
Second order Isomorphic Types

A proof theoretic study on second order λ-calculus with surjective pairing and

terminal object∗

Roberto Di Cosmo

LIENS (CNRS) - DMI
Ecole Normale Supérieure

45, Rue d’Ulm
75005 Paris - France

E-mail: dicosmo@dmi.ens.fr

Dipartimento di Informatica
Corso Italia, 40
56100 Pisa -Italy

E-mail: dicosmo@dipisa.DI.UNIPI.IT

September 1, 1993

Abstract

We investigate invertible terms and isomorphic types in the second order lambda cal-
culus extended with surjective pairs and terminal (or Unit) type. These two topics are
closely related: on one side, the study of invertibility is a necessary tool for the charac-
terization of isomorphic types; on the other hand, we need the notion of isomorphic types
to study the typed invertible terms. The result of our investigation is twofold: we give a
constructive characterization of the invertible terms, extending previous work by Dezani
and Bruce-Longo [Dez76, BL85], and a decidable equational theory of the isomorphisms
of types which hold in all models of the calculus, which is a conservative extension to the
second order case of the results previously achieved for the case of first order typed calculi.
Via the Curry-Howard correspondence, this work also provides a decision procedure for
strong equivalence of formulae in second order intuitionistic positive propositional logic,
that is suitable to search equivalent proofs in automated deduction systems.

Keywords: Type Isomorphisms, Invertibility, System F, Polymorphism, Surjective
Pairing, Terminal Object, Equational Theories, λ-Calculus, Proof Search.

Contents

1 Introduction 2

2 Survey 6

2.1 Soundness . 6

2.2 Completeness . 8

3 Towards Completeness 10

3.1 Outline of the Section . 10

3.2 Reduction to a subclass of types . 11

3.3 Reduction to a subclass of terms . 12

∗This work has been partially supported by C.N.R. grant AI89.02010.12

1

4 Characterizing canonical terms: from λ2βηπ∗ to λ2βη 13

4.1 Outline of the Section . 13

4.2 Projection of invertibility over coordinates . 13

4.3 Reduction of coordinates to λ2βη . 17

4.3.1 Towards a better Lemma . 17

4.3.2 Relating coordinates to invertible terms in λ2βη 21

4.4 Syntactic Characterization of canonical bijections 22

5 Completeness for isomorphisms 23

5.1 (Definable) isomorphisms and uniform isomorphisms in every model 25

6 Decidability of the equational theory 26

7 Conclusions and Future Work 27

A The calculus λ2βηπ∗ and some basic notations 30

B Properties of n-tuples 32

C Technical Lemmas 35

D Miscellanea 41

1 Introduction

What is more simple, intuitive and well known than the notion of an isomorphism? In any
textbook in set theory, it appears at the very beginning: almost immediately after we are told
what a set is, we find the definition:

Two sets A and B are said to be isomorphic, noted A ∼= B, if and only if there
exist two functions f : A → B and g : B → A such that

∀x ∈ A, g(f(x)) = x and ∀y ∈ B, f(g(y)) = y

or maybe some equivalent one, that tells us about surjective and injective mappings.

Later on, if we ever open up a textbook on category theory, we find, always at the very
beginning, a very similar definition of isomorphic objects, and we are immediately told that
isomorphisms are so basic in category theory, that all notions introduced in the book will be
“up to isomorphisms”.

An arrow e : A → B is invertible in C if there is an arrow e′ : B → A in C with
e′e = 1A and ee′ = 1B (omissis . . .) Two objects are isomorphic in the category
C if there is an invertible arrow (an isomorphism) e : A → B; we write A ∼= B.
([ML71], pag. 19).

In the world of typed λ-calculus, the types play the role of sets, or objects, and typed terms
that of functions, or arrows, so we can talk about definable isomorphic types using the following
definition:

Definition 1.1 (Definable isomorphisms) Two types A and B are definably isomorphic (A
∼=d B) iff there exist λ-terms M : A → B and N :B → A such that M◦N = IB and N◦M =
IA, where IA and IB are λx : A.x and λx : B.x, the identities of type A and B. We also write
M : A∼=dB : N when we want to make the associated invertible terms explicit.

2

Note that, as usual, the inverse of a term M (if it exists) is unique (up to equality). Suppose
that types A and B are definably isomorphic and consistently substitute the common base types
by arbitrary types. Then the isomorphism still holds: just use the corresponding terms with
updated types. Borrowing terminology from [Sta83], we may say that the notion of definable
isomorphism is typically ambiguous.

There is also a semantic alternative to this syntactic notion of isomorphism of types: when we
provide models of typed λ-calculi, one usually interprets types as sets with additional properties,
and terms M : A → B as continuous functions from the interpretation of A to that of B. So we
can consider the following definition.

Definition 1.2 (Semantic isomorphisms) Two types A and B are isomorphic in a specific
model M if their interpretations are isomorphic in M in the traditional sense (i.e. there are
in the model invertible functions f and g between them), and then we write M⊢A ∼= B. Two
types will be semantically isomorphic, noted A ∼= B, if M⊢A ∼= B holds for every model M of
the calculus.

What is then the relation between the semantic notion of isomorphism of types holding in a
specific model of the calculus and the syntactic notion of definable isomorphism? In principle,
the class of the types isomorphic in every model is larger than that of definable isomorphic
types, since the functions f and g that we find in a model need not be definable by terms of the
calculus: the adjective definable in Definition 1.1 is really meant to stress the fact that A∼=dB is
an isomorphism that can be defined uniformly in the calculus, which is not necessarily always
the case. In all the cases considered up to now, including this paper, it turns out that one can
esily show that the definable isomorphisms are exactly the ones that hold in every model of the
calculus.

Theorem 1.3 Let A, B ∈ Tp. Then A ∼= B ⇐⇒ A∼=dB.

Proof. (⇐) trivial.
(⇒) Take the open term model of the calculus.

We can then speak simply of isomorphisms from now on.
The relevance of isomorphisms of types in specific models is very well known in denotational

semantics, where one of the major successes have been the ability to build models of typed
calculi that validate domain equations like D = A+ [D → D], i.e. where D and A+ [D → D]
are isomorphic: this result is a central tool in giving semantics to programming languages.

While a definable isomorphism M : A∼=dB : N does hold in every possible model M of
the calculus (the isomorphism in M being provided by the interpretations of M and N), an
isomorphism holding in a specific model usually do not hold in all the models of the typed
λ-calculus and is not definable.

There has been quite a deal of investigation carried on in the last decade concerning iso-
morphisms of types that do hold in every model of a given typed λ-calculus. Specifically, one is
interested in deciding if two given types are or not isomorphic in every model, and in finding a
theory of equality Th such that Th⊢A = B⇐⇒A ∼= B. We will summarize here the connections
of this topic to related ones from functional programming, proof theory and category theory,
that also provide the basic motivations for this work.

Before carrying on we suggest the reader have a quick look through Appendix A, where he
finds a formal definition of the typed calculi we will be dealing with in this paper, as well as
some useful notation.

Functional Programming

Various versions of typed λ-calculi are the core of many strongly typed functional languages
of today, like Haskell, Miranda, the family of the ML languages and several others. In the
community that uses these systems there is a growing need of formal tools to retrieve functions

3

in large functional libraries in a smarter way than just scanning an alphabetical list. It turns
out that types provide, in this framework, the right search key, when isomorphic types are
identified [RT91, Rit91, Rit90, Mor91, DC92b]. In many cases, the search systems based on
this idea just use the theory of isomorphisms for some version of typed λ-calculus, typically
λ1βηπ∗ (but see [DC92a] for further discussion).

Category Theory

Since in category theory most of the concepts are defined up to isomorphisms, it is particularly
important to be able to decide if two objects built in different ways are actually the “same”
object or not, i.e. if they are isomorphic. A typical example is the case of the categorical
product, that is always commutative:

A×B ∼= B ×A.

For example, there is work dedicated to the characterization of the isomorphisms holding in all
the cartesian closed categories, or CCC’s [Sol83].

