π1‖
⇓

〈N1, N2〉 ⇐===
π2
============= 〈N1, π2(〈N1, N2〉)〉

1.2.3. M ≡ (λx.P)N
Top
−→ ∗ ≡M ′′.

Then (λx.P)N is of type T, so also P [N/x] is of type T and then P [N/x]
T
−→ ∗.

2. M
η
−→M ′.

2.1. If M =⇒M ′′ is internal, then the same reduction can be performed on λz.Mz, and the
outermost term constructor of M and M ′′ does not change, so an expansion is still possible
on M ′′, and we can generally close the diagram as follows:

M ========⇒ M
′′

η
∨

η∨

λz.Mz ===⇒ λz.(M
′′

)z

2.2. If M =⇒M ′′ is external, the cases to consider are:

2.2.1. M
β
−→M ′′. This is the same as case 1.2.1

2.2.2. M
πi−→M ′′. Then M ≡ πi(〈M1,M2〉) and there are two cases:

2.2.2.1. If Mi is not a λ−abstraction, the diagram looks like:

πi(〈M1,M2〉)
πi

> Mi

∨
η

∨
η

λz.πi(〈M1,M2〉)z ==
πi
=⇒ λz.Miz

19

2.2.2.2. If Mi is a λ−abstraction λy.M
′

i , the diagram looks like:

πi(〈M1,M2〉)
πi
> λy.M

′

i

∨
η

λz.πi(〈M3,M2〉)z

πi‖
⇓

λz.(λy.M
′

i)z

β‖
⇓

λz.(M
′

i [z/y]) =

2.2.3. M
ρ
−→M ′′. Then M ≡ Case(ini

C1+C2
(P),M1,M2)

Case(ini
C1+C2

(P),M1,M2)
ρ

> MiP

η
∨

η
∨

λz.Case(ini
C1+C2

(P),M1,M2)z ==
ρ
=⇒ λz.(MiP)z

2.2.4. M
rec
−→M ′′. Then M = (rec y.M1)

i and there are two possible cases:

2.2.4.1. If M1 is not a λ−abstraction:

(rec y.M1)
i rec

> M1[(rec y.M1)
i−1/y]

η
∨

η
∨

λz.(rec y.M1)
iz ==

rec
=⇒ λz.(M1[(rec y.M1)

i−1/y])z

2.2.4.2. If M1 ≡ λw.M
′

1:

(rec y.(λw.M
′

1))
i rec

> (λw.M
′

1)[(rec y.(λw.M
′

1))
i−1/y]

η∨

λz.(rec y.λw.M
′

1)
iz

rec‖
⇓

λz.(λw.M
′

1[(rec y.(λw.M
′

1))
i−1/y])z

β‖
⇓

λz.(M
′

1[(rec y.(λw.M
′

1))
i−1/y][z/w] =

3. M
Top
−→ ∗. Since M is of type T and M =⇒M ′′, also M ′′ is of type T by proposition 3.7. Then

M ′′ Top
−→ ∗.

4. M
πi−→M ′.

4.1. If M =⇒M ′′ is internal:

4.1.1. M ≡ π1(〈M1,M2〉) =⇒ π1(〈M
′

1,M2〉) ≡M ′, where M1 =⇒M
′

1

π1(〈M1,M2〉) ===⇒ π1(〈M
′

1,M2〉)

π1
∨

π1∨

M1 ============⇒ M
′

1

20

Idem for M ≡ π2(〈M1,M2〉) =⇒ π2(〈M1,M
′

2〉) ≡M ′, where M2 =⇒M
′

2.

4.1.2. M ≡ π1(〈M1,M2〉) =⇒ π1(〈M1,M
′

2〉) ≡M ′, where M2 =⇒M
′

2.

π1(〈M1,M2〉) ===⇒ π1(〈M1,M
′

2〉)

π1
∨

π1
∨

M1 ≡ M1

Idem for M ≡ π2(〈M1,M2〉) =⇒ π2(〈M
′

1,M2〉) ≡M ′, where M1 =⇒M
′

1.

4.2. If M =⇒M ′′ is external:

4.2.1. M
η
−→M ′′. This is the same as case 2.2.2.

4.2.2. M
Top
−→M ′′. This is considered in case 3.

4.2.3. M
δ
−→M ′′. Then M ≡ πi(〈M1,M2〉).

4.2.3.1. If Mi is not a pair:

πi(〈M1,M2〉)
δ
> 〈π1(πi(〈M1,M2〉)), π2(πi(〈M1,M2〉))〉

πi

∨

πi‖
⇓

〈π1(Mi), π2(πi(〈M1,M2〉))〉

πi‖
⇓

Mi
δ

> 〈π1(Mi), π2(Mi)〉

4.2.3.2. If Mi is a pair 〈P1, P2〉:

π1(〈M1,M2〉)
δ
> 〈π1(πi(〈M1,M2〉)), π2(πi(〈M1,M2〉))〉

πi

∨

πi‖
⇓

〈π1(〈P1, P2〉), π2(π1(〈M1,M2〉))〉

πi‖
⇓

〈π1(〈P1, P2〉), π2(〈P1, P2〉)〉

π1‖
⇓

〈P1, P2〉 ⇐===
π2
=========== 〈P1, π2(〈P1, P2〉)〉

5. M
δ
−→M ′.

5.1. If M =⇒M ′′ is internal, then the same reduction can be performed on 〈π1(M), π2(M)〉,
and the outermost term constructor of M and M ′′ does not change, so an expansion is still
possible on M ′′, and we can generally close the diagram as follows:

M ===============⇒ M
′′

δ
∨

δ∨

〈π1(M), π2(M)〉 ===⇒ 〈π1(M), π2(M
′′

)〉

5.2. If M =⇒M ′′ is external:

5.2.1. M
β
−→M ′′. This is the same as case 1.2.2

5.2.2. M
πi−→M ′′. This is the same as case 4.2.3

21

5.2.3. M ≡ Case(ini
C1+C2

(P),M1,M2)
ρ
−→MiP ≡M ′′.

Case(ini
C1+C2

(P),M1,M2)
ρ

> MiP

δ
∨

δ
∨

〈π1(M), π2(M)〉 =======
ρ ∗
=⇒ 〈π1(MiP), π2(MiP)〉

5.2.4. M ≡ (rec y : C.P)i → P [(rec y : C.P)i−1/y] ≡M ′′.

5.2.4.1. If P is not a pair:

M ≡ (rec y : C.P)i =======⇒ P [(rec y : C.P)i−1/y]

δ

∨

δ

∨
〈π1(M), π2(M)〉 ====

rec ∗
=⇒ 〈π1(P [M/y]), π2(P [M/y])〉

5.2.4.2. If P is a pair 〈P1, P2〉:

M ≡ (rec y : C.〈P1, P2〉)
i =========⇒ 〈P1, P2〉[M/y]

δ
∨

〈π1(M), π2(M)〉

‖
⇓
rec

〈π1(〈P1, P2〉[M/y]), π2(M)〉

‖
⇓
rec

〈π1(〈P1, P2〉[M/y]), π2(〈P1, P2〉[M/y])〉

‖
⇓
π1

〈P1[M/y], π2(〈P1, P2〉[M/y])〉

‖
⇓
π2

〈P1[M/y], P2[M/y]〉 =

6. M
ρ
−→M ′.

6.1. If M =⇒M ′′ is internal:

6.1.1. Case(ini
C(P),M1,M2) =⇒ Case(ini

C(P
′),M1,M2), where P =⇒ P ′.

Case(ini
C(P),M1,M2) ===⇒ Case(ini

C(P
′),M1,M2)

ρ
∨

ρ
∨

MiP ===================⇒ MiP
′

6.1.2. Case(in1
C(P),M1,M2) =⇒ Case(in1

C(P),M
′

1,M2), whereM1 =⇒M
′

1 butM1
¬η
−→M

′

1

Case(in1
C(P),M1,M2) ===⇒ Case(in1

C(P),M
′

1,M2)

ρ
∨

ρ∨

M1P ===================⇒ M
′

1P

22

Idem for Case(in2
C(P),M1,M2) =⇒ Case(in2

C(P),M1,M
′

2), where M2
¬η
−→M

′

2.

6.1.3. Case(in1
C(P),M1,M2) =⇒ Case(in1

C(P),M
′

1,M2), where M1 −→ λx.M1x

Case(in1
C(P),M1,M2) ===⇒ Case(in1

C(P), λx.M1x,M2)

ρ
∨

ρ
∨

M1P <
β

(λx.M1x)P

Idem for Case(in2
C(P),M1,M2) =⇒ Case(in2

C(P),M1,M
′

2), where M2 −→ λx.M2x

6.2. If M =⇒M ′′ is external:

6.2.1. M
η
−→M ′′. This is the same as case 2.2.3.

6.2.2. M
Top
−→M ′′. This is considered in case 3.

6.2.3. M
δ
−→M ′′. This is the same as case 5.2.3.

7. M
rec
−→M ′.

7.1. If M =⇒M ′′ is internal:

7.1.1. (rec y : C.P)i =⇒ (rec y : C.P ′)i, where P =⇒ P ′. We have P [(rec y : C.P)i−1/y]
=⇒ P [(rec y : C.P ′)i−1/y] by lemma 4.8 and by lemma 4.5 P [(rec y : C.P ′)i−1/y]
=⇒∗ P ′[(rec y : C.P ′)i−1/y] or P ′[(rec y : C.P ′)i−1/y] =⇒∗ P [(rec y : C.P ′)i−1/y].
In the first case:

(rec y : C.P)i ===========⇒ (rec y : C.P ′)i

rec
∨

rec

∨

P [(rec y : C.P)i−1/y]

∗‖
⇓

P [(rec y : C.P ′)i−1/y] ==
∗
=⇒ P ′[(rec y : C.P ′)i−1/y]

In the second case:

(rec y : C.P)i ===========⇒ (rec y : C.P ′)i

rec
∨

rec

∨

P [(rec y : C.P)i−1/y]

∗‖
⇓

P [(rec y : C.P ′)i−1/y] ⇐=
∗
== P ′[(rec y : C.P ′)i−1/y]

7.2. If M =⇒M ′′ is external:

7.2.1. M
η
−→M ′′. This is the same as case 2.2.4.

7.2.2. M
Top
−→M ′′. This is considered in case 3.

7.2.3. M
δ
−→M ′′. This is the same as case 5.2.4.

✷

4.3 From Solved Critical Pairs to Full Weak Confluence

It is to be noted that the solvability of critical pairs we just proved as Proposition 4.9 does not allow
us to deduce the weak confluence of the calculus via the famous Knuth-Bendix Critical Pairs Lemma.
That Lemma holds only for algebraic rewrite systems, and not for the λ-calculus, that has the higher
order rewrite rule β. We need to prove local confluence explicitly, and to do so the following remark
is useful.

23

Remark 4.10 (Expansion rules) In case the two reductions M ′ ←−M =⇒M ′′ do not involve η
(resp. δ) rules applied at the root positions of M , it is possible to close the diagram without using η
(resp. δ) rules at the root, except in the three cases shown below: external π’s and internal η, external
β and internal δ. Notice that M is not a λ- abstraction in the first diagram, N is not a λ- abstraction
in the second and M [N/x] is not a pair in the third one.

π1(〈M,N〉) ==
η
=⇒ π1(〈λx.Mx,N〉)

π
∨

‖
⇓
π

M ======
η
=====⇒ λx.Mx

π2(〈M,N〉) ==
η
=⇒ π2(〈M,λx.Nx〉)

π
∨

‖
⇓
π

N ======
η
=====⇒ λx.Nx

(λx : A.M)N ==
δ
=⇒ (λx : A.〈π1(M), π2(M)〉)N

β
∨

‖
⇓
β

M [N/x] ====
δ
=⇒ 〈π1(M [N/x]), π2(M [N/x])〉

With this additional knowledge, we can prove that =⇒ is actually weakly confluent.

Theorem 4.11 (Weak Confluence) If M ′ ⇐=M =⇒M ′′ then there exist a term M ′′′ such that
M ′ =⇒∗M ′′′ ∗⇐= M ′′ (i.e. the reduction relation =⇒ is weakly confluent). Furthermore, if the
reductions in M ′ ⇐=M =⇒M ′′ do not contain η (resp. δ) rules applied at the root of M , it is
possible also to close the diagram without applying η (resp. δ) rules at the root, except in the cases
shown in the previous Remark 4.10.

Proof. We will prove that there exists a term M ′′′ such that M ′ =⇒∗M ′′′ ∗⇐= M ′′, by induction
on the derivation of M =⇒M ′. First of all, we remark that if one of the two one-step reductions

M =⇒M ′ and M =⇒M ′′ is actually an external reduction M
M
−→

′

and M
M
−→

′′

, then the result
comes directly from Proposition 4.9. So we will need to consider in the following only the cases where
both reductions are internal reductions.

We proceed now by cases on the last rule used to derive M =⇒M ′.

• M ≡ (M1M2) =⇒ (M ′
1M2) ≡ M ′ comes from M1 =⇒M ′

1. In this case, the η rule cannot be
applied at the root position of M1 because M1 is evaluated. Then we have two cases:

– the reduction M ≡ (M1M2) =⇒ (M ′′
1 M2) ≡ M ′′ comes from a reduction M1 =⇒M ′′

1 .
Now we have to consider two cases:

∗ M ′
1 ⇐=M1 =⇒M ′′

1 is not one of the exceptional cases for η of the Remark 4.10:
then we know that there are no η at the root position in M ′

1 =⇒∗M ′′′
1
∗⇐= M ′′

1 .
By induction hypothesis we get a term M ′′′

1 that can be used to close the diagram
M ′

1 ⇐=M1 =⇒M ′′
1 via M ′

1 =⇒∗M ′′′
1
∗⇐= M ′′

1 , and we can close our original diagram
with

M ′ ≡ (M ′

1M2) =⇒∗ (M
′′′

1 M2) ∗⇐= (M ′′

1 M2) ≡M ′′

∗ M ′
1 ⇐=M1 =⇒M ′′

1 is one of the exceptional cases for η, hence M1 is π1(〈P,Q〉) for
some terms P and Q. We can still close the original diagram as follows:

(π1(〈P,Q〉))M2 ==
η
=⇒ (π1(〈λx.Px,Q〉))M2

‖
‖
‖

‖
⇓
π

π ‖
‖
‖
⇓

(λx.Px)M2

‖
⇓
β

PM2 ≡ PM2

(π2(〈P,Q〉))M2 ==
η
=⇒ (π2(〈P, λx.Qx〉))M2

‖
‖
‖

‖
⇓
π

π ‖
‖
‖
⇓

(λx.Qx)M2

‖
⇓
β

QM2 ≡ QM2

24

– the reduction M ≡ (M1M2) =⇒ (M1M
′′
2) ≡M ′′ comes from a reduction M2 =⇒M ′′

2 . We
can close the diagram using the same original reductions,

M ′ ≡ (M ′

1M2) =⇒ (M ′

1M
′′

2)⇐=(M1M
′′

2) ≡M ′′

because we know that η is not applied to M1 to get to M ′
1.

