
A confluent reduction for the λ−calculus with

surjective pairing and terminal object

Pierre-Louis Curien∗ Roberto Di Cosmo‡

November 19, 1991

Abstract

We exhibit confluent and effectively weakly normalizing (thus decid-
able) rewriting systems for the full equational theory underlying cartesian
closed categories, and for polymorphic extensions of it. The λ-calculus
extended with surjective pairing has been well-studied in the last two
decades. It is not confluent in the untyped case, and confluent in the
typed case. But to the best of our knowledge the present work is the
first treatment of the lambda calculus extended with surjective pairing
and terminal object via a confluent rewriting system, and is the first solu-
tion to the decidability problem of the full equational theory of Cartesian
Closed Categories extended with polymorphic types. Our approach yields
conservativity results as well. In separate papers we apply our results to
the study of provable type isomorphisms, and to the decidability of equal-
ity in a typed λ-calculus with subtyping.

Résumé

Nous prèsentons des systèmes de réécriture confluents et effectivement
faiblement normalisants pour la théorie équationnelle compléte des caté-
gories cartésiennes fermées, et pour des extensions polymorphes de cette
théorie. Le λ- calcul avec paires surjectives a été bien étudié ces vingt
derniéres années. Il est non confluent dans le cas non-typé, et conflu-
ent dans le cas typé. A notre connaissance, ce travail propose le premier
traitement du λ- calcul avec paires surjectives et objet terminal à l’aide
d’un système de réécriture confluent, et la première solution du problème
de la décidabilité de la théorie équationnelle complète des CCC étendue
avec du polymorphisme. Notre approche conduit aussi à des résultats de
conservativité. Dans d’autres articles, nous appliquons nos résultats à
l’étude des isomorphismes de types, et de la décidabilité de l’égalité dans
un λ- calcul étendu par du sous-typage.

∗LIENS (CNRS URA 1327) - DMI
‡LIENS (CNRS URA 1327) - DMI and Dipartimento di Scienze dell’Informazione - Pisa

0

1 Introduction

Since 1972 there has been some interest in the properties of λ-calculus extended
with products and surjective pairing (SP), that lead to J.W. Klop’s discovery
[Klo80] that for pure lambda calculus this extension, that we will note λ1βηπ,
fails to maintain confluence1, while it remains unproblematic [Pot81] for the
typed calculus. Due to the connection with Cartesian Closed Categories (ccc’s),
another extension of the typed calculus has been considered: λ1βηπ∗, that is
λ1βηπ with terminal object. This calculus is relevant for the decision problem
of the equational theory of ccc’s and for the coherence problem for the same
categories, which are discussed in [LS86] and [Min] respectively. Neither of
these works provides a truly confluent reduction system for the full calculus:
the former takes advantage of type isomorphisms to ”eliminate” the terminal
object and reduces the full decision problem to the decision problem for λ1βηπ
only, the latter gives a system that is Church-Rosser only up to a congruence.

More recent is the interest in λ1βη∗, the calculus extended with a terminal
object only and no products, that arose in the study of the theory of object
oriented programming. In the framework of inheritance, the terminal type T
has an additional flavour: it is a maximum type. Type inclusion is not invariant
under isomorphisms, so that, say A × T is a type greater than A × A′ for any
A’, while the same is not true of A2.

Thus the method of solving word problems by first getting rid of the ter-
minal object as in [LS86] is of no use in the syntactic theory of λ-calculi with
subtyping. We rather need a confluent system for the full type system, terminal
(or maximum) type included.

In this paper we exhibit confluent and effectively weakly normalizing (thus
decidable) rewriting systems for the full equational theory underlying cartesian
closed categories, and for polymorphic extensions of it. To the best of our knowl-
edge, this work provides the first solution to the decidability problem of the full
equational theory of Cartesian Closed Categories extended with polymorphic
types. Moreover we can take profit of confluence to get conservativity results in
addition to decision results. Such conservativity results are needed in the study
of provable type isomorphisms.

The results are applied in two companion papers:

• [CG90] establishes a decidability result in the paradigmatic language F≤,
a variant of second-order λ-calculus with a maximum type and bounded
quantification: the equational theory considered consists of β, η (first and
second-order) and the terminal type rule. We show the confluence of our
system via a translation to the polymorphic λ-calculus with a terminal

1See [Bar84], p. 403-409 for a short history and references.
2Recently, L. Cardelli has proposed the following nice and simple exploitation of T as a

maximum type: consider the well-known inheritance [age;sex] less than [age]; encode [age]
as age × T and [age;sex] as age × (sex× T). Then the desired subtyping obviously holds
componentwise, by reflexivity and maximality, respectively.

1

type (what is called hereafter λ2βη∗), and by using a general criterion
allowing to transfer confluence in λ2βη∗ back to our source system.

• [BDCL90] and [DC91] give an equational characterization of all type iso-
morphisms which are provable in the typed λ-calculus (respectively second
order λ-calculus) with pairs and terminal object (what is called hereafter
λ1βηπ∗, respectively λ2βηπ∗). It turns out that this characterization can
be given quite easily if we are able to determine the structure of invert-
ible terms, i.e. terms that possess an inverse w.r.t. the usual operation
λx.λy.λz.(x(yz)) of composition. The conservativity of equality in the ex-
tended calculus over the calculus without products and terminal objects
allows us to reduce the problem to the invertibility in the simply typed
(respectively second-order) λ-calculus3.

Technically, we had to navigate between several pitfalls before we arrived to
our solution. We survey the main steps of this eventually safe trip in the next
section. Sections 3 and 4 are devoted to confluence and weak normalization
respectively. In section 5 we state the decidability and conservativity results
that follow quite obviously from confluence and weak normalization, and we
put our work in perspective with the other approaches to decidability of the
same theories that we are aware of. Section 6 is a brief conclusion.

2 Survey

After defining precisely the calculi we focus on, we use the Knuth-Bendix pro-
cedure by hand to obtain locally confluent rewriting systems. We then shortly
hint at a severe technical difficulty in adapting the standard strong normaliza-
tion proofs which use the so called reducibility method. They can be adapted
to a subsystem only. From the confluence of this subsystem we get confluence
of almost the whole system by a general criterion presenting an interest of its
own. At this stage, only the second-order β-rule is left out, and it can be finally
added with the help of Hindley-Rosen’s Lemma. As for weak normalization,
the ingredients developed for confluence give it for free for first-order systems,
while for the second order systems another splitting in subsystems, and another
adaptation of the standard strong normalization proofs are needed.

We give now the full definition of the calculus λ2βηπ∗, the most complex of
the four we consider.

2.1 The calculus λ2βηπ∗

Definition 2.1 λ2βηπ∗ is the extension of second order lambda calculus defined

3Ultimately the problem is reduced to the invertibility in the untyped λ-calculus (see
[Bar84], section 21.2), where invertible terms have a simple (but not easy to prove!) syntactic
characterization due originally to Mariangiola Dezani [Dez76].

2

as follows:

• Types are defined by the following grammar:

Type ::= At | V ar | Type→ Type | Type× Type | ∀X.Type

where At are countably many atomic types and V ar countably many type
variables

• Terms (M:A will stand for M is a term of type A)

– the set of terms contains countably many variables x, y, . . . of each
type

– ∗:T

– if x is a variable of type A and M:B, then λx.M:A→ B

– if M:A→ B and N:A, then (M N):B

– if M:A and N:B then 〈M,N〉:A×B

– if M:A×B then p1M:A and p2M:B

– if M:A and X is a type variable not free in the type of any free variable
of M, then ΛX.M :∀X.A

– if M:∀X.A and B is a type, then M [B]:A[B/X].

Notice that pairing and projections are new term formation rules and not
constants added to the language.

• Equality

(β) (λx.M)N = M [N/x] (η) λx.Mx = M if x 6∈ FV (M)

(π) pi〈M1,M2〉 = Mi (SP) 〈p1M, p2M〉 = M

(top) M = ∗ if M : T

(β2) (ΛX.M)[A] = M [A/X] (η2) ΛX.M [X] = M if X is not free in M

We will note =β2η2π∗ the theory of equality generated by β, η, π, SP , top,
β2and η2.

The other calculi we are interested in can be naturally defined as restrictions
of λ2βηπ∗: to obtain them we reduce the class of types and/or terms, and
accordingly redefine the equality. The calculus λ2βη∗ is λ2βηπ∗ without product
types, pairing and projections. (Equality for λ2βη∗ will be noted =β2η2∗ and is
generated by β, η, top, β2 and η2). The calculus λ1βηπ∗ is λ2βηπ∗ restricted to
the first order. (Equality for λ1βηπ∗ will be noted =βηπ∗ and is generated by
β, η, π, SP and top). The calculus λ1βη∗ is the restriction of λ1βηπ∗ obtained
by removing product types, pairing and projections. (Equality for λ1βη∗ will
be noted =βη∗ and is generated by β, η and top).