Now, categorical tools are increasingly used to give semantics to programming languages,
especially to functional ones. This is also due to a close connection between some classes of
categories and typed λ-calculus: it is by now a very well known fact that the models of λ1βηπ∗
are exactly the cartesian closed categories, or, equivalently, that λ1βηπ∗ is the internal language
of CCC’s (see [Min77, LS86, AL91]).

Due to this connection, this categorical problem coincides with the characterization of iso-
morphisms in typed lambda calculus, for the case of λ1βηπ∗.

Proof Theory

Since the seminal work by Howard (finally published in [How80], but widely circulated long
before), the so-called Curry-Howard isomorphism has been one of the central themes in the
theory of functional programming, as it is a bridge that allows to carry known results back
and forth from one field to the other. It essentially says that typed λ-calculus can be seen
as a system of notation for proofs in Intuitionistic Logic (obviously, different logical systems
correspond to different calculi), in such a way that a given proposition A can be proved in the
logical system L if and only if one can find a typed term M : A in the corresponding calculus.

There is an exact correspondence, for example, between λ1βηπ∗ and the Intuitionistic Posi-
tive Calculus over the connectives True,∧,⇒, or IPC(True,∧,⇒), when one reads T, × , →
respectively as True,∧,⇒.

Isomorphic types then come to correspond to propositions that are strongly equivalent, in
the terminology of [AB91, Mar91]:

Definition 1.4 (Strongly equivalent propositions) Two propositions A and B are strongly
equivalent if

• A⇐⇒B (i.e. there exist derivations f:A⇒B and g:A⇐B)

• the composition g◦f of f:A⇒B and g:B⇒A by (CUT)

f

A⇒B

g

B⇒A

(CUT)

A⊢A

reduces, after proof normalization to the Axiom A⊢A, and viceversa.

4

The proof normalization obviously includes the elimination of the cut rule, but can also
involve other structural equivalences of proof, like the equivalent of η and SP of our calculus,
that amount to simplification to atomic assumptions.

The problem here is to characterize strong equivalence. Two strongly equivalent formulae
A and B have the same constructive content, so that it is possible to immediately turn a proof
of A into a proof of B and viceversa. This property can be clearly used to look in a library of
theorems for the proof of some formula (type) in a proof system like LF, CoC, NuPRL or the
like.

The theories of isomorphisms

As we have briefly seen here, the problems of characterizing isomorphic types, isomorphic
objects and strongly equivalent propositions is really just one problem, as the solution to one of
these is the solution to all the others. It is time for a summary of the known result: we present
in Table 1 the known theories of isomorphic types for typed λ-calculi, using a notation that is
consistent with the names of the calculi.

(swap) A → (B → C) = B → (A → C)
}

Th1

1. A×B = B ×A

2. A× (B × C) = (A×B)× C

3. (A×B) → C = A → (B → C)

4. A → (B × C) = (A → B)× (A → C)

5. A×T = A

6. A → T = T

7. T → A = A







Th1
×T

8. ∀X.∀Y.A = ∀Y.∀X.A

9. ∀X.A = ∀Y.A[Y/X] (X free for Y in A, Y 6∈ FTV (A))

10. ∀X.(A → B) = A → ∀X.B (X 6∈ FTV (A))







+ swap = Th2

11. ∀X.A×B = ∀X.A× ∀X.B

12. ∀X.T = T







Th2
×T

A, B, C can be arbitrary types and T is a constant for the unit type.
Notice that the axiom swap of Th1 is provable in Th1

×T by axioms 1 and 3.

Table 1: The theories of valid isomorphisms for explicitly typed languages

So, for example, Th1
×T characterizes the isomorphic types for λ1βηπ∗: the number tells us

that it is a first order typed calculus, while the subscripts tell us that it has surjective pairing
and unit type. Table 2 gives an overview of the connections between calculi, categories, proof
systems and the associated theories, providing also bibliographical pointers to the published
proofs of completeness of the theories.

5

λ- Calculus Category Logical System Theory Authors

λ1βη IPC(⇒) Th1 ([Mar72])1, [BL85]

λ1βηπ∗ CCC IPC(True,∧,⇒) Th1
×T [Sol83], [BDCL92]

λ2βη IPC(∀,⇒) Th2 [BL85]

λ2βηπ∗ IPC(∀,True,∧,⇒) Th2
×T this paper

Table 2: Isomorphisms of types, objects and formulae

In this paper, we contribute to this work by providing the characterization of isomorphic
types in second order λ-calculus extended with products and a unit type (or λ2βηπ∗, see A).
The theory of isomorphic types for this calculus, Th2

×T in Table 1, subsumes all the previously
known ones (the proofs are also fairly more complex than the previous ones).

2 Survey

In this section we will survey the proof techniques that have been used in the literature to show
the soundness and completeness of the various theories of isomorphisms that we presented
in the introduction. Let’s start by making formally clear what we mean by soundness and
completeness here.

Definition 2.1 (Soundness, completeness) We say that an equational theory Th is a sound
theory of isomorphisms for a calculus (resp. class of categories, logical system) if

∀A,B Th⊢A = B ⇒ A ∼= B.

Respectively, an equational theory Th is a complete theory of isomorphisms for a calculus (resp.
class of categories, logical system) if

A ∼= B ⇒ ∀A,B Th⊢A = B.

As can be expected, the soundness property is quite easy to show, and does not present
any real technical interest, while the completeness is a much harder property, and there are
interestingly different techniques that can be used to establish it.

2.1 Soundness

For each of the different theories, it is possible to prove soundness either in a category theoretic
way (the axioms of Th1

×T are valid isomorphisms in every CCC: it is an easy exercise in

1This number theoretic study did not address explicitly the problem of isomorphic types, but it is nevertheless
related to it, as we explain in Section 2.2.

6

elementary category theory), or by proof theoretic techniques, but surely the easiest and more
uniform way to soundness is by providing invertible terms of the corresponding typed calculi.
The following proof actually provides us with soundness not only for Th2

×T , but also for all
the other theories seen up to now: it suffices to see the corresponding invertible terms as
embedded in the appropriate calculus. For example, λx : A → (B → C).λy : B.λz : A.xzy
proves A → (B → C) = B → (A → C) in λ1βη if seen as a term of λ1βη, or in λ1βηπ∗ if seen
as a term of λ1βηπ∗ and so on.

Theorem 2.2 [Main Theorem, soundness] Th2
×T ⊢A = B ⇒ A∼= B.

Proof. By Theorem 1.3, it is enough to show that Th2
×T ⊢A = B ⇒ A ∼=d B.

For this purpose, we give the terms associated to each axiom and rule. As Th2
×T is a theory

of equality, one has first to observe that the usual axioms and inference rules yield and preserve
provable isomorphisms:

• λx:A.x proves A = A;

• if M, with inverse N, proves A = B , then N proves B = A;

• if an invertible M proves A = B and an invertible N proves B = C, then the term N◦M
= λx:A.N (M x), that is clearly invertible, proves A = C ;

• if an invertible term M proves A = B and an invertible term N proves C = D, then the
invertible term λx:A× C.〈M(p1x), N(p2x)〉 proves A× C = B ×D;

• if an invertible M proves A = B and an invertible N proves C = D, then λy:A → C.λx:B.N
(y (M−1 x)), where M−1 is the inverse of M, proves A → C = B → D and it is invertible
(take λy:B → D.λx:A.N−1 (y (M x))).

• if an invertible M proves A = B, then λx:∀X.A.λX.M(x[X]) proves ∀X.A = ∀X.B and
it is invertible (take λy:∀X.B.λX.M−1(y[X])).

