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Abstract. In 1969, Tarski asked whether the arithmetic identities taught in high
school are complete for showing all arithmetic equations valid for the natural
numbers. We know the answer to this question for various subsystems obtained by
restricting in different ways the language of arithmetic expressions, yet, up to now
we knew nothing of the original system that Tarski considered when he started all
this research, namely the theory of integers under sum, product, exponentiation
with two constants for zero and one.
This paper closes this long standing open problem, by providing an elementary
proof, relying on previous work of R. Gurevič, of the fact that Tarski’s original
system is decidable, yet not finitely aximatisable.
We also show some consequences of this result for the theory of isomorphisms
of types.

1 Introduction

Over forty years ago, Tarski asked whether the arithmetic identities taught in high
school are complete for showing all arithmetic equations valid for the natural num-
bers. The answer to this question has occupied many prestigious mathematicians over
half a century, that gave the answer for various subsystems, the most intriguing one
being the one involving a constant for the number one and the operations of product
and exponentiation, for which a complete equational theory exists and also character-
izes isomorphism in the typed lambda calculus and in Cartesian Closed Categories,
thus exposing interesting connections between number theory, category theory, lambda
calculus and type theory.

Yet, up to now we knew nothing of the original system that Tarski considered when
he started all this research, namely the equational theory of natural numbers under sum,
product, exponentiation and with the two constants for zero and one.

We provide here an elementary proof, relying on previous work of R. Gurevič, of
the fact that the equational theory of the arithmetical system with constants 0 and 1 is
decidable, but not finitely axiomatisable. By “elementary”, we do not mean “simple”,
but we do want to stress the fact that we proceed by a set of transformations of deriva-
tions and formal systems that are well in the tradition of logic and theoretical computer
science.



As a first consequence of this result, we can conclude that the theory of isomor-
phisms of types for bicartesian closed categories is undecidable, a question left open in
[BDCF02].

The paper is organized as follows: subsection 1.1 gives a rather comprehensive
overview of Tarski’s High School Algebra Problem, and subsection 1.2 pinpoints its
interest in computer science; section 2 provides a few basic definitions and notations;
section 3 provides a proof that the equational theory of ⟨N, 0, 1,+,×, ↑⟩ can be reduced
to the equational theory of ⟨N, 1,+,×, ↑⟩, modulo the equations and the conditional
equation involving zero that we are taught in high school (figure 2), which in turn gives
a decision procedure for the system; section 4 shows that the theory of ⟨N, 0, 1,+,×, ↑⟩
is not finitely axiomatisable, and section 5 concludes.

1.1 Tarski’s high school algebra problem.

In 1969, Tarski [DT69] asked if the equational theory E of the usual arithmetic iden-
tities of figure 1 that are taught in high school are complete for the standard model
⟨N, 1,+,×, ↑⟩ of positive natural numbers; i.e. , if they are enough to prove all the
arithmetic identities (he considered zero fundamental too, but, probably due to the pres-
ence of one conditional equation, he left for further investigation the case of the other
equations of figure 2, that we are also taught in high school).

(E1) 1× x = x (E2) x× y = y × x (E3) (x× y)× z = x× (y × z)

(E4) x
1 = x (E5) 1

x = 1

(E6) x
y×z = (xy)z (E7) (x× y)z = xz × yz

(E8) x+ y = y + x (E9) (x+ y) + z = x+ (y + z)

(E10) x× (y + z) = x× y + x× z (E11) x
(y+z) = xy × xz

Fig. 1. Equations without zero

(Z1) 0× x = 0 (Z2) 0 + x = x (Z3) x
0 = 1

(Z4) 0
x = 0 (x > 0)

Fig. 2. Equations and conditional equation for zero

He conjectured that they were1, but was not able to prove the result. Martin [Mar72]
showed that the identity (E6) is complete for the standard model ⟨N, ↑⟩ of positive nat-

1 Actually, he conjectured something stronger, namely that E is complete for ⟨N, Ack(n, _, _)⟩,
the natural numbers equipped with a family of generalised binary operators Ack(n, _, _) that



ural numbers with exponentiation, and that the identities (E2), (E3), (E6), and (E7) are
complete for the standard model ⟨N,×, ↑⟩ of positive natural numbers with multiplica-
tion and exponentiation. Further, he exhibited the identity

(xu + xu)v × (yv + yv)u = (xv + xv)u × (yu + yu)v

that in the language without the constant 1 is not provable in E. 2 The question was
not completely settled by this counterexample, because it is was only a counterexample
in the language without a constant for 1, that Tarski clearly considered necessary in
his paper, as well as the constant for 0, even if he did not explicitly mention it in his
conjecture. In the presence of a constant 1, the following new equations come into play,
and allow us to easily prove Martin’s equality.

1a = a a1 = a 1a = 1

This problem attracted the interest of many other mathematicians, like Leon Henkin,
who focused on the equalities valid in ⟨N, 0,+⟩, and showed the completeness of the
usual known axioms (commutativity, associativity of the sum and the zero axiom), and
gives a very nice presentation of the topic in [Hen77].