• M ≡ (M1M2) =⇒ (M1M
′
2) ≡M ′ comes from M2 =⇒M ′

2. Then we have two cases:

– the reduction M ≡ (M1M2) =⇒ (M1M
′′
2) ≡M ′′ comes from a reduction M2 =⇒M ′′

2 . By
induction hypothesis we get a term M ′′′

2 that can be used to close M ′
2 ⇐=M2 =⇒M ′′

2 via
M ′

2 =⇒∗M ′′′
2
∗⇐= M ′′

2 . Now M ′ ≡ (M1M
′
2) =⇒

∗ (M1M
′′′
2) ∗⇐= (M1M

′′
2) ≡ M ′′ can be

used to close our original diagram.

– the reduction M ≡ (M1M2) =⇒ (M ′′
1 M2) ≡ M ′′ comes from a reduction M1 =⇒M ′′

1 .
In this case, we know that η cannot be applied at the top to M1 to get to M ′′

1 because
M1 is evaluated. So, we can close the diagram using the same original reductions, M ′ ≡
(M1M

′
2) =⇒ (M ′′

1 M
′
2)⇐=(M ′′

1 M2) ≡M ′′.

• M ≡ (πi(M1)) =⇒ (πi(M
′
1)) ≡M ′ comes from M1 =⇒M ′

1 and M ≡ (πi(M1)) =⇒ (πi(M
′′
1)) ≡

M ′′ comes from M1 =⇒M ′′
1 . Then neither M1 =⇒M ′

1 nor M1 =⇒M ′′
1 can use δ rules at the

root of M because it is projected.
Now we have two cases:

– M1 =⇒M ′
1 and M1 =⇒M ′′

1 are not the exceptional cases for δ of Remark 4.10. By
induction hypothesis there is an M ′′′

1 s.t. M ′
1 =⇒∗M ′′′

1
∗⇐= M ′′

1 without δ rules at the
root, and we can close our diagram by πi(M

′
1) =⇒

∗ πi(M
′′′
1) ∗⇐= πi(M

′′
1).

– M1 =⇒M ′
1 and M1 =⇒M ′′

1 is the exceptional case for δ, so M1 ≡ (λx.P)Q for some terms
P and Q. We can still close our original diagram as follows:

πi((λx.P)Q) ==
δ
===⇒ πi((λx.〈π1(P), π2(P)〉)Q)

‖
⇓
β

β

∨

πi(〈π1(P [Q/x]), π2(P [Q/x])〉)

‖
⇓
π

πi(P [Q/x]) ===
δ
=========⇒ πi(P [Q/x])

• M ≡ λx.M1 =⇒ λx.M ′
1 ≡ M ′ comes from M1 =⇒M ′

1 and M ≡ λx.M1 =⇒ λx.M ′′
1 ≡ M ′′

comes from M1 =⇒M ′′
1 . By induction hypothesis there is an M ′′′

1 s.t. M ′
1 =⇒∗M ′′′

1
∗⇐= M ′′

1

and we can close our diagram by λx.M ′
1 =⇒∗ λx.M ′′′

1
∗⇐= λx.M ′′

1 .

• M ≡ 〈M1,M2〉 =⇒ 〈M
′
1,M2〉 ≡ M ′ comes from M1 =⇒M ′

1. Now we have to consider two
cases:

– the reduction M ≡ 〈M1,M2〉 =⇒ 〈M1,M
′′
2 〉 ≡ M ′′ comes from a reduction M2 =⇒M ′′

2 .
By induction hypothesis there is a termM ′′′

1 s.t. we can close the diagramM ′
1 ⇐=M1 =⇒M ′′

1

via M ′
1 =⇒∗M ′′′

1
∗⇐= M ′′

1 , and we can close our original diagram with

M ′ ≡ 〈M ′

1,M2〉 =⇒∗ 〈M
′′′

1 ,M2〉 ∗⇐= 〈M
′′

1 ,M2〉 ≡M ′′

– the reduction M ≡ 〈M1,M2〉 =⇒ 〈M1,M
′′
2 〉 ≡ M ′′ comes from a reduction M2 =⇒M ′′

2 .
We can close the diagram using the same original reductions,

M ′ ≡ 〈M1,
′M2〉 =⇒ 〈M

′

1,M
′′

2 〉 ⇐=〈M1,M
′′

2 〉 ≡M ′′

25

• M ≡ ini
C(M1) =⇒ ini

C(M
′
1) ≡ M ′ comes from M1 =⇒M ′

1 and M ≡ ini
C(M1) =⇒ ini

C(M
′′
1) ≡

M ′′ comes fromM1 =⇒M ′′
1 . By induction hypothesis there is anM ′′′

1 s.t. M ′
1 =⇒∗M ′′′

1
∗⇐= M ′′

1

and we can close our diagram by ini
C(M

′
1) =⇒

∗ ini
C(M

′′′
1) ∗⇐= ini

C(M
′′
1).

• M ≡ rec x : A.M1 =⇒ rec x : A.M ′
1 ≡ M ′ comes from M1 =⇒M ′

1 and M ≡ rec x :
A.M1 =⇒ rec x : A.M ′′

1 ≡ M ′′ comes from M1 =⇒M ′′
1 . Then we can find by induction

hypothesis an M ′′′
1 s.t. M ′

1 =⇒∗M ′′′
1
∗⇐= M ′′

1 and we can close our diagram by rec x :
A.M ′

1 =⇒∗ rec x : A.M ′′′
1
∗⇐= rec x : A.M ′′

1 .

• We are left to consider the case of M ≡ Case(P,M1,M2).

– To avoid a mechanical repetition of similar proofs, notice that if the internal reduction
to M ′ and M ′′ are performed on different subterms, then we can close the diagram by
commuting the two reductions. We show just one case.

Case(P,M1,M2) ===
R2
=⇒ Case(P,M ′

1,M2)

R1‖
⇓

‖
⇓
R1

Case(P ′,M1,M2) ==
R2
=⇒ Case(P ′,M ′

1,M2)

– If the internal reduction to M ′ and M ′′ are performed on the same subterm Q, say

Q′ ⇐=
R1
== Q ==

R2
=⇒ Q′′, then there is aQ′′′, by induction hypothesis, s.t. Q′ =⇒∗ Q′′′ ∗⇐= Q′′,

and we can close the diagram by extending these last reductions to the Case expression.
Again, we detail just one case.

Case(P,M1,M2) ===
R2
=⇒ Case(P ′′,M1,M2)

R1‖
⇓

‖
⇓

Case(P ′,M1,M2) ===⇒ Case(P ′′′,M ′

1,M2)

✷

5 Strong Normalization

We provide in this section the proof of strong normalization for our calculus. The key idea is to reduce
strong normalization of the system with expansion rules to that of the system without expansion rules
and for this, we show how the calculus without expansions can be used to simulate the calculus with
expansions. We will use a fundamental property relating strong normalization of two systems:

Proposition 5.1 Let R1 and R2 be two reduction systems and T a translation from terms in R1 to

terms in R2. If for every reduction M1
R1=⇒M2 there is a non empty reduction sequence P1

R2=⇒+P2

such that T (Mi) = Pi, for i = 1, 2, then the strong normalization of R2 implies that of R1.

Proof. Suppose R2 is strongly normalizing and R1 is not. Then there is an infinite reduction

sequence M1
R1=⇒M2

R1=⇒ . . . and from this reduction we can construct an infinite reduction sequence

T (M1)
R2=⇒+T (M2)

R2=⇒+ . . . which leads to a contradiction. ✷

The goal is now to find a translation of terms mapping our calculus into itself such that for every
possible reduction in the original system from a term M to another term N , there is a reduction
sequence from the translation of M to the translation of N , that is non empty and does not contain
any expansion. Then the previous proposition allows us to derive the strong normalization property
for the full system from that of the system without expansion rules, which can be proved using
standard techniques.

26

5.1 Simulating Expansions without Expansions

The first näıve idea that comes to the mind is to choose a translation such that expansion rules are
completely impossible on a translated term. This essentially amounts to associate to a term M its
η-δ normal form, so that translating a term corresponds then to executing all the possible expansions.

Unfortunately, this simple solution is not a good one: if M reduces to N via an expansion, then
the translation of M and that of N are the same term, so to such a reduction step in the full system
corresponds an empty reduction sequence in the translation, and this does not allow us to apply
proposition 5.1.

This leads us to consider a more sophisticated translation that maps a term M to a term M◦

where expansions are not fully executed as above, but just marked in such a way that they can be
executed during the simulation process, if necessary, by a rule that is not an expansion.

Let us see how to do this on a simple example: take a variable z of type A1 ×A2, where the Ai’s
are atomic types different from T. By performing a δ expansion we obtain its normal form w.r.t.
expansion rules: 〈π1(z), π2(z)〉. Instead of executing this reduction, we just mark it in the translation
by applying to z an appropriate expansor term λx : A1 × A2.〈π1(x), π2(x)〉. As for 〈π1(z), π2(z)〉, it
is in normal form w.r.t. expansions, so the translation does not modify it in any way. Now, we have
the reduction sequence

z◦ ≡ (λx : A1 ×A2.〈π1(x), π2(x)〉)z →β 〈π1(z), π2(z)〉

where the translation of z reduces to the translation of 〈π1(z), π2(z)〉, and the δ expansion from z to
〈π1(z), π2(z)〉 is simulated in the translation by a β-rule. Clearly, in a generic term M there are many
positions where an expansion can be performed, so the translation will have to take into account the
structure of M and insert the appropriate expansors at all these positions5.

Anyway, expansors must be carefully defined to correctly represent not only the expansion step
arising from a redex already present in M , but also all the expansion sequences that such step can
create: if in the previous example the type A1 is taken to be an arrow type and the type A2 a product
type, then the term π1(z) can be further η-expanded and the term π2(z) can be expanded by a δ-rule,
and the expansor λx : A1 ×A2.〈π1(x), π2(x)〉 cannot simulate these further possible reductions. This
can only be done by storing in the expansor terms all the information on possible future expansions,
that is fully contained in the type of the term we are marking.

Definition 5.2 (Translation) To every type C we associate a term, called the expansor of type C
and denoted ∆C , defined by induction as follows:

∆A→B = λx : A→ B.λz : A.∆B(x(∆Az))
∆A×B = λx : A×B.〈∆A(π1(x)),∆B(π2(x))〉
∆A is empty, in any other case

We then define a translation M◦ for a term M : A as follows:

M◦ =

{
M◦◦ if M is a λ-abstraction or a pair
∆k

AM
◦◦ for any k > 0 otherwise

where ∆k
AM denotes the term (∆A . . . (∆A

︸ ︷︷ ︸

k times

M) . . .) and M◦◦ is defined by induction as:

x◦◦ = x (λx : B.M)◦◦ = λx : B.M◦

∗◦◦ = ∗ (rec y : A.M)i
◦◦

= (rec y : A.M◦)i

〈M,N〉◦◦ = 〈M◦, N◦〉 Case(R,M,N)◦◦ = Case(R◦,M◦, N◦)
(MN)◦◦ = (M◦◦N◦) πi(M)◦◦ = πi(M

◦◦)
ini

C(M)◦◦ = ini
C(M

◦)

5Notice that we cannot insert expansors in influential positions: if a term M is expanded, say to 〈π1(M), π2(M)〉,
then its root becomes an influential position, and we cannot insure that the translation of M reduces to a translation
of 〈π1(M), π2(M)〉: expansors get used, and after some reduction steps we end up with a naked pair not preceded by
an expansor.

27

This corresponds exactly to the marking procedure described before, but for a little detail: in the
translation we allow any number of markers to be used (the integer k can be any positive number),
and not just one as seemed to suffice for the examples above.

The need for this additional twist in the definition is best understood with an example. Consider
two atomic types A and B and the term (λx : A×B.x)z: if k is fixed to be one (i.e. we allow only one
expansor as marker) then its translation ((λx : A× B.x)z)◦ is ∆A×B((λx : A× B.∆A×Bx)∆A×Bz).

Now (λx : A×B.x)z
β
−→ z, so we have to verify that ((λx : A×B.x)z)◦ reduces to z◦ in at least one

step. We have:
∆A×B((λx : A×B.∆A×Bx)∆A×Bz) =⇒ ∆A×B∆A×B∆A×Bz

However, even if both ∆3
A×Bz and ∆A×Bz reduce to the same term 〈π1(z), π2(z)〉, it is not true that

∆3
A×Bz =⇒∗ ∆A×Bz. Anyway, if we admit ∆3

A×Bz as a possible translation of z we will have the
desired property relating reductions and translations. Hence, to be precise, our method associates
to each term not just one translation, but a whole family of possible translations, all with the same
structure, but with different numbers of expansors used as markers.

What is important for our proof is that when we are given a reduction M1 =⇒M2 . . . =⇒Mn

in the full calculus, then no matter which possible translation M◦
1 we choose for M1, the reductions

used in the simulation process all go through possible translations M◦
i of the Mi.

Translations preserve types and leave unchanged terms where expansions are not possible.

Lemma 5.3 If Γ ⊢M : A, then Γ ⊢ (∆AM) : A.

Proof. By induction on the structure of A.

• If A is neither a functional, nor a product type, then ∆A is empty and the property trivially
holds.