We next check the proper axioms:

1. A → (B → C) = B → (A → C) is proved by λx:A → (B → C).λy:B.λz:A.xzy;

2. A×B = B ×A is proved by λx:A×B.〈p2x, p1x〉;

3. A× (B × C) = (A×B)×C is proved by λx: A× (B × C).〈〈p1x, p1(p2x)〉, p2(p2x)〉, that
is invertible;

4. (A×B) → C = A → (B → C)

is proved by λz:(A×B) → C.λx:A.λy:B.z〈x, y〉

with inverse λz:A → (B → C).λx:A×B.z (p1x) (p2x);

5. A → (B × C) = (A → B)× (A → C)

is proved by λz:A → (B × C).〈λx : A.(p1(zx)), λx : A.(p2(zx))〉

with inverse λz:(A → B)× (A → C).λx:A.〈(p1z)x, (p2z)x〉;

6. ∀X.∀Y.A = ∀Y.∀X.A

is proved by λx:(∀X.∀Y.A).λY.λX.((x[X])[Y])

with inverse λy:(∀Y.∀X.A).λX.λY.((y[Y])[X]);

7. ∀X.A = ∀Y.A[Y/X]

is proved by λx:(∀X.A).λY.(x[Y]),

with inverse λy:(∀Y.A[Y/X]).λX.(y[X]),

provided that X is free for Y in A and Y is not free in A;

7

8. ∀X.(A → B) = A → ∀X.B

is proved by λx:(∀X.(A → B)).λy:A.λX.(x[X])y,

with inverse λz:(A → ∀X.B).λX.λw : A.(zw)[X], provided that X is not free in A;

9. ∀X.A×B = ∀X.A× ∀X.B

is proved by λx:(∀X.A×B).〈λX.(p1(x[X])), λX.(p2(x[X]))〉,

with inverse λy:(∀X.A× ∀X.B).λX.〈(p1y)[X], (p2y)[X]〉;

10. A×T = A is proved by λx.p1x with inverse λx:A.〈x, ∗〉 (to check invertibility, notice that
in λw:A×T.〈p1w, ∗〉 we have ∗ = p2w by equality (top));

11. A → T = T

is proved by rep((A → T) → T) = λx:(A → T).∗,

with inverse rep(T → (A → T)) = λy:T.λx:A.∗;

12. T → A = A is proved by λx:(T → A).x∗ with inverse λy:A.λw:T.y;

13. ∀X.T = T is proved by λx:∀X.T.∗ with inverse λy:T.λX.∗.

Here for the difficult side of the equality, notice that if M:∀X.T then M [X] = ∗, by
equality (top), so that, for X a fresh type variable, λX.M [X] = λX.∗ by rule ξ and finally
by η we get M = λX.M [X] = λX.∗. Hence

(λy : T.λX.∗)◦(λx : ∀X.T.∗) = λw : ∀X.T.(λy : T.λX.∗)((λx : ∀X.T.∗)w)

= λw : ∀X.T.(λy : T.λX.∗)∗

= λw : ∀X.T.λX.∗

= λw : ∀X.T.w

= I∀X.T

2.2 Completeness

There are essentially two classes of methods that can be used to provide a proof of completeness:
semantic proofs or syntactic proofs.

Semantic proofs

Historically, the semantic method was the first to be used, in the case of Th1
×T , in [Sol83].

In this work, the focus was on the Cartesian Closed Categories, and the proof is given by
providing a specific CCC where only the isomorphisms of Th1

×T hold. Clearly then, since the
isomorphisms of Th1

×T hold in every CCC, and there is one CCC where no other isomorphism
holds, completeness follows.

The specific CCC used in [Sol83] is the category of finite sets, that corresponds to the
natural numbers equipped with product and exponentiation. Isomorphisms of two types in this
category corresponds to equality of the numeric expressions obtained by reading a× b as the
multiplication ab, a → b as exponentiation ba and T as the number 1. For example, the axiom
a× b → c = a → b → b of Th1

×T is the valid numeric equation cab = cb
a
.

For such structure, there had been some interest before, as it was involved in a number
theoretic problem known as Tarski’s High School Algebra Problem: the axioms of Th1

×T are
all valid arithmetic equations, and correspond to the usual equalities we are taught in high
school about product and exponentiation; Tarski asked if these equations (and their equational

8

consequences) are also the only valid ones [DT69, Hen77]. Martin, one of Tarski’s students,
provided a positive answer for the exponential and the multiplicative exponential fragments
without the constant 1 in [Mar72], by means of number theoretic arguments that are essentially
the same used later in [Sol83].

The story of this number theoretic problem and of some of its variations is very interesting
and active still today (see for example [Gur90, Gur85, Mac81, HR84]), but the connection
with the problem of isomorphisms seems to be useful only in the specific case of Th1

×T : up
to now there is no way (to the author’s best knowledge) to extend this connection to second
order calculi, as quantification over types does not seem to find a useful correspondent on the
arithmetic side.

Even dropping the analogy with number theory, it seems hard to find for the second order
case a model with the same properties as the category of finite sets. We need a non degen-
erate model of the calculus, and we already know that it cannot be a simple set theoretic
model [Rey84]. Worse, the familiar models (like PER) validate isomorphisms like ∀X.A = A,
that does not hold in the term model2.

Syntactic proofs

In [BL85] we find both the first syntactic approach to the proof of completeness of theories of
isomorphisms, and the first result concerning second order calculi, as the paper deals with Th1

and Th2. The proof techniques used here are all borrowed from the λ-calculus tradition, as the
motivation comes from λ-calculus, too. Instead of looking for a specific model satisfying just
Th1, Bruce and Longo use a syntactic characterization of the invertible terms of λ1βη, which
is an easy consequence of a classical result by Dezani for untyped λ-calculus.

Theorem 2.3 (Invertible terms of λ-calculus)
Let M be an untyped term possessing normal form. Then M is invertible iff M is finite hered-
itary permutation (f.h.p.).

Finite hereditary permutations are defined inductively as follows.

Definition 2.4 (Finite Hereditary Permutations, f.h.p.)
An untyped λ term M is a finite hereditary permutation iff

• M = λx.x, or

• M = λz.λv1 . . . vn.zP1 . . . Pn and there exists a permutation σ:n → n, such that λxi.Pσ(i)

is a finite hereditary permutation.

These terms are all typable and hence are exactly the invertible terms of λ1βη. Given this
simple syntactic characterization, it is possible to proceed inductively on the structure of the
terms to prove completeness of the axiom swap for ∼=d in the calculus λ1βη(hence for ∼=, due
to Theorem 1.3), as is done in [BL85].

This technique, unlike the semantic one, extends smoothly to the second order case, the
only real difficulty being the characterization of invertible terms. In the case of λ2βη, this is
done easily in [BL85], always using Dezani’s result, and one gets that the invertible terms are
the 2-f.h.p.’s defined as follows.

Definition 2.5 (Second order Finite Hereditary Permutations, 2-f.h.p.)
A second order term M of λ2βη is a second order finite hereditary permutation (2-f.h.p.) iff

• M = λx.x, or

• M = λz.λv1 . . . vn.zP1 . . . Pn and there exists a permutation σ:n → n, such that

2The natural candidates to prove this isomorphism, namely λz:∀X.A.z[X] and λz:A.λX.z, when composed
reduce to λx:∀X.A.λX.x[Y], and not to the identity.

9

if λvi = λxi : C then λxi : C.Pσ(i) is a 2-f.h.p.

if λvi = λXi then Pσ(i) is Xi.

Theorem 2.6 . 2-f.h.p.’s are all and the only invertible terms of λ2βη.

Proof. By interpretation in the untyped calculus. See [BL85], Lemma 2.4 and Theorem 2.5.

This can be used to show completeness of Th2 for isomorphisms of λ2βη.
In the case of the calculi with constants, like λ1βηπ∗ or λ2βηπ∗, though, such a simple

syntactic characterization is not already available: actually in [BDCL92] only a subset of in-
vertible terms is characterized, that is sufficient for the purposes of the completeness proof for
Th1

×T . The guideline for the proof is to try to deal with the complexities which arise from
the different term constructors one at a time, in order to achieve a sort of factorization of the
invertibility problem for the full calculus into the invertibility problem for a more manageable
subclass of terms. The theory suggests that the type T is redundant and that the products in a
type can be always pulled out of the other type constructors, while still remaining in the class
of isomorphic types. So the completeness proof is not as direct as it was in [BL85]: it needs
some intermediate steps, very similar to those we will see here, but still stays rather simple, as
Dezani’s Theorem can handle a relevant part of the complexity of the proof.

