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1. Introduction

We have all be taught in high school that two objects A and B are isomorphic iff there

exists two functions f and g such that
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Here we are particularly interested in type isomorphisms, which arise when A and B

are types of some (abstract) programming language, like the typed λ-calculus, even if, by

the well known Curry-Howard correspondence, these types can also be seen as formulae

of some logic, or even objects in some category, so that looking for isomorphisms in
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either one of these fields will bring results in all the others. As a simple example of this

phenomenon, consider the case of the arrow and product type constructors, and their

equivalent in logic and category theory, as summarised in the following table:

Type Proposition Categorical object

A → B A ⊃ B BA

A × B A ∧ B A × B

then, the currying isomorphism (A × B) → C = A → (B → C), well known to all func-

tional programmers, becomes the isomorphism of objects C(A×B) = (CB)
A
, well known

to all category theorists, and the strong equivalence of propositions (A ∧ B) ⊃ C =

A ⊃ (B ⊃ C), well known to all proof theorists.

Building models satisfying specific isomorphisms of types (or domain equations) was

a crucial problem in the denotational semantics of programming languages, but in the

1980s some interest started to develop around the dual problem of finding the domain

equations (type isomorphisms) that must hold in every model of a given language, or

valid isomorphisms of types, as they were called in (BL85).

There are essentially two families of techniques to address this question: one can work

syntactically to characterize those programs f that possess an inverse g making the above

diagram commute, or one can work semantically trying to find some specific model that

captures the isomorphisms valid in all models. The next two sections of this survey are

dedicated to these two approaches.

But the study of type isomorphisms is now a well established research field with many

ramifications, as the variety of the subjects tackled by the papers selected for this journal

issue clearly shows, so we will also give space to applications, complexity results, and open

problems.

2. Type isomorphisms and invertible terms

If we want to pinpoint some early dates in the long story of this study, it is natural to

start with Dezani’s seminal work (Dez76), back in 1976, on the untyped lambda calculus.

Her deep, technical syntactical analysis characterized fully the invertible terms, the terms

M for which a term M−1 exists s.t. λx.M−1(Mx) =βη λx.M(M−1x) =βη λx.x, as the

finite hereditary permutations, a class of terms which can be easily defined inductively,

and that can be seen as a family of generalized η-expansions.

While this work was done in the framework of the untyped lambda calculus, it turned

out that this family of invertible terms can be typed in the simple typed lambda calculus,

and this allowed Bruce and Longo (BL85) to prove by a straightforward induction on the
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structure of the finite hereditary permutations that in the simple typed lambda calculus

the only type isomorphisms w.r.t. βη equality are those induced by the swap equation

A → (B → C) = B → (A → C).

By extending Dezani’s original technique to the invertible terms in typed calculi with

additional constructors (like products and unit type) or higher order (System F or Core-

ML), it has been possible to pursue this line of research to the point of getting a full

characterization of isomorphisms in a whole set of typed lambda calculi, from λ1βη, that

correspond to IPC(⇒), the intuitionistic positive calculus with implication, whose iso-

morphisms are described by Th1 (Mar72; BL85), to λ1βηπ∗, that corresponds to Carte-

sian Closed Categories and IPC(True,∧,⇒), for which Th1
×T is complete (BDCL90)†,

to λ2βη (System F), that corresponds to IPC(∀,⇒), and whose isomorphisms are given

by Th2 (BL85), to λ2βηπ∗ (System F with products and unit type), that corresponds

to IPC(∀,True,∧,⇒), whose isomorphisms are given by Th2
×T (DC91). A summary of

the axioms in these theories is given in table 1.

The focus, in this line of research, is to find all the type isomorphisms for a given

language (λ-calculus) and a given notion of equality on terms (which almost always

contains extensional rules like η, as otherwise no nontrivial invertible term exists (Dez76))

as a consequence of an inductive characterization of the invertible terms.

Notice that the type isomorphisms which correspond to invertible terms (called de-

finable isomorphisms of types in (BL85)) are a priori not the same as the valid iso-

morphisms of types : a definable isomorphism seems a stronger notion, demanding that

a given isomorphism not only hold in all models, but that it also holds uniformly in all

models.