• A ≡ B → C. Since Γ, x : B → C, z : B ⊢ z : B, we have by induction hypothesis Γ, x : B →
C, z : B ⊢ (∆Bz) : B

Γ, x : B → C, z : B ⊢ x : B → C Γ, x : B → C, z : B ⊢ (∆Bz) : B

Γ, x : B → C, z : B ⊢ (x(∆Bz)) : C

Again by induction hypothesis Γ, x : B → C, z : B ⊢ ∆C(x(∆Bz)) : C and thus:

Γ, x : B → C, z : B ⊢ ∆C(x(∆Bz)) : C

Γ, x : B → C ⊢ λz : B.∆C(x(∆Bz)) : B → C

Γ ⊢ λx : B → C.λz : B.∆C(x(∆Bz)) : (B → C)→ (B → C)

Γ ⊢M : B → C

Γ ⊢ (∆B→CM) : B → C

• A ≡ B × C. Since Γ, x : B × C ⊢ x : B × C, then Γ, x : B × C ⊢ π1(x) : B and Γ, x : B × C ⊢
π2(x) : C. By induction hypothesis Γ, x : B×C ⊢ ∆Bπ1(x) : B and Γ, x : B×C ⊢ ∆Cπ1(x) : C.

Γ, x : B × C ⊢ ∆Bπ1(x) : B Γ, x : B × C ⊢ ∆Cπ2(x) : C

Γ, x : B × C ⊢ 〈∆Bπ1(x),∆Cπ2(x)〉 : B × C

Γ ⊢ λx : B × C.〈∆Bπ1(x),∆Cπ2(x)〉 : (B × C)→ (B × C)

Γ ⊢M : B × C

Γ ⊢ ∆B×CM : B × C

✷

Corollary 5.4 If Γ ⊢M : A, then Γ ⊢ ∆k
AM : A, for any k ≥ 0.

Lemma 5.5 (Type Preservation) If Γ ⊢M : A, then Γ ⊢M◦ : A and Γ ⊢M◦◦ : A.

28

Proof. By induction on the structure of M , using corollary 5.4.
✷

A term M is in quasi-normal form if only expansion rules at the root position are applicable to it
and M is in normal form if no rule is applicable to it. So, every normal form is in quasi-normal form,
while the converse does not necessarily hold.

Lemma 5.6

1. If M is in normal form, then M◦ = M

2. If M is in quasi-normal form, then M◦◦ = M

Proof. By induction on the structure of M .

• M ≡ ∗.

1. ∗◦ = ∗.

2. The property vacuously holds because ∗ is a normal form.

• M ≡ x.

1. Since x is in normal form, it has neither a functional, nor a product, nor the T type and
then ∆A is empty, where A is the type of x. Then x◦ = x.

2. x◦◦ = x by definition.

• M ≡ λx : A.P .

1. Since M is in normal form, P is also in normal form and by induction hypothesis P ◦ = P .
We have (λx : A.P)◦ = λx : A.P ◦ = λx : A.P .

2. If λx : A.P is in quasi-normal form, it is also in normal form because we cannot apply an
expansion rule to a lambda-term. By the previous paragraph (λx : A.P)◦◦ = λx : A.P .

• M ≡ 〈P,Q〉.

1. Since M is in normal form, P and Q are also in normal form and by induction hypothesis
P ◦ = P and Q◦ = Q. We have 〈P,Q〉◦ = 〈P ◦, Q◦〉 = 〈P,Q〉.

2. If 〈P,Q〉 is in quasi-normal form, it is also in normal form because we cannot apply an
expansion rule to a pair. By the previous paragraph 〈P,Q〉◦◦ = 〈P,Q〉.

• M ≡ (rec y : A.P)i.

– If i = 0, then

1. Since M is in normal form, P is also in normal form and by induction hypothesis
P ◦ = P . On the other hand, M has neither a functional, nor a product, nor the T
type and then ∆A is empty, where A is the type of M . We have (rec y : A.P)0

◦
=

∆k
A(rec y : A.P ◦)0 = (rec y : A.P)0.

2. Since M is in quasi normal form, P is in normal form and by induction hypothesis
P ◦ = P . Then (rec y : A.P)0

◦
= (rec y : A.P ◦)0 = (rec y : A.P)0.

– If i > 0, then

1. The property vacuously holds because (rec y : A.P)i is not in normal form.

2. The property vacuously holds because (rec y : A.P)i is not in quasi-normal form.

• M ≡ (PQ).

29

1. Suppose A is the type of M . Since M is in normal form, A is neither a functional, nor
a product, nor the T type and so ∆A is empty. On the other hand P is in quasi-normal
form and Q is in normal form, so by induction hypothesis P ◦◦ = P and Q◦ = Q. We have
(PQ)◦ = ∆k

A(P
◦◦Q◦) = (PQ).

2. Since M is in quasi-normal form, P is in quasi-normal form and Q is in normal form and
by induction hypothesis P ◦◦ = P and Q◦ = Q. We have (PQ)◦◦ = (P ◦◦Q◦) = (PQ).

• M ≡ Case(P,R,N).

1. Suppose A is the type of M . Since M is in normal form, A is neither a functional, nor
a product, nor the T type and so ∆A is empty. On the other hand P , R and N are in
normal form and by induction hypothesis P ◦ = P and R◦ = R and N◦ = R. We have
Case(P,R,N)◦ = ∆k

A Case(P ◦, R◦, N◦) = Case(P,R,N).

2. Since M is in quasi-normal form, P,R and N are in normal form and by induction hypoth-
esis P ◦ = P and R◦ = R and N◦ = R. We have Case(P,R,N)◦◦ = Case(P ◦, R◦, N◦) =
Case(P,R,N).

• M ≡ πi(P), for i = 1, 2.

1. Suppose A is the type of M . Since M is in normal form, A is neither a functional, nor
a product, nor the T type and so ∆A is empty. On the other hand P is in quasi-normal
form and by induction hypothesis P ◦◦ = P . We have πi(P)◦ = ∆k

A πi(P
◦◦) = πi(P).

2. SinceM is in quasi-normal form, P is also in quasi-normal form and by induction hypothesis
P ◦◦ = P . We have πi(P)◦◦ = πi(P

◦◦) = πi(P).

• M ≡ ini
C(P), for i = 1, 2.

1. Since M is in normal form, P is also in normal form and by induction hypothesis P ◦ = P .
We have ini

C(P)◦ = ini
C(P

◦) = ini
C(P).

2. ini
C(P) in quasi-normal form implies ini

C(P) in normal form, and the property holds by
the previous paragraph.

✷

The next step is to prove that we can apply proposition 5.1 to our system, i.e, for every one step
reduction from M to N in the full system, there is a non empty reduction sequence in the system
without expansions from any translation of M to a translation of N .

This lemma characterizes the reductions from a term ∆k
A→BM or ∆k

A×BM and is quite essential
in all the properties shown in this section.

Lemma 5.7 For any k > 0

∆k
A→BM=⇒+ λw : A.∆k

B(M(∆k
Aw))

and
∆k

A×BM=⇒+〈∆k
Aπ1(M),∆k

Bπ2(M)〉

and the reduction sequences contain no expansion steps.

Proof. By induction on k.
If k = 1, then

∆A→BM ≡ (λx : A→ B.λw : A.∆B(x(∆Aw)))M
β
−→ λw : A.∆B(M(∆Aw))

∆A×BM ≡ (λx : A×B.〈∆Aπ1(x),∆Bπ2(x)〉)M
β
−→ 〈∆Aπ1(M),∆Bπ2(M)〉

30

Only the β-rule is used in this reduction.
If k > 1, then

∆k+1
A→BM

=
∆k

A→B∆A→BM

⇓β

∆k
A→Bλw : A.∆B(M(∆Aw))

⇓+ by induction hypothesis (and without expansions steps)

λw : A.∆k
B(λw : A.∆B(M(∆Aw))(∆

k
Aw))

⇓β

λw : A.∆k
B(∆B(M(∆A∆

k
Aw)))

=

λw : A.∆k+1
B (M(∆k+1

A w))

∆k+1
A×BM

=
∆k

A×B(∆A×BM)

⇓β

∆k
A×B〈∆Aπ1(M),∆Bπ2(M)〉

⇓+ by induction hypothesis (and without expansion steps)

〈∆k
Aπ1(〈∆Aπ1(M),∆Bπ2(M)〉),∆k

Bπ2(〈∆Aπ1(M),∆Bπ2(M)〉)〉

⇓π1,π2

〈∆k
A∆Aπ1(M),∆k

B∆Bπ2(M)〉
=

〈∆k+1
A π1(M),∆k+1

B π2(M)〉

✷

We use N⊗ to denote either N◦ or N◦◦. In particular, N⊗ will stand for a sequence of mixed
N◦

i ’s and N◦◦
i ’s.

Lemma 5.8 If Γ ⊢M : A, then

1. ∃k ≥ 0, M◦◦[z⊗/x] =⇒∗ ∆k
A(M [z/x])◦◦

2. ∀k ≥ 0, ∆k
AM

◦[z⊗/x] =⇒∗ (M [z/x])◦

and no expansions are performed in these reduction sequences.

Proof. We show the two properties by induction on the structure of M . More precisely, for the
first statement we analyze each case, while for the second one it is enough to analyze those expressions
M such that M◦ = M◦◦. Indeed, once we have already shown the first statement, the second can be
easily shown in the following way for the expressions M such that M◦ = ∆h

AM
◦◦ (for h > 0):

31

∆k
AM

◦[z⊗/x] = for some h>0

∆k
A∆

h
AM

◦◦[z⊗/x] =⇒∗ by the first statement
∆k+h

A ∆m
AM [z/x]

◦◦
=

M [z/x]
◦
, because h > 0

Every reduction built in the following proof contains no expansion steps, as it is constructed from
one-step reductions that are not expansions or from reductions obtained by induction hypothesis
(and thus without expansions) or from reductions obtained by lemma 5.7 (again without expansions).
This remark will allow us to conclude that the reductions in the statements of the lemma contain no
expansion.

Now, let us analyze the first statement and the interesting cases of the second.

• M ≡ ∗. Since ∗ is of type T, ∆T is empty. ∗◦◦[z⊗/x] = ∗[z⊗/x] = ∗ = ∗◦◦ = ∆0
T∗

◦◦ =

∆0
T(∗[z/x])◦◦.

• M ≡ xi ∈ x.

– x◦◦
i [z⊗/x] = xi[z⊗/x] = z◦i = ∆m

A z◦◦i = ∆m
A (xi[z/x])

◦◦.

– x◦◦
i [z⊗/x] = xi[z⊗/x] = z◦◦i = (xi[z/x])

◦◦ = ∆0
A(xi[z/x])

◦◦.

• M ≡ y 6∈ x.

y◦◦[z⊗/x] = y[z⊗/x] = y = ∆0
Ay

◦◦.

• M ≡ (PQ)

(PQ)◦◦[z⊗/x] = (P ◦◦Q◦)[z⊗/x] = P ◦◦[z⊗/x]Q◦[z⊗/x].

By induction hypothesis P ◦◦[z⊗/x] =⇒∗ ∆h
B→AP [z/x]

◦◦

– If h = 0, then

P ◦◦[z⊗/x]Q◦[z⊗/x]

⇓∗ by induction hypothesis

P [z/x]
◦◦
Q◦[z⊗/x]

⇓∗ by induction hypothesis

P [z/x]
◦◦
Q[z/x]

◦

=
(P [z/x]Q[z/x])◦◦

=
((PQ)[z/x])◦◦

=
∆0

A(PQ[z/x])◦◦

– If h > 0, then:

32

∆h
B→AP [z/x]

◦◦
Q◦[z⊗/x]

⇓+ by lemma 5.7

(λw : B.∆h
A(P [z/x]

◦◦
(∆h

Bw)))Q
◦[z⊗/x]

⇓β

∆h
A(P [z/x]

◦◦
(∆h

B(Q
◦[z⊗/x])))

⇓∗ by induction hypothesis

∆h
A(P [z/x]

◦◦
Q[z/x]

◦
)

=
∆h

A(P [z/x]Q[z/x])◦◦

=
∆h

A(PQ[z/x])◦◦

• M ≡ λy : B.P .

1.

(λy : B.P)◦◦[z⊗/x]
=

(λy : B.P ◦)[z⊗/x]
=

λy : B.P ◦[z⊗/x]

⇓∗ by induction hypothesis

λy : B.P [z/x]
◦

=
(λy : B.P [z/x])◦◦

=
∆0

B→C((λy : B.P)[z/x])◦◦

33

2.

∆k
B→C(λy : B.P)◦[z⊗/x]

=

∆k
B→C(λy : B.P ◦)[z⊗/x]

=

∆k
B→Cλy : B.P ◦[z⊗/x]

⇓+ by lemma 5.7

λw : B.∆k
B((λy : B.P ◦[z⊗/x])(∆k

Cw))

⇓β

λw : B.∆k
BP

◦[z⊗/x][w◦/y]

⇓∗ by induction hypothesis

λw : B.(P [z/x][w/y])◦

=
(λw : B.P [z/x][w/y])◦

=α

(λy : B.P [z/x])◦

=
((λy : B.P)[z/x])◦

• M ≡ πi(P), for i = 1, 2.

πi(P)◦◦[z⊗/x]
=

πi(P
◦◦)[z⊗/x]

=

πi(P
◦◦[z⊗/x])

⇓∗ by induction hypothesis

πi(∆
h
A1×A2

(P [z/x]
◦◦
)

– If h = 0, then

πi(P [z/x]
◦◦
)

=
πi(P [z/x])◦◦

=
∆0

Ai
πi(P [z/x])◦◦

=
∆0

Ai
(πi(P)[z/x])◦◦

– If h > 0, then

34

πi(∆
h
A1×A2

(P [z/x])◦◦)

⇓+ by lemma 5.7

πi(〈∆
h
A1

π1((P [z/x])◦◦),∆h
A2

π2((P [z/x])◦◦)〉)

⇓πi

∆h
Ai
πi((P [z/x])◦◦)

=
∆h

Ai
πi(P [z/x])◦◦

=
∆h

Ai
(πi(P)[z/x])◦◦

• M ≡ ini
C(P), for i = 1, 2 and then ∆C is empty.

ini
C(P)◦◦[z⊗/x]

=

ini
C(P

◦)[z⊗/x]
=

ini
C(P

◦[z⊗/x])

⇓∗ by induction hypothesis

ini
C(P [z/x]

◦
)

=
∆0

Ain
i
C(P [z/x])◦◦

=
∆0

A(in
i
C(P)[z]/x])◦◦

• M ≡ 〈P,Q〉.

