
News from the EDOS project: improving the maintenance of
free software distributions ∗

Jaap Boender1 , Roberto Di Cosmo1 , Berke Durak 2

Xavier Leroy 2 , Fabio Mancinelli 1 , Mario Morgado 3

David Pinheiro 3 , Ralf Treinen 4, Paulo Trezentos3 , Jérôme Vouillon 1

1 PPS, University of Paris 7,Firstname.Lastname@pps.jussieu.fr

2INRIA Rocquencourt,Firstname.Lastname@inria.fr

3Caixa Magica,Firstname.Lastname@caixamagica.pt

4LSV, ENS de Cachan,Firstname.Lastname@lsv.ens-cachan.fr

Abstract. The EDOS research project aims at contributing to the quality assur-
ance of free software distributions. This is a major technical and engineering
challenge, due to the size and complexity of these distributions (tens of thou-
sands of software packages). We present here some of the challenges that we
have tackled so far, and some of the advanced tools that are already available
to the community as an outcome of the first year of work.
Keywords: free software, open source software, dependency management, con-
straint satisfaction, rollback, EDOS project.

1 Introduction

So-calleddistribution editorslike Caixa Magica, Conectiva, Debian, Mandriva, RedHat,
Suse, Ubuntu and many others try to offer some kind of reference viewpoint over the
breathtaking variety of free and open source software (FOSS) available today: they take
care of packaging, integrating and distributing tens of thousands of software packages,
very few of them being developed in-house and almost all coming from independent de-
velopers. As a consequence, most FOSS distributions today simply rely on the general
notion of a softwarepackage1: a bundle of files containing data, programs, and config-
uration information, with some metadata attached. Most of the metadata information is
aboutdependencies, i.e., the relationships with other packages that may be needed in
order to run or install a given package, or that conflict with its presence on the system.

How can one ensure the quality of a distribution? This problem, which is the
focus of the European Sixth Framework Programme project EDOS (Environment for the
development and Distribution of Open Source software), can essentially be divided into
three main tasks:

Upstream tracking makes sure that a package in the distribution closely follows the
evolution of the software development, almost always done by some team beyond
direct control by the distributor.

∗This work was supported by the EDOS Specific Targeted Research Project of the 6th European Union Framework Programme.
1Not to be mistaken for the software organizational units such as librairies, modules or classes.



Testing and integration makes sure that a program performs as expected in combination
with other packages in the distribution. If this is not the case then bug reports
should be sent to the upstream developer.

Dependency managementmakes sure that, in a distribution, packages can be installed
and user installations can be upgraded when new versions of packages are pro-
duced, while respecting the constraints imposed by the dependency metadata.

Inside the EDOS project, work package 2 (WP2) is about dependency manage-
ment. This task is surprisingly complex [Tuura 2003, Van der Storm 2004] due to the
large number of packages present in a typical distribution and to the complexity and rich-
ness of their interdependencies. More specifically, our focus is on the issues related to
dependency management for large sets of software packages, with a particular emphasis
on maintaining consistency of a software distributionon the repository side, as opposed
to maintaining a set of packages installedon a client machine. This choice is justified by
the following observation: maintaining consistency of a distribution of software packages
is fundamentalto the quality and scalability of current and future distributions; yet, it is
also aninvisibletask, since the smooth working it ensures on the end user side tends to be
considered as normal and obvious as the smooth working of packet routing on the Inter-
net. In other words, we are tackling an essentialinfrastructureproblem that has long been
ignored: while there are a wealth of client-side tools to maintain a user installation (apt,
urpmi, smart and many others [Silva 2004, Mandriva 2005, Niemeyer 2005]), there are
surprisingly little literature and publically available tools that address server-side require-
ments. We found very little significant prior work in this area, despite it being critical to
the success of FOSS in the long term.

In this short paper we want to give an overview of some of the tools developed
inside the EDOS Project that have the potential to improve the management of distribu-
tions from the point of view of dependencies. The paper is organized as follows. Section 2
contains a formal description of the main characteristics of a software package found in
mainstream FOSS distributions as far as dependencies are concerned. The algorithmic
aspects of solving the dependency constraints are underlined in Section 3. Section 4 de-
scribes the usage of some of these tools for a Linux distribution (Caixa Magica) and their
extension of APT with a rollback feature. Some metadata exploration tools developed by
the WP2 and taking into account the historical evolution of the repositories are described
in Section 5.

