
Expanding Extensional Polymorphism⋆

Roberto Di Cosmo 1 Adolfo Piperno 2

1 DMI­LIENS ­ Ecole Normale Supérieure
45, Rue d’Ulm ­ 75230 Paris (France)

roberto@dicosmo.org

2 Dipartimento di Scienze dell’Informazione ­ Università di Roma “La Sapienza”
Via Salaria 113 ­ 00198 Roma (Italy)
piperno@dsi.uniroma1.it

Abstract. We prove the confluence and strong normalization properties for second order lambda
calculus equipped with an expansive version of η­reduction. Our proof technique, based on a
simple abstract lemma and a labelled λ­calculus, can also be successfully used to simplify the
proofs of confluence and normalization for first order calculi, and can be applied to various
extensions of the calculus presented here.

1 Introduction
The typed lambda calculus provides a convenient framework for studying functional
programming and offers a natural formalism to deal with proofs in intuitionistic logic. It
comes traditionally equipped with the β equality (λx.M)N = M [N/x] as fundamental
computational mechanism, and with the η (extensional) equality λx.Mx = M as a
tool for reasoning about programs. This basic calculus can then be extended by adding
further types, like products, unit and second order types, each coming with its own
computational mechanism and/or its extensional equalities.

To reason about programs and the proofs that they represent, one has to be able to
orient each equality into a rewriting rule, and to prove that the resulting rewriting system
is indeed confluent and strongly normalizing: these properties guarantee that to each
program (or proof) P we can associate an equivalent canonical representative which is
unique and can be found in finite time by applying the reduction rules to P in whatever
order we choose. The β equality, for example, is always turned into the reduction rule
(λx.M)N // M [N/x].

Traditionally, the extensional equalities are turned into contraction reduction rules,
the most known example being the η rule λx.Mx // M , but this approach raises a
number of difficult problems when trying to add other rules to the system. For example
the extensional first order lambda calculus associated to Cartesian Closed Categories,
where one needs a special unit type T with an axiom M :T = ∗:T (see [CDC91]
and especially [DCK94b] for a longer discussion and references) is no longer confluent.
Another example is the extensional first order lambda calculus enriched with a confluent
algebraic rewriting system, where confluence is also broken [DCK94a].

This inconvenient can be fortunately overcome, as proposed in several recent
works[Aka93, Dou93, DCK94b, Cub92, JG92], by turning the extensional equalities
into expansion rules: η becomes then

M :A → B // λx.Mx.
These expansions are suitably restricted to ensure termination 3, and several first

⋆ This work has been partially supported by grants from HCM “Typed Lambda Calculus” and CNR­CNRS
projects

3 We refer the interested reader to[DCK93, DCK94b] for a more detailed discussion of these restrictions.

order systems incorporating both the expansive η rule and an expansive version of the
Surjective Pairing extensional rule for products can be proven confluent and strongly
normalizing. In[DCK94b] Delia Kesner and the first author even proved that a system
with expansions for Surjective Pairing is confluent in the presence of a fixpoint combi­
nator, while it is known that confluence does not hold with the contractive version of
Surjective Pairing[Nes89].

These recent works raise a natural question: is it possible to carry on this approach
to extensional equalities via expansion rules to the second order typed lambda calculus?
The answer is not obvious: for an expansion rule to be applicable on a given subterm, we
need to look at the type of that subterm, and when we add second order quantification a
subterm can change its type during evaluation. As we will see, this fact rules out a whole
class of modular proof techniques that would easily establish the result, and makes the
study of expansion rules more problematic.

In this paper we focus on the second order typed lambda calculus and extensionality
axioms for the arrow type: this system corresponds to the Intuitionistic Positive Calculus
with implication, and quantification over propositions.

For this calculus we provide a reduction system based on expansion rules that is
confluent and strongly normalizing, by means of an interpretation into a normalizing
fragment of the untyped lambda calculus.

This result gives a natural justification of the notion of η­long normal forms used in
higher order unification and resolution: they can be now defined simply as the normal
forms w.r.t. our extensional rewriting system.

1.1 Survey

The restrictions imposed on the expansion rules in order to insure termination make
several usual properties of the λ­calculus fail, most notably η­postponement, that would
allow a very simple proof of normalization for the calculus4, but several proof techniques
have been developed over the past years to show that the expansionary interpretation
of the extensional equalities yields a confluent and normalizing system in the first order
case. One idea is to try to separate the expansion rules from the rest of the reduction,
and then try to show some kind of modularity of the reduction systems. One traditional
technique for confluence that comes to mind is the well known

Lemma 1.1 (Hindley­Rosen ([Bar84], §3)) If R and S are confluent, and commute
with each other, then R ∪ S is confluent.

Unfortunately, this technique does not work in the presence of restricted expansion
rules, because β can destroy expansion redexes, but in[Aka93] Akama gives a modular
proof using the following property, requiring some additional conditions on R and S:

Lemma 1.2 Let S and R be confluent and strongly normalizing reductions, s.t.

∀M,N (M S // N) implies (MR
+
S // // NR),

where MR and NR are the R­normal forms of M and N , respectively; then S ∪ R is
also confluent and strongly normalizing.

In[Aka93] R is taken to be the expansionary system alone and S is the usual non
extensional reduction relation.

In[DCK94b], confluence and strong normalization of the full expansionary system
is reduced to that of the traditional one without expansions using the following:

4 For a very broad presentation of the properties that fail in presence of restricted expansions, see[DCK94b].

Proposition 1.3 Let R1 and R2 be two reduction systems and T a translation from
R1­terms to R2­terms.