3

2.2 Weakly confluent reduction

We will adopt the following

Notation 2.2 (Reductions) As usual, → will denote one-step reduction, while
→= is the reflexive closure of →, and →→ is the reflexive transitive closure of
→. If the system we consider is weakly normalizing, we will note →→ | the
reduction to a normal form. Also, WN will stand for weakly normalizing, SN
for strongly normalizing, CR for confluent (or Church-Rosser) and WCR for
weakly (or locally) confluent.

The systems obtained by orienting the equalities of =β2η2π∗ and its restrictions
are far from being even weakly confluent, due to a bad interaction between the
rule top on one side and the rules η and SP on the other4. The point is that all
terms of type T are identified (in particular, x:T and ∗ are identical), so that
λx:T.Mx and λx:T.M∗ are “the same” term, and must give rise to the same
reductions: since the first reduces to M, the second must reduce to M too. This
fact actually shows up during the completion procedure. Let us consider the
typical critical pairs that arise, say, for λ2βηπ∗: after the first “stage” we find
the situation described in figure 1.

M M’ M” New reduction from completion

λx:T.Mx M λx:T.M∗ λx:T.M∗ −→ M if x 6∈ FV(M)

eta-like 〈p1M, p2M〉 M 〈p1M, ∗〉 〈p1M, ∗〉 −→ M if M:A× T

〈p1M, p2M〉 M 〈∗, p2M〉 〈∗, p2M〉 −→ M if M:T ×B

top-like λx:A.Mx M λx:A.∗ M −→ λx:A.∗ if M:A→ T

ΛX.M [X] M ΛX.∗ M −→ ΛX.∗ if M:∀X.T

Figure 1: The critical pairs at the first stage of Knuth-Bendix completion.
(M’ is reached via η or SP ; M” via top)

The additional rules generated by completion can be divided in two groups:
rules that behave like η (eta-like) and rules that behave like top (top-like). The
former mimick the behaviour of η and SP rules on terms that are known to be
“the same terms as” η and SP redexes, as in the example we just considered
above. The latter force to identify all the terms of type A→ T and ∀A.T , and
do pick up a canonical representative in the respective types. It turns out that
a set of eta-like rules must be generated for each of all types isomorphic (in the
categorical sense, see [BDCL90] and [DC91]) to T. At stage n, the completion
procedure on one side creates new rules to mimick η and SP on terms that are

4This observation seems to have been first made by A. Obtulowicz, cf. [LS86], exercise at
page 88.

4

known to be “the same” as eta-like stage n-1 redexes, and on the other side it
discovers new “same” terms, following the pattern:

• if A is known to be isomorphic to T at stage n-1, then B → A and ∀X.A
are isomorphic to T at stage n

• if A and B are known to be isomorphic to T at stage n-2, then A × B is
isomorphic to T at stage n.

These correspond to the well known isomorphisms T × T ∼= T, A→ T ∼= T and
∀X.T ∼= T. (The isomorphism T × T ∼= T shows up only from the second stage
on: consider the stage 1 eta-like redex 〈∗, p2M〉, and suppose M:T × T . Then
we reach M by the eta-like reduction, and 〈∗, ∗〉 by top.)

The following notation will allow us to present in a compact formalism the
resulting weakly confluent reduction system.

Definition 2.3 Terminal types and Canonical terms.

1. Iso(T) (the collection of types isomorphic to T) is the set defined as
follows:

(a) T ∈ Iso(T)

(b) if B ∈ Iso(T), then A→ B ∈ Iso(T) for every type A

(c) if A ∈ Iso(T) and B ∈ Iso(T), then A×B ∈ Iso(T)

(d) if A ∈ Iso(T) and X is a type variable, then ∀X.A ∈ Iso(T).

2. for each type A ∈ Iso(T), the associated canonical representative rep(A)
is defined inductively as follows:

(a) rep(T) is ∗ (c) rep(A×B) is 〈rep(A), rep(B)〉

(b) rep(A→ B) is λx:A.rep(B) (d) rep(∀X.A) is ΛX.rep(A).

Definition 2.4
β2η2π∗
−→ is the notion of reduction for λ2βηπ∗ generated by ori-

enting to the right the equalities β, η, π, SP , β2and η2in definition 2.1 and
adding the following rewriting rules, coming from completion:

(gentop) M:A
β2η2π∗
−→ rep(A) if M:A and A ∈ Iso(T) and M is not already

rep(A)

(SPtop) 〈rep(A), p2M〉
β2η2π∗
−→ M if M:A×B

(SPtop) 〈p1M, rep(B)〉
β2η2π∗
−→ M if M:A×B

(ηtop) λx:A.Mrep(A)
β2η2π∗
−→ M if A ∈ Iso(T) and x 6∈ FV(M).

5

The notions of reduction for the simpler calculi can be defined as restrictions

of
β2η2π∗
−→ . The notion of reduction for λ2βη∗, that we will note

β2η2∗
−→ , is the

reduction induced on λ2βη∗ by
β2η2π∗
−→ , that is to say

β2η2π∗
−→ without π, SP , and

SPtop, as these rules cannot apply to terms of λ2βη∗. For the same reason, the
clauses for product types in Definition 2.3 will never be used, so that actually

only a restricted version of gentop is used in
β2η2∗
−→ . We shall still use gentop

to name this restricted reduction, as the intended meaning will always be clear
from the context.

Similarly,
βηπ∗
−→ and

βη∗
−→ are the reductions induced by

β2η2π∗
−→ on λ1βηπ∗ and

λ1βη∗, with the appropriate restrictions of gentop.

It is now just a matter of an easy structural induction on terms to see that

Proposition 2.5
β2η2π∗
−→ is weakly confluent (WCR).

What about confluence then? We cannot use the standard Tait-Martin Löf
“parallel reduction” technique, as the non-linear rule SP may require more than
one adjustement step, which cannot be parallelized. Specifically, suppose that M
one step reduces to M’: then 〈p1M, p2M〉 reduces both to M and to 〈p1M’, p2M〉.
The local confluence diagram can be completed on one side in one step to M’,
but on the other side one must go sequentially to 〈p1M’, p2M’〉, where the lost
SP redex is recreated, and then to M’: this is hardly parallel.

2.3 Investigating Strong Normalization

Another ”obvious” approach to prove confluence is to attempt to show that these
notions of reduction are strongly normalizing, as then one could apply the well
known fact that SN +WCR⇒CR 5. But here we face a serious problem: some
of the new reduction rules, namely ηtop and SPtop, prevent us from applying the
usual reducibility techniques (see [GLT90], [LS86], [Tai67]), as we briefly sketch
now.

All variations of the reducibility method require at some point to show a key
statement like if v[u/x] ∈ REDV for all u ∈ REDU , then λx.v ∈ REDU→V ,
where REDT is the set of reducible terms of type T, and where REDU→V is
the set of s:U → V s.t. (s u) ∈ REDV for all u ∈ REDU .

An auxiliary property which is available is that, for (s t):T, one has (s t) ∈
REDT as soon as s’ ∈ REDT for all s’ which are one step reducts of (s t).

So the proof of the key statement reduces to the proof that all one step
reducts of (λx.v) u are reducible. Now, if v is (v’ ∗), then (λx.v) u can reduce
to (v’ u) that is not v[u/x]=v, and we do not know if (v’ u) is reducible: this
does not follow from any of the hypotheses we have at hand. A similar situation

5Known as Newman’s Lemma. See [Bar84], pag. 58.

6

arises for SPtop when considering the corresponding lemma for pairs. (See the
Remark A.14 in Section A).

But the difficulty suggests a solution. The above example is problematic
only if u is different from ∗, and this cannot happen if we restrict our attention
to terms in gentop normal form (gentop n.f.). For this to work out we have
to check that gentop normal forms are stable under reduction. Otherwise the
problem could dynamically show up later in the reduction. Unfortunately the
β2 rule does not preserve gentop normal forms:

Example 2.6 The second order term (ΛX.λx : X.λy : (X → A).yx)[T] is in
gentop normal form, but its contractum λx:T.λy:T → A.yx is not, and reduces
to λx:T.λy:T → A.y∗. ✷

So we are forced to drop β2. Summarizing, so far we have hopes for confluence
in the system which is restricted in two ways: we work only with gentop normal
forms and we have abandoned β2. Indeed we show that this restricted system is
strongly normalizing (Section A), thus confluent (the proof of local confluence
is easily adapted to the subsystem). Then we lift the confluence result to the

system
βη2π∗
−→ , as we will note the notion of reduction induced on λ2βηπ∗ by

β2η2π∗
−→ less β2 (see next subsection).

Finally we add up β2, which forms a confluent system that commutes with
βη2π∗
−→ . So at last we can use Hindley-Rosen’s Lemma6, and we get confluence

for the full system
β2η2π∗
−→ .