Wilkie [Wil81] was the first to establish Tarski’s conjecture in the negative. Indeed,
by a proof-theoretic analysis, he showed that the identity

(Ax +Bx)y × (Cy +Dy)x = (Ay +By)x × (Cx +Dx)y

where A = 1 + x ,B = 1 + x+ x2 , C = 1 + x3 , D = 1 + x2 + x4 is not provable
in E.

Gurevič later gave an argument by an ad hoc counter-model [Gur85] and, more
importantly, showed that there is no finite axiomatisation for the valid equations in the
standard model ⟨N, 1,+,×, ↑⟩ of positive natural numbers with one, multiplication,
exponentiation, and addition [Gur90]. He did this by producing an infinite family of
equations such that for every sound finite set of axioms one of the equations can be
shown not to follow. Gurevič’s identities, which generalize Wilkie’s identities, are the
following(

Ax +Bn
x
)2x

×
(
Cn

2x +Dn
2x
)x

=
(
A2x +Bn

2x
)x

×
(
Cn

x +Dn
x
)2x

where
A = 1 + x

Bn = 1 + x+ · · ·+ xn−1 =
∑n−1
i=0 xi

Cn = 1 + xn

Dn = 1 + x2 + · · ·+ x2(n−1) =
∑n−1
i=0 x2i

n ≥ 3 is odd

extend the usual sum +, product × and exponentiation ↑ operators. In Tarski’s definition,
Ack(0, _, _) is the sum, Ack(1, _, _) is multiplication, Ack(2, _, _) is exponentiation (for the
other cases see for example [Rog88]).

2 He also showed that there are no nontrivial equations for ⟨N, Ack(n, _, _)⟩ if n > 2.



Nonetheless, equality in all these structures, even if not finitely axiomatisable, was
shown to be decidable [Mac81,Gur85].3

As often happens in number theory, these last results use far more complex tools
than simple arithmetic reasoning, as in the case of [HR84], where Nevanlinna theory is
used to identify a subclass of numerical expressions for which the usual axioms for +,
×, ↑ and 1 are complete.

1.2 Connections with type isomorphisms and applications in library search

Two types A and B in a given language are called isomorphic if there exist conversion
functions f : A→ B and g : B → A which are mutual inverses [DC95].

From a practical perspective, type isomorphisms are used as a basis for library
search tools of various kind, and one is interested in knowing whether type isomor-
phisms in the presence of sums are finitely axiomatisable, and whether an efficient
decision procedure exists, to incorporate it in library search tools like those described
in [Rit90,DC95].

There is a connection between the characterization of type isomorphisms in typed
lambda calculi and Tarski’s high school algebra problem: for types built out of type
constructors chosen amongst the unit, product, and arrow, two types are isomorphic if
and only if their associated arithmetic expressions (obtained by interpreting the unit
by the number one, product by multiplication, and arrow by exponentiation) are equal
in the standard model of natural numbers. In this case, type isomorphism (and numer-
ical equality) is finitely axiomatisable and decidable; hence so is the equational the-
ory of isomorphisms in cartesian closed categories. Zibin, Gil and Considine [ZGC03]
provide very efficient O(n log n) decision procedures for this system. In the same
vein, Soloviev [Sol93], gave a complete axiomatisation of isomorphisms in symmet-
ric monoidal closed categories, and Dosen and Petric [DP97] provided the arithmetic
structure that exactly corresponds to these isomorphisms.

Balat, Fiore and the first author investigated the question as to whether such cor-
respondence was limited to the case of the well-behaved unit, product, and arrow type
constructors and, in particular, if it could be extended to more problematic types in-
volving the empty type and the sum type constructor [BDCF02,BDCF04], with the
following fundamental result:

Gurevič’s identities are indeed type isomorphisms, and one can then show that
the theory of type isomorphisms in the presence of the product, arrow, and sum
type constructors, and the unit type is not finitely axiomatisable.

Since nothing was known for arithmetic equality in the presence of zero, one could
not conclude the non finite axiomatisability of type isomorphisms in the presence of
the empty type: it could be the case that, with the zero added, the Gurevič’s identities
collapse into a finite set of equations.

3 For the interested reader, here is how the decision procedure works: from the size of the equa-
tion that has to be verified, it is possible to derive an upper bound; if the two sides coincide for
all values of the variables up to this upper bound, then they coincide everywhere.



Worse than that: even if every isomorphism does produce a numerical equality4,
when the zero constant is added, there is a numerical equality which is not an iso-
morphism, hence type isomorphism and arithmetic equality no longer coincide in the
presence of zero.

With the results of this paper, we can conclude that the family of Gurevič’s identities
does not collapse in the presence of zero, and hence, even with the empty set, type
isomorphisms are not finitely axiomatisable.

2 Definitions and notations

Definition 1. The terms in ⟨N, 0, 1,+,×, ↑⟩ are t ::= x | 0 | 1 | t + t | t × t | tt, and
the terms in ⟨N, 1,+,×, ↑⟩ are t̄ ::= x | 1 | t̄ + t̄ | t̄ × t̄ | t̄t̄, where x is a metavariable
denoting a countably infinite set of variables V = {x, y, z, . . . }. We will use the letters
t, s, u, . . . for the terms of ⟨N, 0, 1,+,×, ↑⟩.