(i) If for every reduction M1
R1 // M2 there is a non empty sequence P1 +

R2 // // P2

such that T (Mi) = Pi, for i = 1, 2 (simulation property), then the strong normal­
ization of R2 implies that of R1.

(ii) If in addition the translation is the identity on R1 normal forms, and these normal
forms are included in the R2 normal forms, then the confluence of R2 also implies
the confluence of the full system.

The translation used in[DCK94b] inserts in all positions where an expansion could
take place a special term ∆A (called an expansor) depending on the type A of the
expansion redex, and then all that one is left to prove is the simulation property.

A different non­modular approach is taken in [JG92] and [Dou93], where the proofs
of strong normalization are based on an extension of the traditional techniques of
reducibility and allow to handle also the peculiarity of the expansion rules. But that is
not all, since one is left to prove weak confluence separately, which is not an easy task
in the presence of expansion rules (see[DCK94b] for details).

Finally, an even different technique is used in [Cub92], where confluence is shown
by a careful study of the residuals in the reduction.

As suggested in the introduction, in the presence of second order quantification, the
type of a subterm can evolve during evaluation, and this fact allows us to build very
simple examples suggesting that the modular approaches[Aka93, DCK94b] cannot be
extended to the second order case.

Expansions and polymorphism are not modular

The following simple example shows that we cannot use the modular techniques de­
veloped up to now to separate the complexities introduced by expansion rules and
polymorphic typing by singling out the expansions in a separate rewriting system.

Example 1.4 Let M = (Λσ.λx: (∀µ.µ → A).(x[σ → σ])(λy:σ.y))[A → B]. Then,
the term M is a normal form w.r.t expansion rules, but its immediate β2 reduct is not:

M ′ = λx: (∀µ.µ → A).(x[(A → B) → (A → B)])(λy:A → B.y)

In fact, M ′ reduces to the term

M ′′ = λx: (∀µ.µ → A).(x[(A → B) → (A → B)])(λy:A → B.λz:A.yz)

Now, there is no way to reduce M to M ′′ without expansions, so the hypothesis of
lemma 1.2 are not satisfied.

This very same example can be used to show how the use of expansor terms is neither
viable5.

Notice that Akama’s lemma fails also if we put β2 together with η in the reduction
relation R, because β does not preserve β2 normal forms.

As for the reducibility technique, it can be adapted as in[JG92] for the first order
calculi with expansion rules, but there is a fundamental difference between the proof

5 For readers acquainted with the techniques used in[DCK94b], it is easy to see that the term

M = (Λσ.λx: (∀µ.µ → A).(x[σ → σ])(λy:σ.y))[A → B]

is the translation of itself, as there is no expansion redex, but its β2 reduct

λx: (∀µ.µ → A).(x[(A → B) → (A → B)])(λy:A → B.y)
gets translated to λx: (∀µ.µ → A).(x[(A → B) → (A → B)])(λy:A → B.∆A→By) and there is no
way for M to reduce to it, so the hypothesis of proposition 1.3 are not satisfied.

for the simply typed and the proof for polymorphic lambda calculus: one does not work
with just one reducibility candidate, but with all reducibility candidates at once. This
requires to deal with many subtle points in the second order case that do not appear at
all for the simply typed calculi: for example, in the second order setting one has to show
that the set of all strongly normalizing terms is indeed a reducibility candidate: this is
straightforward using Girard’s original definition of reducibility, but the modifications of
Girard’s (CR3) property imposed by the extensional rules make even this task extremely
difficult. Up to now no such proof is known.

1.2 Our approach

Since the previous modular techniques are not viable as used traditionally, and the
reducibility properties modified as in[JG92] do not extend nicely to second order, we
had to look for something new, and since all the problems come up immediately as soon
as we add β2 to the first order expansionary system, we focused on a simple system with
β, expansive η and β2 first (weak confluence for this calculus is quite straightforward).
Here, we first observed that:

– an infinite reduction path in the typed calculus implies the existence of an infinite
reduction path containing infinite β steps in the untyped calculus, each untyped
term being the erasure of the corresponding typed one (this is the case because β2

alone, that leaves the erasures unchanged, always terminates, and because β2 and η
together are easily seen to be strongly normalizing);

– an untyped term that is typable in the second order lambda calculus cannot have an
infinite β reduction sequence;

– η­postponement holds if we lift the restrictions on expansions, and we can use it on
the erasure of the reduction, obtaining a reduction sequence that contains all the β
steps, consecutive and at the beginning.

Now, this would clearly suffice to prove strong normalization, if η­postponement could
be done without deleting some β or η steps from the original reduction, as then from
an infinite typed reduction we could get an infinite β reduction starting from a typable
term, that is impossible.

Unfortunately, η­postponement with unrestricted expansions does delete some η and
β steps, as in the following loops that are the very motivation for imposing restrictions
on the η expansions:

MN
η // (λx.Mx)N

β // MN becomes MN = MN

λx.M
η // λz.(λx.M)z

β // λx.M becomes λx.M = λx.M

We carefully analysed these deletions during the η postponement, showing that the
only β steps that get erased are the ones that are created by expansions which vio­
late the restrictions. To study such reductions, we work in a labelled calculus where
abstractions introduced by η expansions are marked, with unrestricted η turned into
M :A → B

η // λ∗x.Mx.
In this labelled calculus, it is easy to identify the β steps that get erased during

postponement, and we singled them out as the following β∗ rule:

(β∗)

{

(λ∗x.M)N
β∗ // M [N/x]

λ∗y.D[(λx.M)Y]
β∗ // λy.D[M [Y/x]], if y

η // // Y ∧ []
η // // D[].

(β) (λx.M)N
β // M [N/x], if (λx.M)N is not in a context

where (β∗) applies.