1.

〈P,Q〉◦◦[z⊗/x]
=

〈P ◦, Q◦〉[z⊗/x]
=

〈P ◦[z⊗/x], Q◦[z⊗/x]〉

⇓∗ by induction hypothesis

〈P [z/x]
◦
, Q[z/x]

◦〉
=
〈P [z/x], Q[z/x]〉◦◦

=
∆0

A×B〈P [z/x], Q[z/x]〉◦◦

=
∆0

A×B(〈P,Q〉[z/x])
◦◦

35

2.

∆k
A×B〈P,Q〉

◦
[z⊗/x]

=

∆k
A×B〈P

◦, Q◦〉[z⊗/x]
=

∆k
A×B〈P

◦[z⊗/x], Q◦[z⊗/x]〉

– If k = 0, then

〈P ◦[z⊗/x], Q◦[z⊗/x]〉

⇓∗ by induction hypothesis

〈P [z/x]
◦
, Q[z/x]

◦〉
=
〈P [z/x], Q[z/x]〉◦

=
(〈P,Q〉[z/x])◦

– If k > 0, then

∆k
A×B〈P

◦[z⊗/x], Q◦[z⊗/x]〉

⇓+ by lemma 5.7

〈∆k
Aπ1(P

◦[z⊗/x]Q◦[z⊗/x]),∆k
Bπ2(〈P

◦[z⊗/x], Q◦[z⊗/x]〉)〉

⇓ π1, π2

〈∆k
AP

◦[z⊗/x],∆k
BQ

◦[z⊗/x]〉

⇓∗ by induction hypothesis

〈P [z/x]
◦
, Q[z/x]

◦〉
=
〈P [z/x], Q[z/x]〉◦

=
(〈P,Q〉[z/x])◦

• M ≡ (rec y : A.P)i.

(rec y : A.P)i
◦◦
[z⊗/x]

=

(rec y : A.P ◦)i[z⊗/x]

⇓∗ by induction hypothesis

(rec y : A.(P [z/x])◦)i

=

∆0
A(rec y : A.P [z/x])i

◦◦

=

∆0
A((rec y : A.P)i[z/x])

◦◦

• M ≡ Case(P,Q,R).

36

Case(P,Q,R)◦◦[z⊗/x]
=

Case(P ◦, Q◦, R◦)[z⊗/x]
=

Case(P ◦[z⊗/x], Q◦[z⊗/x], R◦[z⊗/x])

⇓∗ by induction hypothesis

Case(P [z/x]
◦
, Q[z/x]

◦
, R[z/x]

◦
)

=
Case(P [z/x], Q[z/x], R[z/x])◦◦

=
(Case(P,Q,R)[z/x])◦◦

=
∆0

A(Case(P,Q,R)[z/x])◦◦

✷

Corollary 5.9 If Γ ⊢M : A, then
∀k ≥ 0, ∆k

AM
◦ =⇒∗ M◦

and no expansions are performed in the reduction sequences.

The following property is essential to show that every time we perform a β-reduction on a term
M in the original system, any translation of M reduces to a translation of the term we have obtained
via →β from M . Take for example the reduction (λx : A.M)N →β M [N/x]. We know that ((λx :
A.M)N)◦ = ∆k

A((λx : A.M◦)N◦) and we want to show that there is a non empty reduction sequence
leading to M [N/x]

◦
. Since ∆k

A((λx : A.M◦)N◦) →β ∆k
AM

◦[N◦/x], we have now to check that the
term (M [N/x])◦ can be reached. We state the property as follows:

Lemma 5.10 If Γ ⊢M : A, then

1. ∀k ≥ 0, ∆k
AM

◦[N◦/x] =⇒∗ (M [N/x])◦

2. ∃k ≥ 0, M◦◦[N◦/x] =⇒∗ ∆k
A(M [N/x])◦◦

and no expansions are performed in the reduction sequences.

Proof. The proof of this lemma can be done exactly as for lemma 5.8, except that now we have
to use corollary 5.9 in two points: to show that

∆k+h
A ∆m

AM [N/x]
◦◦

=⇒∗M [N/x]
◦

if M [N/x] is a pair or a λ-abstraction, and in the case M ≡ xi, where to prove the first statement
we need to proceed as follows:

∆k
Ax

◦
i [N

◦/x] = ∆k
A(∆

m
Axi)[N◦/x] = ∆k+m

A N◦
i .

By corollary 5.9, ∆k+m
A N◦

i =⇒∗ N◦
i = (xi[N/x])◦.

Notice that there are no expansions in the sequence ∆k+m
A N◦

i =⇒∗ N◦
i by corollary 5.9.

✷

Lemma 5.11 If Γ ⊢M : A, then

1. ∀k ≥ 0, ∆k
AM

◦[N◦◦/x] =⇒∗ (M [N/x])◦

2. ∃k ≥ 0, M◦◦[N◦◦/x] =⇒∗ ∆k
A(M [N/x])◦◦

and no expansions are performed in the reduction sequences.

37

Proof. The proof of this lemma can be done exactly as for lemma 5.8, except that now we have
to use corollary 5.9 in two points: to show that

∆k+h
A ∆m

AM [N/x]
◦◦

=⇒∗M [N/x]
◦

if M [N/x] is a pair or a λ-abstraction, and in the case M ≡ xi, where to prove the first statement
we need to proceed as follows:

∆k
Ax

◦
i [N

◦◦/x] = ∆k
A(∆

m
Axi)[N◦◦/x] = ∆k+m

A N◦◦
i .

If N◦
i = N◦◦

i , then by corollary 5.9 ∆k+m
A N◦

i =⇒∗ N◦
i = (xi[N/x])◦.

In the other case ∆k+m
A N◦◦

i = N◦
i = (xi[N/x])◦.

Notice that there are no expansions in the sequence ∆k+m
A N◦

i =⇒∗ N◦
i by corollary 5.9.

✷

Lemma 5.12 If M
η,δ,Top
−→ N , then M◦¬δ,¬η

=⇒+N◦.

Proof.

• If M is of type A×B and M
δ
−→ 〈π1(M), π2(M)〉

We know that ∃k > 0 such that M◦ = ∆k
A×BM

◦◦. By corollary 5.7

∆k
A×BM

◦◦=⇒+ 〈∆k
Aπ1(M

◦◦),∆k
Bπ2(M

◦◦)〉

and the sequence has no expansion rules.

The last term is equal to 〈π1(M)◦, π2(M)◦〉 = 〈π1(M), π2(M)〉◦ and then the property holds.

• If M is of type A→ B and M
η
−→ λy : A.My

We know that ∃k > 0 such that M◦ = ∆k
A→BM

◦◦. By corollary 5.7 ∆k
A→BM

◦◦=⇒+ λy :
A.∆k

B(M
◦◦(∆k

Ay)) and the the sequence has no expansion rules.

The last term is equal to λy : A.∆k
B(M

◦◦y◦) = λy : A.(My)◦ = (λy : A.My)◦ and then the
property holds.

• If M : T and M
Top
−→ ∗.

By lemma 5.5 M◦ : T and so M◦ Top
−→ ∗ = ∗◦.

✷

Using 5.10 we can show now:

Theorem 5.13 (Simulation) If Γ ⊢M : A and M =⇒ N , then

1. ∃k ≥ 0 such that M◦◦=⇒+∆k
AN

◦◦ if M
¬η,¬δ
−→ N

2. M◦=⇒+N◦

and there are no expansions in these reduction sequences.

Proof. We show the property by induction on the structure of M . More precisely, for the first
statement we analyze each case, while for the second there are two cases:

• if M
η,δ
−→ N , then apply lemma 5.12

• if M
¬η,¬δ
−→ N , then it is enough to analyze only the cases such that M◦ = M◦◦, because when

M◦ = ∆h
AM

◦◦ (for h > 0) we have easily:

M◦ = ∆h
AM

◦◦=⇒+ (by the first statement) ∆h
A∆

k
AN

◦◦ = ∆h+k
A N◦◦

Then either N is not a pair or a λ-abstraction, which gives ∆h+k
A N◦◦ = N◦ because h > 0, or

otherwise ∆h+k
A N◦◦ = ∆h+k

A N◦ =⇒∗ N◦ by lemma 5.9.

38

In order to conclude that the reductions in the statements of the lemma contain no expansions,
it suffices to notice that every reduction built in the following proof contains no expansion steps:
indeed it is constructed from one-step reductions that are not expansions or from reductions obtained
by induction hypothesis (and thus without expansions) or from reductions obtained by lemma 5.12,
lemma 5.7, (again without expansions).

Now, we can analyze the cases involved in the proof of the first and the second statement.

• M ≡ ∗. It is in normal form.

• M ≡ x. The only possible case is x
Top
−→ ∗, where x : T. Then, x◦◦ = x

Top
−→ ∗ = ∆0

T∗
◦◦.

• M ≡ (P1Q1).

– If (P1Q1) : T and (P1Q1)
Top
−→ ∗, then (P1Q1)

◦◦ : T by lemma 5.5 and then

(P1Q1)
◦◦ Top
−→ ∗ = ∆0

T∗
◦◦

– If (λx : C.R)Q1
β
−→ R[Q1/x].

((λx : C.R)Q1)
◦◦ =

((λx : C.R)◦◦Q◦
1) =

((λx : C.R◦)Q◦
1)

β
=⇒

R◦[Q◦
1/x] =⇒

∗ (by lemma 5.10)
R[Q1/x]

◦
=

∆k
AR[Q1/x]

◦◦

– If (P1Q1) =⇒ (P2Q1), where P1 =⇒ P2.

Since P1
¬η
−→ P2 because (P1Q1) =⇒ (P2Q1), we have by induction hypothesis a reduction

sequence P ◦◦
1 =⇒+ ∆h

B→AP
◦◦
2 without expansions. Then

(P1Q1)
◦◦ =

P ◦◦
1 Q◦

1=⇒
+ by induction hypothesis since P1

¬η¬δ
=⇒ P2

(∆h
B→AP

◦◦
2)Q◦

1

If h = 0, then (P ◦◦
2 Q◦

1) = (P2Q1)
◦◦.

If h > 0, then
(∆h

B→AP
◦◦
2)Q◦

1

⇓+ by lemma 5.7

(λw : B.∆h
A(P

◦◦
2 (∆h

Bw)))Q
◦
1

↓ β

∆h
A(P

◦◦
2 (∆h

BQ
◦
1))

⇓ ∗ by corollary 5.9

∆h
A(P

◦◦
2 Q◦

1)
=
∆h

A(P2Q1)
◦◦

39

– If (P1Q1) =⇒ (P1Q2), where Q1 =⇒ Q2

(P1Q1)
◦◦ =

P ◦◦
1 Q◦

1=⇒
+ by induction hypothesis

P ◦◦
1 Q◦

2 =
(P1Q2)

◦◦

• M ≡ 〈P1, Q1〉

– If 〈P1, Q1〉 =⇒ 〈P2, Q1〉, where P1 =⇒ P2.

1.

〈P1, Q1〉
◦◦

〈P ◦
1 , Q

◦
1〉=⇒

+ by induction hypothesis
〈P ◦

2 , Q
◦
1〉 =

〈P2, Q1〉
◦◦

=
∆0

A〈P2, Q1〉
◦◦

2. Since 〈P,Q〉◦◦ = 〈P,Q〉◦, we have 〈P1, Q1〉
◦
=⇒+〈P2, Q1〉

◦
by the previous statement.

– If 〈P1, Q1〉 =⇒ 〈P1, Q2〉, where Q1 =⇒ Q2.

1.

〈P1, Q1〉
◦◦

〈P ◦
1 , Q

◦
1〉=⇒

+ by induction hypothesis
〈P ◦

1 , Q
◦
2〉 =

〈P1, Q2〉
◦◦

=
∆0

A〈P1, Q2〉
◦◦

2. Since 〈P,Q〉◦◦ = 〈P,Q〉◦, we have 〈P1, Q1〉
◦
=⇒+〈P1, Q2〉

◦
by the previous statement.

• M ≡ λx : A.P1

Then λx : A.P1 =⇒ λx : A.P2, where P1 =⇒ P2.

1.

(λx : A.P1)
◦◦

λx : A.P ◦
1=⇒

+ by induction hypothesis
λx : A.P ◦

2 =
∆0

A→B(λx : A.P2)
◦◦

2. Since (λx : A.Pi)
◦ = (λx : A.Pi)

◦◦ we have (λx : A.P1)
◦=⇒+(λx : A.P2)

◦ by the previous
statement.

• M ≡ ini
C(P1), for i = 1, 2 where P1 =⇒ P2.

Then ini
C(P1) =⇒ ini

C(P2)

ini
C(P1)

◦◦ =
ini

C(P
◦
1)=⇒

+ by induction hypothesis
ini

C(P
◦
2) =

∆0
B+Cin

i
C(P2)

◦◦

• M ≡ πi(P1), for i = 1, 2.

– If πi(P1) : T and πi(P1)
Top
−→ ∗, then πi(P1)

◦◦ : T by lemma 5.5 and πi(P1)
◦◦ Top
−→ ∗ =

∆0
Top∗

◦◦.

40

– If πi(P1) =⇒ πi(P2), where P1 =⇒ P2.

Since P1
¬δ
−→ P2 because πi(P1) =⇒ πi(P2), we have by induction hypothesis a reduction

sequence P ◦◦
1 =⇒+ ∆h

B×AP
◦◦
2 without expansions. Then

πi(P1)
◦◦ =

πi(P
◦◦
1)=⇒+ by induction hypothesis

πi(∆
h
A1×A2

P ◦◦
2)

If h = 0, then πi(P
◦◦
2) = πi(P2)

◦.

If h > 0, then

πi(∆
h
A1×A2

P ◦◦
2)

⇓+ by lemma 5.7

πi(〈∆
h
A1

π1(P
◦◦
2),∆h

A2
π2(P

◦◦
2)〉)

⇓πi

∆h
Ai
πi(P

◦◦
2)

=
∆h

Ai
πi(P2)

◦◦

• M ≡ Case(P1, R1, N1)

– If Case(P1, R1, N1) : T and Case(P1, R1, N1)
Top
−→ ∗, then Case(P1, R1, N1)

◦◦ : T by

lemma 5.5 and πi(P1)
◦◦ Top
−→ ∗ = ∆0

Top∗
◦◦.