2.4 A general criterion for confluence

To get the confluence of
βη2π∗
−→ from the confluence of its restriction to gentop

normal forms, we apply the following general method. Recall that two reduction

systems R and S are said to commute when, for every term P, if P
R
→→ Q and

P
S
→→ Q’, there exists a term Q” such that Q

S
→→ Q” and Q’

R
→→ Q”.

Lemma 2.7 Let R be a reduction system that can be split in two subsystems
R1 and R2 s.t.

1. R1 is weakly normalizing

2. the set of R1 normal forms is closed w.r.t R2 reductions

3. R2 is confluent on R1 normal forms

4.
R
→→ commutes with →→ |R1 (see notation 2.2).

6The Hindley-Rosen’s Lemma asserts the obvious but useful property that two separately
confluent, commuting subsystems form a confluent system.

7

Then R is confluent.

Proof. Under the hypothesis above, any two reductions
R
→→ starting from

the same term can be completed to the commuting diagram shown in figure 2:

R2∗

R2∗

R2∗

R2∗

R∗ R∗

R1∗| R1∗|

R1∗|

❄

❄

❄

❍
❍
❍
❍
❍

❍
❍
❍

❍
❍❥

❍
❍
❍
❍

❍
❍
❍

❍
❍
❍❥

❍
❍
❍
❍
❍

❍
❍
❍

❍
❍❥

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟✙

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟✙

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟✙

Figure 2: The factorization of confluence

• (1) ensures the existence of the R1 normal forms, hence we can build the
central vertical arrow in the diagram (R1*| denotes reduction to some R1
n.f.).

• (4) ensures the existence and commutation of the upper inner rhombuses.

• (2) shows that the lower diagonal arrows in the upper rhombuses are
made up of R2 reductions on R1 n.f.’s only, so that (3) guarantees the
commutation of the lower inner rhombus.

Finally, the commutativity of the outermost rhombus follows from the com-
mutativity of the inner rhombuses. ✷

Notice that in the third condition, if the second condition holds, one may replace
R2 by R. More interestingly, if we know that R1 is SN and confluent, then writing
R1(M) for the R1 normal form, we get the following alternative formulation of
4:

4’ If M
R
−→ M’, then R1(M)

R
→→ R1(M’)

where the second occurrence or R might as well be R2, and the first occurrence
of R might as well be R∗. This form of the general criterion was already dis-
covered and used by T. Hardin in her investigations of confluence properties of
categorical combinators [Har89].

8

Our travel is close to the end. We shall take
βη2π∗
−→ as R, gentop as R1,

βη2π∗
−→

less gentop as R2 and prove the four conditions of the criterion. The confluence
of R2 on R1 normal forms is proved by establishing WCR and SN.

3 Confluence

Let in the following R stand for one of
βη2π∗
−→

βη2∗
−→

βηπ∗
−→ or

βη∗
−→, R1 be gentop

and R2 be R less gentop. It will be intended that in the case of
βηπ∗
−→ and

βη∗
−→,

we consider only first order terms and types and hence only the corresponding
restricted form of gentop, for which the following proofs hold almost unchanged.

We first introduce some notation.

Notation 3.1 We will note (M)
T

the gentop n.f. of a term M and
gentop

→→ | the

reduction to gentop normal form (M)
T
.

Lemma 3.2 The following equalities hold:

1. (PQ)
T
= (P)

T
(Q)

T
if (PQ):A and A 6∈ Iso(T)

2. (piP)
T
= pi(P)

T
if piP:A and A 6∈ Iso(T)

3. (λx.P)
T
= λx.(P)

T

4. (〈P,Q〉)
T
= 〈(P)

T
, (Q)

T
〉

5. (ΛX.P)
T
= ΛX.(P)

T

6. (P [B])
T
= (P)

T
[B] if P [B]:A 6∈ Iso(T).

Proof. We only check 3, and leave the rest to the reader. Let λx.P:A→ B.
If A→ B 6∈ Iso(T), then the result is trivial, otherwise (λx.P)

T
= rep(A→ B)

= λz.(P)
T
for some fresh variable z. Since the gentop normal form of any term

has no occurrence of variables in it (easily shown by induction), then λz.(P)
T

is equal to λx.(P)
T
by α-conversion. ✷

Lemma 3.3
gentop

→→ | is compatible with substitution, i.e.

(M[N/x])
T
= (M)

T
[(N)

T
/x]

Proof. By an easy induction on the structure of M (see Table 1). Notice
that the case M:U and U ∈ Iso(T) is trivial since in both cases the normal form
is rep(U), so in the table we consider only the case when the normal form of a
compound term is the combination of the normal forms of its components.
✷

9

Lemma 3.4 If M
R
−→ M’ then (M)

T R
−→= (M’)

T
.

Proof. We will proceed by induction on the structure of M. Notice that
whenever M is a gentop redex, the claim holds trivially since the reductions we
consider all preserve the type of the redex: so the type of M’ is the same as
that of M and their gentop normal forms are the same7. We shall thus assume
that M is not a gentop redex. Furthermore, if the R reduction takes place in
a proper subterm of M, the result follows easily by induction in each case (by
Lemma 3.2), so we will not state it explicitly. We are left with the hypothesis
that M is a redex which is not a gentop redex.

• M is a variable x. No reduction is possible, and the statement holds vac-
uously.

• M is an application. There is only one case:

– M is (λx.P’)Q and it β reduces to P’[Q/x]. Then (M)
T
= ((λx.P’)

T
(Q)

T
)

= (λx.(P’)
T
)(Q)

T
, and it β reduces to (P’)

T
[(Q)

T
/x], that is equal to

(P’[Q/x])
T
by compatibility of

gentop

→→ |with substitution (Lemma 3.3).

• M is an abstraction. There are two cases:

– M is λx.(Px) and it η reduces to P. Then we have two possibilities

for (M)
T
(notice that (Px)

T
= rep(V) is excluded as then M would

be a gentop redex):

∗ λx.((P)
T
x) which η reduces to (P)

T

∗ λx.((P)
T
rep(U)) which ηtop reduces to (P)

T

– M is λx.(Prep(U)) and it ηtop reduces to P. Then (M)
T
= λx.((P)

T
rep(U))

that ηtop reduces to (P)
T
.

• M is a projection.The only case to consider is

7Remember that the contractum of a gentop redex depends only on the type of the redex,
not on its structure.

10

– M is pi〈P1, P2〉 and it π reduces to Pi. Then (M)
T
is pi(〈P1, P2〉)

T
,

that is pi〈(P1)
T
, (P2)

T
〉, which π reduces to (Pi)

T
.

• M is a pair. There are three cases:

– M is 〈p1P , p2P 〉 and it SP reduces to P. By the previous lemma, we

focus only on the following three possibilities for (M)
T
:

∗ 〈p1(P)
T
, p2(P)

T
〉 that SP reduces to (P)

T

∗ 〈p1(P)
T
, rep(V)〉 that SPtop reduces to (P)

T

∗ 〈rep(U), p2(P)
T
〉 that SPtop reduces to (P)

T

– M is 〈p1P , rep(V)〉 and it SPtop reduces to P.

Then (M)
T
is 〈p1(P)

T
, rep(V)〉 that SPtop reduces to (P)

T

– M is 〈rep(U), p2P 〉 and it SPtop reduces to P.

Then (M)
T
is 〈rep(U), p2(P)

T
〉 that SPtop reduces to (P)

T
.

• M is an abstraction Λt.P . There is only one case to consider, namely P is
P ′[X] and reduces to P’ via η2. We can assume P ′[X] not to be a gentop
redex, as otherwise M = ΛX.P ′[X] would be a gentop redex too, while

we already factored out the case M:U ∈ Iso(T). By Lemma 3.2, (M)
T

= (ΛX.P ′[X])
T

= ΛX.(P ′[X])
T

= ΛX.(P’)
T
[X], that reduces via η2 to

(P’)
T
, as required.

Hence we have shown that (M)
T R
−→= (M’)

T
. ✷

Using the criterion for confluence, we will now show

Theorem 3.5 R is confluent.

Proof. We check the four hypotheses of lemma 2.7 for R split in R1 and R2
as above.

1. gentop is a strongly normalizing confluent reduction system.

Proof. Each gentop step strictly decreases the number of gentop redexes in
the term it is applied to. Since it is also trivially WCR, Newman’s Lemma
applies and we get CR too. ✷

11

2. R2 reductions do not create new gentop redexes.

Proof. By cases on the rule which is used. For all rules but β the result
obviously follows from the fact that the reduct is a subterm of the redex.
The case β is settled by noticing that, if M and N are in gentop n.f., then
M[N/x] is in gentop n.f. too. Indeed, this last property can be easily
shown by induction on the structure of M.