Nevertheless, in all the cases studied in the literature, it is easy to build a free model

out of the calculus, and to prove that valid and definable isomorphisms coincide, so this

distinction has gradually disappeared in time.

One notable missing piece in the table summarizing the theory of isomorphisms of types

is the case of intersection types: we know already the form of the invertible terms, as they

are again Dezani’s finite hereditary permutations, yet the intersection type discipline can

give many widely different typings for the same term, so that the simple proof technique

in (BL85) does not apply, and a complete theory of isomorphisms for them is not yet

known.

3. From Tarski’s High School Algebra problem to isomorphisms in category

theory

Another line of research that led to fundamental results in the field of isomorphisms of

types can be traced back to Soloviev’s seminal work (Sol83) on isomorphic objects in

Cartesian Closed Categories, where he proves that such isomorphisms are exactly the

ones generated by the theory Th1
×T . To prove this result, Soloviev first notices that the

† But this result had been proved earlier by Soloviev using model theoretic techniques, see next section.
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(swap) A → (B → C) = B → (A → C)
}

Th1

1. A × B = B × A

2. A × (B × C) = (A × B) × C

3. (A × B) → C = A → (B → C)

4. A → (B × C) = (A → B) × (A → C)

5. A ×T = A

6. A → T = T

7. T → A = A
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Th1
×T

8. ∀X.∀Y.A = ∀Y.∀X.A

9. ∀X.A = ∀Y.A[Y/X]

10. ∀X.(A → B) = A → ∀X.B
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+ swap = Th2

11. ∀X.A × B = ∀X.A × ∀X.B

12. ∀X.T = T
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split ∀X.A × B = ∀X.∀Y.A × (B[Y/X])
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− 10, 11 = ThML

Table 1. Type isomorphisms in typed lambda calculi
N.B.: in equation 8, X must be free for Y in A and Y 6∈ FTV (A); in equation 10, X 6∈ FTV (A).

isomorphisms in Th1
×T hold in any cartesian closed category, and then pinpoints one

particular Cartesian Closed Category, the Category of Finite Sets, where only the iso-

morphisms of Th1
×T hold, thus concluding the proof‡.

Rittri and others later pointed out that Soloviev’s work was related to the well known

Tarski’s High School Algebra Problem, where one is concerned with finding all the valid

equalities over the natural numbers that can be described using a given language (with

or without product, exponentiation, sums, constants for one or zero, etc.). Indeed, in

the Category of Finite Sets, objects are sets, which are isomorphic only if they have the

same cardinality, and when seen as a cartesian closed category, these isomorphisms ex-

actly correspond to equations on the cardinalities written using a constant for the integer

one, multiplication and exponentiation.

Later on, Soloviev (Sol93) gave a complete axiomatization of isomorphisms in Sym-

metric Monoidal Closed Categories, using proof theoretic techniques, and Dosen and

Petric (DP97) provided an arithmetical structure that exactly corresponds to these iso-

morphisms.

3.1. Tarski’s High School Algebra Problem

In 1969, Tarski (DT69) asked if the equational theory E of the usual arithmetic identities

of figure 1 that are taught in high school are complete for the standard model 〈N, 1, +,×, ↑

〉 of positive natural numbers; i.e. , if they are enough to prove all the arithmetic identities

(he considered zero fundamental too, but, probably due to the presence of one conditional

‡ See also (MS90) for a different proof.
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equation, he left for further investigation the case of the other equations of figure 2, that

we are also taught in high school).