– Case(ini
C1+C2

(S), R1, R2)
ρ
−→ RiS

Case(ini
C1+C2

(S), R1, R2)
◦◦ =

Case(ini
C1+C2

(S)◦, R◦
1, R

◦
2) =

Case(ini
C1+C2

(S◦), R◦
1, R

◦
2)

ρ
=⇒

R◦
1S

◦ =
(∆h

Ci→AR
◦◦
1)S◦=⇒+ by lemma ??

(λw : Ci.∆
h
A(R

◦◦
1 (∆h

Ci
w)))S◦ β

−→
∆h

A(R
◦◦
1 (∆h

Ci
S◦)) =⇒∗ by corollary 5.9

∆h
A(R

◦◦
1 S◦) =

∆h
A(R1S)

◦◦

– Case(P1, R1, N1) =⇒ Case(P2, R1, N1), where P1 =⇒ P2.

Case(P1, R1, N1)
◦◦ =

Case(P ◦
1 , R

◦
1, N

◦
1)=⇒

+ by induction hypothesis since
Case(P ◦

2 , R
◦
1, N

◦
1) =

Case(P2, R1, N1)
◦◦ =

∆0
ACase(P2, R1, N1)

◦◦

– Case(P1, R1, N1) =⇒ Case(P1, R2, N1), where R1 =⇒ R2

Case(P1, R1, N1)
◦◦ =

Case(P ◦
1 , R

◦
1, N

◦
1)=⇒

+ by induction hypothesis
Case(P ◦

1 , R
◦
2, N

◦
1) =

Case(P1, R2, N1)
◦◦ =

∆0
ACase(P1, R2, N1)

◦◦

41

– Case(P1, R1, N1) =⇒ Case(P1, R1, N2), where N1 =⇒ N2

Case(P1, R1, N1)
◦◦ =

Case(P ◦
1 , R

◦
1, N

◦
1)=⇒

+ by induction hypothesis
Case(P ◦

1 , R
◦
1, N

◦
2) =

Case(P1, R1, N2)
◦◦ =

∆0
ACase(P1, R1, N2)

◦◦

• M ≡ (rec y : B.P1)
i

– If (rec y : T.P1)
i : T and (rec y : T.P1)

i Top
−→ ∗, then ((rec y : T.P1)

i)◦◦ : T by lemma 5.5

and (rec y : T.P1)
i◦◦ Top
−→ ∗ = ∆0

Top∗
◦◦.

– (rec y : A.P1)
i rec
−→ P1[(rec y : A.P1)

i−1/y]

((rec y : A.P1)
i)◦◦ =

(rec y : A.P ◦
1)

i rec
−→

P ◦
1 [(rec y : A.P ◦

1)
i−1/y] =

P ◦
1 [(rec y : A.P1)

i−1◦◦/y] =⇒∗ by lemma 5.8
(P1[(rec y : A.P1)

i−1/y])◦ =
∆h

A(P1[(rec y : A.P1)
i−1/y])◦◦

– (rec y : A.P1)
i =⇒ (rec y : A.P2)

i.

((rec y : A.P1)
i)◦◦ =

(rec y : A.P ◦
1)

i=⇒+ by induction hypothesis
(rec y : A.P ◦

2)
i =

∆0
A(rec y : A.P2)

i◦◦

✷

5.2 Strong Normalization of the Full Calculus

Having shown that our translation satisfies the hypothesis of Proposition 5.1, all we are now left to
prove is that the bounded reduction system without expansion rules is strongly normalizing. This
can be established by one of the standard techniques of reducibility, and does not present essential
difficulties once the right definitions of stability or reducibility are given. In 6 and 7 we provide
two proofs, one adapting the proof provided by Poigné and Voss in [PV87], and the other adapting
Girard’s proof from [GLT90]. It is then finally possible to state the following

Theorem 5.14 (Strong normalization)
The reduction =⇒ for the bounded system with expansions is strongly normalizing.

Proof. By proposition 5.1, theorem 5.13 and Corollary 6.11 (or 7.7). ✷

6 Strong Normalization via stability

We have shown that every reduction sequence starting at M involving the rules presented in section 3
can be simulated by the translation of M in the same calculus but without expansions. We will show
in this section that the calculus without expansions is strongly normalizing.

42

6.1 Stability

We define a set of stable terms of type A by induction on the type A in the following way:

• For M of atomic type A, M is stable if and only if it is strongly normalizing.

• For M of type A1 × A2, M is stable if and only if it is strongly normalizing and whenever M
reduces to 〈M1,M2〉, then M1 and M2 are stable terms of type A1 and A2 respectively.

• For M of type A1 + A2, M is stable if and only if it is strongly normalizing and whenever M
reduces to ini

A1+A2
(M ′) then M ′ is stable of type Ai.

• For M of type A1 → A2, M is stable if and only if for every stable term N of type A1, MN is
a stable term of type A2.

Proposition 6.1 Let M be a term of type A→ B

1. if M is stable, then MQ1 . . . Qk is stable for arbitrary stable Q1 . . . Qk of appropriate types,

2. if MQ1 . . . Qk is stable for arbitrary stable Q1 . . . Qk of appropriate types, then M is stable.

Proof.
By induction on k. For k = 1, this is just our definition of stability, while for k > 1:

1. we know by induction hypothesis that MQ1 . . . Qk−1 is stable, and then MQ1 . . . Qk is stable
by definition since Qk is stable too.

2. if MQ1 . . . Qk is stable for arbitrary stable terms Q1 . . . Qk, then by definition of stability,
MQ1 . . . Qk−1 is stable for arbitrary Q1 . . . Qk−1, and then by induction hypothesis M is stable.

✷

Remark 6.2 We can then use equivalently as a definition for stability k > 1 or k = 1. We will use
in the following the most suitable one for each case.

Notation 6.3 In what follows we will use often
−→
Q to denote a sequence of terms Q1 . . . Qk, with the

convention that M
−→
Q really stands for MQ1 . . . Qk.

Lemma 6.4

• If M,N,
−→
Q are strongly normalizing, then the terms x

−→
Q ,Mx, ini

A(M), (rec y : B.M)0
−→
Q and

〈M,N〉 are strongly normalizing.

• If M,
−→
Q are strongly normalizing and M has product type but does not reduce to a pair, the

πi(M)
−→
Q is strongly normalizing.

• If P,M,N,
−→
Q are strongly normalizing and P has sum type but does not reduce to ini, then

Case(P,M,N)
−→
Q is strongly normalizing.

Proof. The argument of the proof is the same for all the cases: we show that a generic reduction
sequence starting from the given term always terminates. We assume in what follows that no Top
rule is applied at the root of our term during the reduction, as in this case the reduction sequence
simply stops and is then clearly finite.

• – x
−→
Q . There are no expansions in this system, so a reduction starting at x

−→
Q can only

proceed in the Q′
is. Since the

−→
Q are strongly normalizing, this means that the reduction

sequence also terminates, so we conclude that x
−→
Q is strongly normalizing.

43

– Mx. Consider a given reduction sequence starting from Mx. There are two possibilities:

∗ M does not reduce to a λ-expression in the reduction sequence. Then, the reduction
sequence starting at Mx terminates because it is of the form Mx =⇒ M1x =⇒
. . . =⇒ Mnx, where M =⇒ M1 =⇒ . . . =⇒ Mn is a terminating reduction
sequence starting at M .

∗ M reduces at some point to λy : B.P . Then the reduction sequence starting at Mx
is of the form Mx =⇒∗ (λy : B.P)x′ =⇒∗ (λy : B.P ′)x′′ =⇒ P ′[x′′/y] =⇒ . . ., where
P =⇒∗ P ′ and x =⇒∗ x′ =⇒∗ x′′ (because x can reduce to ∗). On the other hand P ′

is strongly normalizing as P is, and thus also P ′[x/y] and P ′[∗ /y] must be strongly
normalizing6. Therefore the reduction sequence is terminating.

We conclude that Mx is strongly normalizing.

– ini
A1+A2

(M). A reduction sequence starting at ini
A1+A2

(M) is of the form ini
A1+A2

(M)

=⇒ ini
A1+A2

(M1) =⇒ ini
A1+A2

(M2) =⇒ . . . , where M =⇒M1 =⇒M2 =⇒ . . . since

the leftmost ini cannot be removed. Since M is strongly normalizing, these two sequences
are both finite.

– (rec y : B.M)0
−→
Q . Since the term (rec y : B.M)0 cannot be reduced at the root position

(neither by a rec-rule nor by a Top-rule), then only internal reductions in M are possible.

Therefore a reduction starting at (rec y : B.M)0
−→
Q only proceeds inM ,

−→
Q that are strongly

normalizing by hypothesis. Hence, the reduction sequence is finite.

– 〈M,N〉. A reduction sequence starting at 〈M,N〉 is of the form 〈M,N〉 =⇒∗ 〈M1, N1〉
=⇒∗ 〈M2, N2〉 =⇒∗ . . . , where M =⇒∗ M1 =⇒∗ M2 =⇒∗ . . . and N =⇒∗ N1

=⇒∗ N2 =⇒∗ Since M and N are strongly normalizing, these reduction sequences
are all finite.

• πi(M)
−→
Q . Since by hypothesis M does not reduce to a pair, the leftmost πi cannot be re-

moved and therefore a reduction starting at πi(M)
−→
Q only proceeds in M,

−→
Q that are strongly

normalizing by hypothesis. Therefore the reduction sequence is finite.

• Case(P,M,N)
−→
Q . Since by hypothesis P does not reduce to an ini, the leftmost Case cannot

be removed and therefore a reduction starting at Case(P,M,N)
−→
Q only proceeds in P,M,N,

−→
Q

that are strongly normalizing by hypothesis. Hence, the reduction sequence terminates.

✷

6.2 Properties of stability

Lemma 6.5

1. Every stable term M of type A is strongly normalizing.

2. A term x
−→
Q of type A is stable for arbitrary strongly normalizing terms

−→
Q .

Proof. By induction on the type A

• If A is not a functional type:

1. By definition.

2. By lemma 6.4 x
−→
Q is strongly normalizing. As pointed out in the proof of lemma 6.4,

either x
−→
Q reduces to ∗, or reductions from x

−→
Q can only proceed in the Q′

is. Therefore,

x
−→
Q cannot reduce to a pair, nor to an ini and thus x

−→
Q is stable by definition.

6From any infinite sequence starting from P ′[x/y] or P ′[∗ /y] we can build an infinite sequence starting from P ′.

44

• If A is a functional type:

1. Let M be a stable term of type A ≡ B → C and let x be a variable of type B. By the
second induction hypothesis (with n = 0) x : B is stable and so by definition Mx is also
stable. By lemma 6.4 Mx is strongly normalizing. Suppose now that M is not strongly
normalizing. Then there is an infinite reduction sequence M =⇒M1 =⇒ . . . and thus an
infinite reduction sequence Mx =⇒M1x =⇒ . . . which leads to a contradiction. Therefore
M is strongly normalizing.

2. Let x
−→
Q be of type B → C with all the Q′

is strongly normalizing. Let N be any stable
term of type B. From the first induction hypothesis N is also strongly normalizing and

applying the second induction hypothesis x
−→
Q N is stable of type C, so by proposition 6.1

x
−→
Q is stable.

✷

Lemma 6.6 If M is a stable term of type A and M =⇒ N , then N is stable.

Proof. We first recall that N is also of type A by proposition 3.7. We show the property by
induction on A.

• A is not a functional type: M is strongly normalizing and then also N is strongly normalizing
since for every reduction sequence N =⇒∗ N ′ there is a longer reduction sequence M =⇒ N
=⇒∗ N ′ that terminates. On the other hand, when N =⇒∗ 〈M1,M2〉, then M1 and M2 are
stable, because M =⇒∗ N =⇒∗ 〈M1,M2〉 and M is stable. Similarly, if N =⇒∗ ini

B(M
′)

we have M =⇒∗ N =⇒ ini
B(M

′) and then M ′ is stable. Therefore N is stable.

• A is a functional type: by definition of stability on arrow types, it suffices to show that NM1

is stable for any stable term M1. Now, given a stable M1, MM1 is stable because M is, and
MM1 =⇒ NM1, so by induction hypothesis NM1 is stable.

✷

6.3 Products, sums and basic recursion

Lemma 6.7

• π1(M), π2(M) and ini
A1+A2

(M) are stable if M is stable.

• Case(P,M1,M2) is stable if P , M1 and M2 are stable.

• 〈M,N〉 is stable if M and N are stable.

• (rec y : B.M)0 is stable if M is stable.

Proof.

• We will prove that πi(M) is stable if M is stable, for i = 1, 2. Assume that A is the type of

πi(M). Take stable terms
−→
Q such that πi(M)

−→
Q is not of functional type. There are two cases

to consider:

– M does not reduce to a pair (recall that M has a product type). By lemma 6.4 πi(M)
−→
Q is

strongly normalizing. On the other hand, πi(M)
−→
Q cannot reduce to a pair, nor to an ini

because either it reduces to ∗, or the πi cannot be removed. Therefore πi(M)
−→
Q is stable

for arbitrary stable terms
−→
Q , so by proposition 6.1 πi(M) is also stable.

45

– M =⇒∗ 〈M1,M2〉. Suppose πi(M)
−→
Q has an infinite reduction sequence: such reduction

has to remove πi in some step in the following way:

πi(M)
−→
Q =⇒∗ πi(〈M1,M2〉)

−→
Q

′

=⇒∗ M
′

i

−→
Q

′′

=⇒ . . .

where Mi =⇒∗ M
′

i and Qi =⇒∗ Q
′

i =⇒
∗ Q

′′

i .

Since Mi and Qi are stable, by lemma 6.6 also M
′

i and Q
′′

i are stable. Therefore M
′

i

−→
Q

′′

is stable and then strongly normalizing. From the form of the reduction sequence we

can conclude that πi(M)
−→
Q is also strongly normalizing which leads to a contradiction.

Therefore πi(M)
−→
Q has no infinite reduction sequences and is strongly normalizing.

Now, if πi(M)
−→
Q reduces to a pair, the reduction removes the πi and we have necessarily

πi(M)
−→
Q =⇒∗ πi(〈M1,M2〉)

−→
Q

′

=⇒∗ M
′

i

−→
Q

′′

=⇒∗ 〈L1, L2〉

Since M
′

i

−→
Q

′′

is stable, L1 and L2 are stable.