If M is x or if it does not contain x free, than M[N/x] is either M or N
and the result follows from the hypothesis. We can also rule out the case
where M is rep(A), as then it has no free variables. So M:A 6∈ Iso(T). If
M[N/x] contains a gentop redex P, then P cannot be M[N/x], which has
the same type as M, so P must be a proper subterm of M[N/x]. P cannot
be a subterm of N either, or an unchanged subterm of M, as they are
already in normal form, so it must be M’[N/x] with M’ a proper subterm
of M containing a free occurrence of x. But M’ is in gentop normal form
as M is, hence, by induction hypothesis M’[N/x] is not a gentop redex, so
M[N/x] is in gentop n.f. ✷

3. The systems
βη2π∗
−→ ,

βη2∗
−→,

βηπ∗
−→ and

βη∗
−→ are confluent over gentop normal

forms.

Proof. All the systems introduced so far are weakly confluent. We will
prove in the appendix (theorem A.19, which follows closely the proof plan

of [GLT90]), that
βη2π∗
−→ is strongly normalizing over gentop normal forms.

This implies strong normalization (over gentop normal forms) for all the
others subsystems of it. Hence they are confluent over gentop n.f.’s by
Newman’s Lemma. ✷

v

4. If M
R
→→ M’ then for any gentop n.f. N of M and N’ of M’ N

R
→→ N’.

Proof. By Lemma 3.4 above and a simple diagram chase. ✷

Remark 3.6 Again, this statement holds for all the reduction systems

we are considering, as we showed it for
βη2π∗
−→ , and the statements for the

others ones are particular cases of it.

We can finally conclude, by lemma 2.7, that R is confluent. ✷

We still have a gap to fill for the second-order systems, since we have left out

β2. We shall prove CR for
β2η2π∗
−→ and

β2η2∗
−→ by using Hindley-Rosen’s Lemma.

Let R1 be the system
βη2π∗
−→ (or

βη2∗
−→) and R2 be β2.

12

Lemma 3.7 β2 is confluent.

Proof. The system consisting of β2 alone satisfies the diamond property,
hence is CR. ✷

We just proved that R1 is CR (Theorem 3.5), so we are left to show that
R1 commutes with R2, and the CR property will follow by Hindley-Rosen’s
Lemma.

Theorem 3.8 R1 and R2 commute with each other.

Proof. It suffices to prove that, if M
R1
−→ M’ and M

R2
−→ N, then there exist

a term M” s.t. N
R2
→→ M” and M’

R1
−→= M” (see Lemma 3.3.6 in [Bar84], pag.

65). The only superpositions arise with η2 and gentop, and are easily closed up,
so that it suffices to notice that β2 cannot duplicate existing redexes (β2 can
only duplicate types, that are not redexes), so that the constraint on the R1
reduction that closes the diagram gives no problem. The details are left to the
reader. ✷

So we finally get, by Hindley-Rosen’s Lemma.

Theorem 3.9 The systems
β2η2π∗
−→ and

β2η2∗
−→ are confluent 8.

4 Weak Normalization

For the first order systems, we get from the previous section a normalizing
strategy for free: first go to the gentop normal form, then use the SN property
on gentop normal forms.

Summarizing, we have obtained:

Theorem 4.1 The calculi λ1βη∗, λ1βηπ∗are effectively weakly normalizing.

Since for the second order systems we have left out β2and η2, we find them on
the way: we can deal with them at the price of a splitting of the set of rules
which is different from the splitting which lead us to confluence.

Theorem 4.2 The calculi λ2βη∗, λ2βηπ∗ are effectively weakly normalizing.

8We also found an alternative proof of the confluence of
β2η2∗
−→ that does not extend to

the case with SP . It relies on yet another splitting of the rules, taking gentop and the β

rules on one hand, and the eta-like rules on the other. The proof uses the same criterion
for confluence as we used in this section. In order to check the last condition, we rely on a
parallelization of R2, which does not work well when the non linear surjective pairing rule is
added to R2 (cf. introduction). So we abandoned that proof technique which we were not able
to extend to the full system.

13

Proof. The reduction system R can be split into the two subsystems R1 =
{β, π, gentop, β2, η2} and R2 = { η, SP , ηtop, SPtop}. R1 is shown to be SN by
a straightforward adaptation of the technique of [GLT90] (see Section B). R2
is obviously SN since the rules strictly decrease the size of the terms they apply
to. The set of R1-normal forms is closed under R2 reductions. So we get the
following effective normalizing (standard) strategy.
Given a term M,

1. first R1–normalize it reaching, say, M’,

2. then R2–normalize M’ reaching, say, M”.

M” is the desired normal form. ✷

The previous result about weak normalization for the first order fragment can
obviously be derived as a corollary from this theorem, but we actually needed
the ingredients of the previous proof to get the confluence of our systems.

5 Decidability and conservative extension results

From the confluence and weak normalization for our calculi, it is now easy to
get also the decidability of the associated equational theories as well as conser-
vativity results.

Corollary 5.1 The equational theories for λ1βη∗, λ1βηπ∗, λ2βη∗ and λ2βηπ∗are
decidable.

Proof. Given terms M and N, consider their normal forms M’ and N’ (they
exist by WN). If M = N, then (by CR) M’ is syntactically equal to N’. So,
to decide equality it suffices to take the normal forms (that is effective, as we
provided a normalizing strategy for each one of these calculi) and to check if
they are equal. ✷

Corollary 5.2 (Conservative extensions) For L any of the calculi λ2βηπ∗ λ2βη∗

λ1βηπ∗ or λ1βη∗ call
L
−→ the rewriting system corresponding to L, that is

β2η2π∗
−→ ,

β2η2∗
−→ ,

βηπ∗
−→ or

βη∗
−→. Let L’ be a subtheory of L which has the following

stability property. If M is in the sublanguage of L’ and M
L
−→ N, then N is also

in L’ and M and N are provably equal in L’. If M and N are terms of L’ that
are equal in L, then they are already equal in L’.

Proof. If M and N are equal in L, then, by the CR property, there exist a
term P s.t. M and N reduce to P in L. But M and N are terms of L’, and no
reduction in any of the calculi we consider can reach terms outside L’, then the

reductions M
L
→→ P and N

L
→→ P correspond to provable equations in L’, so that

M is equal to N in L’. ✷

14

In [BDCL90], for example, we need the conservativity of the equational
theory of λ1βηπ∗ over the simple typed λ-calculus, while in [DC91], we actually
use the conservativity of λ2βηπ∗ over the second order lambda calculus.

As far as we know, our results are new for what concerns polymorphism,
while other proofs of corollary 5.1 have been given in the literature, for the case
of the first order calculi. We already briefly hinted at the method used in [LS86],
which is based on

• the elimination of Top

• a proof of confluence via WCR and SN (WCR holds there without a need
to add funny rules, and the computability method works well without
special restrictions, as was first shown by R. De Vrijer).

Another method, which was found independently by A.S. Troelstra (see
[Tro86], where it is used to prove SN rather than CR) and T. Hardin (see
[Har89]) goes further by eliminating products as well as Top. The two methods
allow to prove conservativity as well as decidability, but the overall construc-
tion is quite tedious. Let us be more specific, since the explanations provided
by Lambek and Scott, in [LS86] pp. 81 and 82, are somewhat handwaving. The
exploitation of the type isomorphisms can be formalized as follows. To every
type T we associate a T-free type T⋄.

Definition 5.3 For any type T, we define its “top-free” form T⋄ as the normal
form of T w.r.t. the following (confluent and strongly normalizing) type rewrite
system ❀:

A× T ❀ A T ×A ❀ A
T → A ❀ A A→ T ❀ T

Thus a “T-free” type is either T, or a type where T does not occur. Then one
may extend this mapping to terms, so that for a term M:A we have M⋄:A⋄, in
such a way that

M=βηπ∗N⇐⇒M⋄=βηπN
⋄

Similarly, to a type A of λ1βηπ∗ we can associate a sequence of types A∗ con-
structed from type variables with the arrow only, and to a term M a sequence
M∗ of terms of the types that appear in A∗. Then M =βηπ∗ N iff M1 =βη N1,
... , Mn =βη Nn, where M∗=M1,...,Mn and N∗=N1,...,Nn.

This formalizes the assertion of Lambek and Scott that there is “no loss of
generality”, as far as decision is concerned, if one removes the terminal object
(or both the terminal object and the products).

Moreover these translations of types and terms are conservative in the sense
that if A is a type where T (respectively T and ×) does not occur, and M:A,
then A⋄ and M⋄ (respectively A∗ and M∗) are just A and M. Corollary 5.2 is
an immediate consequence of this.

15

Yet another solution to the decidability problem for equational theories of
cartesian closed categories has been proposed by A. Obtulowicz [Obt87]. His ap-
proach is very algebraic in nature. Obtulowicz defines effectively operations on
some canonical forms, turning the set of canonical forms into an initial algebra.
Then, to decide that two terms are equal, one computes their interpretation in
the initial algebra, and checks whether the resulting canonical forms coincide.
This approach is very technical, and contains hidden rewriting techniques. But
it is interesting, because it does not a priori require such strong assumptions as
to find a noetherian and confluent rewriting system.