(E1) 1 × x = x (E2) x × y = y × x (E3) (x × y) × z = x × (y × z)

(E4) x1 = x (E5) 1x = 1

(E6) xy×z = (xy)z (E7) (x × y)z = xz × yz

(E8) x + y = y + x (E9) (x + y) + z = x + (y + z)

(E10) x × (y + z) = x × y + x × z (E11) x(y+z) = xy × xz

Fig. 1. Equations without zero

(Z1) 0 × x = 0 (Z2) 0 + x = x (Z3) x0 = 1

(Z4) 0x = 0 (x > 0)

Fig. 2. Equations and conditional equation for zero

He conjectured that they were§, but was not able to prove the result. Martin (Mar72)

showed that the identity (E6) is complete for the standard model 〈N, ↑〉 of positive natural

numbers with exponentiation, and that the identities (E2), (E3), (E6), and (E7) are com-

plete for the standard model 〈N,×, ↑〉 of positive natural numbers with multiplication

and exponentiation. He also exhibited the identity

(xu + xu)v × (yv + yv)u = (xv + xv)u × (yu + yu)v

that in the language without the constant 1 is not provable in E . ¶ The question was not

completely settled by this counterexample, because it is was only a counterexample in the

language without a constant for 1, that Tarski clearly considered necessary in his paper,

as well as the constant for 0, even if he did not explicitly mention it in his conjecture. In

the presence of a constant 1, the following new equations come into play, and allow us

to easily prove Martin’s equality.

1a = a a1 = a 1a = 1

This problem attracted the interest of many other mathematicians, like Leon Henkin,

who focused on the equalities valid in 〈N, 0, +〉, and showed the completeness of the usual

known axioms (commutativity, associativity of the sum and the zero axiom), and gives

a very nice presentation of the topic in (Hen77).

§ Actually, he conjectured something stronger, namely that E is complete for 〈N, Ack(n, , )〉, the natural
numbers equipped with a family of generalized binary operators Ack(n, , ) that extend the usual sum
+, product × and exponentiation ↑ operators. In Tarski’s definition, Ack(0, , ) is the sum, Ack(1, , )
is multiplication, Ack(2, , ) is exponentiation.

¶ He also showed that there are no nontrivial equations for 〈N, Ack(n, , )〉 if n > 2.
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Wilkie (Wil81) was the first to establish Tarski’s conjecture in the negative. Indeed,

by a proof-theoretic analysis, he showed that the identity

(Ax + Bx)y × (Cy + Dy)x = (Ay + By)x × (Cx + Dx)y

where A = 1 + x , B = 1 + x + x2 , C = 1 + x3 , D = 1 + x2 + x4 is not provable in E .

R. Gurevič later gave an argument by an ad hoc counter-model (Gur85) and, more

importantly, showed that there is no finite axiomatization for the valid equations in

the standard model 〈N, 1, +,×, ↑〉 of positive natural numbers with one, multiplication,

exponentiation, and addition (Gur90). He did this by producing an infinite family of

equations such that for every sound finite set of axioms one of the equations can be

shown not to follow. Gurevič’s identities, which generalize Wilkie’s identities, are the

following

(

Ax + Bn
x
)2x

×
(

Cn
2x

+ Dn
2x

)x

=
(

A2x

+ Bn
2x

)x

×
(

Cn
x + Dn

x
)2x

where

A = 1 + x

Bn = 1 + x + · · · + xn−1 =
∑n−1

i=0 xi

Cn = 1 + xn

Dn = 1 + x2 + · · · + x2(n−1) =
∑n−1

i=0 x2i

n ≥ 3 is odd

Nonetheless, equality in all these structures, even if not finitely axiomatizable, was

shown to be decidable (Mac81; Gur85), while in (HR84) one can find a subclass of nu-

merical expressions for which the usual axioms for +, ×, ↑ and 1 are complete.

Balat, Fiore and this author investigated the question as to whether the correspondence

between numerical equalities and type isomorphisms was limited to the case of the well-

behaved unit, product, and arrow type constructors and, in particular, if it could be

extended to the more problematic types involving the empty type and the sum type

constructor (BDCF02; BDCF04), with the following fundamental result:

Gurevič’s identities are indeed type isomorphisms, and one can then show that the theory of

type isomorphisms in the presence of the product, arrow, and sum type constructors, and the

unit type is not finitely axiomatizable.

This result has been pursued further by Fiore (Fio04), who is now studying the con-

nections with objective number theory as advocated by Schanuel and Lawvere.