If πi(M)
−→
Q reduces to ini

C(L), the reduction removes the πi and we have necessarily

πi(M)
−→
Q =⇒∗ πi(〈M1,M2〉)

−→
Q

′

=⇒∗ M
′

i

−→
Q

′′

=⇒∗ ini
C(L)

Since M
′

i

−→
Q

′′

is stable, L is also stable.

We can conclude that πi(M)
−→
Q is stable and by proposition 6.1 πi(M) is stable.

• We will prove that ini
A1+A2

(M) is stable if M is stable. Since M is stable, M is strongly

normalizing and by lemma 6.4 also ini
A1+A2

(M) is strongly normalizing. On the other hand

ini
A1+A2

(M) cannot reduce to a pair because it is of sum type. If ini
A1+A2

(M) =⇒∗ ini
A1+A2

(M ′),
then M =⇒∗ M ′ and since M is stable by hypothesis, we have that M ′ is stable by lemma 6.6.
We conclude that ini

A1+A2
(M) is stable.

• We will prove that Case(P,M1,M2) is stable if P , M1 and M2 are stable. Assume that A

is the type of Case(P,M1,M2). Take stable terms
−→
Q such that Case(P,M1,M2)

−→
Q is not of

functional type. Since P is of sum type it cannot reduce to a pair, but it could reduce to an
ini

B(P
′). There are two cases to consider:

– P cannot reduce to an ini. Then by lemma 6.4 Case(P,M1,M2)
−→
Q is also strongly nor-

malizing. On the other hand, Case(P,M1,M2)
−→
Q cannot reduce to a pair, nor to an ini

because either Case(P,M1,M2)
−→
Q reduces to ∗, or the Case construction cannot be re-

moved. Therefore Case(P,M1,M2)
−→
Q is stable and by proposition 6.1 Case(P,M1,M2) is

stable.

– P can reduce to some ini
B(P

′). Consider a reduction starting from Case(P,M1,M2)
−→
Q :

if in this reduction the Case(P,M1,M2) is never eliminated, then the reduction sequence

actually proceeds inside the P , M1, M2,
−→
Q , that are all strongly normalizing as they are

stable, so this reduction sequence is finite. Otherwise, this reduction sequence removes the
Case constructor and looks like:

Case(P,M1,M2)
−→
Q =⇒∗ Case(ini

B(P
′),M

′

1,M
′

2)
−→
Q

′

=⇒ M
′

iP
′
−→
Q

′

=⇒ . . .

where Mi =⇒∗ M
′

i and Qi =⇒∗ Q
′

i.

46

Since P , Mi and the Qi in
−→
Q are stable, then P ′ is stable by definition and by lemma 6.6

also the M
′

i and the Q
′

i in
−→
Q

′

are stable. Therefore M
′

iP
′
−→
Q

′

is stable and then strongly

normalizing, so the reduction M
′

iP
′
−→
Q

′

=⇒ . . . is finite and then in turn the whole

reduction sequence is finite. We conclude that Case(P,M1,M2)
−→
Q is strongly normalizing.

On the other hand, if Case(P,M1,M2)
−→
Q reduces to a pair we have necessarily a reduction

sequence removing the Case that looks like:

Case(P,M1,M2)
−→
Q =⇒∗ Case(ini

B(P
′),M

′

1,M
′

2)
−→
Q

′

=⇒ M
′

iP
′
−→
Q

′

=⇒∗ 〈L1, L2〉

As seen above, M
′

iP
′
−→
Q

′

is stable, so L1 and L2 are stable too.

If Case(P,M1,M2)
−→
Q reduces to ini

C(L), we have necessarily a reduction sequence remov-
ing the Case that looks like:

Case(P,M1,M2)
−→
Q =⇒∗ Case(ini

B(P
′),M

′

1,M
′

2)
−→
Q

′

=⇒ M
′

iP
′
−→
Q

′

=⇒∗ ini
C(L)

Again, M
′

iP
′
−→
Q

′

is stable, so L is also stable.

We conclude that Case(P,M1,M2)
−→
Q is stable and by proposition 6.1 Case(P,M1,M2) is

stable.

• We will prove that 〈M,N〉 is stable if M and N are stable. By hypothesis M and N are strongly
normalizing and by lemma 6.4 〈M,N〉 is strongly normalizing. It is clear that 〈M,N〉 cannot
reduce to an ini. If 〈M,N〉 =⇒∗ 〈M ′, N ′〉, then M =⇒∗M ′ and N =⇒∗ N ′. By hypothesis M
and N are stable and then by lemma 6.6 M ′ and N ′ are stable. We can conclude that 〈M,N〉
is stable.

• We will prove that (rec y : B.M)0 is stable if M is stable. Take arbitrary stable terms
−→
Q such

that (rec y : B.M)0
−→
Q is not of functional type. By lemma 6.4 (rec y : B.M)0

−→
Q is strongly

normalizing as the stable terms M ,
−→
Q are strongly normalizing.

On the other hand, the term (rec y : B.M)0
−→
Q cannot reduce to a pair, nor to an ini because

either it reduces to ∗, or the rec with exponent 0 is not removed. Therefore (rec y : B.M)0
−→
Q

is stable and by proposition 6.1 (rec y : B.M)0 is stable.

✷

6.4 Abstraction and recursion

Lemma 6.8 If M [N/x] is stable, then (λx : A.M)N is stable provided that N is stable if x is not
free in M .

Proof. Let
−→
Q be stable terms such that M [N/x]

−→
Q is not of functional type. By proposition 6.1

M [N/x]
−→
Q is stable and then strongly normalizing. We want to show that (λx : A.M)N is stable,

but this follows from proposition 6.1 once we show that (λx : A.M)N
−→
Q is stable.

Notice first of all that N is strongly normalizing in any case: if x is not free in M we know
by hypothesis that N is stable, hence also strongly normalizing, while if x is free in M , then N is
strongly normalizing because it is a subterm of the stable (hence strongly normalizing) term M [N/x].
Secondly, M is also strongly normalizing, because from a non terminating reduction sequence starting
at M we can build a non terminating reduction sequence starting at M [N/x], which is impossible,
because this last term is stable, hence strongly normalizing.

47

We can now show that (λx : A.M)N
−→
Q is strongly normalizing.

Every reduction sequence starting at (λx : A.M)N
−→
Q yields to ∗, proceeds inside M , N ,

−→
Q or

looks like:

(λx : A.M)N
−→
Q =⇒∗ (λx : A.M ′)N ′

−→
Q

′

=⇒ M ′[N ′/x]
−→
Q

′

=⇒ . . .

where M =⇒ M ′, N =⇒ N ′ and Qi =⇒ Q
′

i.
In the first case the reduction stops at ∗, and in the second case the reduction is finite because the

terms M , N ,
−→
Q are all strongly normalizing (

−→
Q are stable, while M and N are strongly normalizing

as seen above).
In the last case, by lemma 4.5 and corollary 4.8 M [N/x] =⇒∗ M ′[N ′/x] and since M [N/x]

is stable by hypothesis, applying lemma 6.6 we obtain that M ′[N ′/x] is also stable. Once again

by lemma 6.6 every Q
′

i is stable and by proposition 6.1 M ′[N ′/x]
−→
Q

′

is stable and hence strongly

normalizing. Then (λx : A.M)N
−→
Q is also strongly normalizing.

Hence we have proved that (λx : A.M)N
−→
Q is strongly normalizing.

On the other hand, if (λx : A.M)N
−→
Q reduces to a pair 〈L1, L2〉, we have necessarily to remove the

redex (λx : A.M)N and we obtain a reduction sequence similar to the previous one with more steps

from M ′[N ′/x]
−→
Q

′

to a pair 〈L1, L2〉. Since M ′[N ′/x]
−→
Q

′

is stable, L1 and L2 are stable. Similarly, if

(λx : A.M)N
−→
Q reduces to ini

B(L), we obtain a reduction sequence with more steps from M ′[N ′/x]
−→
Q

′

to a ini
B(L). Since M ′[N ′/x]

−→
Q

′

is stable, L is stable.

We can conclude that (λx : A.M)N
−→
Q is stable and thus we have (λx : A.M)N stable by propo-

sition 6.1. ✷

Lemma 6.9 If M [(rec y.M)i−1/y] is stable, then (rec y.M)i is stable.

Proof. Take stable terms
−→
Q such that (rec y : B.M)i

−→
Q is not of functional type. We first show

that (rec y : B.M)i
−→
Q is strongly normalizing. For this, notice that any reduction starting from

(rec y : B.M)i
−→
Q that does not eliminate the rec construct is finite, as it must proceed in the M ,

−→
Q ,

which are all stable and hence also strongly normalizing. We are left with those reductions that do
eliminate the rec construct. Any such reduction sequence looks like:

(rec y : B.M)i
−→
Q =⇒∗ (rec y : B.M ′)i

−→
Q′ =⇒ M ′[(rec y : B.M ′)i−1/y]

−→
Q′

where Qi =⇒∗ Q
′

i, M =⇒∗ M ′ and hence alsoM [(rec y : B.M)i−1/y] =⇒∗M ′[(rec y : B.M ′)i−1/y].
Since M [(rec y : B.M)i−1/y] and the Qi are stable, by lemma 6.4 M ′[(rec y : B.M ′)i−1/y] and the

Q
′

i are also stable, so M ′[(rec y : B.M ′)i−1/y]
−→
Q′ is stable and thus strongly normalizing. This means

that the whole reduction sequence is finite, and concludes this first part of the proof.

Now, if (rec y : B.M)i
−→
Q reduces to a pair, the rec has been removed and the reduction sequence

looks like:

(rec y : B.M)i
−→
Q =⇒∗ (rec y : B.M ′)i

−→
Q′ =⇒ M ′[(rec y : B.M ′)i−1/y]

−→
Q′ =⇒∗ 〈L1, L2〉

As M ′[(rec y : B.M ′)i−1/y]
−→
Q′ is stable, L1 and L2 are also stable.

Similarly, if (rec y : B.M)i
−→
Q reduces to ini

B(L), the rec has been removed and the reduction
sequence looks like:

(rec y : B.M)i
−→
Q =⇒∗ (rec y : B.M ′)i

−→
Q′ =⇒ M ′[(rec y : B.M ′)i−1/y]

−→
Q′ =⇒∗ ini

B(L)

As M ′[(rec y : B.M ′)i−1/y]
−→
Q′ is stable, L is also stable.

48

We can conclude that (rec y : B.M)i
−→
Q is stable and thus by proposition 6.1 (rec y : B.M)i is

stable. ✷

Lemma 6.10 Let M be a term such that all the free variables are among {xi}i=1...n. If N are stable
terms, then M [N1 . . . Nn/x1 . . . xn] is stable.

Proof. We show the property by induction on the structure of M .

• M ≡ ∗. Then ∗[N/xi] = ∗ and ∗ is strongly normalizing and hence stable.

• M ≡ xi. Then xi[N/xi] = N and N is stable by hypothesis.

• M ≡ Case(P,Q,R). We have Case(P,Q,R)[N/x] = Case(P [N/x], Q[N/x], R[N/x]). By in-
duction hypothesis the terms P [N/x], Q[N/x] and R[N/x] are stable, so we can apply lemma 6.7
and we get that Case(P [N/x], Q[N/x], R[N/x]) is stable.

• M ≡ πi(P), for i = 1, 2. We have πi(P)[N/x] = πi(P [N/x]). By induction hypothesis P [N/x]
is stable and by lemma 6.7 πi(P [N/x]) is stable.

• M ≡ ini
B(P), for i = 1, 2. We have ini

B(P)[N/x] = ini
B(P [N/x]). By induction hypothesis

P [N/x] is stable and by lemma 6.7 ini
B(P [N/x]) is stable.

• M ≡ 〈M1,M2〉. We have 〈M1,M2〉[N/x] = 〈M1[N/x],M2[N/x]〉. By induction hypothesis
M1[N/x] and M2[N/x] are stable and by lemma 6.7 〈M1[N/x],M2[N/x]〉 is stable.

• M ≡ λy : B.P . Then (λy : B.P)[N/x] = λy : B.P [N/x]. Consider any stable term R. By
inductive hypothesis P [N/x][R/y] is stable and by lemma 6.8 (λy : B.P [N/x])R is stable. By
definition of stability (λy : B.P [N/x]) is stable.

• M ≡ (M1M2). We have (M1M2)[N/x] = (M1[N/x]M2[N/x]). By induction hypothesis
M1[N/x] and M2[N/x] are stable and then by definition of stability for arrow types we conclude
that (M1[N/x]M2[N/x]) is stable.

• M ≡ (rec y : B.P)i. Then (rec y : B.P)i[N/x] = (rec y : B.P [N/x])i. By induction hypothesis
P [N/x][R/y] is stable for a stable term R. In particular y is stable and then P [N/x][y/y] =
P [N/x] is stable.

We will now prove that (rec y : B.P [N/x])i is stable by induction on i.

– i = 0. Since P [N/x] is stable, this comes from lemma 6.7.

– i > 0. Due to lemma 6.9, it suffices to show that P [N/x][(rec y : B.P [N/x])i−1/y] is
stable. But we know by the inductive hypothesis on i that (rec y : B.P [N/x])i−1 is stable,
and we can then conclude by the inductive hypothesis on the structure.

✷

Corollary 6.11 Every term is stable, and hence strongly normalizing.

7 Strong Normalization via reducibility

In this section we will prove the strong normalization property for our calculus λπ∗µσ, with labeled
recursion, but no expansions, using the reducibility method as in [GLT90], with an additional astute
twist to take care of the sum type and labeled recursion.

49

7.1 Reducibility

We define the set REDA of reducible terms of type A by induction on the type A as follows:

• For M of atomic type A, M ∈ REDA iff M is strongly normalizable

• For M of product type, M ∈ REDA1×A2
iff πi(M) ∈ REDAi

• For M of a sum type, M ∈ REDA1+A2
iff, for fresh variables wi : Ai, we have

Case(M,λx : A1.〈x,w2〉, λy : A2.〈w1, y〉) ∈ REDA1×A2
(in the case Ai is T, we take ∗ instead

of wi)

• For M of a functional type, M ∈ REDA1→A2
iff for all N ∈ REDA1

, (MN) ∈ REDA2

Some comment on the sum type are needed here: first of all notice that the notion of reducibility
is well defined: reducibility for a sum type is given in term of reducibility for a product type, which
has been defined before. Secondly, notice that for all other types, reducibility is either given directly
as in the case of the base types, or given in terms of reducibility for types that are strictly smaller.
This is not possible for the sum type, because we have no destructor associated to it, but only a
case expression, so reducibility for A+B really depends on reducibility of A and B together , and we
express this fact by reducing it to reducibility of the product A×B.