Anyway, A. Obtulowicz did not show decidability for exactly the same equa-
tional theories as we do here. Specifically, he deals with the critical pairs which
lead us to the SPtop rules in a different way. He forces an equational theory
on types as well as on terms. Specifically, the canonical type isomorphisms un-
derlying the translation ⋄ above are forced to be true equalities (and models
of these theories have thus to identify on the nose, say A × T and A). New
equations between terms are added, which witness these identifications at the
level of terms. Here is one of them

〈M, ∗〉 = M for M : A× T

With the aid of this equation and of one of its consequences, namely

p1M = M for M : A× T

one can solve the critical pair

〈p1M, ∗〉 ← 〈p1M, p2M〉 → M

by just noting that 〈p1M, ∗〉 → p1M→M. It would be worthwhile to investigate
these theories from a rewriting point of view.

Another treatment of the terminal object with identification of types can be
found in [Nip90], which is only concerned with local confluence.

Let us mention that the problem of finding a confluent completion of the
theory λ1βηπ∗ has been considered in [PV87], where it was believed to be
solved. Unfortunately the authors of [PV87] missed the critical pair leading to
ηtop, which in turn induced them to believe that the adaptation of the standard
SN proof was straightforward.

While writing the final version of this paper, we came across [Jay91] that
suggests some new ideas: by turning η and SP into expansions instead of con-
tractions, a strongly normalizing system is obtained. It is not a rewrite system
in the usual sense, though, and not even a conditional one, as in order to get
termination there is the need of some restrictions on the reductions that take
into accout the context where a redex occurs.

16

6 Conclusion

We have established the decidability of various theories containing a rule for
a terminal type, by using the classical game of Knuth-Bendix completion. We
proved these results under the pressure of two quite different research works
which shared the need for them.

We intend to investigate how far our method can be extended to yield similar
results for other or furher extensions of the λ-calculus. Actually, [PV87], for
example, is concerned with a first order calculus that is λ1βηπ∗ plus sums: we
believe that our technique applies to that case too. It would be interesting to
generalize the work done here for λ2βηπ∗ and its subcalculi in such a way to
give uniformly a CR, WN reduction system for the lambda calculi with terminal
object and inductive types.

References

[Bar84] Henk Barendregt. The Lambda Calculus; Its syntax and Semantics
(revised edition). North Holland, 1984.

[BDCL90] Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable iso-
morphisms of types. Technical Report 90-14, LIENS - Ecole Normale
Supérieure, 1990. To appear in Proc. of Symposium on Symbolic
Computation, ETH, Zurich, March 1990 : MSCS.

[CG90] Pierre-Louis Curien and Giorgio Ghelli. Subtyping and extensional-
ity: decidability of βηtop≤ on F≤. 1990. Draft.

[DC91] Roberto Di Cosmo. Invertibility of terms and valid isomorphisms. A
proof theoretic study on second order λ-calculus with surjective pair-
ing and terminal object. Technical Report, LIENS - Ecole Normale
Supérieure, 1991. To appear.

[Dez76] Mariangiola Dezani-Ciancaglini. Characterization of normal forms
possessing an inverse in the λβη calculus. Theoretical Computer
Science, 2:323–337, 1976.

[GLT90] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.
Cambridge University Press, 1990.

[Har89] Thérèse Hardin. Confluence results for the pure strong categorical
logic C.C.L.; λ-calculi as subsystems of c.c.l. Theoretical Computer
Science, 65(2):291–342, 1989.

[Jay91] C. Barry Jay. Strong normalisation for simply-typed lambda-
calculus as in lambek-scott. February 1991. LFCS, University of
Edimburgh.

17

[Klo80] Jan Wilhelm Klop. Combinatory reduction systems. Mathematical
Center Tracts, 27, 1980.

[LS86] Joachim Lambek and Philip J. Scott. An introduction to higher order
categorical logic. Cambridge University Press, 1986.

[Min] Gregory Mints. A simple proof of the coherence theorem for cartesian
closed categories. Bibliopolis, to appear.

[Nip90] Tobias Nipkow. A critical pair lemma for higher-order rewrite sys-
tems and its application to λ∗. First Annual Workshop on Logical
Frameworks, 1990.

[Obt87] Adam Obtulowicz. Algebra of constructions I. The Word Problem
for Partial Algebras. Information and Computation, 73(2):129–173,
1987.

[Pot81] Garrel Pottinger. The Church Rosser Theorem for the Typed
lambda-calculus with Surjective Pairing. Notre Dame Journal of
Formal Logic, 22(3):264–268, 1981.

[PV87] Axel Poigné and Josef Voss. On the implementation of abstract data
types by programming language constructs. Journal of Computer
and System Science, 34(2-3):340–376, April/June 1987.

[Tai67] W.W. Tait. Intensional interpretation of functionals of finite type I.
Journal of Symbolic Logic, 32, 1967.

[Tro86] Ann S. Troelstra. Strong normalization for typed terms with surjec-
tive pairing. Notre Dame Journal of Formal Logic, 27(4), 1986.

18

Appendix: Strong normalization for subsystems

Our proof of confluence in Theorem 3.5 relies upon the strong normalization of
βη2π∗
−→ over the set of gentop normal forms, while we need the strong normalization

of
β2η2π∗
−→ less ηtop and SPtop over the full set of terms in order to provide an

effective weakly normalizing strategy for
β2η2π∗
−→ in Theorem 4.2.

This appendix provides these two proofs of strong normalization in sec-
tion A and B respectively, by suitably adapting one of the various versions of
the reducibility method. We choose here to apply Girard’s method, following
essentially the same proof plan as in [GLT90], pagg. 42-47. Since there is almost
no difference in the proofs for the two systems, we will detail the first one only
, and only point out the differences for the second case.

As we briefly suggested in the introduction (Section 2.3), the reducibility
method fails for the full system where ηtop and SPtop are allowed to freely
interact with any term of the calculus: we are not able to deal in the crucial
proofs of the abstraction and pairing lemmas (Lemmas A.13 and A.12) with
some reductions that arise in the full system.

To rule out these reductions, one can either restrict the system to gentop
normal forms only (this requires in turn to rule out the β2 rule, that does not
preserve gentop normal forms, as shown in Example 2.6), or one can simply rule
out ηtop and SPtop.

A Normalization without β2 on gentop n.f.’s

In this section we will show that the system
βη2π∗
−→ (the full system

β2η2π∗
−→ less β2)

is strongly normalizing over the set of gentop normal forms. This means that
all along the proof any gentop reduction is ruled out, so we will not explicitly
state all the time that gentop reductions cannot occur. Moreover, to improve

readability, −→ will stand for
βη2π∗
−→ in this section.

Definitions

Definition A.1 (neutral terms) A term t:U is neutral iff one of the following
conditions is satisfied:

• if U 6∈ Iso(T) and t is not an abstraction, a type abstraction or a pair,

• if U ∈ Iso(T) (then t is rep(U), as we consider only terms in gentop
normal form).

Definition A.2 (longest reduction path for a term) Let u be a term, then
ν(u) denotes the length of the longest reduction path starting from u. Notice that,
by König’s Lemma, if u is strongly normalisable, then ν(u) is finite.

19

Definition A.3 A reducibility candidate of type U is a set R of terms of type
U with the following properties.

CR1 if t ∈ R, then t is strongly normalisable.

CR2 if t ∈ R and t → t’, then t’ ∈ R.

CR3 if t is neutral and for all t’ s.t. t → t’ we have that t’ ∈ R, then t ∈ R.

Remark A.4 A reducibility candidate R of type U is never empty:

• if U ∈ Iso(T), then rep(U) is neutral and in normal form, hence belongs
to R by (CR3).

• if U 6∈ Iso(T), then any variable of type U is neutral and in normal form,
hence belongs to R by (CR3).

Proposition A.5 The set of strongly normalizable terms of type U is a re-
ducibility candidate.

Proof.

• (CR1) is a tautology.

• (CR2) if t is strongly normalisable, then every t’ s.t. t −→ t’ is strongly
normalisable.

• (CR3) every reduction path leaving t must pass through one of the terms
t’ that are one step from t. Since all t’ are strongly normalisable, then t
is strongly normalisable also.

✷

Definition A.6 (Product and Function space of reducibility candidates)
If R and S are reducibility candidates of types U and V, we can define sets R→ S
of terms of type U → V and R× S of terms of type U × V as follows:

• t ∈ R→ S (of type U → V) ⇐⇒

– for all u ∈ R, (tu) ∈ S if V 6∈ Iso(T)

– t = rep(U → V) if V ∈ Iso(T)

• t ∈ R× S (of type U × V) ⇐⇒

– p1t ∈ R and p2t ∈ S if U, V are not in Iso(T)

– p1t ∈ R if U 6∈ Iso(T), V ∈ Iso(T)

20

– p2t ∈ S if U ∈ Iso(T), V 6∈ Iso(T)

– t = rep(U × V) if U, V ∈ Iso(T)

Remark A.7 Notice that, as t and u are in gentop normal form, and due to
the conditions on U and V, the terms (tu), p1t and p2t above are still in gentop
normal form.