2 Basic definitions

Every package management system [Debian 2005, Bailey 1997] takes to various extends
into account the interrelationships among packages. We will call these relationshipsre-
quirements. Several kinds of requirements can be considered. The most common one is
adependencyrequirement: in order to install packageP1, it is necessary that packageP2

be installed as well. Less often, we findconflictrequirements: package P1 cannot coexist
with package P2.

Some package management systems specialize these basic types of requirements
by allowing to specify thetime frameduring which the requirement must be satisfied. For



example, it is customary to be able to expresspre-dependencies, a kind of dependency
stating that some packageP1 needs some packageP2 to be present on the systembefore
P1 can be installed [Debian 2005].

These notions can be made precise [Di Cosmo et al. 2006], and we refer the in-
terested reader to that paper for a more detailed discussion. For the current presentation
we do not need such a level of formal precision, and we will rely on the intuitive meaning
of commonly used terms like package, dependency, conflict, repository and installation.

The first, most basic quality requirement for a distribution is that for each
package P being part of a distribution there should exist at least one installation of the
distribution that satisfies all dependency constraints and that contains P. Otherwise,
P is useless: nobody will ever be able to install it without breaking the dependency
constraints, which in turn breaks the package management system.

Definition 1 (Installability). A packageπ of a repositoryR is installableif there exists
an installationI that containsπ and that ishealthy, i.e. with no broken dependencies.

We say that a repositoryR is trimmedwhen every package ofR is installable
w.r.t. R. The intuition behind this terminology is that a non-trimmed repository contains
packages that cannot be installed in any configuration. We call those packagesbroken,
and they should be excluded from the repository.

Our first set of tools is able to formally check whether a repository is trimmed,
and if not it explains which packages are not installable for which reason.

3 Algorithmic considerations
It is not obvious that checking a repository for broken packages is actually tractable
in practice: due to the rich language allowed to describe package dependencies in the
mainstream FOSS distributions, this task may involve verifications over a large number
of packages. During our first investigations of these problems we have indeed already
proven the following complexity result.
Theorem 1 (Package installability is an NP-complete problem).Checking whether a
single packageP can be installed, given a repositoryR, is NP-complete.

Nevertheless, the actual instances of these problems, as found in real repositories,
turn out to be quite simple in the average.

We implemented various checking tools, using custom solvers as well as a SAT
solver [Èen and S̈orensson 2004] and CP solvers, and ran them over both the Debian
pool (about 15,000 source packages giving 20,000 units, totaling 30,000 packages in
the different distributions, including ”contrib” and ”non-free” packages) and the Man-
driva Cooker distribution (around 5,000 packages). The execution time is completely
satisfactory, and the tools found a number of non-installable packages in both distri-
butions. These tools are available from the subversion server of the EDOS project at
http://www.edos-project.org/.

Notice that, unlike scripts that are actually used in some distributions2, these
EDOS tools arecorrect and complete, that is, they findall broken packages, andonly

2See EDOS Deliverable 2.2 on the EDOS website for an analysis of the limitations of pre-existing tools.



the broken packages, and they arehighly efficient, as they can analyze the whole Debian
repository in just a couple of minutes.

You can of course simply go to the EDOS subversion repository and download
the tools to run them on the command line, but we have also two real-world deploy-
ment examples which show how a distribution manager could use them in a production
environment.

4 Deployment and usage of the tools at Caixa Magica

Caixa Magica is a Portuguese Linux distribution used nationwide in Portugal. It is used
not only in schools and public administrations but also by companies and private citizens.
It is based on the RPM format although it usesapt (namelyapt-rpm) since 2004. As in
other Linux distributions, it has FTP servers with the official software packages (RPMs)
and servers with unofficial RPMs submitted by the community. The company encourages
the submission of these unofficial packages since they are much more up-to-date than the
stable and official ones. For that purpose Caixa Magica has created a website, named
“ContribWare” (http://contribware.caixamagica.pt/), which maintains the sub-
mission of unofficial packages. ContribWare is now 3 months old and hundreds of pack-
ages have been submitted through it. One workflow-related problem of such systems is
detecting the broken dependencies. The contributors who submit packages usually have a
lot of software installed and thus may fail to identify dependencies. These dependencies
can also be on not yet packaged software.