The second order case with constants of Th2
×T treated in this paper is significantly more

complex both than the pure second order case and than the first order case with constants:
here too we can give a characterization3 for a subclass of the invertible terms that is suitable
for the purpose of proving the completeness of Th2

×T , but the combination of the two exten-
sions practically forces us to rebuild almost all the complex combinatorial proof of the original
Theorem by Dezani, which can no longer be used simply as a tool out of the box.

The rest of this paper is dedicated to the proof of the other implication of the Main Theorem,
that is to say the completeness of Th2

×T , and to the decidability of Th2
×T .

3 Towards Completeness

As we have seen in the Survey, the only proof technique that we can hope to apply to the case
of λ2βηπ∗ is the one based on the syntactic characterization of invertible terms. Unfortunately,
no such characterization is known for λ2βηπ∗, so we need to reduce our original problem to
a simpler one. In this section we will show that we can actually restrict our attention to
isomorphisms of a special form, and to a particular class of invertible terms, for which we will
later be able to provide a syntactic characterization.

3.1 Outline of the Section

• Reduction to a subclass of types. We identify two relevant classes of types: types
not containing products or T, that we call simple types and products of simple types,
that we call stratified types. We show that Th2

×T is complete for isomorphisms of types if
and only if it is complete for isomorphisms between stratified types.

• Reduction to a subclass of terms. We show that any isomorphism between stratified
types can be proved by invertible terms whose free variables have simple types (we call
them canonical invertible terms).

• Overall achievement of this section: we reduce the problem of completeness of Th2
×T

to the problem of completeness for isomorphisms between stratified types proved by canon-
ical invertible terms, and for these we will be able to provide a syntactic characterization.

3For a generic invertible term we can give a procedure to verify if it is invertible and in that case we also
know how to build its inverse, but we miss an explicit syntactic characterization.

10

3.2 Reduction to a subclass of types

We introduce here a type rewriting system, suggested by the form of the axioms of Th2
×T ,

and the corresponding type normal form. We will then show that two types are isomorphic if
and only if their normal forms are. It is to be noticed that the normal form is essentially the
usual conjunctive normal form for (second order) propositional calculus. The axioms of Th2

×T

suggest the following rewrite system R for types (essentially Th2
×T without commutativity):

Definition 3.1 (Type rewriting R) Let “>” be the transitive and substitutive type-reduction
relation generated by:

1. A× (B × C) > (A×B)× C 5. A×T > A

2. (A×B) → C > A → (B → C) 6. T×A > A

3. A → (B × C) > (A → B)× (A → C) 7. A → T > T

4. ∀X.A×B > ∀X.A× ∀X.B 8. T → A > A

9. ∀X.T > T.

The system R yields an obvious notion of normal form for types (type-n.f.), i.e. when no
type reduction is applicable. Note that 5, 6, 8, eliminate the T’s, while 3 and 4 bring the ×
outside. It is then easy to observe that each type-n.f. is T or has the structure S1 × . . .× Sn

where each Si does not contain T or × . We write nf(S) for the normal form of S (there is
exactly one, see 3.2), and say that a normal form is non-trivial if it is not T.

Proposition 3.2 Each type has a unique type normal form in R.

Proof. Using the REVE system [Les83, Les86], this is straightforward, but in Appendix D
we provide also a direct proof.

Types in normal form have a very simple shape, that can be described as follows:

Definition 3.3 (simple types, stratified types) A type A is simple when there is no oc-
currence of products or T’s in it. A type is stratified when it is either T or a finite product
A1 × . . .×An, where the Ai are simple types.

Remark 3.4 A type normal form is stratified. Furthermore, when A ∼=d B, either nf(A) and
nf(B) are both T, or they are both not T.

Indeed, a non trivial type-n.f. cannot be isomorphic to T, as is easily seen by taking a
non-trivial model, so the case (A1 × . . .×An) ∼=d T is not possible. Anyway, since all the
work done in this section is purely syntactic, we give also an easy syntactic proof of this fact
in Proposition D.1 in Appendix D. Now, R ⊢A > B implies Th2

×T ⊢A = B, and using the
soundness of Th2

×T proved in 2.2, we get that any reduction R ⊢ A > B is witnessed (or proved,
in the types-as-propositions analogy) by an invertible term M:A → B. Moreover, one clearly
has:

Corollary 3.5 Th2
×T ⊢ A = nf(A) and, thus, Th2

×T ⊢ A = B ⇐⇒ Th2
×T ⊢nf(A) = nf(B)

The same holds for ∼=d :

Proposition 3.6 A ∼=d B ⇐⇒ nf(A) ∼=d nf(B)

Proof. Recall that A ∼=d B iff there is an invertible term M :A → B, and nf(A) ∼=d nf(B) iff
there is an invertible term M’ : nf(A) → nf(B). So it suffices to show that it is possible to turn
invertible terms of type A → B into invertible terms of type nf(A) → nf(B), and vice-versa.
Given types A and B, assume that F:A → nf(A) and G:B → nf(B) prove the reductions to
type-n.f. Then M:A → B is invertible ⇐⇒ there exists an invertible term M’:nf(A) → nf(B),
such that M = G−1◦M’◦F.

(⇐) Set M−1 ≡ (G−1◦M ′◦F)
−1

≡ F−1◦M ′−1◦G, then M is invertible.

(⇒) Just set M’ = G◦M◦F−1. Then M ′−1 ≡ F◦M−1◦G−1 and M’ is invertible.

11

The diagram in Figure 1 shows what’s going on in the Proposition.

✲

✲

❄

✻✻

❄
A1 × . . .×Am

B1 × . . .×Bn

M’ = G◦M◦F−1M

A

B

F

G

Figure 1: Reduction to a subclass of isomorphic types.

Hence we get the main result in this subsection, that allows us to restrict the analysis to
isomorphisms between non-trivial stratified types.

Proposition 3.7 Th2
×T is complete for ∼=d iff Th2

×T is complete for ∼=d restricted to
stratified types different from (and hence not containing) T.

Proof. (⇐) If A ∼=d B, then by 3.4 either nf(A) ≡ T ≡ nf(B), or nf(A) ≡ (A1 × . . .×An)
∼=d (B1× . . .×Bm) ≡ nf(B), where no occurrence of T can appear in either type. In both cases
the result follows by

Th2
×T ⊢ A = B ⇐⇒ Th2

×T ⊢ nf(A) = nf(B)⇐⇒ nf(A)∼=dnf(B)⇐⇒ A∼=dB

The first and third equivalence are just Corollary 3.5 and Proposition 3.6.
The second equivalence is trivially satisfied in the case nf(A) ≡ T ≡ nf(B), while is the

hypothesis of completeness for stratified types different from T otherwise.
(⇒) By definition, as stratified types are types.

Thus we have shown that the characterization of definable isomorphisms between arbitrary
types can be reduced to the characterization of definable isomorphisms in the class of stratified
types different from T.

3.3 Reduction to a subclass of terms

There is another simplification we can perform, though. Since equality on lambda terms is
substitutive, it is easy to show that we can consider only invertible terms with free variables of
simple types.

Proposition 3.8 Let M:A → B be an invertible term with inverse N:B → A. Then there exist
invertible terms M’:A → B and N’:B → A whose free variables have simple types.