Thus, when a β∗­redex is also a β­redex, we assume that its contraction constitutes a
β∗­step.

Now, this is the key step: β∗, unlike the full β, is well behaved wrt β2 , as it preserves
β2 normal forms, and one can apply Akama’s lemma to show that β2 , η and β∗ together
are confluent and normalizing.

This means that an infinite typed reduction must contain infinite β steps that are not
β∗ steps, and we are done because these β steps are not deleted by the η postponement
that we perform on the erasure of the typed reduction: we can finally build an infinite β
reduction leaving from a typable term, a contradiction, as we wanted.

What is particularly satisfactory in this proof technique is the fact that we really
show that the only source of danger are the real β reductions, and not the β∗ redexes
produced by η expansion, which are really harmless. This proof technique can be applied
successfully also to various extensions of the simple calculus presented here, as we will
detail in the Conclusions.

1.3 Structure of the paper

The two main technical points in the paper will then be to present the η postponement
in the unrestricted case and to prove the hypothesis of Akama’s Lemma for β∗ ∪ η∪β2,
but there is something else.

Indeed, we found that applying Akama’s Lemma is hard: one has to show commu­
tation of one reduction relation wrt the reduction to normal form for the other reduction
relation, and this is done in Akama’s paper in an ad hoc fashion for a specific calculus
by a difficult technical analysis of η normal forms. We wanted a more easily applicable
technique, that we found, and that we decided, for its generality, to present in a section
by its own.

So, we will first expose formally the results on the untyped calculus, in the next
section, then we will show how to drastically simplify the proofs involved in apply­
ing Akama’s Lemma, in the following section, and finally we will apply this simpler
technique to the typed reduction β2 ∪ η ∪ β∗ in order to obtain the proof of strong
normalization for the full reduction. Confluence will follow by Newman’s Lemma.

We will then conclude with an overview of the applicability of our technique, and
with some ideas for further work.

2 The Untyped Case
In this Section we introduce a λ­calculus with markers, which enable us to keep under
control variables introduced by applications of the expansive version of the η rule. We
characterize a relevant class of terminating reductions in such calculus.

Terms of the untyped marked λ­calculus are defined by the following syntax

M ::= x | MM | λx.M | λ∗x.M, (1)

where x ranges over a denumerable set Var of term variables; FV (M) denotes the set
of variables occurring free in M . We call Λ∗ the set of terms resulting from (1), while
Λ is the set of unmarked terms.

As usual, terms are considered modulo α­conversion, i.e. modulo names of bound
variables.

One step η­reduction is the least binary relation on Λ∗ which passes contexts and
satisfies

(η) M
η // λ∗x.Mx, if x 6∈ FV (M).

η // // denotes the reflexive and transitive closure of the one step η­reduction relation,
while n

η // // denotes the n times composition of
η // with itself.

Remark 2.1 For simplicity of notation, we will always use η to denote expansion rules.
In the untyped system, such reduction is applicable in any context; in the typed system,
some restrictions will be introduced on the applicability of η­reduction. Nevertheless,
the same notation will be adopted for both (either untyped and unrestricted or typed and
restricted) η­reductions. Indeed, a special notation will be used in the typed case for
unrestricted η­reduction.

One step β∗ and β­reductions (notation:
β∗ // and

β // , respectively) are
defined as the least binary relations on Λ∗ which pass contexts and respectively satisfy:

(β∗)

{

(λ∗x.M)N
β∗ // M [N/x]

λ∗y.D[(λx.M)Y]
β∗ // λy.D[M [Y/x]], if y

η // // Y ∧ []
η // // D[].

(β) (λx.M)N
β // M [N/x], if (λx.M)N is not in a context

where (β∗) applies

Let ρ = β ∪ β∗ ∪ η. Finally, let
β // // (

β∗ // // ,
ρ // //) denote the reflexive and

transitive closure of one step the β­ (β∗, ρ) reduction relation.

Definition 2.2 We define Λ∗
η to be the subset of Λ∗ whose elements are obtained from

unmarked terms via η­reduction.

Λ∗
η = {M ∈ Λ∗ | ∃M ′ ∈ Λ.M ′ η // // M}.

Recall that a context C[](∈ Λ[], Λ∗[], Λ∗
η[]) is a term (belonging to Λ,Λ∗, Λ∗

η) with
one hole in it.

Property 2.3 (i) M ∈ Λ∗
η ⇔ (∀C[] ∈ Λ∗

η[].M ≡ C[λ∗x.N] ⇒ N ≡ D[N ′X]),
where N ′ ∈ Λ∗

η ∧ FV (N ′) 6∋ x
η // // X ∧ []

η // // D[].

(ii) (M ∈ Λ∗
η ∧ M

ρ // N) ⇒ N ∈ Λ∗
η;

Proof. (i) (⇐) is trivial. To prove (⇒), observe that if M ∈ Λ∗
η , then ∃M ′ ∈ Λ and

n ∈ IN, s.t. M ′
n
η // // M . We will reason by induction on n.

n = 0. Vacuously true.

n = m+ 1. Then there is an M ′ ∈ Λ s.t. M ′
m
η // // M ′′ η // M . We know by

induction that the property holds for M ′′. If M ≡ C[λ∗x.N], then, two cases:
(a) λ∗x.N was already in M ′′, that is, for some C ′[] ∈ Λ∗

η[],M
′′ ≡

C ′[λ∗x.N], and we are done by induction hypothesis.

(b) λ∗x.N is the result of the last step M ′′ η // M , and we have two cases:
(b.1) M ′′ ≡ C[N ′] and M ≡ C[λ∗x.N ′x], so N = N ′x with x 6∈

FV (N ′), and we are done.