4.1 Description of graphical statistics interface

Using the WP2rpmcheck tool, we were able to identify broken dependencies in Contrib-
Ware. A Python script has been developed for processing the information and displaying
an HTML page containing a table summarizing the detected problems, as in Figure 1.
The table has the following columns:

• New Packages: new packages added to the repository. It began with 5,337 pack-
ages.

• Packages in Test: packages that have been submitted to ContribWare by users and
that have been moved to the “on test” state by Caixa Magica editors. This column
has 4 sub-columns:new, approved, refusedandtotal. Packages that are approved
go to “New packages” and leave the “on test” state.

• Broken Dependencies: this column gives the number of packages with broken
dependencies, with a link to a more detailed description. The latter gives the
broken packages with their unsatisfied dependencies.

4.2 Apt rollback - extending package maintenance

The EDOS team is also developing some enhancements to the package management pro-
cess. One of them is the APT rollback mechanism. As some upgrades are not always suc-
cessful, customer requirements on quality assurance opened the need for implementing
a rollback mechanism intoapt-rpm. This mechanism relies on registering the requests
for installation, upgrade, downgrade and removal of packages from the system as well as
saving, in some situations, the packages’ configuration files (depending on the operation



Figure 1. Daily log of Caixa Magica archives.

to be performed on the packages: upgrade, downgrade or removal). This mechanism per-
mits to restore the system back to its state before anyapt operation. For example, if an
error is detected after an upgrade, the system can quickly restore its previous state. With
everyapt-rpm operation we save the following information:

• the package’s name and version before the operation,
• the package’s version after the operation (only for upgrades or downgrades),
• the operation’s type (install, upgrade, downgrade or remove),
• a transaction ID,
• a timestamp and
• the package’s configuration files.

If the operation is an upgrade, a downgrade or a removal, we query the package’s
metadata to check the existence of any configuration files, and if so we save them. Note
that files that are saved are the ones available in the system, not the package’s original
configuration files, so that when a rollback is performed we ensure that we restore the
configuration files as they were at the time of the operation, including user modifications.

A rollback is basically the inverse of a transaction. It includes the inverse package
operation (downgrade for an upgrade, removal for an installation, etc.) as well as the
restoration of the package’s configuration files (if necessary) as shown in Table 1:

Operation Rollback operation Action taken with the Configuration Files
install remove None
remove install Restore configuration
upgrade downgrade Restore configuration files
downgrade upgrade Restore configuration files

Table 1. Rollback operation relationships.

We implemented this functionality intolibapt, thus ensuring that tools like
synaptic also register every operation performed and we added two more commands
to apt-get:

• apt-get rollback-hist: For displaying the history of operations with their
transaction IDs



• apt-get rollback <transaction id>: For rolling back the operations per-
formed in the given transaction.

5 EDOS Tools for Exploring the Debian History

The history tool allows command-line exploration of the Debian metadata using
an algebraic query language. Daily metadata is extracted from the archives on
snapshot.debian.net and stored in a MySQL database. However, despite the data
being stored in a structured manner and being appropriately indexed, performance of
even simple SQL queries (such as finding the set of immediate potential dependencies
of a set of packages) is poor. This is partly due to the complex nature of metadata,
which is, due to disjunctive dependencies, not a graph but a a hypergraph, whose
relational representation requires multiple levels of indirection. Also, it is well-known
that standard SQL cannot handle transitive closures. Hence we have opted for using the
SQL database only as an off-line storage engine;history loads the whole database
into RAM, and can then answer complex queries efficiently. We now give a very short
introduction to the query language.

The tool works as a classic read-evaluate-print loop. Expressions or directives
are entered and their results printed. The basic data types handled byhistory are units,
packages, sources, sets of the above, dates, integers and booleans. Care has been taken to
provide concise notation for describing these. The basic features of a functional language
with strict evaluation are provided. The usual Boolean operations on sets (intersection&,
union | and difference\) are allowed. Sets can be filtered by regular expressions or
user-defined functions. With operators such asexists andfor all, this effectively pro-
vides first-order quantified queries. Besides directives that print the metadata in human-
readable form, various operators are provided so that the metadata can be used in complex
expressions. The metadata is historically represented as functions which map dates to sets
of packages. For instance, ifp is a package,provides(p) is the set of units provided byp,
and ifs is a set of packages,closure(s) is the dependency closure ofs : all packages that
packages ofs might need to run are contained ins – but due to disjunctive dependencies,
s will usually contain extraneous packages, and due to conflicts, it might not be possible
to install all packages ofs. Thus, the dependency solver ofdebcheck andrpmcheck has
been integrated intohistory as an operatorinstall(p1, p2) which computes a setp of
co-installable packages such thatp1 ⊆ p ⊆ p2. Table 2 gives an overview of the available
operators.

