
Free software for education, research, and sustainable
development

Roberto Di Cosmo

Universit́e de Paris 7

http://www.dicosmo.org

Cordoba, August 10th 2007

http://www.dicosmo.org

Free software for delevoping contries

Free softwareis strategicfor developing countries :

sustainable developementbusiness model that favorslocal services and SMEs, instead of wealth

concentration in multinational groups

creation of qualified jobs locally

Creating a software industry only requires brainpower. . . and a high speed connection.

protection against “intellectual property” zealots

control of the technology that is the state’s nervous system. Without free software, who knows whoa is in

charge ?

reduced costs

This is well understood in developed countries, too : e.g. Germanyb

But . . .

Firefox (source : Xitimonitor 07/08)

Firefox (source : Xitimonitor 07/08)

more examples. . .

France :

◮ http://impots.gouv.fr :

⊲ 5,5 x106 déclaraciones en 2006

⊲ fully free software infrastructure

◮ OpenOffice.org :

⊲ Minefi (80.000),

⊲ Gendarmerie (70.000),

⊲ Intérieur (50.000),

⊲ Equipement (55.000),

⊲ Douanes (16.000)

Argentina ?

http://impots.gouv.fr
OpenOffice.org

FLOSS study (november 2006) :
32% IT Services, 4% GNP in 2010

FLOSS study (november 2006) :
Europe is fueling the movement

Latin America’s share isdangerously low. That’s not a good idea !

Some software we use is getting huge . . .

linux-2.6.16.20> sloccount .

[...]

Totals grouped by language (dominant language first):

ansic: 4608272 (95.46%)

asm: 204701 (4.24%)

perl: 5614 (0.12%)

yacc: 2606 (0.05%)

sh: 2230 (0.05%)

cpp: 1769 (0.04%)

lex: 1510 (0.03%)

lisp: 218 (0.00%)

python: 167 (0.00%)

awk: 99 (0.00%)

pascal: 41 (0.00%)

Total Physical Source Lines of Code (SLOC) = 4,827,227

Data generated using David A. Wheeler’s ’SLOCCount’.

and quite complex. . .

The software ecosystem is getting complex too. . .

The relationships among software components are growing intricate. . .

A good engineer has a demanding life

◮ design real-world systems that will go into production

◮ understand complex software,

at least as much as necessary to modify and adapt it

◮ build complex systems by reusing existing components

◮ interact with other, often strongly opinioned, developers

Yet, we still teach computer science like 20 years ago !

◮ one algorithm at a time

◮ one monolithic program (big or small) for each project

◮ one student at a time

this needs to change, and free software isthekey

Quality of education and training

Free software = freedom to use, copy and distribute :
◮ level playing field :all students have access to the whole set of toolsa ; no

restrictions, no specific agreements

Well, but in Latin America, proprietary software is free of chargeb ! Think twice !

[. . .] Gates shed some light on his own hard-nosed business philosophy.

”Although about 3 million computers get sold every year in China, but people don’t pay for the

software,” he said. ”Someday they will, though. As long as they are going to steal it,we want

them to steal ours. They’ll get sort of addicted, and then we’ll somehow figure out how to

collect sometime in the next decadec.”[. . .]

Entrevista de Corey Grice, Sandeep Junnarkar (CNET July 2, 1998)

Timeo Danaos et dona ferentesVirgilio, Eneide, l.2,v.49

aFirefox, ThunderbirdOpenOfficeScilab, R,Ocaml, TeXmacs,Eclipse . . .
bcommercial offers, or illegal copy
cEsa, es la “proxima d́ecada”

Quality of education and training

das Wesen der Mathematik liegt gerade in ihrer Freiheita

Georg Cantor

Free software = freedom to read, understand, modify and distribute the source code :

◮ access to a better education (to computer science):

no barriers to knowledge

“as if an civil engineering student could take part in the building of the Aquitaine

bridge”

◮ specific curricula:

several Masters en Free Software are being taught

Free Software isessentialfor education

ala esencia de la matematica reside en su libertad

An example : teaching algorithms in a modern way

Let’s take one of the favorite intruductions to dynamic programming

Longest Common Subsequence (LCS)

given two sequencesX = (x1, x2, . . . xn) andY = (y1, y2, . . . ym), we

whish to find a maximum length common subsequence of X and Y.