(b.2) M ′′ ≡ C[λ∗x.N ′] and M ≡ C[λ∗x.N], with N ′ η // N . By
induction hyp. we know that N ′ ≡ D[N ′′X], where FV (N ′′) 6∋
x

η // // X ∧ []
η // // D[]. Now, the last expansion can be either

N ′′ η // N ′′′, and then M ≡ C[λ∗x.D[N ′′′X]],
or X

η // X ′, and then M ≡ C[λ∗x.D[N ′′X ′]],
or D[N ′′X]

η // D′[N ′′X], and then M ≡ C[λ∗x.D′[N ′′X]],
with D[]

η // D′[]. In all cases, the conditions are satisfied and we
are done.

(ii) If the ρ reduction is an η, then the property holds by the very definition of Λ∗
η .

In the other cases (β and β∗), the proof is deferred after Lemma 2.7 from which it
follows immediately. ✷

The following facts can be shown by simple calculations

Fact 2.4 If H ∈ Λ∗
η and x ∈ Var then x

η // // X ⇒ H
η // // X[H/x].

Fact 2.5 If H, J ∈ Λ∗
η and x ∈ Var then

(H
η // // H ′, J

η // // J ′) ⇒ H[J/x]
η // // H ′[J ′/x].

Fact 2.6 If x ∈ Var and x
η // // X

η // // X ′ then X ′[X/x]
β∗ // // X ′.

Lemma 2.7 Let P ∈ Λ and M,N ∈ Λ∗
η .

(i) If P
η // // M

β∗ // N , then P
η // // N .

(ii) If P
η // // M

β // N , then there exists Q ∈ Λ such that P
β // Q

η // // N .

(iii) Let M,N ∈ Λ∗
η and τ = β∗ ∪ η. If M τ // // N , then there exists Q ∈ Λ∗

η such
that M

η // // Q
β∗ // // N.

Proof. (i) We distinguish the two cases for β∗:

(a) If M ≡ C[(λ∗x.S)R], then by Property 2.3 we have S ≡ D[QX] where
Q ∈ Λ∗

η and x
η // // X , and then

M ≡ C[(λ∗x.D[QX])R]
β∗ // C[D[QX[R/x]]] ≡ N.

Hence P ≡ C ′[Q′R′], where Q′ η // // Q, R′ η // // R and C ′[]
η // // C[].

This case is settled using Fact 2.4.

(b) M ≡ C[λ∗y.D[(λx.Q)Y]]
β∗ // C[λy.D[Q[Y/x]]] ≡ N , with y

η // // Y .
Hence P ≡ C ′[λx.Q′], where Q′ η // // Q and C ′[]

η // // C[].
This case is settled using Fact 2.4.

(ii) M ≡ C[(λx.Q)R]
β // C[Q[R/x]] ≡ N . Hence

P ≡ C ′[(λx.Q′)R′],

where Q′ η // // Q, R′ η // // R and C ′[]
η // // C[].

This case is settled using Fact 2.5.

(iii) We distinguish the two cases for β∗ and we observe that:

(a)

C[(λ∗x.D[QX])R] C[D[QX[R/x]]]

C ′[(λ∗x.D′[Q′X ′])R′] C ′[D′[Q′X ′[R′/x]]]

β∗ //

η
�� ��

η
�� ��

β∗ //

where C[](D[]Q,X,R, resp.)
η // // C ′[](D′[]Q′, X ′, R′, resp.);

(b)

C[λ∗y.D[(λx.Q)Y]] C[λy.D[Q[Y/x]]]

C′[λ∗y.D′[(λx.Q′[Y ′

i /x
(i)]i=1...n)Y]] C′[λy.D′[Q′[Y ′

i /x
(i)]i=1,...,n]]

β∗ //

η

�� ��

η

�� ��

(2.6)

β∗ // //

where x(1), . . . , x(n) denote the occurrences of the free variable x in Q and

C[](D[], Q, resp.)
η // // C ′[](D′[], Q, resp.), y

η // // Y
η // // Y ′

i ,

for i = 1, . . . , n.

Let now M τ // // N . The lemma follows by an easy induction on the number of
β∗ steps which are followed by an η step in the reduction from M to N . ✷

Definition 2.8 Let M0 ∈ Λ∗
η . A ρ­reduction path

Π: M0
ρ // M1

ρ // M2
ρ // · · ·

starting from M0 is called fair iff either it is finite or, for any i ∈ IN, it satisfies the
following conditions

(i) Mi
β // Mi+1 ⇒ ∃k > 0.¬(Mi+k

β // Mi+k+1);
(ii) Mi

β∗ // Mi+1 ⇒ [∃k > 0.¬(Mi+k
β∗ // Mi+k+1)]∧¬(Mi+1

η // Mi+2);
(iii) Mi

η // Mi+1 ⇒ ∃k > 0.¬(Mi+k
η // Mi+k+1).

Lemma 2.9 (Main Lemma) Let M ∈ Λ be a β­strongly normalizing term and let Π
be a ρ­reduction path starting from M . Π is finite iff it is fair.

Proof. Assume the existence of an infinite fair ρ­reduction path starting from M . By
definition, an infinite fair ρ­reduction path contains an infinite amount of β steps. Indeed,
it does not contain infinite subpaths constituted by all β (β∗, η, repectively) steps, and
also it does not contain any infinite subpath in which β steps do not appear, since by
Definition 2.8.(ii) a β∗ step is never followed by an η step.

Using Lemma 2.7, we can build an infinite β­reduction starting from M , which
is absurd. Indeed, take a fair reduction sequence starting from a term M ∈ Λ and
containing an infinite number of β steps. Consider now the first β step in the sequence.