Definition 2. Let t be a term of ⟨N, 0, 1,+,×, ↑⟩, we write Var(t) for the set of its
variables.

Definition 3 (Context). A context – written Γ,∆, . . . – is a formula of the proposi-
tional logic with the operators ¬,∨,∧, in which the atomic formulas are the “x = 0”,
for x ∈ V. We also include ⊤ (true), and ⊥ (false).

Definition 4 (Exhaustive context). Given A,B ⊂ V two finite sets, we let [A,B] be
the following context:

[A,B] =
∧
x∈A

x = 0 ∧
∧

x∈B\A

¬x = 0

A context Γ will be said to be exhaustive for t (a term) if there exist two finite sets
A and B ⊃ Var(t) such that Γ is equivalent – as a logical proposition – to [A,B].

Definition 5 (Syntactically positive terms). A term t in ⟨N, 0, 1,+,×, ↑⟩ is said to
be syntactically positive in context Γ when Γ is exhaustive for t and ∀x ∈ Var(t),
Γ ⇒ ¬x = 0.

Definition 6. Let φ be a valuation (φ : V → N). We write JtKφ the interpretation of t
relative to this valuation.

Definition 7. Let Γ be a context and φ a valuation, we write JΓ Kφ the logical value
defined as follows:

Jx = 0Kφ =

{
⊤ if φ(x) = 0
⊥ if φ(x) ̸= 0JΓ ∧∆Kφ = JΓ Kφ ∧ J∆Kφ, JΓ ∨∆Kφ = JΓ Kφ ∨ J∆Kφ, J¬Γ Kφ = ¬JΓ Kφ.

A valuation φ will be said to satisfy a context Γ if JΓ Kφ = ⊤.

4 A type isomorphism can be turned into a bijection of finite sets, and hence into an equation
between cardinalities, expressed using the arithmetic languages; hence all isomorphisms are
arithmetical equalities.



3 ⟨N, 0, 1,+,×, ↑⟩ as an extension of ⟨N, 1,+,×, ↑⟩

Introduction In this section we create a formal system (called ZP ) that produces “con-
ditional equations” of terms in ⟨N, 0, 1,+,×, ↑⟩. That system starts with the equalities
in ⟨N, 1,+,×, ↑⟩ and builds on them. The semantics of this system will be proved to
relate to equality in ⟨N, 0, 1,+,×, ↑⟩ in a fashion that allows us to deduce, first the
relationship between equality in ⟨N, 0, 1,+,×, ↑⟩ and in ⟨N, 1,+,×, ↑⟩, second that
equality in ⟨N, 0, 1,+,×, ↑⟩ is decidable.

Definition 8 (The ZP formal system). We define a formal system, which we will call
ZP . It contains two statements: “Γ ⊢ t .= s” and “Γ ⊢ t positive”, which are inferred
as described in figure 3.

Remark Informally, these statements mean: “If Γ holds, then t and s are equal (respectively: t
is positive)”. Proving this is actually the point of proposition 2.

Proposition 1. Let t be a term, and Γ a context which is exhaustive for t. There are a
term t′ and a derivation that proves Γ ⊢ t .= t′, where one of the following conditions
holds:

1. t′ = 0
2. t′ is syntactically positive in context Γ .

PROOF: The proof is essentially a reduction by induction on t and can be seen in ap-
pendix A.1. ⊓⊔

Lemma 1 Let t be a term which is syntactically positive term in context Γ . There exists
a derivation of the statement Γ ⊢ t positive.

PROOF: With the fact that being syntactically positive extends to sub-terms, plus rules
N0, N1, N3-N5, we have an obvious proof by structural induction. ⊓⊔

Proposition 2 (Semantics of the statements of ZP ). The following statements hold:

Γ ⊢ t .= s⇔ ∀φ satisfying Γ JtKφ = JsKφ (1)

Γ ⊢ t positive ⇔ ∀φ satisfying Γ JtKφ ̸= 0 (2)

PROOF: The left-to-right implications in (1) and (2) will be proved simultaneously by
structural induction on the derivation of the statement. This is shown in appendix A.2.

In order to prove the right-to-left implication in (1), we will begin by stating that it
is enough to prove it under the following stronger hypotheses:

For all A ⊂ B = Var(t+ s),

∀ψ satisfying [A,B] JtKψ = JsKψ ⇒ [A,B] ⊢ t .= s

This is supported by the four quite simple facts about contexts and valuations that
can be found in appendix A.3.



E0
Γ ⊢ t .= s

If condition (†) holds

(†) : t and s are syntactically positive in context Γ , and t = s in ⟨N, 1,+,×, ↑⟩5.

E1
x = 0 ⊢ x .