For example, for X = BDCABA and Y = ABCBDAB, the sequence BCBA is such a

common subsequence (BDAB is another one).

How do we find one ?

Sould we enumerate all subsequences of X and Y, then find the common ones and

pick a longest one ?

Hey, that would require exponential time !

The algorithmic insight, 1

We remark that the LCS problem has anoptimal substructureproperty :

for X = (x1, x2, . . . xn) andY = (y1, y2, . . . ym), andZ = z1, . . . , zk an LCS

◮ if xn = ym thenzk = xn = ym andZk−1 is an LCS ofXn−1 andYm−1

◮ if xn 6= ym thenzk 6= xn impliesZ is an LCS ofXn−1 andY

◮ if xn 6= ym thenzk 6= ym impliesZ is an LCS ofX andYm−1

The algorithmic insight, 2

So we can fill ann by m tablec[i, j] containing the length of the LCS ofXi andYj

c[i, j] =

0 i = 0 or j = 0

c[i − 1, j − 1] + 1 xi > 0, yj > 0, xi = yj

max(c[i, j − 1], c[i − 1, j]) xi > 0, yj > 0, xi 6= yj

The algorithmic insight, 3

This can be done bottom up with the simple code that follows

for i = 1 to n do c[i,0] = 0

for j = 1 to m do c[0,j] = 0

for i = 1 to n do

for j = 1 to m do

if x[i]=y[j] then c[i,j] = c[i-1,j-1] +1

else c[i,j] = max(c[i,j-1], c[i-1,j])

Notice that :

◮ we can actually recover an LCS from the matrixc

◮ the algorithm runs inO(mn) time

◮ the algorithm requiresO(mn) space

The algorithmic insight, 4

Many lecturers conclude “this is how thediff program works !”

really?

Is O(nm) an acceptable space and time complexity,in practice?

Is diff really building ann by m array oftext lines?

Is diff really comparingtext lines?

Is the studentasking himself these fundamental questions ?

With proprietary software, you would never know.

With free softwarea, things change radically !
a4 rights :- execute the code- study and adapt the (source) code- distribute the code- distribute the (mo-

dified) sources

A look at diff internals

apt-get source diffutils

cd diffutils-2.8.1/src

less analyze.c

...

/* The basic algorithm is described in:

"An O(ND) Difference Algorithm and its Variationsa", Eugene

Algorithmica Vol. 1 No. 2, 1986, pp. 251-266;

see especially section 4.2, which describes the variation

Unless the --minimal option is specified, this code uses

heuristic, by Paul Eggert, to limit the cost to O(N**1.5

at the price of producing suboptimal output for large inputs

many differences.

The basic algorithm was independently discovered as described

"Algorithms for Approximate String Matching", E. Ukkonen,
aaha!

Information and Control Vol. 64, 1985, pp. 100-118. */

A look at diff internals, 2

less io.c

...

/* Lines are put into equivalence classes of lines that match

Each equivalence class is represented by one of these structures,

but only while the classes are being computed.

Afterward, each class is represented by a number.a
*/

struct equivclass

{

linb next; /* Next item in this bucket. */

hash_value hash; /* Hash of lines in this class. */

char const *line; /* A line that fits this class. */

size_t length; /* That line’s length, not counting

};

aaha!
binteger holding a pointer

/* Hash-table: array of buckets, each being a chain of equivalence

static lin *buckets;

A look at diff internals, 3

less analyze.c

...