Theorem A.8 If R1 and R2 are reducibility candidates of types U1 and U2,
then R1 × R2 and R1 → R2 are reducibility candidates of type U1 × U2 and
U1 → U2 respectively.

Proof. Assume that R1 and R2 are reducibility candidates of type U1 and
U2, respectively.

1. R1 ×R2 is a reducibility candidate of type U1 × U2.
If U1 × U2 ∈ Iso(T), then (CR1), (CR2) and (CR3) hold vacuously due
to the fact that we consider only gentop normal forms, so let’s assume in
the following that U1 6∈ Iso(T) and/or U2 6∈ Iso(T).

• (CR1) if t ∈ U1×U2 and Ui 6∈ Iso(T), then pit is strongly normalis-
able by the induction hypothesis on Ui, since pit ∈ Ui by definition.
Hence t is strongly normalisable.

• (CR2) if t −→ t’, then p1t −→ p1t’ and/or p2t −→ p2t’. As t ∈
U1 × U2, then p1t ∈ U1 and/or p2t ∈ U2. By induction hypothesis
CR2 for U1 and/or U2 we get p1t’ ∈ U1 and/or p2t’ ∈ U2, hence, by
definition, t’ ∈ U1 × U2.

• (CR3) t is neutral and all t’ one step from t are in U1 × U2.
We need to show p1t ∈ U1 and/or p2t ∈ U2.
Now notice that applying a conversion inside pit can only result in
some pit’ as t is not a pair (it is neutral and it is not rep(U1 × U2)).
But p1t’ ∈ U1 and/or p2t’ ∈ U2 as t’ is in U1 × U2. In any case, p1t
and/or p2t are neutral and every term one step from it is in U1×U2,
so the induction hypothesis for U1 and/or U2 ensure p1t ∈ U1 and/or
p2t ∈ U2. So t ∈ U1 × U2.

2. R1 → R2 is a reducibility candidate of type U1 → U2.

We can assume that U2 6∈ Iso(T) as otherwise U1 → U2 ∈ Iso(T), and
then (CR1), (CR2) and (CR3) hold vacuously.

• (CR1) if t ∈ U1 → U2, then let u be a variable x of type U1 if
U1 6∈ Iso(T) or else rep(U1). Since u ∈ any reducibility candidate,

21

(remark A.4), we get that (tu) ∈ U2 by definition, hence (tu) is
strongly normalisable by induction hypothesis for U2, that suffices to
show that t is strongly normalisable.

• (CR2) if t −→ t’, we need to show (t’u) ∈ U2 for all u ∈ U1. Take
then u ∈ U1; we have (tu) ∈ U2 and (tu) −→ (t’u), hence (t’u) ∈ U2

by induction hypothesis on U2.

• (CR3) t is neutral and all t’ one step from t are in R1 → R2. In order
to show t ∈ U1 → U2, we need to show (tu) ∈ U2 for all u ∈ U1.
By induction hypothesis on U1, we get u is strongly normalisable, so
we can argue by induction on ν(u).
In one step, (tu) converts to:

– (t’u) with t’ one step from t.
As t’ ∈ U1 → U2, we get (t’u) ∈ U2 by definition.

– (tu’) with u’ one step from u.
By induction hypothesis on U1, u’ ∈ U1 and ν(u’) < ν(u), so
(tu’) ∈ U2 by the induction hypothesis on u.

– there is no other possibility, as t is already in gentop n.f. and it is
neutral, hence not of the form λx.v (it cannot be rep(U1 → U2)
as we already assumed U1 → U2 6∈ Iso(T)).

✷

A.1 Reducibility with parameters

Let T be a type, and ~X be a set of type variables containing at least all the free
type variables of T. For ~U a sequence of types of the same length, let T[~U/~X]
be the type obtained by simultaneous substitution of the X’s with the U’s, and
~R a sequence of reducibility candidates of corresponding types.

Definition A.9 The set REDT [~R/~X] of reducible terms of type T[~U/~X] is de-
fined by induction on the type T as follows.

• if T is atomic, REDT [~R/~X] is the set of strongly normalizable terms of

type T[~U/~X] = T

• if T is Xi, REDT [~R/~X] is Ri

• if T is U × V then REDT [~R/~X] is REDU [~R/~X]×REDV [~R/~X]

• if T is U → V then REDT [~R/~X] is REDU [~R/~X]→ REDV [~R/~X]

• if T is ∀Y.W then REDT [~R/~X] is the set of terms t of type [~U/~X] such
that, for every type V and reducibility candidate S of this type, t[V] ∈

REDW [~R/~U, S/Y]

22

Lemma A.10 rep(U) is normal for all U ∈ Iso(T).

Proof. By a straightforward induction on the structure of the term. ✷

Theorem A.11 REDT [~R/~X] is a reducibility candidate of type T[~U/~X]

Proof. We proceed by structural induction on the type T.
Since we consider only terms in gentop normal form, there is no term of type

U besides rep(U) if U ∈ Iso(T). Moreover, due to the previous lemma and the
definition of reducibility, rep(U) trivially satisfies (CR1), (CR2) and (CR3), so
we will not consider explicitly the case of types in Iso(T)in the induction.

Atomic types

If T is atomic, then REDT [~R/~X] is the set of strongly normalizing terms of type
T, and we already proved it to be a reducibility candidate (Proposition A.5).

Type Variables

If T is Xi, then REDT [~R/~X] is Ri, that is a reducibility candidate by definition.

Product types

Let T be U1 × U2. Then REDU1×U2
[~R/~X] = REDU1

[~R/~X] × REDU1
[~R/~X]

by definition. We can apply the induction hypothesis for REDU1
[~R/~X] and

REDU2
[~R/~X], so that the result then follows by Theorem A.8.

Arrow types

Let T be U1 → U2. Then REDU1→U2
[~R/~X] = REDU1

[~R/~X] → REDU1
[~R/~X]

by definition. We can apply the induction hypothesis for REDU1
[~R/~X] and

REDU2
[~R/~X], so that the result then follows by Theorem A.8.

Universal types

Let T = ∀Y.W . We can assume that W 6∈ Iso(T) as otherwise ∀Y.W ∈ Iso(T).

• (CR1) if t ∈ RED∀Y.W [~R/~X], then let V be an arbitrary type and S be
an arbitrary reducibility candidate of this type (for example, the strongly

normalizable terms of type V). Then t[V] ∈ REDW [~R/~X, S/Y], and so,
by induction hypothesis, we know that t[V] is strongly normalizable. A
fortiori t is strongly normalisable.

• (CR2) if t
βηπ∗
−→ t’, then for all types V and reducibility candidate S of

this type, we have that t[V] ∈ REDW [~R/~X, S/Y] and (t[V])
βηπ∗
−→ (t’[V]),

23

hence t’[V] ∈ REDW [~R/~X, S/Y] by induction hypothesis on W. So, by

definition, t’ ∈ RED∀Y.W [~R/~X]

• (CR3) t is neutral and all t’ one step from t are in REDT [~R/~X]. Take
V and S: if we apply a conversion inside t[V], the result is t′[V] since

t is neutral (and, again, not rep(∀Y.W), as t
βηπ∗
−→ t’). Now, t′[V] is in

REDW [~R/~X, S/Y] as t’ is in REDT [~R/~X]. By induction hypothesis, we

get t′[V] ∈ REDW [~R/~X, S/Y], so t ∈ REDT [~R/~X].

✷

Reducibility theorem

We shall need some lemmas to deduce reducibility of a term from reducibility
of its subterms.

Lemma A.12 (Pairing)

If u1 ∈ REDU1
[~R/~X] and u2 ∈ REDU2

[~R/~X], then 〈u1, u2〉 ∈ REDU1×U2
[~R/~X].

Proof. We can assume that U1 6∈ Iso(T) and/or U2 6∈ Iso(T), as otherwise

〈u1, u2〉 = rep(U1 × U2) and then REDU1×U2
[~R/~X] is {rep(U1 × U2)}.

We can argue by induction on ν(u1) + ν(u2), by CR1, to show that, for i=1

and/or i=2, pi〈u1, u2〉 ∈ REDUi
[~R/~X].

Let i=1 for simplicity. The term p1〈u1, u2〉 converts to:

• u1, which is in REDU1
[~R/~X] by hypothesis.

• p1〈u
′, u2〉 with u’ one step from u1.

Then u’ is in REDU1
[~R/~X] by CR2 and ν(u’) < ν(u1), so p1〈u

′, u2〉 ∈

REDU1
[~R/~X] by induction hypothesis.