= 0

E2 ⊤ ⊢ t+ 0
.
= t

E2’ ⊤ ⊢ 0 + t
.
= t

E3 ⊤ ⊢ t× 0
.
= 0

E3’ ⊤ ⊢ 0× t
.
= 0

E4 ⊤ ⊢ t0 .
= 1

E5
Γ ⊢ t positive
Γ ⊢ 0t

.
= 0

E6
Γ ⊢ t .= s

∆ ⊢ t .= s
If ∆⇒ Γ

E7
Γ ⊢ t .= s ∆ ⊢ t .= s

Γ ∨∆ ⊢ t .= s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N0 ¬x = 0 ⊢ x positive
N1 ⊤ ⊢ 1 positive

N2
Γ ⊢ t positive Γ ⊢ t .= s

Γ ⊢ s positive
N3

Γ ⊢ t positive
Γ ⊢ t+ s positive

N4
Γ ⊢ t positive Γ ⊢ s positive

Γ ⊢ t× s positive
N5

Γ ⊢ t positive Γ ⊢ s positive
Γ ⊢ ts positive

N6
Γ ⊢ t positive
∆ ⊢ t positive

If ∆⇒ Γ

N7
Γ ⊢ t positive ∆ ⊢ t positive

Γ ∨∆ ⊢ t positive
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

REFL ⊤ ⊢ t .= t
SYM

Γ ⊢ t .= s

Γ ⊢ s .
= t

TRANS
Γ ⊢ t .= s Γ ⊢ s .

= u

Γ ⊢ t .= u

CONT
Γ ⊢ t .= s

Γ ⊢ C[t]
.
= C[s]

C[·] denotes a context with only one placeholder6

Fig. 3. Rules of inference of the statements “Γ ⊢ t .= s” and “Γ ⊢ t positive” (ZP )

Let us now prove this restricted property: [A,B] is exhaustive for t and s so
proposition 1 stipulates that there exist some terms t′ and s′, which are both 0 or syn-

5 Since t and s are syntactically positive, they contain no 0, so it is meaningful to ask whether
they are equal as terms of ⟨N, 1,+,×, ↑⟩.

6 Here “context” has its usual meaning with terms of a first-order language. Such a context is a
term of the language with an extra 0-ary symbol [·] called placeholder, which can be seen as a



tactically positive in context [A,B], such that [A,B] ⊢ t
.
= t′ and [A,B] ⊢ s

.
= s′.

Then let ψ be a valuation that satisfies [A,B], we have JtKψ = Jt′Kψ and JsKψ = Js′Kψ ,
so Jt′Kψ = Js′Kψ .

With what we proved earlier in this proposition (namely the left-to-right implica-
tions), we can state that either:

– t′ = 0 and s′ = 0, and [A,B] ⊢ t′ .= s′ is derived with REFL, or
– t′ and s′ are both syntactically positive. Let φ be a valuation with values in N\{0},

there exists a valuation ψ satisfying [A,B] such that Jt′Kψ = Jt′Kφ, and Js′Kψ =Js′Kφ7. Hence t′ is equal to s′ in ⟨N, 1,+,×, ↑⟩, and we have a derivation of
[A,B] ⊢ t′ .= s′ with rule E0.

Finally, to prove the right-to-left implication in (2), let us notice that it also suffices,
reasoning like we just did, to prove this when Γ is exhaustive for t. In that case, propo-
sition 1 implies that there is a term t′ such that Γ ⊢ t .= t′ and t′ is syntactically positive
in context Γ 8, so lemma 1 gives us a derivation of Γ ⊢ t′ positive, and with rule N2 a
derivation of Γ ⊢ t positive. ⊓⊔

Corollary 2 Equality in ⟨N, 0, 1,+,×, ↑⟩ is decidable.

PROOF: It is a known fact that equality in ⟨N, 1,+,×, ↑⟩ is decidable.
Let t and s be two terms of ⟨N, 0, 1,+,×, ↑⟩. Let also C be the following set of

contexts:

C = {[X,Var(t+ s)] |X ⊆ Var(t+ s)}

We contend that ⊤ ⊢ t
.
= s if and only if ∀Γ ∈ C Γ ⊢ t

.
= s. This is a direct

consequence of proposition 2.
By using proposition 1, we get two new terms t′ and s′ such that Γ ⊢ t

.
= s is

equivalent to Γ ⊢ t′
.
= s′. Since these new terms are either 0 or syntactically posi-

tive in context Γ , the new equality is either obviously true or false, or an equality in
⟨N, 1,+,×, ↑⟩. We have reduced deciding an equality in ⟨N, 0, 1,+,×, ↑⟩ to deciding
a finite number of equalities in ⟨N, 1,+,×, ↑⟩, therefore equality in ⟨N, 0, 1,+,×, ↑⟩ is
decidable. ⊓⊔

Conclusion Eventually, we have displayed a formal system whose derivations prove
the equalities of ⟨N, 0, 1,+,×, ↑⟩, which are represented by the statement ⊤ ⊢ t

.
= s.

This statement calls upon equality in ⟨N, 1,+,×, ↑⟩ plus rules depicting the equations:
t+ 0 = t, t× 0 = 0, t0 = 1 and 0t = 0 if t ̸= 0.

special variable, and C[t] stands for C[t/[·]] (usual substitution). For example if C = x + [·]
and t = x1+x, C[t] = x+ x1+x.

7 This is due to the fact that the variables in A can no longer occur in t′ or s′, since these terms
are syntactically positive in context[A,B].

8 Obviously t′ cannot be 0, because of (1).



4 Axioms of equality in ⟨N, 0, 1,+,×, ↑⟩

Introduction Throughout this section (until just before theorem 7, actually) we will
make the assumption that equality in ⟨N, 0, 1,+,×, ↑⟩ has a finite system of axioms,
our goal being to prove the contrary.