Proof. For every free variable x:A it is easy to build a term tx:A whose free variables have
simple types. If A is simple, then tx=x. Otherwise, consider the type normal form nf(A) of A,
and let GA:nf(A) → A be a (closed) invertible term proving the isomorphism A ∼=d nf(A) (as
in 3.6). If nf(A) = A1 × . . .×An, with n > 1, then we can choose fresh variables z1:A1, . . .
zn:An and put tx = GA〈z1, , . . . zn〉:A, since the Ai are simple and GA is closed. If nf(A) = A1

6= T we can choose a fresh variable z1:A1 and put tx = (GA z1), since A1 is simple and GA is
closed. Otherwise, nf(A) = T and we can put tx = (GA∗), that is closed. Now we can show

that M[
−→
tx /

−→x] and N[
−→
tx /

−→x], where −→x are all the free variables in M and N, are the required

invertible terms M’ and N’. Indeed, the free variables in M[
−→
tx /

−→x] and N[
−→
tx /

−→x] have simple

12

types as they are included in the free variables of the tx’s. Furthermore, by substitutivity of

the equality, N◦M = IA implies (N◦M)[
−→
tx /

−→x] = IA[
−→
tx /

−→x], that is (N[
−→
tx /

−→x]◦M[
−→
tx /

−→x]) =

IA. Similarly, (M[
−→
tx /

−→x]◦N[
−→
tx /

−→x]) = IB.

Proposition 3.7 and 3.8 allow, without loss of generality, the restriction of the analysis to
invertible terms between stratified types (different from T). By proposition 3.8, we can assume
that the free variables in these invertible terms have simple types only. We will call these terms
canonical bijections, or simply canonical terms.

Definition 3.9 (canonical bijections) A term is a canonical bijection if it is an invertible
term mapping stratified types (different from T) into stratified types (different from T) and if
all its free variables have simple types.

The next step will be to find a syntactic characterization for them.

4 Characterizing canonical terms: from λ2βηπ∗ to λ2βη

In this section we follow a very natural intuition: if two stratified types A1 × . . .×Am and
B1 × . . .×Bn are isomorphic, we expect them to have the same number of components (i.e.
n = m). Furthermore, we expect that such an isomorphism can be decomposed into an n-tuple
of independent, simpler isomorphisms between the different components of the stratified types.
These componentwise isomorphisms should not involve products or T, and be invertible terms
of λ2βη, rather then of λ2βηπ∗. Essentially, this allows us to express canonical bijections of
λ2βηπ∗ in terms of invertible terms of λ2βη, for which a syntactic characterization is known
from [BL85].

4.1 Outline of the Section

We define a notion of coordinates for a canonical bijection. Such coordinates will be the body
of the seeked componentwise isomorphisms, and will allow us to give a syntactic characterization
of canonical bijections.

• Projection of invertibility over coordinates. We show that the invertibility prop-
erty of a canonical bijection determines a similar property, that we call distributed
invertibility, for its set of coordinates.

• Reduction of coordinates to λ2βη. Using in an essential way this property of cor-
dinates of a canonical bijection, we can show with a difficult syntactic proof that such
coordinates are already terms of λ2βη. This proof is intimately related to the method em-
ployed in the original characterization of invertible terms in pure lambda calculus [Dez76].

• Syntactic Characterization of canonical bijections. Once we know that coordinates
live in λ2βη, we can use the syntactic characterization of invertible terms in λ2βη provided
in [BL85] to obtain a simple syntactic characterization of canonical bijections.

• Overall achievement of this section: We explicitly describe the syntactic shape of
a canonical bijection: this result will allow to show completeness of Th2

×T by structural
induction on the canonical bijexctions, and also provides us with a decidable test of
invertibility for all terms in λ2βηπ∗.

4.2 Projection of invertibility over coordinates

A canonical bijection maps a finite product A1 × . . .×Am of non-product types into another
finite product B1 × . . .×Bn of non-product types. It is natural to study the behaviour of the
bijection on each one of the components Bi of the target type separately. To do so, we introduce
a notion of coordinate as follows:

13

Definition 4.1 (coordinates) For a canonical bijection M:A1 × . . .×Am → B1 × . . .×Bn,
where A1×. . .×Am and B1×. . .×Bn are stratified types, define the collection of its coordinates

as the sequence
−→
M = [M1, . . . ,Mn], where Mi is n.f.(pi(M〈x1, . . . , xm〉)) and x1, . . . ,xm are

fresh variables.

Remark 4.2 The type of a coordinate and of the free variables of a coordinate do not contain
products or T types.

A canonical bijection can be represented by its coordinates.

Proposition 4.3 Every canonical bijection M:A1 × . . .×Am → B1 × . . .×Bn can be written
in terms of its coordinates Mi’s as λz.(λx1 . . . xm.(〈M1, . . . ,Mn〉))(p1z) . . . (pmz).

Proof. Due to surjective pairing, we have

M〈x1, . . . , xm〉 =β2η2π∗ 〈p1(M〈x1, . . . , xm〉), . . . , pn(M〈x1, . . . , xm〉)〉

=β2η2π∗ 〈n.f.(p1(M〈x1, . . . , xm〉)), . . . , n.f.(pn(M〈x1, . . . , xm〉))〉

=β2η2π∗ 〈M1, . . . ,Mn〉

Notice that, by standard currying, M=β2η2π∗ λz.(λx1 . . . xm.(M〈x1, . . . , xm〉))(p1z) . . . (pmz),
so we finally get M = λz.(λx1 . . . xm.(〈M1, . . . ,Mn〉))(p1z) . . . (pmz).

The property of invertibility of the original bijection is reflected in a similar property for
the collection of its coordinates (point 1 of the following Proposition).

Proposition 4.4 (Properties of Coordinates)

Let M:A1 × . . .×Am → B1 × . . .×Bn and N:B1 × . . .×Bn → A1 × . . .×Am be canonical

bijections in λ2βηπ∗. Then there exist coordinates
−→
N = [N1, . . . ,Nm] and

−→
M = [M1, . . . ,Mn]

with −→x = {x1 : A1, . . . , xm : Am} ⊆ FV (
−→
M) and −→y = {y1 : B1, . . . , yn : Bn} ⊆ FV (

−→
N) s.t.

no xi is free in any Nj , no yi is free in any Mj and

1. Mi[
−→
N /−→x]=β2η2π∗ yi and Ni[

−→
M/−→y]=β2η2π∗ xj

2. FV (
−→
M)⊢ Mi : Bi and FV (

−→
N)⊢ Nj : Aj

3. no type expression occurring in FV (
−→
M)∪FV (

−→
N) contains occurrences of × or T.

Proof. The condition about the variables (−→x and −→y) is trivially satisfied by a suitable
choice of the new xi’s and yi’s in the coordinates.

(1) By the previous Proposition 4.3 we have

M=β2η2π∗ λz.(λx1 . . . xm.M ′)(p1z) . . . (pmz), N=β2η2π∗ λz.(λy1 . . . yn.N
′)(p1z) . . . (pnz)

14

whereM ′ : B1 × . . .×Bn =β2η2π∗ 〈M1, . . . ,Mn〉 andN ′ : A1 × . . .×Am =β2η2π∗ 〈N1, . . . , Nm〉,
so we have the following equalities:

M◦N =β2η2π∗ λw.(M(Nw))
=β2η2π∗ λw.(λz.(λx1 . . . xm.M ′)(p1z) . . . (pmz))(Nw)
=β2η2π∗ λw.(λx1 . . . xm.M ′)(p1(Nw)) . . . (pm(Nw))

=β2η2π∗ λw.M ′[p1(Nw) . . . pm(Nw)/x1 . . . xm] ≡ λw.M ′[
−−−−→
pi(Nw)/−→x]

=β2η2π∗ λw.〈p1M
′, . . . , pnM

′〉[
−−−−→
pi(Nw)/−→x]

=β2η2π∗ λw.〈M1[
−−−−→
pi(Nw)/−→x], . . . ,Mn[

−−−−→
pi(Nw)/−→x]〉 as Mi≡ n.f.(piM

′)

=β2η2π∗ λw.〈M1[
−−−−−−−−−→
(Ni[

−−→pjw/
−→y])/−→x], . . . ,Mn[

−−−−−−−−−→
(Ni[

−−→pjw/
−→y])/−→x]〉

as Nw =β2η2π∗ (λz.(λy1 . . . yn.N
′)(p1z) . . . (pnz))w

=β2η2π∗ (λy1 . . . yn.N
′)(p1w) . . . (pnw)

=β2η2π∗ N ′[−−→pjw/
−→y]

=β2η2π∗ 〈p1N
′, . . . , pmN ′〉[−−→pjw/

−→y]

=β2η2π∗ 〈p1N
′[−−→pjw/

−→y], . . . , pmN ′[−−→pjw/
−→y]〉

=β2η2π∗ 〈N1[
−−→pjw/

−→y], . . . , Nm[−−→pjw/
−→y]〉

Where for substitutions like [p1(Nw), . . . , pm(Nw)/x1, . . . , xm] we have used the compact

notation [
−−−−→
pi(Nw)/−→x].