/* Discard lines from one file that have no matches in the

A line which is discarded will not be considered by the

comparison algorithm; it will be as if that line were not

The file’s ‘realindexes’ table maps virtual line numbers

(which don’t count the discarded lines) into real line numbers;

this is how the actual comparison algorithm produces results

that are comprehensible when the discarded lines are counted.

When we discard a line, we also mark it as a deletion or

so that it will be printed in the output. */

static void
aaha!

discard_confusing_lines (struct file_data filevec[])

Free software makes a difference

By looking at thefree source codeof a real-world, industry-strength implementation

of thediff algorithm, our students have learned :

◮ a real-world program is much more than justonealgorithm

⊲ optimize the common case (theO(DN))

⊲ use hashing where appropriate (line equivalence classes)

⊲ reduce the size of the problem (remove lines that are not common)

◮ follow references tofreely accessiblea research papers

◮ documentation, and comments, are essential to understand the code
athis is really essential !

Free software and sustainable development

New profiles for our studentsLeveraging free software, we can identify three

different levels :

FLOSS technician : knows how to use some successful FLOSS projects, off the

shelf (Apache, Linux, etc.) This can be done with e-learning, at a 2 or 3 year

graduate level, seehttp://www.eof.eu.org/.

FLOSS engineer : she also knows how to inspect, modify and fix some complex

code coming from the FLOSS community

FLOSS core developer: she is able to become part of a FLOSS community, and

have her changes accepted back in it

See also Paterson’s letter in Communication of the ACM (03/06) : “Computer

Science Education in the 21st Century”.

This is key to nonvolatile, highly qualified jobs.

http://www.eof.eu.org/

Free software also poses novel challenges

The challenge :

Manage the complexity of very large software systems, like those in a free

software distribution

A difficult problem

◮ no single architect

◮ version change all the time

◮ components (units, packages) come and go

This is why Free Software has created the role of adistribution editor

The role of a distribution editor is novel :

upstream tracking : must follow the evolution of the sources

the developer is almost never the packager !

integration : must offer a coherenta collection of packages

Coherence relies on properly handling, and checking,dependencies

testing : metadata will never be complete, so testing is necessary

distribution : new packages must be delivered fast, without breaking existing

configurations

This isnot easy :

Mandrake’s 6-month release cycle required30 man-years.

An overview of Mandriva’s lifecycle (≈ 9.000 units)

An overview of Debians’s lifecycle (≈ 19.000 units)

The EDOS project

Funded by the European Community, IST.

Goal :improve the production process of a complex software system, like a free

software distribution, usingformal methods:

◮ package management : upstream tracking, dependency checkinga, thinning,

rebuilding from scratch

◮ testing

◮ distribution : specialised algorithms for P2P clustering and event notification

◮ process measurement

This isradically neww.r.t. the proprietary software world.

Metadata in commonbinary package formats is complex

dependenciespackage A needs another package B to work properly.

conflicts package A that cannot be installed when package B is.

versioned dependencies and conflictsdependencies or conflicts can mention

package versions.

complex boolean dependenciespackage A can depend on package B AND

(package C OR package D).

An example

Package : binutils

Priority : standard

Section : devel

Installed-Size : 5976

Maintainer : James Troup <james@nocrew.org>

Architecture : i386

Version : 2.15-6

Provides : elf-binutils

Depends : libc6 (>= 2.3.2.ds1-21)

Suggests : binutils-doc (= 2.15-6)

Conflicts : gas, elf-binutils, modutils (<< 2.4.19-1)

Filename : pool/main/b/binutils/binutils 2.15-6 i386.deb

Size : 2221396

MD5sum : e76056eb0d6a0f14bc267bd7d0f628a5

Description : The GNU assembler, linker and binary utilities

The programs in this package are used to assemble, link and

manipulate

binary and object files. They may be used in conjunction with

Checking packagewise installability

The package installation problem

“given a repository R, can I install a package P =(u,v) ?”