By Lemma 2.7, we can assume that all reduction steps from M to this first β are
η steps: if not, these steps must be a sequence of η followed by a sequence of β∗, by
definition of fair reduction sequence, and then we can apply Lemma 2.7.(i) and get
rid of the β∗ sequence, obtaining a reduction sequence that is still fair. Then, from
Λ ∋ M

η // // M ′ β // M ′′ // // · · · we get, using Lemma 2.7.(iii) a new fair
sequence Λ ∋ M

β // M ′′′ η // // M ′′ // // · · ·. Now, it suffices to notice that
M ′′′ is still in Λ, and that the sequence starting from M ′′′ is again fair and contains an
infinite number of β steps, so we can iterate this pumping process and build an infinite
β reduction sequence starting from M . ✷

3 Simplifying Akama’s Lemma
It is now time to turn to Akama’s Lemma: applying it directly is hard just like the usual
Hindley­Rosen’s Lemma 1.1, as one has to handle a multi­step reduction.

But for the Hindley­Rosen’s Lemma to be applicable, there is a well known sufficient
condition; this just asks us to verify that any divergent diagramM ′ Soo M R // M ′′

can be closed using as many R steps as we want, but no more than one S step. This
sufficient condition is what is always used, for its simplicity (see for example [Bar84]).

Along our investigation, we had to devise a similar sufficient condition for Akama’s
Lemma, to simplify the otherwise extremely difficult proof of the Lemma’s hypothesis.
This sufficient condition is so general and nice to prove, that even the results in Akama’s
original paper can be obtained in a few lines, without the complex syntactic analysis
used there.

Notation 3.1 Let 〈A, // 〉 be an Abstract Reduction System. We denote by

=
// the reflexive closure of // ;

+
// // the transitive closure of // ;
// // the reflexive and transitive closure of // .

Lemma 3.2 Let 〈A, R // , S // 〉 be an Abstract Reduction System, where R­
reduction is strongly normalizing. Let the following commutation hold

∀a, b, c, d ∈ A

a c

b d

R //

S

��
S
��

�

�

�

��

+
R //_ _ _ //

Then we have

(i) R // // and S // // commute.

(ii) if R preserves S normal forms (let S↓ denote reduction to S normal form), then

∀a, b, c, d ∈ A

a c

b d

R // //

S↓
������

S↓
��

�

�

�

��
R //_ _ _ //

(iii) if S is also confluent and R preserves S normal forms, then

∀a, b, c, d ∈ A

a c

b d

R //

S↓
�� ����

S↓
������

+
R //_ _ _ //

Proof. We just prove the first result, as the others are very simple consequences of it.
Such result has been independently obtained by Alfons Geser in his PhD Thesis [Ges].
If a1, a2 ∈ A, then denote deg(a1) the length of the longest R­reduction path out of
a1 and dist(a1, a2) the length of a S­reduction sequence from a1 to a2. The proof is by
induction on pairs (deg(b), dist(a, b)), ordered lexicographically. Indeed, if deg(b) = 0
or dist(a, b) = 0, then the lemma trivially holds. Otherwise, by hypothesis, there exist
a′, a′′, a′′′ as in the following diagram.

a a′ c

a′′ a′′′

D1 D2

b b′ d

S��

R //

S�� ��

R // //

S

��

�

�

�

�

�

��

S

�� ��

R // R// //

S

��

�

�

�

��
R //_ _ _ _ // R //_ _ _ _ //

We can now apply the inductive hypothesis to the

diagram D1, since

(deg(b), dist(a′′, b)) <lex (deg(b), dist(a, b)).

Finally, we observe that b +
R // // b′, just composing

the diagram in the hypothesis down from a.

Hence we can apply the inductive hypothesis to the diagram D2, since

(deg(b′), dist(a′, b′)) <lex (deg(b), dist(a, b)),

and we are done. ✷

Lemma 3.2.(iii) tells us that in using Akama’s Lemma, before trying to prove directly
the commutation between R and S↓ we should better check the one step commutation
between R and S, and verify if R preserves S normal forms, which can be boring, but
usually simple tasks.

A simple proof of confluence and normalization for λβηπ∗

As a simple application, consider the typed lambda calculus λ1βηπ∗ for Cartesian
Closed Categories: this consists of β, η, π, SP and a rule Top that collapses all terms of
a special type T into a single constant ∗ (with both η and SP taken as expansions). If we
take R = β ∪ π ∪ Top and S = η ∪ SP , it is extremely simple to verify our sufficient
condition, and then confluence and normalization for the full system are a consequence
of the same properties for the two separate subsystems, that can be shown fairly easily
with simple traditional tehniques.

4 The calculus λβη
We briefly recall that in the second order λ­calculus λ2βη

Types are defined by the following grammar:

Type ::= At | TVar | Type → Type | ∀σ.Type,

where At are countably many atomic types and TVar countably many type variables.

Terms (M:A will stand for M is a term of type A) are such that

– the set of terms contains a countable set x, y, . . . of term variables for each type

– terms are constructed from variables and constants via the following term
formation rules (notice the perfect analogy with the introduction and elimination
rules for second order logic in natural deduction style)

Γ, x : A⊢M : B

Γ ⊢λx.M : A → B

Γ ⊢M : A → B Γ ⊢N : A

Γ ⊢ (MN) : B

Γ ⊢M : A

Γ ⊢Λσ.M : ∀σ.A
6 Γ ⊢M : ∀σ.A

Γ ⊢M [B] : A[B/σ]
for any type B.

Equality is generated by

(β) (λx.M)N = M [N/x] (η) λx.Mx = M if x 6∈ FV (M)

(β2) (Λσ.M)[A] = M [A/σ]

Now we can introduce marked abstractions as in the previous Section. We have then
again a set of pre­terms Λ2

∗ generated by the grammar

M ::= x | MM | λx.M | λ∗x.M | Λσ.M | M [A] (2)

and from these we define a set of marked second order terms obtained from unmarked
terms by means of unrestricted expansions.