Finally, Dufour and this author show in (DCD05) that 〈N, 0, 1, +,×, ↑〉 has a decidable,

but not finitely axiomatizable, equational theory, and that the only difference between

〈N, 0, 1, +,×, ↑〉 and 〈N, 1, +,×, ↑〉 is given by the traditional equations and conditional

equation for zero.

As a consequence, the family of Gurevič’s equalities does not collapse, and we also know

now that the theory of type isomorphisms in Bi-Cartesian Closed Categories is not finitely

axiomatizable. We do not know if this theory, like for the integers, is decidable.
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3.2. Complexity and decidability issues

The theories of type isomorphisms in Table 1 are all decidable, but what about their

complexity? Dropping the nonlinear axioms in Th1
×T , Soloviev first showed (SA94; SA97)

that one can get an efficient decision procedure running in O(n log2(n)) time. Due to the

nonlinear axioms involving the product type, one could expect a much higher complexity

for the full Th1
×T ; this is not the case, as Zibin, Gil and Considine provide in the paper

included in this issue a very efficient O(n log n) decision procedures for this system.

Nevertheless, if we are interested in matching, or unification, up to these theories, the

complexity goes up: matching up to Th1
×T is decidable, as shown by Rittri (Rit90) using

the techniques originally developed in a technical report by Bernard Lang that we publish

here for the first time, while unification is undecidable, matching and linear unification

are NP-Complete (NPS93; NPS97).

4. Isomorphisms in logic

If we look through the Curry-Howard correspondence mirror, we can rephrase the type

isomorphism problem in proof-theoretical terms. Now, two propositions A and B are

isomorphic if there exist two proofs πA of B ` A and πB of A ` B such that by cutting

πA and πB on the conclusion B (resp. A) we obtain a proof equal, up to some fixed

equality of proofs, to the axiom A ` A (resp. B ` B).

Of course, isomorphic propositions are logically equivalent, but the converse is not true,

and this is why the term strong equivalence has been used in the literature instead (Mar92;

BM94).

Since the typed lambda calculi examined in the first section correspond to the (variants

of) intuitionistic positive propositional calculus, all the results on type isomorphisms

recalled there immediately translate to the corresponding intuitionistic calculus, without

further ado.

But the situation is different for logics, like Linear Logic (Gir87), for which the λ-

calculus is not the natural corresponding computational paradigm. There, one needs to

redo the work from scratch, and it is possible to characterize the invertible proof nets

and show that for MLL, the multiplicative fragment of Linear Logic, the following theory

is complete:

X⊗Y = Y ⊗X (XOY )OZ = XO(Y OZ)

XOY = Y OX (X⊗Y )⊗Z = X⊗(Y ⊗Z)

X⊗1 = X XO⊥ = X

This provides a nice symetrization of the isomorphisms for Cartesian Closed Cate-

gories: when reading A → B = A⊥
OB, A × B = A⊗B and unit = 1, the theory Th1

×T

reduces, through Linear Logic’s looking mirror, to just the associativity, commutativity

and unit rules of MLL. It is an open problem to extend this simple characterization to

larger fragments of Linear Logic.

If one looks at Polarised Linear Logic (LLP), a finite characterization of the strong
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equivalence of propositions for LLP can be obtained by means of a very elegant usage

of game semantics, a result presented in Laurent’s paper included in this issue, that

provides a nice example of a proof along the lines of the semantic tradition as opposed to

the proof for MLL. Laurent also points to a possible interpretation à la Tarski of these

isomorphisms into the real numbers.

Building on the result for LLP, Laurent also provides a finite, complete characterization

of classical isomorphic propositions, including disjunction.

This is not contradictory with the non finite axiomatizability of type isomorphisms

with the sum type, as the classical disjunction and the sum type are not the same

operator; in category theoretical terms, on one side we work in Bi-CCCs, on the other

we find Control Categories. Laurent’s result is extended to second order classical logic

by de Lataillade (dL04).