But we also have that

M◦N =β2η2π∗ λw.w (by hypothesis)
=β2η2π∗ λw.〈p1w, . . . , pnw〉 (by Surjective Pairing)

By transitivity, then

λw.〈p1w, . . . , pnw〉=β2η2π∗ λw.〈N1[
−−→pjw/

−→y], . . . , Nm[−−→pjw/
−→y]〉

From this equality it is easy to derive (by applications and projections) thatMk[
−−−−−−−−−→
(Ni[

−−→pjw/
−→y])/−→x]=β2η2π∗ pkw

and then the Church-Rosser property of the rewrite system for our calculus gives us

Mk[
−−−−−−−−−→
(Ni[

−−→pjw/
−→y])/−→x]

β2η2π∗
−→ pkw

By substitution properties

Mk[
−−−−−−−−−→
(Ni[

−−→pjw/
−→y])/−→x]≡ Mk[

−→
N /−→x][−−→pjw/

−→y],

as no yj is free in M, so

Mk[
−→
N /−→x][−−→pjw/

−→y]
β2η2π∗
−→ pkw

Now, by Theorem B.4 applied to Mk and w, we can deduce that Mk[
−→
N /−→x]

β2η2π∗
−→ yk,

hence Mk[
−→
N /−→x] = yk, as required.

Analogously for N◦M .

(2) Follows from the construction of the Mi and Nj .

(3) Follows from the definition of stratified types and the hypothesis on the free variables of
M and N.

15

So, to every bijection we can associate a set of coordinates that not only represents them
in the sense of Proposition 4.3, but also enjoys a kind of distributed invertibility property
(the one expressed by 2 in Proposition 4.4 above). This property, together with the other side
conditions in the statement of Proposition 4.4 above, will be used in a crucial way to prove
that coordinates are terms of λ2βη. For this reason, we extend it to sequences containing not
only terms, but also types, and we give a name to it.

Definition 4.5 (Distributed Invertibility)

Given
−→
N = [N1, . . . , Nm] and

−→
M = [M1, . . . ,Mn] sequences of second order λ-terms in nor-

mal form and/or second order type variables, choose −→x = V1, . . . , Vm ⊆ FV (
−→
M) and −→y =

W1, . . . ,Wn ⊆ FV (
−→
N) sequences of variables, that can be either type variables Xi which are

part of the list
−→
M = [M1, . . . ,Mn] (resp. type variables Yj from

−→
N = [N1, . . . , Nm]), or term

variables xi : Ai (resp. yi : Bi). We require that −→x ∩ FV (
−→
N) = ∅ and −→y ∩ FV (

−→
M) = ∅.

We will write DistInv(
−→
M,−→x ,

−→
N ,−→y) if the following conditions hold:

1. no type expression occurring in FV (
−→
M) ∪ FV (

−→
N) contains occurrences of × or T,

2. FV (
−→
M)⊢ Mi : Bi if Mi is a term and FV (

−→
N)⊢ Nj : Aj if Nj is a term ,

3. Mi[
−→
N /−→x] = Wi and Nj [

−→
M/−→y] = Vj .

Remark 4.6 Notice that this last equality is on terms or types, depending on the nature of the
objects that are equated. In particular, this implies that Mi and Wi (resp. Nj and Vj) are either
both types or both terms. Furthermore, the Mi (resp. Nj) that are types must be simple type
variables, as otherwise they could not be equal to the type variables Wi (resp. Vj), no matter
the substitution we apply to them.

Intermezzo

The coordinates of a canonical bijection M and those of a canonical bijection N that is its
inverse are in the same number (i.e. m = n) and they are actually terms of the pure calculus
λ2βη, as we will show in the next Subsection. The proof of such a fact, though, is far from being
a simple one. To understand better the reason for this complexity, and the technique we will
use to overcome it, it is convenient here to recall the proof techniques used in previous works.
In [BDCL92], exactly the same proof strategy is used up to this point, but for the limited case
of the calculus λ1βηπ∗, that has no second order features. There Proposition 3.7 has the same
flavour as Proposition 4.4 here, but there it is also possible to show, by induction, that the
coordinates are terms of the simple typed lambda calculus. The proof uses in an essential way
the fact that the types of a term of λ1βηπ∗ and its free variables carry enough information to
exclude the presence of products or terminal constants in the coordinates. This is due to the
following relevant facts.

• Every term in n.f.of λ1βηπ∗, whose type contains no occurrence of T, has no occurrence
of *A constants

Proof. this is lemma 3.2 in [BDCL92]

• Terms in n.f. of λ1βηπ, whose type is arrow-only, belong to λ1βη

Proof. this is lemma 3.6 in [BDCL92]

16

Once this reduction from λ1βηπ∗ to λ1βη is done, it is then possible to prove easily that the
coordinates of a canonical bijection M and those of a canonical bijection N that is its inverse
are in the same number (i.e. m = n), as it is done there in Lemma 3.8.

Unfortunately, these statements do not hold any longer when we consider second order
terms, even in normal form, as the following example shows.

Example 4.7 Let A and B be simple types and consider the term

x : ∀X.X → B, y : A ⊢ x[A×T]〈y, ∗〉 : B

The term x[A×T]〈y, ∗〉 is in normal form and no product or T appear in its type or the type
of any of its variables, but it contains an occurrence of T, a product type, ∗ and a pair as
subterms.

Actually, lemmas 3.2 and 3.6 in [BDCL92] do hold for those second order terms that are
coordinates of invertible terms, but we can no longer provide two separate proofs, one for
reducing to the pure calculus λ2βη, and one to show that m = n. We must show these
properties at the same time, in a complex inductive proof that needs also several additional
invariants, including the property DistInv.

4.3 Reduction of coordinates to λ2βη

To show that the coordinates of an invertible term of λ2βηπ∗ are indeed terms of the simpler
calculus λ2βη, we will need to prove a Main Lemma that is comparable for its complexity to the
original characterization of invertible terms of the pure λ-calculus provided by Dezani [Bar84,
Dez76]. Actually, unless the reader is familiar with the proof technique by Dezani, even the
statement of the Lemma can be unreadable without a proper explanation. For this reason, in
this section we will focus on showing how the statement of such a complex lemma arises, rather
than on its proof, rather technical, that is deferred to Appendix C.

4.3.1 Towards a better Lemma

As we have seen in the Intermezzo, for the calculus λ2βηπ∗ we cannot prove independently that
the number of coordinates of an invertible term M is the same as the number of coordinates of
any inverse N , and that such coordinates are terms of the simpler calculus λ2βη. Actually, it
turns out that this last property needs a strengthened version of the first one.

To start, let’s recall how in Lemma 3.8 of [BDCL92] it is proved that the length of the
coordinates of two invertible terms M and N of λ1βηπ∗ that are each other’s inverses is the
same (we rephrase the statement using the terminology of this paper).

Lemma 3.8 of [BDCL92] Let A1 × . . .×An and B1 × . . .×Bm be type normal forms and
M1 . . .Mn, N1 . . . Nn be coordinates of invertible terms M and N of λ1βηπ∗. Then

• n = m

• there exist permutations σ, π over n (and terms Pi, Qj) such that

Mi = λ−→ui .xσi

−→
P i and Nj = λ−→vj .yπj

−→
Q j

(where the xσi
and yπi

are free in Mi and Nj respectively).