Solving this problem is central to :

◮ analyse a repository

◮ allow distribution maintainers to discover early problemsdue to the changes in the

package versions

Package installation as boolean constraint solving

◮ Debian uses unary constraints

⊲ u meaning “any version of unitu”a

⊲ u op const with op being=,>>,<<,>=,=< meaning “any versionv of unit u

such thatv op const is true”.

these can be encoded as boolean constraints : a repository becomes the

conjunction of the dependency and conflict relations

◮ for Debian repositories, we need also to model the fact that only one version of a

unit u can be installed at a time :

∧

v1,v2∈Ru
v1 6=v2

¬(Iv1

u ∧ Iv2

u)

Installation as boolean constraint solving : an example

Package : libc6

Version : 2.2.5-11.8

Package : libc6

Version : 2.3.5-3

Package : libc6

Version : 2.3.2.ds1-22

Depends : libdb1-compat

Package : libdb1-compat

Version : 2.1.3-8

Depends : libc6 (>=

2.3.5-1)

Package : libdb1-compat

Version : 2.1.3-7

Depends : libc6 (>=

2.2.5-13)

becomes

¬(libc62.3.2.ds1−22 ∧ libc62.2.5−11.8)

∧

¬(libc62.3.2.ds1−22 ∧ libc62.3.5−3)

∧

¬(libc62.3.5−3 ∧ libc62.2.5−11.8)

∧

¬(libdb1-compat2.1.3−7 ∧ libdb1-compat2.1.3

∧

libc62.3.2.ds1−22 →

(libdb1-compat2.1.3−7 ∨ libdb1-compat2.1.3−

∧

libdb1-compat2.1.3−7 →

(libc62.3.2.ds1−22 ∨ libc62.3.5−3)

∧

libdb1-compat2.1.3−8 → libc62.3.5−3

Installation as boolean constraint solving : end

Now, checking whether a particular versionv of a unitu is installable boils down to

finding a boolean assignment that makesvu true, and satisfies the encoding of the

repository.

Installation as boolean constraint solving : end

In our example, to test installability oflibc6 version2.3.2.ds1-22 we get the

equivalenta SAT problem

libc62.3.2.ds1−22

∧

¬(libc62.3.2.ds1−22 ∧ libc62.2.5−11.8)

∧

¬(libc62.3.2.ds1−22 ∧ libc62.3.5−3)

∧

¬(libc62.3.5−3 ∧ libc62.2.5−11.8)

∧

¬(libdb1-compat2.1.3−7 ∧ libdb1-compat2.1.3−8)

∧

libc62.3.2.ds1−22 →

(libdb1-compat2.1.3−7 ∨ libdb1-compat2.1.3−8)

∧

libdb1-compat2.1.3−7 →

(libc62.3.2.ds1−22 ∨ libc62.3.5−3)

∧

i.e.b

p cnf 5 8

4 0

1 2 -4 0

-4 -5 0

-3 -5 0

-3 -4 0

-2 3 0

-1 3 4 0

-1 -2 0

Practical results

◮ The resulting formulas can be large (median formula size 400litterals) ; luckily,

their SAT-temperature is low.

◮ Some formulas can be hardera.

◮ A serious SAT-solver is required.

This is incorporated in the EDOSdebcheck/rpmchecktool.

Installation is NP-complete !

We can reduce 3SAT to the Debian package installation problem.

In practice, analyzing the full Debian pool on this laptop (≈ 40000 packages) takes

less than 2 minutes.

Free software as a source for research

The free software community can provide interesting new research problems to

computer scientists, and computer scientists can help freesoftware.

Please look athttp://www.edos-project.org, especially

◮ the WP2 deliverable 2.2

◮ the subversion repository

http://www.edos-project.org/xwiki/bin/Main/EdosSvn

http://www.edos-project.org
http://www.edos-project.org/xwiki/bin/Main/EdosSvn

The last frontier : educating the e-citizen

All this is surely nice, but . . . can we stop here ?