Finally, some recent work has begun to explore the possibilities offered by a mixed

approach, where one adds to a lambda calculus with inductive types new reductions to

realize some chosen isomorphism, as in the work by Chemouil that appears in this issue,

that follows the lines of (SC03).

5. Practical applications

Isomorphisms of types have several interesting practical applications, ranging from library

search, to correcting type errors.

5.1. Types as search keys

Rittri was the first to propose to use isomorphisms of types as a key tool to retrieve library

components. He pointed out that a function in a library can have a type syntactically

quite different from the one expected by the user, as shown in his famous example for

the functional list iterator:

Language Name Type

ML of Edinburgh LCF itlist (′a → ′b → ′b) → ′a list → ′b → ′b

CAML list it ”

Haskell foldl (′a → ′b → ′a) → ′a → ′b list → ′a

Ocaml List.fold left ”

SML of New Jersey fold (′a × ′b → ′b) → ′a list → ′b → ′b

Edinburgh SML Library fold left (′a × ′b → ′b) → ′b → ′a list → ′b

All the types in this table are different, but isomorphic, so he proposed to search functions

using their type modulo isomorphism as a key (Rit91), and he explored the possibilities

offered by matching and linear unification of types modulo type isomorphisms using the

theory Th1
×T (Rit92; Rit93). This author implemented a search tool along the same lines,
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but using ThML, in the Caml programming language, while a similar tool has been built

for CamlLight by Jerome Vouillon: using the command line tool camlsearch, one can

query the standard library to find the list iterator as in the following example, where the

system retrieves for us two good candidates for a list iterator, list it and it list:

camlsearch -s -e "’b*’a list*(’b->’a->’b) -> ’b"

it list : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

list it : (’b -> ’a -> ’a) -> ’b list -> ’a -> ’a

Following this line of applications, one finds also a study of search tools for the library

of theorems of the Coq proof assistant in (DDCW97; Del99; BP01b) and in Barthe’s

paper in this journal issue.

5.2. Building coercions

Finding the library object satisfying a query up to isomorphisms is not the full story: in

order to use it in the context of her program, the user must build some glue code which

is exactly the pair of invertible terms (the coercions) that realize the isomorphism. While

for simple functions this is a reasonably straightforward business, when one turns to

more sophisticated languages, or language constructs, like classes, objects and modules,

or dependent types in proof assistants (BP01a), building the coercions can become a

taunting task.

This is why a whole line of articles have been dedicated to automatically building

coercions (AJ04) for type systems which are quite sophisticated.
For a language with modules and functors (Mul; ZW93), isomorphisms can get very

intricate (ADC96; ADCD97), as they can come from the base language, the module
language, or both, as shown by the following isomorphic functor signatures

module UnifyCurry :

functor (t:TERMS) ->

functor (s:SUBSTITUTION with s.termtype = t.termtype):

sig

val c: int*string

unify: t.termtype -> t.termtype -> s.substtype

end

module UnifyUnCurry :

functor (sig module t:TERMS module s:SUBSTITUTION

with s.termtype = t.termtype end):

sig

val c1: int

val c2: string

findunifier: t.termtype * t.termtype -> s.substtype

end
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An attempt at building an efficient search tool taking these issues into account has

been done by Yakobowski (Yak02).

One can also build glue code using type isomorphisms as an alternative to Interface

Definition Languages, as done in IBM’s Mockingbird project (ACC97; ABR98) where

sums and recursive types are needed to provide a type system powerful enough to repre-

sent all the type constructs in the source programming languages (like C or Java).

As for classes, it is possible to provide useful tools even when restricting attention

to very basic isomorphisms, like associativity and commutativity of product as done

in (Tha94; PZ00; JPZ02; DCPR05), that allow to avoid tackling the very complex issue

of isomorphisms of recursive types directly.

In all these more sophisticated applications, no claim of completeness is made: finding

all type isomorphisms in a language that allows recursion, sum types and/or subtyping

might well be undecidable, unless we impose some restrictions on the expressiveness of

the coercions; for example, one could restrict these coercions to only use iterators on well

founded recursive types, and not full recursion, along the lines of (Fio04), which seems

the most promising approach to date.