• p1〈u1, v
′〉 with v’ one step from u2. We get p1〈u1, v

′〉 ∈ REDU1
[~R/~X] as

above.

• p1w if u1 is p1w and u2 is p2w.

But p1w = u1 is in REDU1
[~R/~X] by hypothesis.

• p1w if u1 is p1w and u2 is rep(U2).
By definition of parametric reducibility for product types when one of the
factor types is in Iso(T), we get that u1 ∈ REDU1

[~R/~X] as p1w = u1 is

in REDU1
[~R/~X] by hypothesis.

24

In every case, the neutral terms pi〈u1, u2〉 convert to terms in REDUi
[~R/~X]

only, for i=1 and/or i=2, so they are in REDUi
[~R/~X] by CR3. Hence 〈u1, u2〉

is in REDU1×U2
[~R/~X]. ✷

Lemma A.13 (Abstraction)

Let x:U and v:V. If for all u ∈ REDU [~R/~X] v[u/x] ∈ REDV [~R/~X], then λx.v

∈ REDU→V [~R/~X]

Proof. We can assume that V 6∈ Iso(T) as otherwise v is rep(V), and λx.v
is rep(U → V) as U → V ∈ Iso(T), and it is reducible by definition.

To show that λx.v ∈ REDU→V [~R/~X], we need to show that (λx.v)u ∈

REDV [~R/~X] for all u ∈ REDU [~R/~X].
There are two cases: either U ∈ Iso(T) or not.
In the first case, v[u/x] = v as it is in gentop normal form, hence there is no
free occurrence of x in v, and the only term u of type U is rep(U). Since t =
(λx.v)u is neutral, it suffices to show that for every term t’ one step from it

t’ ∈ REDV [~R/~X]. Since v = v[rep(U)/x] ∈ REDV [~R/~X] by hypothesis, hence
strongly normalizing, we can argue by induction on ν(v). The one step reducts
of (λx.v)u are:

• v[u/x] which is in REDV [~R/~X] by hypothesis

• (λx.v’)u with v’ one step from v. Then v’[u/x] is in REDV [~R/~X] by CR2
as it is one step from v[u/x] and we are done by induction hypothesis as
ν(v’) < ν(v)

• (v’u) via ηtop if v = v’rep(U).

Now, u = rep(U) so (v’u) = v’rep(U) = v = v[u/x] which is in REDV [~R/~X]
by hypothesis.

In the second case, x:U is in REDU [~R/~X] (remark A.4). So v = v[x/x]

is in REDV [~R/~X], hence strongly normalizable by CR2 and we can argue by
induction on ν(u) + ν(v) to show that all terms one step from (λx.v u) are
reducible.
The one step reducts of (λx.v)u are:

• v[u/x] that is in REDV [~R/~X] by hypothesis.

• (λx.v’)u with v’ one step from v. Since v’[u/x] is one step from v[u/x]
9, then it is in REDV [~R/~X] by CR2. Furthermore, ν(v’) < ν(v), so by

9Can be shown by an easy induction on v.

25

induction hypothesis we get (λx.v’ u) ∈ REDV [~R/~X].

• (λx.v)u’ with u’ one step from u. Then u’ ∈ REDU [~R/~X] by CR2,

ν(u’) < ν(u) and v[u’/x] ∈ REDV [~R/~X] by repeated applications of CR2,
as it is some step from v[u/x]. So we can apply again the induction hy-
pothesis.

• (v’u) via η if λx.v is λx.v’x and x 6∈ FV(v’).

It is in REDV [~R/~X] as v[u/x] = (v’u) is in REDV [~R/~X] by hypothesis.

Since (λx.v)u is neutral and it converts to reducible terms only, it is re-
ducible. Hence λx.v is reducible. ✷

Remark A.14 Working only with terms in gentop normal form allows us to
rule out all the other reductions that are possible when considering all the terms
of the calculus. This restriction is essential as otherwise we ought now to face,
in Lemma ??, reductions like p1〈rep(U1), p2w〉 −→ p1w, that we cannot handle,
as nothing in our induction hypothesis allows us to conclude that p1w is re-
ducible. (We already pointed out the difficulty in Section 2.3). This reduction10

is now ruled out as p1〈rep(U1), p2w〉 is not a gentop normal form (its normal
form being rep(U1)). Similarly, in Lemma A.13, the restriction to terms in
gentop normal form allows us to rule out (in the case U ∈ Iso(T)) all the other
reductions otherwise possible in the full calculus. As pointed out in the introduc-
tion (Section 2.3), we do not know how to handle the general reduction (λx.(v’
rep(U)))u −→ (v’ u) via ηtop: if u is not rep(U), then we have nothing in our
induction hypothesis to tell us that (v’ u) is reducible. But here u must be in
gentop normal form, that is to say, u = rep(U), and the ηtop reduction can be
handled as above.

Lemma A.15 (Universal abstraction)

If for every type V and candidate S of type V, v[V/Y] ∈ REDW [~R/~X,S/Y],

then ΛY.v ∈ RED∀Y.W [~R/~X]

Proof. We need to show that (ΛY.v)[V] ∈ REDW [~R/~X, S/Y] for every type
V and candidate S of type V. We argue by induction on ν(v), using the fact
that (ΛY.v)[V] is neutral. Converting a redex of (ΛY.v)[V] can yield:

• (ΛY.v’)[V] with v’ one step from v; now, (ΛY.v’)[V] ∈ REDW [~R/~X, S/Y]
by induction hypothesis on ν(v)

The results follows by CR3. ✷

Lemma A.16 REDT [V/Y][~R/~X] = REDT [~R/~X, REDV [~R/~X]/Y]

10And its symmetric p2〈p1w, rep(U2)〉 −→ p2w.

26

Proof. By induction on T. ✷

Lemma A.17 (Universal application)

If t ∈ RED∀Y.W [~R/~X], then t[V] ∈ REDW [V/Y][~R/~X] for every type V.

Proof. By hypothesis, t[V] ∈ REDW [~R/~X, S/Y] for every candidate S. Tak-

ing S = REDV [~R/~X], the result follows by Lemma A.16. ✷

The theorem

As in [GLT90], we say here that a term t of type T is reducible if it is in

REDT [~SN/~X], where ~X are the free type variables of T and SN i is the set of
strongly normalizable terms of type Xi.
In the proof of the theorem, there is the need of a stronger induction hypothesis,
from which the strong normalization follows by putting ui = xi and Ri = SNi.

Proposition A.18 Let t:T be any term (in gentop normal form) of λ2βηπ∗,
whose free variables are among x1 : U1. . . . xn : Un, and all the free variable of
T, U1, . . . Un are among X1, . . . Xm. If R1, . . . Rm are reducibility candidates
of types V1, . . . Vm, and u1, . . . um are terms of types U1[~V/~X], . . . Um[~V/~X]

which are in REDU1
[~R/~X], . . . REDUn

[~R/~X], then t[~V/~X][~u/~x] ∈ REDT [~R/~X].

Proof. By induction on t. Notice that there are no variables of type U if
U ∈ Iso(T).

• t = ∗: t is in the only reducibility candidate {∗} of type T.

• t = xi : in this case the statement of the theorem becomes a tautology.

• t = piu : then u:U1×U2 and Ui 6∈ Iso(T) as we consider only terms in gen-

top normal form. By induction hypothesis, u[~V/~X][~u/~x] ∈REDU1×U2
[~R/~X].

Hence (piu)[~V/~X][~u/~x] = piu[~V/~X][~u/~x] ∈ REDUi
[~R/~X] by definition of

reducibility for product types.

• t = 〈u, v〉 : since u[~V/~X][~u/~x] ∈REDU1
[~R/~X] and v[~V/~X][~u/~x] ∈REDU2

[~R/~X]

by the induction hypothesis, Lemma A.12 gives 〈u[~V/~X][~u/~x], v[~V/~X][~u/~x]〉

∈ REDU1×U2
[~R/~X].

But 〈u, v〉[~V/~X][~u/~x] is 〈u[~V/~X][~u/~x], v[~V/~X][~u/~x]〉 by definition, hence

〈u, v〉[~V/~X][~u/~x] ∈ REDU1×U2
[~R/~X].

27

• t = λz.v : by induction hypothesis, we know that v[~V/~X][~u/~x][u/z] ∈

REDV [~R/~X] for all u ∈REDU [~R/~X]. Then Lemma A.13 gives λz.v[~V/~X][~u/~x]

∈ REDU→V [~R/~X].

But (λz.v)[~V/~X][~u/~x] is λz.v[~V/~X][~u/~x] by definition, and the result fol-
lows.

• t = vu : then v[~V/~X][~u/~x] ∈REDU→V [~R/~X] and u[~V/~X][~u/~x] ∈REDU [~R/~X]
by induction hypothesis.
Hence (v[~V/~X][~u/~x] u[~V/~X][~u/~x]) ∈ REDV [~R/~X], as it is (vu)[~V/~X][~u/~x]
by definition.