IT is becoming pervasive :

◮ e-government

◮ e-whatever (health, law, tax, etc.)

◮ e-vote !

Is it just enough to teach our fellows about our beloved technology ?

Even with free software everywhere ?

Let’s make a test. . .

E-vote

We go for a tour in France. . . they have some cool technology instore for us. . .

Do you buy this ?

E-voting properties

voter verification only legitmate voters can cast a vote, only once, and only for

themselves

anonymity nobody knowssomebody else’svote

control the voter can verify thathisvote is rightly counted

no coercion nobody can “prove” having cast a particular vote

Notice that the last 2 requirements seem contradictory. . .

Rebecca Mercuri proposed asolutionyears ago. . .

but Italians have shown how to cheat anyway !

Building solid mental models of computing

If we want our students to become educated e-citizens, we face the challenge of

transmitting them mental models that make some facts evident to them :

◮ computersexecuteinstructions

◮ instructionscanbe modified

◮ computers manipulateinformation

◮ we (humans) only have access to arepresentationof information

◮ a representationof an objectis not the object !

◮ hence, we should never stop questioning technology. . .

Conclusion

◮ free software is key to sustainable development

◮ free software, together with open access to research articles, are the key to a better

education of computer scientists

◮ free software is fueling interesting research on complex systems

◮ and yet, our most basic task is to educate thee-citizen, not just the computer

scientist or the engineer

◮ we need to devise new ways of transmittingknowledgeabout computing systems

◮ the italian philosopher Vico (circa 1700) has a suggestion :

conoscerèe saper fare

Thank you for your attention

Example usage of the EDOS tools

We are playing backgammon but we are unsatisfied by the game performance. We

want to know if there is a package with better gameplay. We do asearch using

ara.edos-project.org :

backgammon AND (better OR improved OR AI OR intelligent)

AND section=games

Package Version . . . Popularity Source Description

gnubg-bearoffs 0.12-4 . . . 0.008 gnubg Improved play for gnubg (gnu backgammon)

Nobody’s perfect

Let’s installgnubg-bearoffs.

% sudo apt-get install gnubg-bearoffs

Reading package lists... Done

Building dependency tree... Done

Some packages could not be installed. This may mean that you

have requested an impossible situation or if you are using the

unstable distribution that some required packages have not yet

been created or been moved out of Incoming.

Since you only requested a single operation it is extremely

likely that the package is simply not installable and a bug

report against that package should be filed.

The following information may help to resolve the situation :

The following packages have unmet dependencies.

gnubg-bearoffs : Depends : gnubg but it is not going to be

installed

E : Broken packages

An instance of the dreadedBroken Packages from Hellphenomenon.

Why is gnubg-bearoffs not installable ?

1. First check Debian’s Quality Assurance pages.

2. At http://packages.qa.debian.org/g/gnubg.html we see zero

reported bugs.

3. At “debcheck” (http://qa.debian.org/debcheck.php) : no

gnubg-* package is listed.

4. Searching ongnubg or backgammon on the Debian lists yields nothing.

5. Searching the web yields the maintainers’ blog entry stating that it is indeed

broken.

http://packages.qa.debian.org/g/gnubg.html
http://qa.debian.org/debcheck.php

anla, a Debian exploration web interface

◮ Integrates our dependency solverdebcheck. It therefore findsall dependency

and conflict-related installability problems.

◮ Knows of the historical evolution of package metadata.

◮ Can explain why packages are uninstallable in a given archive at a given date.

Diagnosinggnubg-bearoffs

Output ofanla :
The package gnubg-bearoffs 0.14.3-2 is not installable in the bundle U on i386 on 2006-03-01 for the following reasons :

◮ gnubg-bearoffs 0.14.3-2 depends on gnubg 0.14.3-3

◮ gnubg-bearoffs 0.14.3-2 conflicts with gnubg-data 0.14.3-3

◮ gnubg 0.14.3-3 depends on gnubg-data 0.14.3-3