Proof. First, one already knows that the coordinates Mi and Nj , which are terms in normal
form, are terms of the simpler calculus λ1βη, so that

Mi = λ−→u i.si
−→
P i and Nj = λ−→v j .tj

−→
Q j

17

Then it is easy to notice that si is a free variable (namely some xj), since Mi[
−→
N /−→x] =βηyi,

a property of coordinates which cannot hold if si is bound. Similarly tj is some yi.
This provides us with two functions σ : n → m, π: m → n such that

Mi = λ−→u i.xσ(i)
−→
P i for 1 ≤ i ≤ n, Nj = λ−→v j .yπ(j)

−→
Q j for 1 ≤ i ≤ m

In conclusion, for 1 ≤ i ≤ n we obtain4:

yi=βη Mi[
−→
N /−→x] =βη (λ−→ui .xσ(i)

−→
P i)[

−→
N /−→x]

=βη λ−→ui .Nσ(i){
−→
P i[

−→
N /−→x]}

=βη λ−→ui .(λ
−→v σ(i).yπ(σ(i))

−→
Q σ(i)){

−→
P i[

−→
N /−→x]}

=βη if −→v σ(i) is longer than
−→
P i

then λ−→ui .
−−−→
v′σ(i).yπ(σ(i))

−→
Q σ(i)[(

−→
P i[

−→
N /−→x])/(−−→vσ(i) −

−−−→
v′σ(i))]

else λ−→ui .yπ(σ(i)){
−→
Q σ(i)[(

−→
P i[

−→
N /−→x])/−−→vσ(i)]}{

−→
P ′

i[
−→
N /−→x]}

In either case of the last equality, each term can reduce to yi iff yi = yπ(σ(i)) and each of
the Q’s and P’s left reduces in the order to one of the bound variables, so that one can apply

η, several times, at the end. The same holds for Nj [
−→
M/−→y] for 1 ≤ j ≤ m.

Thus i = π(σ(i)) , for 1 ≤ i ≤ n, and j = σ(π(j)), for 1 ≤ j ≤ m and we can conclude that
m = n, σ is a permutation and π is its inverse.

Now, back to the second order case, we can no longer assume that the coordinates are terms
of the calculus λ2βη. This means first of all that we must find a separate proof of the fact that

the head-normal form of the Mi is λ
−→ui .xσi

−→
P i (respectively, Nj is λ−→vj .yπj

−→
Q j), but this is not

a serious problem: we can repair the proof and adapt it to the second order case.
What really complicates matters is the need to prove now that the coordinates are terms

of λ2βη. Such a proof will need to examine inductively the full structure of coordinates, not
only their head variable, so we will have to turn this Lemma into a stronger one that provide
us with an invariant to be used in this inductive proof. Let’s see why.

Suppose we try to prove that the coordinates are terms of λ2βη, by induction on their

structure. The Lemma tells us that any coordinate Mi is λ−→ui .xσi

−→
P i, so we know that, say,

the “prefix” λ−→ui .xσi
of Mi can already be seen as a term of λ2βη: seems nice! Unfortunately,

here we immediately face a difficulty in applying the inductive hypothesis: we would like to

say that, by induction hypothesis, the
−→
P i are already terms of λ2βη, and then conclude, but

we could do this only in the case that the
−→
P and

−→
Q enjoy the properties of coordinates, while

the Lemmas stated above seems to tell us nothing at all about these terms. Apparently, we are
stuck.

Looking more closely at the proof of the Lemma, though, we see that after all our original

Lemma says something interesting, even if it says it not of the Pi’s orQj ’s, but of the Pi[
−→
N /−→x]’s

and the Qi[
−→
M/−→y]’s: they seem to enjoy the properties of coordinates, with respect to the

variables vi’s and ui’s. In fact, if

Qi[(
−→
P i[

−→
N /−→x])/−→ui] = ui,

4We maintain here the original notation from [BDCL92] for delimiting the scope of a substitution: for
example, (P{M [N/x]}) will stand for the term (PM) where the substitution [N/x] is applied only to the
subterm M

18

as shown in the proof of the Lemma, then it is easy to see that also

Qi[
−→
M/−→y][(

−→
P i[

−→
N /−→x])/−→ui] = ui

So the right candidates to be considered for an inductive argument will not be just the
subterms Pi of the coordinates Mi, but these subterms up to some substitution. We are then
in the typical situation that needs an induction loading: to prove that the coordinates of an
invertible term are terms of λ2βη, we will prove something more, namely, that terms that enjoy
the properties of coordinates after some substitution is applied to them are all in λ2βη. As a
special case, we will have our theorem considering empty substitutions.

This brings up two more problems that need to be solved in order to make our new proof
work:

1. we must now modify the statement of the Lemma to deal not just with coordinates,
but with coordinates to which some substitution is applied, in order for the inductive

argument to apply to the case of Qi[
−→
M/−→y]; furthermore, we must be able to deal with

n-tuples containing also types, and not only terms, as the Qi’s are not all terms, but can
be types also.

2. we must ensure that the number of the Qi’s and Pi’s is the same, or, if it is not the case,
find a way to extend the shorter one to the length of the longer, in a way as to turn them
into coordinates enjoying the distributed invertibility property.

The first problem is easily solved by modifying the statement of the Lemma to handle not
just coordinates (that enjoy the distributed invertibility) but coordinates to which some
kind of substitution is applied. As for some of the Qi’s being types, our notion of distributed
invertibility already takes care of them.

Definition 4.8 (head free terms and substitutions)
A term M is called (second order) head free when it has a head normal form with free head

variable, i.e. its head normal form is λ−→v .x
−→
P with x a free term variable (the abstractions can

be both term and type abstractions).
A head free substitution is a substitution that replaces variables with head free terms and possibly
type variables with types. We will use •, ◦, ⊳, ⊲. . . to range over head free substitutions.
Moreover, if • and ◦ are substitutions, •◦ will stand for the usual composition of substitutions,
that is done right to left, i.e. first apply • and then ◦.

Remark 4.9 As suggested by the notation, the composition of two head free substitutions is
still a head free substitution (see [Bar84], Lemma 21.2.3, pag. 535).

Actually, by looking at how the Qi’s relate to
−→
M , we see that the M ’s are terms, with a free

variable in head position, so the substitutions we are interested in are actually head-free ones.
Furthermore, the ui’s are distinct from the −→x and the M ’s do not contain free any variables
from the N ’s or −→y , so in our general definition we can require that the substitution behaves in

the same way, i.e. it affects only those free variables of
−→
N that are not also in −→x . We can put all

this together to get the definition of the distributed invertibility up to head-free substitutions.

Definition 4.10 (Distributed Invertibility up to suitable head free substitutions)

Given
−→
N ,

−→
M , −→x , −→y as above, we will write DistInv(

−→
M,−→x ,

−→
N ,−→y))

•◦

if DistInv(
−→
M

◦

,−→x ,
−→
N

•

,−→y)
holds, where

1. the head-free substitution ◦ affects only variables that are in (FV (
−→
N)\−→x) and maps them

into terms with no occurrences of FV(
−→
N) or −→y or type expressions

19

2. the head-free substitution • affects only variables that are in (FV (
−→
M)\−→y) and maps them

into terms with no occurrences of FV(
−→
M) or −→x or type expressions

3. these head free substitutions ◦ and • substitute type expressions with no occurrences of ×
or T for type variables.

Using this definition of distributed invertibility in the modified lemma, we will be able to
overcome the first problem described above.

As for the second problem, namely that the number of the Qi’s and Pi’s must be the same
in order to apply induction, we can actually extend as needed the shorter sequence to match
the longer one by means of fresh variables (this will be shown in the proof of the modified
Lemma).

Now, we are almost done. Let’s put it all together, and see how the modified Lemma looks.