Definition 4.1 (Marked terms)

Λ2
∗η = {M ∈ Λ2

∗ | ∃M ′ ∈ λ2βη.M ′η­expands in an unrestricted way toM}.

These are the terms of the marked typed calculus λ2βη∗ , that has the following
associated rewriting system:

(β∗)

{

(λ∗x.M)N
β∗ // M [N/x]

λ∗y.D[(λx.M)Y]
β∗ // λy.D[M [Y/x]], if y

η // // Y ∧ []
η // // D[]

(β) (λx:A.M)N
β // M [N/x]

if (λx:A.M)N is not in a context where (β∗) applies

(η) M
η // λ∗x:A.Mx if







x 6∈ FV (M)

M :A → B

M is not applied

(β2) (Λσ.M)[A]
β2

// M [A/X]

Again, we have split (β) into (β) and (β∗).
The one­step reduction relation between terms is defined as the least relation which

includes β, β∗, β
2, η and is closed for all the contexts except in the application case:

if M +3_____

_____ M ′, then MN +3_____

_____ M ′N except in the case M
η // M ′;

but, for the sake of simplicity, we will avoid using an additional symbol +3_____

_____ to
denote it.

6 With the proviso that the type variable σ is not free in the type of any free variable of the term M .

Notation 4.2 The transitive and the reflexive transitive closure of // are noted

+
// // and // // respectively. Furthermore, we denote

ηunr// the one­step unre­
stricted η­reduction.

The so obtained typed calculus still has the following property:

Property 4.3 (See 2.3)

(i) M ∈ Λ2
∗η ⇔ (∀C[] ∈ Λ2

∗η[].M ≡ C[λ∗x.N] ⇒ N ≡ D[N ′X]),

where N ′ ∈ Λ2
∗η ∧ FV (N ′) 6∋ x

η // // X ∧ []
η // // D[].

(ii) (M ∈ Λ2
∗η ∧ M // N) ⇒ N ∈ Λ2

∗η;

Proof. Property (i) can be shown by induction exactly as in the untyped case. As for
property (ii), we just need to focus on and β2 reduction, as for the other ones one can
proceed exactly as in 2.3. For this, it suffices to show that if M

ηunr// M ′ β2

// N ,
then there exists an M ′′ such that M

β2

// M ′′ ηunr// N . This is easy, because we
are using the unrestricted η expansion. Then, given any term M in Λ2

∗η , we have

M ′ ηunr// // M
β2

// M ′′ for some M ∈ Λ2
∗η , that can be turned into M ′ β2

// M ′′′

ηunr// // M ′′ for some M ′′′ ∈ Λ2
∗η , so M ′′ ∈ Λ2

∗η too. ✷

4.1 Properties of Reduction

Let γ be a notion of reduction; we denote by γ↓ an exhaustive γ­reduction path.

Remark 4.4 If Q
η // Q′, then Q[A]

η // Q′[A].

Proof. It is an easy induction on the structure of Q. ✷

Remark 4.5 The reductions β2 and η alone are confluent and strongly normalizing.

Proof. Folklore for β2, see [Kes93, Cub92, DCK94a, Min79] for η. ✷

Lemma 4.6 (Commutation of β2 wrt η) β2 commutes (in one step) with η .

Proof. We consider all possible critical pairs between η and β2 :

(Λσ.M)[A] λy : B.((Λσ.M)[A])y

M [A/σ] λy : B.(M [A/σ])y

η //

β2↓

��
β2

��

�

�

�

η //_ _ _ _

(Λσ.M)[A] (Λσ.λy : B.My)[A]

M [A/σ] λy : B[A/σ].(M [A/σ])y

η //

β2↓

��
β2

��

�

�

�

η //_ _ _

In these diagrams, the erasure of (Λσ.M)[A] is not an abstraction, because we can
apply η ; but the erasure of M [A/σ] is the same, so we can still apply an η , and close
the diagram in one step. Using these diagrams, the one step commutation property for
the general case is shown by induction on the structure of contextual reductions. ✷

Lemma 4.7 (Commutation of η with reduction to β2 n.f.)

M N

M ′ N ′

η //

β2↓
�� ��

β2↓
�� ��η //_ _ _

Proof. Consider the reduction sequence from M to the β2 normal form M ′ of M , and
the reduction M

η // N . We can apply repeatedly Lemma 4.6 to close the diagram,
obtaining

M N

M ′ N ′′

η //

β2↓
�� ��

β2

��

�

�

�

��η //_ _ _

hence

M N

M ′ N ′′

η //

β2↓
����

β2↓
��

�

�

�

��η //_ _ _

since η preserves β2 normal forms. Finally, being β2 normal forms unique, N ′ = N ′′

so M ′ η // N ′ as needed. ✷

Corollary 4.8 β2 ∪ η is confluent and strongly normalizing.

Proof. Using the previous lemma, and knowing that β2 and η separatley are CR and
SN, we obtain the result by Akama’s Lemma. ✷

Property 4.9 Relationship between:

(i) β∗ and β2 : M N

Q R

β∗ //

β2

��
β2

��

�

�

�

��β∗ //_ _ _

(ii) β∗ and η: M N

Q R

β∗ //

η

��

η
��

�

�

�

��

+

β∗ //_ _ _ //

Proof. (i) There are no non­trivial critical pairs between β∗ and β2 and since β2

is a rewriting rule without restrictions, it is a matter of a simple induction on the
derivation of the reductions to prove the commutation. (The fact that we need only
one β∗ step to close the diagram comes from the fact that β2 cannot duplicate
subterms.)