We first need to modify the formal system ZP , replacing the equality imported from
⟨N, 1,+,×, ↑⟩ (which appeared in rule E0) with a finite set of axioms. We call ZPax this
new system, which is equivalent to ZP under our finite axioms hypothesis.

We will then use our previous results, along with a few new notations, to prove that
the axioms of equality in ⟨N, 0, 1,+,×, ↑⟩, once reasonably “projected” to ⟨N, 1,+,×, ↑
⟩, form a finite system of axioms for equality in ⟨N, 1,+,×, ↑⟩, which is known to be
impossible.

In order to realize this projection, we will evolve the system ZPax gradually, so that
the derivations in ZPax will come to be transformed (also gradually) into derivations in
⟨N, 1,+,×, ↑⟩.

Definition 9 (The ZPax formal system). The formal system we call ZPax includes the
same rules as ZP , except that:

– A finite set of axioms A1, . . . ,An is added. These axioms are:

Ai ⊤ ⊢ li
.
= ri

– Rule E0 is withdrawn.

Definition 10 (Partial evaluation in a given context). Given a context Γ , we define a
partial function Γ (t) for the terms t for which Γ is exhaustive.

It is defined by structural induction on the term t, as shown in figure 4.

Proposition 3. Let Γ be a context and t a term such that Γ (t) is defined. We contend
the following properties hold:

1. Γ (t) is either 0, or a syntactically positive term (in context Γ );
2. If t is syntactically positive in context Γ then Γ (t) = t;
3. If Γ (t) ̸= 0 then Γ ⊢ t positive can be derived in ZP ;
4. Γ ⊢ Γ (t) .= t can be derived in ZP without E0;
5. The converse of 3. holds.

PROOF:

1. This is trivially proved by structural induction.
2. Idem, recalling that being syntactically positive extends to sub-terms.
3. If Γ (t) ̸= 0 then Γ (t) is syntactically positive in context Γ , so that the statement
Γ ⊢ t positive can be derived thanks to lemma 1.

4. This goes by structural induction on t. Let us examine further a single case.
Suppose that t = s + u, with Γ (s) ̸= 0 and Γ (u) = 0. By induction there is a
derivation D of Γ ⊢ Γ (s) .= s, and a derivation D′ of Γ ⊢ 0

.
= u.

We build the following derivation:



Γ (0) = 0 Γ (1) = 1 Γ (x) =

{
0 if Γ ⇒ x = 0
x if Γ ⇒ ¬x = 0

Γ (t+ s) =


Γ (t) if Γ (s) = 0
Γ (s) if Γ (t) = 0
Γ (t) + Γ (s) otherwise

Γ (t× s) =

{
0 if Γ (t) = 0 or Γ (s) = 0
Γ (t)× Γ (s) otherwise

Γ (ts) =


1 if Γ (s) = 0
0 if Γ (t) = 0 and Γ (s) ̸= 0

Γ (t)Γ (s) otherwise

Fig. 4. Partial evaulation of terms in a context Γ

(D) (D′)
Γ ⊢ Γ (s) .= s Γ ⊢ 0

.
= u

Γ ⊢ Γ (s) + 0
.
= s+ 0 Γ ⊢ s+ 0

.
= s+ u

Γ ⊢ Γ (s) + 0
.
= s+ u

Γ ⊢ Γ (s) .= s+ u

The last step is actually a contraction of E2 and TRANS, written so for improved
readability. Since Γ (t) = Γ (s), this is the derivation we wanted. Other cases are
similarly treated (let us notice, although, that when t = su with Γ (s) = 0 and
Γ (u) ̸= 0, we need to summon point 3. to get a derivation of Γ ⊢ u positive).

5. This is a consequence of point 4. and proposition 2. ⊓⊔

Remark This shows that partial evaluation is actually an implementation of the existential result
in proposition 1.

Definition 11 (The ZP+
ax formal system). The formal system called ZP+

ax is the system
ZPax to which we add the following new axioms A+

1 , . . . ,A
+
n :

A+
i ΓAi ⊢ ΓAi(li)

.
= ΓAi(ri)

where ΓAi
= [∅,Var(li + ri)]

Remark The “axioms” A+
i can actually be derived in the system ZPax, as proposition 3

implies that ΓAi ⊢ ΓAi(li)
.
= li can be derived in ZPax (mutatis mutandis ri).

Definition 12 (Local equality statements). The statement Γ ⊢ t
.
= s is said to be

local if Γ is exhaustive for t+ s.

Definition 13. We define two particular sets of rules:

G0 = {E1,E2,E2’,E3,E3’,E4,REFL}

G = G0 ∪ {A1, . . . ,An}



Definition 14 (“L” property). A derivationD in ZPax will be said to have the property
“L” (or to be an L-derivation), if the following properties hold:

L1 The conclusion of D is ∆ ⊢ t .= s, and this statement is local.
L2 Any statement Γ ⊢ t′ .= s′ occurring in D has one of the following qualities:

– Γ = ⊤ or Γ = (x = 0) and this statement follows immediately a rule in G, or
– Γ = ∆ (as in L1), and this statement is local.