We are developing a web version ofhistory with an interface similar to that of
ara3. An early prototype integrating results from the dependency solver and the historical
metadata database, calledanla, is available athttp://brion.inria.fr/anla/, see
Figure 2 for a screenshot.

6 Conclusions

We hope that the efficient and formally based tools developed by the EDOS project will
be soon adopted by distribution editors to improve their production cycle.

3ara is a text-based search engine for Debian packages which can compute Boolean combinations of field-restricted regular
expressions, available athttp://ara.edos-project.org/



Operator Meaning
s&t, s|t, s \ t Boolean set intersection, union and difference
provides(p) Set of units provided by a package
conflicts(p) Set of packages that conflict with a package
closure(p) Dependency closure of a package
source(p) Source of a package
unit(p) Unit of a package
latest(u) Latest version of a unit
versions(u) All the versions of a unit
what provides(u) The set of packages that provide a unit
replaces(p) The set of packages replaced by a package
install(p, q) Returns an installation of the set of packagesp inside the setq
member(x, s) True when the elementx is a member of the sets
filter(s, f) Return the elements ofs for whichf(s) is true.
exists(s, f) True whenf(s) is true for one element ofs
for all(s, f) True whenf(s) is true for all elements ofs

Table 2. Operators. Most operators are overloaded to work on sets. Functions are first-class values
with lexical scoping that can be defined anonymously.

Figure 2. Checking status of Debian archives. Most broken packages owe their status to dependency
on packages that are not in their archives, for instance a package in unstable that depends on a
package in stable is broken. To filter out these uninteresting cases, we have merged archives into a
bundle before launching the checker. All the displayed metadata information is fully hyperlinked.



References

Edward C. Bailey. Maximum RPM, taking the Red Hat package manager to the limit.
http://rikers.org/rpmbook/,http://www.rpm.org, 1997.

Manfred Broy and Ernst Denert.Software Pioneers: Contributions to Software Engi-
neering. Springer-Verlag, 2002.

Debian Group. Debian policy manual. http://www.debian.org/doc/debian-policy/, 1996–
2005.

David Eklund. The lib update/autoupdate suite. http://luau.sourceforge.net/, 2003–2005.

Niklas Éen and Niklas S̈orensson. An extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors,Theory and Applications of Satisfiability Test-
ing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy,
May 5-8, 2003 Selected Revised Papers, volume 2919 ofLecture Notes in
Computer Science, pages 502–518. Springer, 2004.

Roberto Di Cosmo, Berke Durak, Xavier Leroy, Fabio Mancinelli and Jérôme Vouillon.
Maintaining large software distributions: new challenges from the FOSS era.
FRCSS06, Vienna, 1st April 2006.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

Nathan LaBelle and Eugene Wallingford. Inter-package dependency networks in open-
source software. Submitted to Journal of Theoretical Computer Science,
2005.

Mandriva. URPMI. http://www.urpmi.org/, 2005.

Gustavo Niemeyer. Smart package manager. http://labix.org/smart/, 2005.

Gustavo Noronha Silva. Apt-howto. http://www.debian.org/doc/manuals/apt-howto/,
2004.

Clemens Szyperski.Component Software: Beyond Object-Oriented Programming. Ad-
dison Wesley Professional, 1997.

L. Taylor and L. Tuura. Ignominy: a tool for software dependency and metric analysis
with examples from large HEP packages. InProceedings of CHEP’01, 2001.

L. A. Tuura. Ignominy: tool for analysing software dependencies and for reducing com-
plexity in large software systems. InProceedings of the VIII International
Workshop on Advanced Computing and Analysis Techniques in Physics Re-
search, volume 502, pages 684–686, 2003.

Tijs van der Storm. Variability and component composition. InProceedings of the Eighth
International Conference on Software Reuse (ICSR-8), 2004.