• t = ΛY.v : then we know by induction hypothesis that for every type V and
reducibility candidate S we have v[V/Y][~V/~X][~u/~x] ∈ REDW [~R/~X, S/Y].

Then Lemma A.15 yields the result (ΛY.v)[~V/~X][~u/~x] ∈ RED∀Y.W [~R/~X]

• t = t[V] : then we know by induction hypothesis that t[~V/~X][~u/~x] ∈

RED∀Y.W [~R/~X] and Lemma A.17 gives the result t[V][~V/~X][~u/~x] ∈REDW [V/Y][~R/~X]
for every type V.

✷

Theorem A.19
βη2π∗
−→ is strongly normalizing over the set of gentop normal

forms.

Proof. Let t be any term in gentop normal form. All its free variables are in
any reducibility candidate by CR3, so that t=t[~SN/~X][~x/~x] is reducible by the

previous lemma. By CR1 it is strongly normalizing. That is,
βη2π∗
−→ is strongly

normalizing over gentop normal forms. ✷

B Normalization without ηtop and SPtop

The proof of strong normalization is essentially the same as the one given above
for the full system without β2 over the subset of terms in gentop normal form.

The main difference, besides the fact that we add β2 and gentop and exclude
ηtop and SPtop, is that now we work on the full set of terms, so that there are
plenty of terms t:U, besides rep(U), when U ∈ Iso(T): we keep essentially the
same notion of neutral term (A.1), but it is to be noted that only rep(U) is
neutral, not every term of type U ∈ Iso(T).

Definition B.1 (neutral terms) A term t:U is neutral iff at least one of the
following conditions is satisfied:

28

• if U 6∈ Iso(T) and t is not an abstraction, a type abstraction or a pair,

• if U ∈ Iso(T) and t is rep(U).

Since we drop ηtop and SPtop, there is no need to give a special status to the
types U ∈ Iso(T) (besides the fact that rep(U) is neutral), and we resort to the
usual definition of product and function space of reducibility candidates, that
allows us to deal with all the terms of type U ∈ Iso(T).

Definition B.2 (Product and Function space of reducibility candidates)
If R and S are reducibility candidates of types U and V, we define:

• t ∈ R→ S ⇐⇒ for all u ∈ R, tu ∈ S

• t ∈ R× S ⇐⇒ p1t ∈ U and p2t ∈ V

With this new definition, the proofs of the previous appendix go through
almost unchanged, with the only care to keep in mind that now rep(U) is no
longer the only term of type U ∈ Iso(T), and that types in Iso(T) have no
longer a special status. This means that wherever there is a distinction between
types that are in Iso(T) and types that are not, one follows the proof given for
types that are not in Iso(T). The new cases arising from gentop reductions are
easily dealt with, as rep(U) is still in any reducibility candidate by CR3.

For completeness, we detail here all the changes that are needed.

• Remark A.4 now extends to all variables, also the variables of type U
∈ Iso(T). It is just the matter of noticing that a variable x:U ∈ Iso(T) is
neutral and reduces only to rep(U), that is in any reducibility candidate
by CR3, and the result follows by CR3.

• in Theorem A.8, we can no longer factor out the types in Iso(T), that
must be treated exactly as the other types:

Product Types (CR3)

∗ t can be rep(U1×U2). In that case the only possible reduction for
pit (that is not in gentop normal form) is to rep(Ui), that is in any

reducibility candidate (remark A.4), hence in REDUi
[~R/~X] that

is a reducibility candidate by induction hypothesis on Ui. So pit

∈ REDUi
[~R/~X] by CR3 on Ui and we get t ∈ REDU1×U2

[~R/~X]
by definition.

∗ t can be a neutral term different from rep(U1 × U2). Then the
only possible reduction for pit (that is not in gentop normal form)
is to rep(Ui), and we conclude as above.

Arrow Types (CR3)

29

∗ t (or t’) can be rep(U1 → U2). Then (tu) (or (t’u)) can only re-
duce to rep(U2) that is in any reducibility candidate (remark A.4),

hence in REDU2
[~R/~X] that is a reducibility candidate by induc-

tion hypothesis on U2. So (tu) (or (t’u)) ∈ REDU2
[~R/~X] for all u

∈ REDU1
[~R/~X] and we get t ∈ REDU1→U2

[~R/~X] by definition.

∗ t can be a neutral term different from rep(U1 → U2). Then the
only possible reduction for (tu) (or (t’u)) is to rep(U2), and we
conclude as above.

• in Theorem A.11, we can no longer factor out the types in Iso(T), that
must be treated exactly as the other types.

Universal Types (CR3)

∗ t (or t’) can be rep(∀Y.W). Then t[V] can only reduce to rep(W),
that is in any reducibility candidate (Remark A.4), hence in

REDW [~R/~X] that is a reducibility candidate by induction hy-

pothesis on W. Again we get t (or t’) ∈ RED∀Y.W [~R/~X] by
definition.

∗ t (or t’) can be a neutral term different from rep(∀Y.W). Then
t[V] can only reduce to rep(W), and we conclude as above.

• in Lemma A.12 and A.13 we can no longer factor out the case of types U
∈ Iso(T), that must be treated uniformly as the other types. Since the
rules SPtop and ηtop are not present, only the first four cases considered in
Lemma A.12 can occur and the proof goes through unchanged for them,
while for Lemma A.13 we follow the proof given for V 6∈ Iso(T).

There is now the further possibility of a gentop reduction, that is in both
cases dealt with in the usual way by remembering that any reducibility
candidate of type U ∈ Iso(T) contains rep(U).

• in Lemma A.15 we have now two additional cases:

– (ΛY.v)[V] reduces to rep(W[V/Y]), that is in REDW [V/Y][~R/~X] since
this latter is a reducibility candidate.

– (ΛY.v)[V] reduces to v[V/Y]. But we know that v[V/Y] ∈ REDW [V/Y][~R/~X, S/Y]
by hypothesis.

• In the proof of the Proposition A.18, it suffices to apply to the types V
∈ Iso(T) the same arguments used for types U 6∈ Iso(T), as now there is
no longer any difference in the definition of the function space and product
of reducibility candidates.

Using again the fact that t=t[~SN/~X][~x/~x], we similarly get our final result.

Theorem B.3
β2η2π∗
−→ without ηtop and SPtop is strongly normalizing.

30

M LHS RHS Comment

x (N)
T

(N)
T

ok

y y y ok

(PQ) ((PQ)[N/x])
T

(PQ)
T
[(N)

T
/x] by def. of subst.

(P[N/x]Q[N/x])
T

= ((P)
T
(Q)

T
)[(N)

T
/x] by def. of subst.

= ((P[N/x])
T
(Q[N/x])

T
) = ((P)

T
[(N)

T
/x](Q)

T
[(N)

T
/x]) by def. of subst.

= ((P)
T
[(N)

T
/x])((Q)

T
[(N)

T
/x]) by ind. hyp.

λy.P (λy.P[N/x])
T

(λy.P)
T
[(N)

T
/x] by def. of subst.

λy.(P[N/x])
T

(λy.(P)
T
)[(N)

T
/x] by def. of subst.

= λy.(P)
T
[(N)

T
/x] = λy.(P)

T
[(N)

T
/x] by ind. hyp.

piP (piP[N/x])
T

(piP)
T
[(N)

T
/x] by def. of subst.

= pi(P[N/x])
T

= pi(P)
T
[(N)

T
/x] by def. of subst.

= pi(P)
T
[(N)

T
/x] = pi(P)

T
[(N)

T
/x] by ind. hyp.

〈P,Q〉 (〈P [N/x], Q[N/x]〉)
T

(〈P,Q〉)
T
[(N)

T
/x] by def. of subst.

= 〈(P[N/x])
T
, (Q[N/x])

T
〉 = 〈(P)

T
, (Q)

T
〉[(N)

T
/x] by def. of subst.

= 〈(P)
T
[(N)

T
/x], (Q)

T
[(N)

T
/x]〉 = 〈(P)

T
[(N)

T
/x], (Q)

T
[(N)

T
/x]〉 by ind. hyp.

Λt.P (Λt.P[N/x])
T

(Λt.P)
T
[(N)

T
/x] by def. of subst.

Λt.(P[N/x])
T

(Λt.(P)
T
)[(N)

T
/x] by def. of subst.

= Λt.(P)
T
[(N)

T
/x] = Λt.(P)

T
[(N)

T
/x] by ind. hyp.

P [A] (P [A][N/x])
T

(P [A])
T
[(N)

T
/x] by def. of subst.

= (P [N/x][A])
T

= (P)
T
[A][(N)

T
/x] by def. of subst.

= (P[N/x])
T
[A] = (P)

T
[(N)

T
/x][A] by def. of subst.

= (P)
T
[(N)

T
/x]A[] by ind. hyp.

Table 1: Compatibility of gentop n.f. with substitution.

31