L3 No rule E7 occurs in D.
L4 Rule E6 only occurs in D where it follows immediately a rule R ∈ G.

Conditions L2 to L4 are lifted for any part of the derivation “above” an occurrence of
rule E5.

Remark The caution of this last sentence is justified by the possibility of equality statements
to appear above an E5, because of rule N2. Practically, in the following proofs by structural
induction on derivations, we will never use induction hypotheses when said derivation ends with
an E5.

Definition 15 (“EL” property). Let G′ = G0 ∪ {A+
1 , . . . ,A

+
n }. A derivation in ZP+

ax
will be said to have the property “EL” (or to be an EL-derivation) if it has the proper-
ties L1 to L4, where G is replaced with G′ in L2 and L4, and the following two extra
properties :

EL1 No original axiom Ai occurs in D.
EL2 For any statement Γ ⊢ t .= s in D such that Γ (t) and Γ (s) are defined, Γ (t) = t

and Γ (s) = s.

We now contend that certain derivations (namely those made in contexts where all
variables are positive) can be transformed into L-derivations, and then into EL-deriva-
tions, which is the topic of the three next lemmas.

The first of this three lemmas is a plain technicality pertaining to L-derivations.

Lemma 3 Let D be an L-derivation of ∆ ⊢ t .= s. Let also A and B be two finite sets
of variables that do not occur in ∆. There exists an L-derivation of ∆∧ [A,B] ⊢ t .= s.

PROOF: This is actually quite obvious. All that is needed is to replace ∆ with ∆ ∧
[A,B] everywhere9. It will also be necessary to insert an N6 between the premise and
conclusion of any E5. Also, in the (supposedly rare) situation where ∆ = ⊤, it will be
necessary to insert an E6 after any rule R ∈ G. ⊓⊔

Lemma 4 Let D be a derivation of Γ ⊢ t .= s in ZPax and ∆ a context that is exhaus-
tive for t and s, and such that ∆⇒ Γ holds.

There exists a context ∆′ = [∅, A] (where the variables in A do not occur in ∆)
and an L-derivation of ∆ ∧∆′ ⊢ t .= s.

9 Again, this need not apply to any part of the derivation above an E5.



Remark Since no hypothesis but finiteness is made about A we can safely ignore the case
∆ = ⊤, thanks to lemma 3.

PROOF: We proceed by structural induction on D, and distinguish cases according to
the last rule used in this derivation. See appendix A.4. ⊓⊔

Lemma 5 If [∅,Var(t + s)] ⊢ t
.
= s can be derived in ZPax, and if no 0 appears in

either t or s, there exists a finite set of variables A (whose elements do not occur in
t+ s) and an EL-derivation of ∆′ ⊢ ∆′(t)

.
= ∆′(s) in ZP+

ax , where ∆′ = [∅,Var(t+
s)] ∧ [∅, A].

PROOF: Proposition 4 yields us an L-derivation, call it D, of the statement ∆′ ⊢ t .= s.
The EL-derivation will be built by structural induction from D. Again we distinguish
cases according to the last rule used in D, keeping in mind some structural properties
about L-derivations. This is done in appendix A.5. ⊓⊔

We will now introduce a last evolution of our formal system before actually going
to equality in ⟨N, 1,+,×, ↑⟩.

Definition 16 (The Pax formal system). Pax is a sub-system of ZP+
ax which includes

the following rules :

– the axioms A+
1 , . . . ,A

+
n ,

– REFL, SYM, TRANS, CONT,
– E6.

Remarque Clearly any statement which can be derived in Pax can also be derived in
ZPax.

Corollary 6 With the same hypotheses and notations as in lemma 5, there is a deriva-
tion of [∅,Var(t + s)] ∧ [∅, A] ⊢ t

.
= s in Pax. Moreover, no 0 occurs in the terms of

this derivation at all.

PROOF: Clearly the EL-derivation granted by lemma 5 is actually a derivation in Pax.
The terms of its conclusion have no zeros, and we will prove that if a rule in an EL-de-
rivation has no 0 in its conclusion, it can have none in its premise(s).

A+
i , REFL Those rules have no premises.

SYM, CONT, E6 The terms in the premise are the same as (or subterms of) those in
the conclusion.

TRANS A new term can appear in the premise, but since it is partially evaluated it is
either syntactically positive or 0. But since it is derived to be equal to the terms of
the conclusion, and since these are syntactically positive, the “new” term must also
be syntactically positive. ⊓⊔

Theorem 7. The equational therory of ⟨N, 0, 1,+,×, ↑⟩ cannot derive from a finite set
of axioms.



PROOF: As we said before, we reason ad absurdum. Let us then assume that such a
finite set of axioms {Ai}i∈{1,...,n} exists.

Let us also consider Th the equational theory of ⟨N, 1,+,×, ↑⟩ with the axioms
{A+

i }i∈{1,...,n} (as defined previously). Since these axioms are true in ZPax (which is
by hypothesis equivalent to ZP ), they are true in ⟨N, 1,+,×, ↑⟩ (see proposition 2). So
Th only proves equalities that are true in ⟨N, 1,+,×, ↑⟩.

Let now t and s be two terms that are equal in ⟨N, 1,+,×, ↑⟩. They support the
hypotheses of lemma 5, since [∅,Var(t+ s)] ⊢ t .= s can be derived in ZP (using E0),
thus in ZPax.