7.2 Properties of reducibility

Following [GLT90], we define a notion of neutrality : a term is neutral if does not interact with the
surrounding context giving raise to redexes. In our case, the neutral terms are:

∗ x πi(M) Case(P,M,N) (MN) (rec y.M)i

We will prove that REDA enjoys the following properties, for all types A:

(CR1) If M ∈ REDA, then M is strongly normalizable.

(CR2) If M ∈ REDA, and M reduces to M ′, then M ′ ∈ REDA.

(CR3) If M is neutral and whenever we perform on it one step of reduction we obtain a term
M ′ ∈ REDA, then M ∈ REDA.
As a special case of the last clause:

(CR4) If M is neutral and no reduction is applicable to it, then M ∈ REDA.

In particular, ∗ and the variables are reducible (also the variables of type T, as they can only reduce
to ∗, which is reducible).

Proposition 7.1 (Properties of reducibility) For every type A, the set REDA satisfies (CR1),
(CR2) and (CR3).

Proof. We will proceed by induction on the type A.

7.2.1 Atomic types

(CR1) A reducible term of atomic type is strongly normalizable by definition

(CR2) If M is strongly normalizable, then so is every reduct of M (as reduction preserves the type)

(CR3) Suppose all one step reducts of M are reducible, i.e. strongly normalizable. Any reduction path
leaving M must pass through one of its one-step reducts, which are in a finite number, so that
the longest reduction sequence starting from M has length the maximum among the 1+ν(M ′),
as M ′ varies over the (one-step) reducts of M . Since these lengths are all finite, M is strongly
normalizing.

50

7.2.2 Product types

(CR1) SupposeM ∈ REDA1×A2
. Then by definition we know that πi(M) are reducible and so strongly

normalizing by induction hypothesis. This implies that M is strongly normalizing also, because
any reduction sequence starting from M can be turned into a reduction sequence starting from
πi(M).

(CR2) We know that πi(M) ∈ REDAi
, by definition. Now consider the possible one step reducts of

M :

– M reduces to M ′. Then also πi(M) reduces to πi(M
′) via the same reduction, and M ′ is

then reducible by definition

(CR3) Let now M be neutral (not necessarily reducible) such that all its one step reducts are reducible.
We must show that πi(M) is reducible of type Ai. Since M cannot be a pair (as it is neutral),
any one step reduction of πi(M) must be to a term πi(M

′), with M ′ one step from M . By
(CR2), M ′ is reducible, and then by definition also πi(M

′) is reducible. Now, πi(M) is neutral
and all its one step reducts are reducible, hence by induction hypothesis (CR3) for Ai, πi(M)
is reducible, hence M is, by definition.

7.2.3 Arrow types

(CR1) Suppose M ∈ REDA1→A2
. Then by definition we know that MN is reducible for all reducible

N . In particular, Mx is reducible for a fresh variable x, which is reducible by induction hypoth-
esis (CR3) for A1, hence Mx is strongly normalizable. This implies that also M is strongly
normalizing, as all reduction sequences starting from M can be performed also on Mx.

(CR2) Let M ∈ REDA1→A2
reduce to M ′. For all N ∈ REDA1

we have (M ′N) ∈ REDA2
, since

it is a reduct of (MN), which is reducible because M and N are. Hence M ′ is reducible by
definition.

(CR3) Let now M be neutral (not necessarily reducible) such that all one step reductions lead to
reducible terms. We show that MN is reducible for all reducible N by induction on ν(N), using
(CR3) for A2. Consider a one step reduction of MN : since M is neutral, this reduction must
be either inside M or inside N and leads to:

– M ′N , with M ′ one step from M , so M ′ is reducible and hence M ′N is

– MN ′, with N ′ one step from N ; N ′ is reducible by (CR2) for A1, and ν(N ′) < ν(N), so
by induction hypothesis MN ′ is reducible

Hence all reductions leaving MN lead to a reducible term and hence MN is reducible for all
reducible N , so that M is reducible by definition.

7.2.4 Sum types

(CR1) Suppose M ∈ REDA1+A2
. Then by definition Case(M,λx.〈x,w2〉, λy.〈w1, y〉) ∈ REDA1×A2

is
reducible, hence strongly normalizable, hence M is strongly normalizable too.

(CR2) Suppose M ∈ REDA1+A2
reduces to M ′. Then Case(M,λx.〈x,w2〉, λy.〈w1, y〉) ∈ REDA1×A2

reduces to Case(M ′, λx.〈x,w2〉, λy.〈w1, y〉), so that, by (CR2) for A×B which has been proved
before, Case(M,λx.〈x,w2〉, λy.〈w1, y〉) ∈ REDA1×A2

. Hence M ′ is reducible too.

(CR3) Let now M be neutral, and suppose all its one step reducts are reducible. We will show that
Case(M,λx.〈x,w2〉, λy.〈w1, y〉) (which is neutral) is reducible using (CR3) for A1×A2, which
has already been proved to hold. Consider the possible one step reducts:

– Case(M ′, λx.〈x,w2〉, λy.〈w1, y〉) with M ′ one step from M : then M ′ is reducible, hence
Case(M ′, λx.〈x,w2〉, λy.〈w1, y〉) is reducible by definition

51

– there is no other one step reduct as M is neutral and the terms λx.〈x,w2〉 and λy.〈w1, y〉
are normal

✷

7.3 Reducibility theorem

We are left to show a few more lemmas:

Lemma 7.2 (Pairing) Let M1 : A1, M2 : A2 be reducible terms. Then 〈M1,M2〉 ∈ REDA1×A2
.

Proof. We need to show that πi(〈M1,M2〉) ∈ REDAi
.

Since πi(〈M1,M2〉) is neutral, we prove the statement using (CR3): we will show that all one
step reductions are reducible. We proceed by induction on the sum ν(M1) + ν(M2) of the maximum
reduction lengths for M1 and M2, (which are finite, as these terms are strongly normalizable by
(CR1)).

The possible reducts are:

• Mi, which is reducible by hypothesis

• πi(〈M
′
1,M2〉): now, M

′
1 is one step from M1, so that ν(M ′

1)+ ν(M2) < ν(M1)+ ν(M2), and M ′
1

is reducible by (CR2), so πi(〈M
′
1,M2〉) is reducible by induction hypothesis

• πi(〈M1,M
′
2〉): this is shown reducible as the term in the previous case

✷

Lemma 7.3 (Abstraction) Let M : A2 be a term where the variable x : A1 may occur free. If for
every N ∈ REDA1

we have M [N/x] ∈ REDA2
, then λx : A1.M ∈ REDA1→A2

.

Proof. We want to show that (λx.M)P is reducible for all reducible P . Since this term is neutral,
we can prove our Lemma using (CR3). We are then left to show that all one step reducts of (λx.M)P
are reducible if for all N ∈ REDA1

we have M [N/x] ∈ REDA2
. Since M = M [x/x] is reducible by

hypothesis (as any variable is reducible), it is strongly normalizable by (CR1), and we can proceed
to prove this last statement by induction on ν(M) + ν(P). The term (λx.M)P converts to:

• M [P/x] which is reducible by hypothesis

• (λx.M ′)P withM ′ a reduct ofM ; now, by (CR2), M ′ is still reducible and furthermore ν(M ′)+
ν(P) < ν(M) + ν(P) and M [P/x] reduces to M ′[P/x], and this last term is also reducible,
because it is a multi-step reduct of M [P/x] by Lemma 4.5. So the induction hypothesis tells us
that (λx.M ′)P is reducible.

• (λx.M)P ′ with P ′ a reduct of P ; now, by (CR2), P ′ is still reducible and furthermore ν(M)+
ν(P ′) < ν(M) + ν(P) and M [P/x] reduces to M [P ′/x], by Corollary 4.8, so this last term is
also reducible. The induction hypothesis tells us that (λx.M)P ′ is reducible.

✷

Lemma 7.4 (Injections) For all terms, M ∈ REDA1
iff ini

A1+A2
(M) ∈ REDA1+A2

.

Proof. (⇒)
We must show that Case(ini

A1+A2
(M), λx.〈x,w2〉, λy.〈w1, y〉) is reducible of type A1 × A2, i.e. that

πi(Case(ini
A1+A2

(M), λx.〈x,w2〉, λy.〈w1, y〉)) ∈ REDAi
. Since πi(Case(ini

A1+A2
(M), λx.〈x,w2〉, λy.〈w1, y〉))

is neutral, we will proceed using (CR3), by induction on ν(M).
Consider then all its one step reducts:

• ((λx.〈x,w2〉)M), which is reducible because M is reducible and λx.〈x,w2〉 is reducible (by
Lemma 7.2 applied to the variables x and w2 we know that 〈x,w2〉 is reducible, and we get
reducibility of λx.〈x,w2〉 by Lemma 7.3; similarly if we have ∗ instead of w2)

52

• πi(Case(ini
A1+A2

(M ′), λx.〈x,w2〉, λy.〈w1, y〉)) with M ′ one step from M , hence reducible and
ν(M ′) < ν(M), so that it is reducible by induction hypothesis

(⇐)
Suppose now, ini

A1+A2
(M) ∈ REDA1+A2

. This means, by definition of reducibility over sum types,

Case(ini
A1+A2

(M), λx.〈x,w2〉, λy.〈w1, y〉) ∈ REDA1×A2
,

which implies, by definition of reducibility over product types,

π1(Case(ini
A1+A2

(M), λx.〈x,w2〉, λy.〈w1, y〉)) ∈ REDA1

This term reduces to π1((λx.〈x,w2〉M)), which in turn reduces to π1(〈M,w〉) and then to M , which
is then reducible by repeated use of (CR2). ✷

Lemma 7.5 (Sum) Let P : A+B, M : A→ C and N : B → C be reducible terms. Then Case(P,M,N) ∈
REDC .

Proof. We will work by cases on C.

C is an atomic type We can use (CR3) for C, as Case(P,M,N) is neutral. We will show by
induction on ν(P) + ν(M) + ν(N) that all one step reducts of Case(P,M,N) are reducible.
Consider the possible one step reducts:

• Case(P ′,M,N), or Case(P,M ′, N), or Case(P,M,N ′): they are reducible by induction
hypothesis as all primed terms are reducible by (CR2) on A + B, A → C, B → C, and
the measure decreases strictly.

• (RM) if P ≡ ini
A1+A2

(R): then R is also reducible by Lemma 7.4, and this term is reducible
as M is

C ≡ C1 × C2 We must show πi(Case(P,M,N)) ∈ REDCi
. Since πi(Case(P,M,N)) is neutral, we

can use (CR3) for Ci. Since P , M , N , are all reducible, they are all strongly normalizable and
we can proceed by induction on the measure ν(P) + ν(M) + ν(N). Consider the possible one
step reducts:

• πi(Case(P ′,M,N)) or πi(Case(P,M ′, N)) or πi(Case(P,M,N ′)): they are reducible by
induction hypothesis as all primed terms are reducible by (CR2) on A + B, A → C,
B → C, and the measure decreases strictly.

• πi((MR)) if P ≡ ini
A1+A2

(R): then R is also reducible by Lemma 7.4, so MR is reducible
and πi((MR)) too

C ≡ C1 → C2 Wemust show Case(P,M,N)Q ∈ REDC2
for allQ ∈ REDC1

. Since Case(P,M,N)Q
is neutral, we can use (CR3) for C2. Since P , M , N , Q are all reducible, they are all strongly
normalizable and we can proceed by induction on the measure ν(P) + ν(M) + ν(N) + ν(Q).
Consider the possible one step reducts:

• Case(P ′,M,N)Q, or Case(P,M ′, N)Q, or Case(P,M,N ′)Q, or Case(P,M,N)Q′: they
are reducible by induction hypothesis as all primed terms are reducible by (CR2) on A+B,
A→ C, B → C and C1, and the measure decreases strictly.

• (RM)Q if P ≡ ini
A1+A2

(R): then R is also reducible by Lemma 7.4, and this term is
reducible as M and Q are

C ≡ C1 + C2 We must show Case(Case(P,M,N), λx.〈x,w2〉, λy.〈w1, y〉) ∈ REDC1×C2
. We can use

(CR3) for C1 × C2 because Case(Case(P,M,N), λx.〈x,w2〉, λy.〈w1, y〉) is neutral. Since P ,
M , N , are all reducible, they are all strongly normalizable and we can proceed by induction on
the measure ν(P) + ν(M) + ν(N). Consider the possible one step reducts:

53

• Case(Case(P ′,M,N), λx.〈x,w2〉, λy.〈w1, y〉) or Case(Case(P,M ′, N), λx.〈x,w2〉, λy.〈w1, y〉)
or Case(Case(P,M,N ′), λx.〈x,w2〉, λy.〈w1, y〉): they are reducible by induction hypoth-
esis as all primed terms are reducible by (CR2) on A + B, A → C, B → C, and the
measure decreases strictly.

• Case((RM), λx.〈x,w2〉, λy.〈w1, y〉) if P ≡ ini
A1+A2

(R): thenR is also reducible by Lemma 7.4,
and this term is reducible by definition as M , hence also (RM), is

✷

We will now prove that every reducible instance of a (not necessarily reducible) term M is re-
ducible. As a consequence, all terms will be reducible.

Theorem 7.6 (Reducibility) Let M be any term (not assumed to be reducible), and suppose all
the free variables of M are among x1, . . . xn of types A1, . . . An. If N1, . . . Nn are reducible terms of
types A1, . . . An, then M [N/x] is reducible.

Proof. By induction on the structure of M .

1. M is ∗. It is neutral and normal, so it is reducible.

2. M is xi for some i, then M [N/x] = Ni is reducible

3. M ≡ πi(M
′). By induction hypothesis,M ′[N/x] is reducible, hence, by definition, πi(M

′[N/x]) =
πi(M

′)[N/x] is reducible.