(ii) We use our knowledge of the structure of a marked abstraction to distinguish two
cases:

(a) M ≡ C[(λ∗x.D[PX])T], where x 6∈ FV (P), x
η // // X, []

η // // D[].
We have M

β∗ // C[D[PX[T/x]]] ≡ N , i.e.

Q
ηoo C[(λ∗x.D[PX])T] ≡ M

β∗ // N ≡ C[D[PX[T/x]]].
Now, four cases are possible:
1. Q ≡ C ′[(λ∗x.D[PX])T], with C[]

η // C ′[]. Then we have two cases:
– C ′[] ≡ C[λ∗y.[]y] and D[PX[T/x]] is an abstraction. This can hap­

pen only if D[] ≡ λ∗z.D′[]z, but then

Q
β∗ // C[λ∗y.(λ∗z.(D′[PX[T/x]])z)y]
β∗ // C[λ∗y.D′[PX[T/x]]y]

≡ C[D[PX[T/x]]];

– Q
β∗ // C ′[D[PX[T/x]]] ≡ R

ηoo C[D[PX[T/x]]], otherwise.

2. Q ≡ C[(λ∗x.D[P ′X])T], with P
η // P ′.

The expansion in P ′ cannot be at the root (P ′ is applied) and it can be
performed after the β∗, closing the diagram with R ≡ C[D[P ′X[T/x]]].

3. Q ≡ C[(λ∗x.D[PX ′])T], with X
η // X ′.

Two cases are possible here: if N
η // // C[D[PX ′[T/x]]], then we are

done. Otherwise, x ≡ X
η // λ∗t.xt ≡ X ′ and T has an initial abstrac­

tion. Hence we have the thesis observing that

Q ≡ C[(λ∗x.D[P (λ∗t.xt)])(λw.T ′)]
β∗ //

C[D[P (λ∗t.(λw.T ′)t)]]
β∗ //

C[D[P (λt.T ′[t/w])]] ≡ N.

The case where the λ binding the variable w is a marked one is similar.

4. Q ≡ C[(λ∗x.D[PX])T ′], with T
η // T ′.

Here again, if η is not allowed after the β∗ reduction, it is the case that we
can perform another β∗ step to close the diagram.

(b) M ≡ C[λ∗y.D[(λx.P)Y]], where y 6∈ FV (P), y
η // // Y, []

η // // D[].
We have :

Q
ηoo C[λ∗y.D[(λx.P)Y]] ≡ M

β∗ // N ≡ C[λy.D[P [Y/x]]].

Now, four cases are possible:
1. Q ≡ C ′[λ∗y.D[(λx.P)Y]], with C[]

η // C ′[].
HereQ

β∗ // R andN
η // R, whereR ≡ C ′[λy.D[P [Y/x]]], and this

case is settled.

2. Q ≡ C[λ∗y.D′[(λx.P)Y]], with D[]
η // D′[].

Two cases are possible here: if N
η // C[λy.D′[P [Y/x]]], the thesis

follows exactly as in case 1. Otherwise, we are in the case that

¬(N
η // C[λy.D′[P [Y/x]]]).

This may only happen when D ≡ [], D′ ≡ λ∗t.[]t and P has an external
abstraction. Hence we have the thesis observing that

Q ≡ C[λ∗y.λ∗t.(λx.(λw.P ′))Y t]
β∗ // C[λy.λ∗t.(λw.P ′)[Y/x]t]
β∗ // C[λy.λt.P ′[Y/x, t/w]] ≡ N.

The case where the λ binding the variable w is a marked one is similar.

3. Q ≡ C[λ∗y.D[(λx.P ′)Y]], with P
η // P ′.

Similar to case 2, with some small adjustments.

4. Q ≡ C[λ∗y.D[(λx.P)Y ′]], with Y
η // Y ′.

Two cases are possible here: if N
η // // C[λy.D[P [Y ′/x]]], the thesis

follows exactly as in case 1. Otherwise, we are in the case that

¬(N
η // // C[λy.D[P [Y ′/x]]]).

This may happen when y ≡ Y and some occurrences of x are P is in func­
tional position in applications. Let us then distinguish such occurrences,
denoting them by x̄; moreover, let us assume that P [Y ′/x, Y/x̄] denotes
the term obtained from P substituting Y ′ for occurrences of x which are
not in functional position in P , and Y for those in functional position.
Hence we have the thesis observing that

Q
β∗ // C[λy.D[P [Y ′/x]]]

β∗ // // C[λy.D[P [Y ′/x, Y/x̄]]]
ηoooo N.

✷

Property 4.10 β∗ preserves β2 and η­normal forms.

Proof. We show that if a reduct is not in β2 (η)­normal form, then the redex is not in
β2 (η)­normal form either.

It is not possible to create η expansion redexes by β­reduction in general, since
this reduction preserves the type of all subterms: imagine indeed we have a reduction
C[(λx:A.M)N]

β // C[M [N/x]], where the second term has an η­redex. If the redex
is inside N or M or C[], then it already exists in the first term. If it is M or C[], then
again it is already in the first term. If it is one of the new occurrences of N , then notice
that these occurrences have the same type as N in the first term, so N in the first term
is a redex too.

For β2 , we use the fact that the substitutions done by β∗ always involve terms that
are not of quantifed type, and hence cannot create β2 redexes.

Lemma 4.11 (Commutation of β2 and η n.f. wrt β∗) If M
β∗ // N , then at least

one step of β∗ can be performed on the β2 ∪ η­n.f. of M to reach the β2 ∪ η­n.f. of N .