Corollary 6 then yields a derivation of ∆ ⊢ t .= s in Pax, which contains no 0 in its
terms.

If contexts are removed from this derivation, the E6 rules can be stripped as well
(they become empty transitions), and we get a derivation in a formal system with
{A+

i }i∈{1,...,n} as axioms, and the usual transitivity, symmetry, reflexivity and context
rules, which is equivalent to Th

Therefore any equality in ⟨N, 1,+,×, ↑⟩ can be derived in Th. Since it is known
that equality in ⟨N, 1,+,×, ↑⟩ cannot derive from any finite set of axioms, we have a
contradiction. ⊓⊔

5 Conclusions

We have proved that ⟨N, 0, 1,+,×, ↑⟩ has a decidable, but not finitely axiomatisable,
equational theory, and clearly shown that the only difference between ⟨N, 0, 1,+,×, ↑⟩
and ⟨N, 1,+,×, ↑⟩ is given by the system Z in figure 2.
As a consequence, the family of Gurevič’s equalities does not collapse, and we also
obtain the following additional result

Theorem 8. The theory of type isomorphisms in Bi-Cartesian Closed Categories is not
finitely axiomatisable

that closes the long standing open problem of the finite axiomatisability of type isomor-
phisms for the lambda calculus with sums and the empty types [DC95].

By using the decidability result for ⟨N, 0, 1,+,×, ↑⟩ and the fact that all isomor-
phisms are equalities, we can reject all non-isomorphisms that are also non-arithmetical
identities, but, due to the fact that some arithmetic identities are not isomorphisms of
BiCCCs, it is left open whether such isomorphisms are indeed decidable.

Acknowledgements The first author would like to thank Claude Kirchner, Vincent Balat
and Christophe Calves for interesting discussions on these subjects.
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A Appendix

A.1 Proof of proposition 1

Let H(t) = #0(t) + 2 ×
∑
x/Γ⇒x=0 #x(t), where #s(t) is the number of times s

occurs in t. We proceed by induction in lexicographical order on (S(t),H(t)) where
S(t) is the size of t10.

If H(t) = 0 or t = 0, taking t′ = t is OK.
Otherwise, i.e. if t ̸= 0 and H(t) > 0, t matches one of the following patterns:

10 This is the size in the usual meaning: the number of nodes in the syntax tree of t.



1. C[0× s] or C[s× 0],
2. C[0 + s] or C[s+ 0],
3. C[s0],
4. C[x] where Γ ⇒ x = 0,
5. C[0s] where s is syntactically positive.

(C[·] denotes a context with only one placeholder.)

1. The induction hypothesis yields a derivation D of Γ ⊢ C[0]
.
= t′ where t′ is 0 or

syntactically positive, hence the following derivation:

⊤ ⊢ s× 0
.
= 0

Γ ⊢ s× 0
.
= 0 (D)

Γ ⊢ t .= C[0] Γ ⊢ C[0] .= t′

Γ ⊢ t .= t′

We proceed similarly when t = C[0× s], using the rule E3’ instead of E3.
2. The induction hypothesis again yields a derivation D of Γ ⊢ C[s] .= t′ where t′ is

0 or syntactically positive, and we build the following derivation.

⊤ ⊢ s+ 0
.
= s

Γ ⊢ s+ 0
.
= s (D)

Γ ⊢ t .= C[s] Γ ⊢ C[s] .= t′

Γ ⊢ t .= t′

We proceed similarly when t = C[0 + s], using the rule E2’ instead of E2.
3. By induction there is a derivation D of Γ ⊢ C[1]

.
= t′ with a suitable t′, and we

derive:
⊤ ⊢ s0 .

= 1
Γ ⊢ s0 .

= 1 (D)
Γ ⊢ t .= C[1] Γ ⊢ C[1] .= t′

Γ ⊢ t .= t′

4. By induction there is a derivation D of Γ ⊢ C[0]
.
= t′ with a suitable t′, and we

derive:
x = 0 ⊢ x .

= 0
Γ ⊢ x .

= 0 (D)
Γ ⊢ t .= C[0] Γ ⊢ C[0] .= t′

Γ ⊢ t .= t′

5. By induction there is a derivation D of Γ ⊢ C[0]
.
= t′ with a suitable t′, and we

derive:
(D′)

Γ ⊢ s positive
Γ ⊢ 0s

.
= 0 (D)

Γ ⊢ t .= C[0] Γ ⊢ C[0] .= t′

Γ ⊢ t .= t′

Here, we will need the lemma 1 pertaining to the relationship between the “Γ ⊢
t positive” statement and being syntactically positive, in order to provide the deriva-
tion D′.



A.2 Proof of proposition 2 (1)

Depending on the last rule used in this derivation, we have:

REFL, E1 to E4 These are trivial cases.
SYM, TRANS, CONT, E5 These are also obvious, using the induction hypothesis.
E0 Thanks to the (†) condition, ∀φ such that ∀x φ(x) ̸= 0, JtKφ = JsKφ.