5.3. Type isomorphisms inside the type system

Finally, another line of research has concentrated on using type isomorphisms directly

inside a typed programming language, as opposed to the usage of some external tool.

One line of research uses isomorphisms to perform transformations of data types inside

the language: the earliest proposals in this direction is surely Wadler’s seminal paper

on views (Wad87), where isomorphisms are used as a tool to provide a correspondence

between an externally available concrete representation of an abstract data type, over

which the programmer can use pattern matching, and the internal, hidden implementa-

tion; more recently, it has been proposed to use isomorphisms to allow transformations

over data types in XML documents (AJ).

Along a different line, one can use isomorphisms to change the type system, either

by directly incorporating them in the type system as in work by Nipkow (Nip90), or by

using type isomorphisms to automatically correct typing errors, as originally proposed

in (Cos86) where a linear time algorithm was used to correct errors when the coercion is

unique, and more recently done by MacAdam (McA02).

6. Recursive types

The Mockingbird project acted as a very powerful motivation to investigate isomorphisms

in the presence of recursive types, which forced researchers to understand better what

goes on when the implementation of a library search tool decides that isomorphisms

simply percolate through user defined types, as is the case when returning a value of
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type (A × B) list when presented the query (B × A) list. Intuitively, we know that it

will suffice to map the coercions for the commutativity of product across the list, but it

is not evident that such a map function will exist in general for all user defined types,

even when not considering the complication introduced by restrictions of visibility like

those introduced by abstract data types. What we really want is to be able to perform a

derivation like the following one, where the middle equality is an isomorphism of recursive

types

A × B list = µX.(A × B) × X + 1

= µX.(B × A) × X + 1 = B × A list

But isomorphisms of recursive types are quite tricky, as they come in different kinds:

identity isomorphisms capture the equivalence among different syntactic representa-

tions of the same object, like in

µX.A × X = µX.A × (A × X)

where the two sides are interpreted by the same infinite tree. For identity isomor-

phisms of recursive types (AC93; AF96) propose a complete deductive system that

includes the rule:

A = F (A)

A = µX.F (X)
(fold)

isomorphisms realized by the identity capture the equivalence of types A and B

which are not interpreted in the model by the same object, but whose coercions have

no computational content, like for the isomorphism

∀X.∀Y.A = ∀Y.∀X.A

These coercions without computational content typically arise in the presence of poly-

morphism and are known as retyping functions (Mit88).

proper isomorphisms are those where the coercions have computational content, like

for

A × B = B × A

These different kinds of isomorphisms must be distinguished with care to avoid inconsis-

tencies. If one mix for example the fold rule for identity isomorphisms with the proper

isomorphisms for the terminal object A = A × 1, it is easy to infer that all types are

isomorphic to µX.X × 1, which is clearly false.

To validate the transformations performed by the Mockingbird system, it is enough to

use a sequence of equality steps, each of which can be either an identity isomorphism or

a proper one, and the induced equality is consistent (as proved by P.M. Lopez).

Nevertheless, it would be quite important to establish a consistent formal reasoning

system able to tackle the full power of type isomorphisms in the presence of recursive

types, and possibly to allow to prove conditional isomorphisms like (A × B) list =

(A list) × (B list) when the two lists have the same length; in this direction, there is

clearly some connection to be established with work related to polytypism and generic

programming like in (JJ96; JJ02; MBJ99).
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7. Conclusions

We have shown in this short survey that the study of isomorphisms of types is a very

lively research subject, that has attracted the interest of researchers coming from very

diverse fields, from logic to lambda calculus, to algorithmics and programming.

Isomorphisms of types have concrete applications in the field of programming languages

and type systems, that have raised new open problems that we believe will feed the

research over the next years.
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R. Gurevič. Equational theory of positive numbers with exponentiation. Proceedings of the

American Mathematical Society, 94(1):135–141, 1985.
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Eugenio Moggi, Gianna Bellè, and Colin Barry Jay. Monads, shapely functors and traversals.
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