Proof. Just notice that Properties 4.9and 4.10 fulfill the hypothesis of Lemma 3.2.(iii).
✷

Corollary 4.12 The reduction β2 ∪ η ∪ β∗ is strongly normalizing.

Proof. By the previous lemma, and the separate strong normalization of β2∪η reduction
and β∗ reduction. Notice that, since β∗ is not confluent, one cannot apply here directly
Akama’s Lemma. Indeed, one can prove that β2 ∪ η ∪ β∗ is confluent also, but it is not
necessary for the general result. ✷

Theorem 4.13 The reduction β2 ∪ η ∪ β ∪ β∗ is confluent and strongly normalizing.

Proof. Assume the existence of an infinite reduction in the typed λ ­calculus:

Π:M0
// M1

// · · ·

We associate to Π a sequence

Π ′:M ′
0 =

// M ′
1 =

// · · ·

in the untyped λ­calculus, such that, for all i, M ′
i = erasure(Mi). We observe that Π ′

is still infinite, since, by Corollary 4.12, Π must contain an infinite amount of β steps,
and

∀M,N ∈ Λ2
∗η. (M

β // N) ⇒ (erasure(M)
β // erasure(N)).

By Lemma 2.7.(iii), Π ′ can be transformed into a fair sequence Π ′′. Now, we know
that M ′

0 is strongly β­normalizing, since it is the erasure of a typed term. Hence Π ′′

contradicts Lemma 2.9, and this proves the strong normalization property.
Finally, the system is weakly confluent (for independent reasons, the diagrams in the
previous Lemmas show almost all relevant cases), so confluence follows by Newman’s
Lemma. ✷

Corollary 4.14 (Strong normalization and confluence for λ2βη)
The reduction β2 ∪ η ∪ β is confluent and strongly normalizing.

Proof. A simple consequence of the previous result, because of the direct correspon­
dence between reduction sequences in the marked and in the unmarked calculi. ✷

5 Conclusion
In this paper, not only we presented the very first proof that the expansive approach to
extensional equalities, most notably η , can be succesfully carried on to the second order
typed λ ­calculus, but we did it by means of extremely elementary methods, that do
not involve reducibility candidates, complex translations or difficult synactic analysis
of expansionary normal forms.

This elementarity can be clearly seen by considering the first order case: in the
absence of β2 , there is no need to single out a β∗ reduction as in the second order case,
and using the Lemma in Section 3 one can get a proof much simpler that all the known
proofs mentioned in the Introduction.

The key of the success is twofold: on one side, the marking that tracks the β­
redexes created because of expansions, and on the other side, the simple Lemma 3.2,
whose hypothesis are easy to verify (this last can have, in these authors’ opinion, wide
applicability in the theory of abstract term rewriting systems).

It is now important to turn towards several extensions of this result: is it possible to
handle in the same way extensionality for quantified types (η2)? What about combina­
tions with algebraic rewriting systems? What about the Top type? All these questions
are currently under active investigation.

Acknowledgements

We would like to thank Delia Kesner, for many discussions and her fundamental help
with all matters concerning expansion rules.

References
[Aka93] Yohji Akama. On Mints’ reductions for ccc­calculus. In Typed Lambda Calculus and

Applications, number 664 in LNCS, pages 1–12. Springer Verlag, 1993.

[Bar84] Henk Barendregt. The Lambda Calculus; Its syntax and Semantics (revised edition).
North Holland, 1984.

[CDC91] Pierre­Louis Curien and Roberto Di Cosmo. A confluent reduction system for the λ­
calculus with surjective pairing and terminal object. In Leach, Monien, and Artalejo,
editors, Intern. Conf. on Automata, Languages and Programming (ICALP), volume
510 of Lecture Notes in Computer Science, pages 291–302. Springer­Verlag, 1991.

[Cub92] Djordje Cubric. On free ccc. Distributed on the types mailing list, 1992.

[DCK93] Roberto Di Cosmo and Delia Kesner. Simulating expansions without expansions.
Technical Report LIENS­93­11/INRIA 1911, LIENS­DMI and INRIA, 1993.

[DCK94a] Roberto Di Cosmo and Delia Kesner. Modular properties of first order algebraic
rewriting systems, recursion and extensional lambda calculi. In Intern. Conf. on Au­
tomata, Languages and Programming (ICALP), Lecture Notes in Computer Science.
Springer­Verlag, 1994.

[DCK94b] Roberto Di Cosmo and Delia Kesner. Simulating expansions without expansions.
Mathematical Structures in Computer Science, 1994. A preliminary version is avail­
able as Technical Report LIENS­93­11/INRIA 1911.

[Dou93] Daniel J. Dougherty. Some lambda calculi with categorical sums and products. In
Proc. of the Fifth International Conference on Rewriting Techniques and Applications
(RTA), 1993.

[Ges] Alfons Geser. Relative termination. PhD thesis, Dissertation, Fakultät für Mathematik
und Informatik, Universität Passau, Germany, 1990. Also available as: Report 91­03,
Ulmer Informatik­Berichte, Universität Ulm, 1991.

[JG92] Colin Barry Jay and Neil Ghani. The virtues of eta­expansion. Technical Report
ECS­LFCS­92­243, LFCS, 1992. University of Edimburgh.

[Kes93] Delia Kesner. La définition de fonctions par cas à l’aide de motifs dans des langages
applicatifs. Thèse de doctorat, Université de Paris XI, Orsay, december 1993. To
appear.

[Min79] Gregory Mints. Teorija categorii i teoria dokazatelstv.I. Aktualnye problemy logiki i
metodologii nauky, pages 252–278, 1979.

[Nes89] Dan Nesmith. An application of Klop’s counterexample to a higher­order rewrite
system. Draft Paper, 1989.