Let ψ be a valuation satisfying Γ ; since t and s are syntactically positive in context
Γ , necessarily ∀x ∈ Var(t+ s) ψ(x) ̸= 0, and there exists a valuation φ as above
such that JtKφ = JtKψ , and JsKφ = JsKψ . Thus JtKψ = JsKψ holds.

E6 By induction : ∀φ satisfying Γ , JtKφ = JsKφ. Since ∆ ⇒ Γ it is clear that any
valuation φ satisfying ∆ also satisfies Γ , hence ∀φ satisfying ∆, JtKφ = JsKφ.

E7 As well as with E6, any valuation φ satisfying Γ ∨∆ satisfies either Γ or ∆.
N0 and N1 Are also trivial cases.
N2 to N5 The induction hypothesis obviously allows to conclude.
N6 This case is treated like E6.
N7 Like E7.

A.3 Proof of proposition 2 (2)

We let Γ be such that ∀φ satisfying Γ , JtKφ = JsKφ.

Fact 1 Γ has a logically equivalent form that is written

([A1, B] ∧∆1) ∨ · · · ∨ ([An, B] ∧∆n)

where

– B = Var(t+ s),
– ∀i Ai ⊂ B,
– ∀i ∆i is a ∧-formula in which no variable in Var(t+ s) appears.

To draft a proof, let us say that one needs to put Γ in a normal disjunctive form, call it Γ ′,
which is in turn equivalent to Γ ′ ∧

∧
x∈Var(t+s)(x = 0 ∨ ¬x = 0). What remains to be done is

distributing this expression, taking out the antilogic conjunctive clauses, and grouping the atoms
in each clause.

Fact 2 ∀ψ satisfying [Ai, B], there is a φ satisfying [Ai, B] ∧ ∆i (thus satisfying Γ ),
such that JtKψ = JtKφ, and JsKψ = JsKφ.

All that is needed is to “change the values of ψ so that it satisfies ∆i”, which can assuredly
be done without modifying the value of ψ(x) for any x ∈ Var(t+ s).

Fact 3 (∀φ satisfying Γ JtKφ = JsKφ) ⇒ ∀i (∀ψ satisfying [Ai, B] JtKψ = JsKψ)
This is obvious thanks to fact 2.

Fact 4 (∀i [Ai, B] ⊢ t .= s) ⇒ Γ ⊢ t .= s.
One needs only use rules E6 (to bring in the ∆is) and E7.



A.4 Proof of lemma 4

R ∈ G Follow with an E6, with ∆ as new context.
E5 Insert an N6 with ∆ as new context between the premise and conclusion of this E5.
E6 D has the following form :

(D′)
Γ ′ ⊢ t .= s
Γ ⊢ t .= s

where Γ ⇒ Γ ′. Thus ∆ ⇒ Γ ′ and the induction hypothesis applies to the deriva-
tion of Γ ′ ⊢ t .= s, yielding the wanted L-derivation.

E7 D has the following form :
(D′) (D′′)

Γ ′ ⊢ t .= s Γ ′′ ⊢ t .= s
Γ ′ ∨ Γ ′′ ⊢ t .= s

Since ∆ is exhaustive for t and s, it is a ∧-formula and either ∆⇒ Γ ′ or ∆⇒ Γ ′′

holds. If for example , ∆ ⇒ Γ ′ holds, the induction hypothesis can be applied to
the derivation of Γ ′ ⊢ t .= s, yielding the wanted L-derivation.

SYM, CONT Trivial.
TRANS By induction hypothesis we have L-derivations of ∆ ∧ ∆0 ⊢ t

.
= s and

∆ ∧ ∆1 ⊢ s
.
= u. By letting ∆′ = ∆0 ∧ ∆1, and summoning lemma 3 we get

L-derivations of ∆ ∧∆′ ⊢ t
.
= s and ∆ ∧∆′ ⊢ s

.
= u. All that is left is to apply

TRANS again.

A.5 Proof of lemma 5

Ai followed by E6 Use A+
i , then E6.

R ∈ G0 followed by E6 For any rule in G0, when its conclusion is written Γ ⊢ l .= r
we have ∆′ ⇒ Γ (see L2, L4), and ∆′(l) = ∆′(r) (checking this is easy). The
EL-derivation we want is a suitable use of REFL followed by E6.

E5 Idem.
SYM Immediate induction step.
CONT In this case, the L-derivation (D) looks like this:

(D′)
∆′ ⊢ t .= s

∆′ ⊢ C[t] .= C[s]

By induction we have an EL-derivation of ∆′ ⊢ ∆′(t)
.
= ∆′(s), and one of two

things happens:
– Either ∆′(t) = ∆′(s) = 0, and ∆′(C[t]) = ∆′(C[s]) – both are ∆′(C[0]),

which can be derived by REFL + E6.
– Or ∆′(t) and ∆′(s) are syntactically positive in context ∆′, and ∆′(C[t]) =
∆′(C[·])[∆′(t)] (mutatis mutandis s). So we just have to apply CONT again,
with context ∆′(C[·]), to get the desired EL-derivation.

TRANS As SYM, relying on L2 to summon the induction hypothesis.

Properties L1 to L4 are clearly preserved, EL0 clearly holds, and EL1 as well since
Γ (Γ (t)) = Γ (t) whenever Γ (t) is defined.