4. M ≡ 〈M1,M2〉. By induction hypothesis, the terms Mi[N/x] are reducible, so we conclude that
the term 〈M1[N/x],M2[N/x]〉 = 〈M1,M2〉[N/x] is reducible.

5. M ≡ ini
A1+A2

(M ′). By induction hypothesis, M ′[N/x] is reducible, hence by Lemma 7.4,

ini
A1+A2

(M ′[N/x]) = ini
A1+A2

(M ′)[N/x] is reducible.

6. M ≡ Case(M1,M2,M3). By induction hypothesis, the terms Mi[N/x] are reducible, hence
Case(M1[N/x],M2[N/x],M3[N/x]) = Case(M1,M2,M3)[N/x] is reducible.

7. M ≡ (M1M2). By induction hypothesis, the terms Mi[N/x] are reducible, so we conclude that
the term (M1[N/x]M2[N/x]) = (M1M2)[N/x] is reducible.

8. M ≡ λy.M ′. Then by induction hypothesis M ′[N/x][N ′/y] is reducible for all reducible terms
N ′. By Lemma 7.3, λy.M ′[N/x] = (λy.M ′)[N/x] is reducible.

9. M ≡ (recy.M ′)i. By induction hypothesis, M ′[N/x] is reducible. We will show reducibility
for (recy.M ′)i[N/x] by induction on i + ν(M ′). Since (recy.M)i[N/x] is neutral, we will use
(CR3) for the type A of (recy.M)i. Consider the one step reducts of (recy.M)i[N/x]

• (recy.M ′′)i[N/x] with M ′′ one step from M ′. Then M ′′[N/x] is reducible for all re-

ducible
−→
N , because it is a multi-step reduct of the reducible term M ′[N/x] (Lemma 4.5).

Furthermore,i + ν(M ′′) < i + ν(M ′), so by induction hypothesis (recy.M ′′[N/x])i =
(recy.M ′′)i[N/x] is reducible.

• M ′[N/x][(recy.M ′[N/x])i−1/y]. Then (recy.M ′)i−1[N/x] = (recy.M ′[N/x])i−1 is re-
ducible by induction hypothesis, and this tells us that [N/x][(recy.M ′[N/x])i−1/y] is a
substitution of reducible terms for a set of variables containing the free variables of M ′,
which gives us reducibility of the term M ′[N/x][(recy.M ′[N/x])i−1/y].

✷

Corollary 7.7 (Strong Normalization) All terms are reducible, hence strongly normalizable.

54

8 Confluence of the Full Calculus

In this section we deduce the confluence property for the calculus with bounded recursion as well as
for the version with unbounded recursion.

We can immediately deduce the confluence property for the bounded system from the weak con-
fluence and strong normalization properties using Newman’s Lemma, however, we can also provide an
extremely simple and neat proof that does not need the weak confluence property for the expansionary
system.

Theorem 8.1 (Confluence) The relation =⇒ is Church-Rosser.

Proof. Since =⇒ is weakly confluent by theorem 4.11 and strongly normalizing by theorem 5.14
we can conclude that it is Church Rosser by the well known Newman’s lemma.

The other proof of confluence proceeds as follows.
Let M be a term s.t. P1

∗⇐= M =⇒∗ P2. Since =⇒ is strongly normalizing, we can reduce
the terms Pi to their normal forms Pi. Then we have P1

∗⇐= M =⇒∗ P2, and by theorem 5.13

P1
◦ +⇐=M◦=⇒+P2

◦
without expansions in the reduction sequences. As the system without expan-

sions is confluent (we showed that it is strongly normalizing, and weak confluence without expansions
can be shown as easily as for the simply typed lambda calculus), we can close the internal diagram

with P1
◦
=⇒∗ R ∗⇐= P2

◦
. Now, Pi

◦
=lemma 5.6 Pi and therefore we con complete the proof using

the reductions P1 =⇒∗ P1 =⇒∗ R ∗⇐= P2
∗⇐= P2 (notice that P1 = R = P2). The following figure

shows the reduction diagram:

M

✠�� ∗
�� ❅❅

∗ ❅❅❘
P1 P2

∨
∗

∨
∗

P1 M◦ P2

≡
✠�� ∗

�� ❅❅
∗ ❅❅❘

≡

P2
◦

P2
◦

❅❅
∗ ❅❅❘ ✠�� ∗

��

R

✷

In order to show confluence of the full calculus we relate in the first place the bounded reduction
=⇒ and the unbounded one

∞

=⇒ , and then we use the confluence of =⇒ to show the confluence of
∞

=⇒ . This very same technique, that originates from early work of Lévy [Lév76], was used in [PV87].
The connection between the reductions =⇒ and

∞

=⇒ comes from the following:

Remark 8.2 If M =⇒∗ N , then |M |
∞

=⇒ |N |, where |M | is obtained from M by removing all the
indices from the rec terms.

Lemma 8.3 For any reduction sequence M0
∞

=⇒M1
∞

=⇒ . . .
∞

=⇒Mn, there exists an indexed com-
putation N0 =⇒ N1 =⇒ . . . =⇒ Nn such that |Ni| = Mi, for i = 0 . . . n.

Proof. Index all the rec constructors in M0 by a number n+ k, with k ≥ 0. ✷

Confluence of the full calculus results now from the confluence of the bounded calculus.

Theorem 8.4
∞

=⇒ is Church Rosser.

55

Proof. Let M ≡ P0
∞

=⇒ P1
∞

=⇒ . . .
∞

=⇒ Pn and M ≡ Q0
∞

=⇒ Q1
∞

=⇒ . . .
∞

=⇒ Qm.
By lemma 8.3 there are indexed computations
P

′

0 =⇒ P
′

1 =⇒ . . . =⇒ P
′

n and Q
′

0 =⇒ Q
′

1 =⇒ . . . =⇒ Q
′

m

where |P
′

i | = Pi, for i = 0 . . . n and |Q
′

i| = Qi, for i = 0 . . .m.

We can assume that P
′

0 ≡ Q
′

0 by indexing P 0 and Q0 with n+m. As =⇒ is Church Rosser by
theorem 8.1, there exists a term R such that P

′

n =⇒∗ R and Q
′

m =⇒∗ R. By 8.2 Pn = |P
′

n|
∞

=⇒∗ |R|
and Qm = |Q

′

m|
∞

=⇒∗ |R|. ✷

9 Adding weak extensionality for the sum type

In this section we show how to apply our techniques in order to accomodate in our system the weak
extensionality for the sum type, that is described by the following equality, which tells us that any
term P of sum type A1 +A2 is definitely an injection from one of the two types Ai.

Case(P, λx.in1(x), λy.in2(y)) = P (1)

This is the usual equality that is found in proof theory, associated to the logical connective for
disjunction (see for example [GLT90, Gir72]). We call this rule “weak” because in category theory
there is another stronger kind of extensional equality associated to the sum, that is used to axiomatize
the uniqueness of the sum of two arrows in the diagram for the coproduct, namely

Case(P,M ◦ λx.in1(x),M ◦ λy.in2(y)) = MP (2)

where M ◦N is the usual abbreviation for the composition λx.(M(Nx)).
One can easily see that this strong rule really breaks down into two simpler rules: the weak rule 1

we just introduced and the following commutation rule:

Case(P,M ◦N1,M ◦N2) = MCase(P,N1, N2) (3)

If one really wants the equality 2, it seems to be a difficult task to provide a confluent system for
the extensional theory with arrow, product and coproduct types, as discussed in [Dou90], and to the
author’s best knowledge, there are no positive results in that direction.

Notice also that the equation 1 can be easily added to a reduction system with no T type, where
all the extensional equalities are turned into contractions, as done for example in [Gal93]. In the
presence of the T type, to use contraction rules one is forced to proceed along the lines of [CDC91],
and to generate an infinite set of reduction rules.

It is not obvious to add weak extensionality for the sum to our system, as the näıve idea of adding
the equality 1 as a contraction rule breaks confluence, as the following example shows:

Case(w, λx : A→ B.in1
(A→B)+C(x), λy : C.in2

(A→B)+C(y)) > w

‖
⇓

Case(w, λx : A→ B.in1
(A→B)+C(λz : A.xz), λy : C.in2

(A→B)+C(y))

This problem comes from the fact that the term λx : A→ B.in1
(A→B)+C(x) is not in normal form

w.r.t. the rules η, δ and Top. This also suggests the solution: it suffices to completely expand the
terms IN1 = λx.in1(x) and IN2 = λy.in2(y) w.r.t. the rules η, δ and Top (which we know now are
strongly normalizing) before performing the contraction for the weak sum extensional equality.

So we are led to consider the contraction rule:

Case(P, ‖IN1‖, ‖IN2‖)
+

−→ P

where ‖M‖ denotes the normal form of M w.r.t. η, δ and Top espansions.
It is now straightforward to check that the weak confluence property still holds, and one is left to

check that the simulation theorem stays valid.

56

For that, we have to verify that Case(P, ‖IN1‖, ‖IN2‖)◦=⇒+P ◦ without using expansion rules
in the reduction sequence, and this is obtained by:

Case(P, ‖IN1‖, ‖IN2‖)◦ =
∆k

A+BCase(P ◦, ‖IN1‖◦, ‖IN2‖◦) =

∆k
A+BCase(P ◦, ‖IN1‖, ‖IN2‖)

+

−→
∆k

A+BP
◦ =⇒∗

P ◦

Notice that the rules η, δ and Top do not create new redexes, as shown in lemma 3.8, so in
particular ‖IN i‖ is still in normal form, and the equality ‖IN i‖◦ = ‖IN i‖ can be obtained from
lemma 5.6.

10 Conclusion and Future Work

We have provided a confluent rewriting system for an extensional typed λ-calculus with product,
sum, terminal object and recursion, which is also strongly normalizing in case the recursion operator
is bounded. There are mainly two relevant technical contributions in this paper: the weak confluence
proof and the simulation theorem.

On one hand, let us remark once again that the weak confluence property for a context-sensitive
reduction system is not as straightforward as for the reduction systems that are congruencies. The
proof is no longer just a matter of a boring but trivial case analysis, so we had to explore and analyze
here the fine structure of the reduction system, showing clearly how substitution and reduction interact
in the presence of context-sensitive rules.

The simulation theorem, on the other hand, turns out to be the real key tool for this expansionary
system: it allows to reduce both confluence and strong normalization properties to those for the
underlying calculus without expansions, that can be proved using the standard techniques. In a
sense, this is all that you really need to prove.

References

[Aka93] Y. Akama. On mints’ reductions for ccc-calculus. In Typed Lambda Calculus and Applica-
tions, number 664 in LNCS. Springer Verlag, 1993.

[Bar84] H. Barendregt. The Lambda Calculus; Its syntax and Semantics (revised edition). North
Holland, 1984.

[CDC91] P.-L. Curien and R. Di Cosmo. A confluent reduction system for the λ-calculus with
surjective pairing and terminal object. In Leach, Monien, and Artalejo, editors, Intern.
Conf. on Automata, Languages and Programming (ICALP), number 510 in LNCS, pages
291–302. Springer-Verlag, 1991.

[CF58] H. Curry and R. Feys. Combinatory Logic, volume 1. North Holland, 1958.

[Cub92] D. Cubric. On free ccc. Distributed on the types mailing list, 1992.

[DCK93] R. Di Cosmo and D. Kesner. A confluent reduction for the extensional typed λ−calculus
with pairs, sums, recursion and terminal object. In A. Lingas, editor, Intern. Conf. on
Automata, Languages and Programming (ICALP), LNCS. Springer-Verlag, 1993.

[Dou90] D. J. Dougherty. Some reduction properties of a lambda calculus with coprod-
ucts and recursive types. Technical report, Wesleyan University, 1990. E-mail:
ddougherty@eagle.wesleyan.edu.

[Dou93] D. J. Dougherty. Some lambda calculi with categorical sums and products. In Proc. of the
Fifth International Conference on Rewriting Techniques and Applications (RTA), 1993.

57

[Gal93] J. Gallier. On the correspondence between proofs and λ-terms. Available by anonymous
ftp from ftp.cis.upenn.edu. Author’s address: jean@saul.cis.upenn.edu., January 1993.

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithmétique
d’ordre supérieure. Thèse de doctorat d’état, Université de Paris VII, 1972.

[GLT90] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press,
1990.

[Hue76] G. Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. Thèse d’Etat, Uni-
versité Paris VII, 1976.

[Jay92] C. B. Jay. Long βη normal forms and confluence (and its revised version). Technical Report
ECS-LFCS-91-183, LFCS, University of Edimburgh, 1992.

[JG92] C. B. Jay and N. Ghani. The virtues of eta-expansion. Technical Report ECS-LFCS-92-243,
LFCS, University of Edimburgh, 1992.

[Klo80] J. W. Klop. Combinatory reduction systems. Mathematical Center Tracts, 27, 1980.

[Kri90] J.-L. Krivine. Lambda calculus. Types et Modéles. Masson, 1990.

[Lév76] J.-J. Lévy. An algebraic interpretation of the λβκ-calculus and a labelled λ-calculus. The-
oretical Computer Science, 2:97–114, 1976.

[LS86] J. Lambek and P. J. Scott. An introduction to higher order categorical logic. Cambridge
University Press, 1986.

[Min77] G. Mints. Closed categories and the theory of proofs. Zapiski Nauchnykh Seminarov
Leningradskogo Otdeleniya Matematicheskogo Instituta im. V.A. Steklova AN SSSR, 68:83–
114, 1977.

[Min79] G. Mints. Teorija categorii i teoria dokazatelstv.I. Aktualnye problemy logiki i metodologii
nauky, pages 252–278, 1979.

[Pot81] G. Pottinger. The Church Rosser Theorem for the Typed lambda-calculus with Surjective
Pairing. Notre Dame Journal of Formal Logic, 22(3):264–268, 1981.

[Pra71] D. Prawitz. Ideas and results in proof theory. Proceedings of the 2nd Scandinavian Logic
Symposium, pages 235–307, 1971.

[PV87] A. Poigné and J. Voss. On the implementation of abstract data types by programming
language constructs. Journal of Computer and System Science, 34(2-3):340–376, April/June
1987.

[Tro86] A. S. Troelstra. Strong normalization for typed terms with surjective pairing. Notre Dame
Journal of Formal Logic, 27(4), 1986.

58