Lemma 4.11 (Main Lemma)

Let
−→
N ,

−→
M (with m = |

−→
N | and n = |

−→
M |) be sequences of terms and/or types and ◦ and • be

head-free substitutions such that DistInv(
−→
M,−→x ,

−→
N ,−→y))

◦•

, then the following hold:

1. the substitutions • and ◦ are idempotent, i.e. •• = • and ◦◦ = ◦

2. when Mi and Nj are terms,

Mi = λ−→vi .xσ(i)
−→
Pi , Nj = λ−→uj .yπ(j)

−→
Qj

where σ:n → m, π:m → n are integer functions s.t. σ(π(i))=i if Mi is a term and
π(σ(j))=j if Nj is a term

3. n = m

4. every Pik (Qjh) that is a type expression is just a type variable

5. every variable free in Pik (Qjh) has no occurrence of × or T in the type expressions
occurring in it

6. Pik (Qjh) has no occurrence of × or T in its type if Pik (Qjh) is a term

7. Define s1 = |
−→
P i |, r2 = | −→u σ(i) |, r1 = | −→v i |, s2 = |

−→
Q σ(i) |. Without loss of generality,

suppose s1 ≥ r2. Then r1 ≥ s2. Furthermore,
−→
Q σ(i) can be extended with a sequence of

type and/or term variables [u′′

1, . . . , u
′′

r1−s2] to a sequence
−→
Q′

σ(i) such that

DistInv(
−→
P i,

−→v i,
−→
Q′

σ(i),
−→
u′

σ(i))
⊲⊳

holds, where
−→
u′

σ(i) = −→u σ(i)∪ [u′′

1, . . . , u′′

r1−s2] and
⊳, ⊲ are suitable head-free substitutions.

Proof. This is done by a tedious case analysis (see Appendix C for full details).

Remark 4.12 The original Lemma had just conditions 2 and 3. Conditions 5, 6 and 7 are
needed to allow the argument to inductively apply to the subterms, as described before, while the
remaining conditions 1 and 4 are needed for technical reasons to make the final proof work.

The reader familiar with the original characterization from [Dez76] will notice how the proof
of this Lemma has a very similar flavour, but with the further complications arising from typing,
that do not allow arbitrary η expansions and force us to introduce condition 7.

20

4.3.2 Relating coordinates to invertible terms in λ2βη

Now, condition 7 is exactly what is needed for our induction argument: we start with a set
of coordinates up to substitution, and we end with a set of smaller coordinates, still up to
substitution, so that the following Proposition can be very easily proved by induction.

Proposition 4.13 If DistInv(
−→
M,−→x ,

−→
N ,−→y)

•◦

, then

1. The terms in
−→
N and

−→
M are terms of λ2βη

2. Every occurrence of a type expression is just a type variable.

Proof. By an easy induction on the complexity n of the longest term in
−→
N and

−→
M .

• Base:

(1) n = 1 so every term in
−→
N and

−→
M is just a variable (cannot be ∗ : T: remember that

the type of the elements of the sequences are simple, hence do not contain T)

(2) the definition ofDistInv(
−→
M,−→x ,

−→
N ,−→y)

•◦

, point 3, (i.e. Mi[
−→
N /−→x] = yi andNi[

−→
M/−→y]

= xj), forces every type expression to be a simple type variable. There are no other
type expressions as the terms are of length 1.

• Ind. Step: n+1

(1) We get from the main lemma that Mi = λ−→vi .xσ(i)
−→
Pi and Nj = λ−→uj .yπ(j)

−→
Qj with

DistInv(
−→
Pi ,

−→vi , Q
′

σ(i),
−→
u′

σ(i))
⊲⊳

, and where the complexity of the terms in
−→
Pi and

−→
Q′

σ(i) is strictly lower than n+1 for every i and j. We can apply the induction

hypothesis and get that every term in
−→
Pi and

−→
Q′

σ(i) belongs to λ2βη. Furthermore,

we know from the main lemma that every type expression in
−→
Pi and

−→
Q′

σ(i) is just a

type variable. Since
−→
Q σ(i) ⊆

−→
Q′

σ(i), this suffices to show that everyMi = λ−→vi .xσ(i)
−→
Pi

and Nj = λ−→uj .yπ(j)
−→
Qj have no occurrence of constants or complex type expressions

in them and thus belongs to λ2βη.

(2) as in the base case for elements in
−→
N and

−→
M that are type expressions. Direct

consequence of 1 for type expressions occurring inside terms.

And we get, as a special case,

Corollary 4.14 The coordinates
−→
N = [N1, . . . ,Nm] and

−→
M = [M1, . . . ,Mn] in Proposition 4.4

are terms of λ2βη. Furthermore, n = m.

Proof. It follows from the definitions that DistInv(
−→
M,−→x ,

−→
N ,−→y)

•◦

holds with • and ◦
empty substitutions. Hence, the result follows from the previous Proposition, point (1), as well
as n = m.

So we have factored out pairing and the constant ∗, and we have restricted ourselves to λ2βη.
We can do the same for equalities.

Lemma 4.15 For the coordinates in Proposition 4.4 the equalities Mi[
−→
N /−→x]=β2η2π∗ yi and

Ni[
−→
M/−→y]=β2η2π∗ xj hold in λ2βη (i.e. Mi[

−→
N /−→x]=β2η2 yi and Ni[

−→
M/−→y]=β2η2 xj).

21

Proof. Since the reduction
β2η2π∗
−→ is Church-Rosser and a variable is in normal form (notice

that the variables we are considering are not redexes for gentop as their types do not contain T),

there must be a reduction path fromMi[
−→
N /−→x] to yi. We know from the previous Corollary 4.14

that there is no constant in the terms we consider, so there is no π, SP , gentop, ηtopor SPtop

redex nor any can be created by any reduction. So this reduction path must be made of β and
η reductions only, which implies that equality holds for the system consisting of β plus η alone
too.
This is a special case of a more general phenomenon, as seen in Proposition A.8.

4.4 Syntactic Characterization of canonical bijections

We have shown that the coordinates of a canonical bijection are terms of λ2βη, and we also know
now that these coordinates, even when seen as terms of λ2βη, still enjoy this peculiar property
we called distributed invertibility. We are now in a position to relate these coordinates to
invertible terms of the pure λ2βη. As we have already seen in the Survey, a characterization
of the invertible terms of λ2βη is provided in [BL85] as the 2-f.h.p. (see 2.5 and 2.6). Now, it
is easy to check that the coordinates Mi’s of a canonical bijection are the body of a 2-f.h.p. (in
the sense that they contain only a free variable xσ(i), such that λxσ(i).Mi is a 2-f.h.p.).

Theorem 4.16 For the coordinates in Proposition 4.4 there exist a permutation σ:n → n s.t.
λxσ(i).Mi and λyπ(j).Nj are second order f.h.p.’s, where π is σ−1.

Proof. Just build the λ2βη terms, for a suitably typed new variable z,

M = λzx1 . . . xn.zM1 . . .Mn, N = λzy1 . . . yn.zN1 . . . Nn

They are terms of λ2βη (Corollary 4.14) and it is easy to check that they are invertible w.r.t.
βη equality, as

M◦N =β2η2 λw.(M(Nw))

=β2η2 λw.(λzx1 . . . xn.zM1 . . .Mn)((λzy1 . . . yn.zN1 . . . Nn)w)

=β2η2 λw.(λzx1 . . . xn.zM1 . . .Mn)(λy1 . . . yn.wN1 . . . Nn)

=β2η2 λw.(λx1 . . . xn.(λy1 . . . yn.wN1 . . . Nn)M1 . . .Mn)

=β2η2 λw.λx1 . . . xn.wN1 . . . Nn[
−→
Mi/

−→yi]

=β2η2 λw.λx1 . . . xn.wN1[
−→
Mi/

−→yi] . . . Nn[
−→
Mi/

−→yi]

=β2η2 λw.λx1 . . . xn.wx1 . . . xn (due to the previous Lemma 4.15)

=β2η2 λw.w

Similarly for N◦M.
So N and M are second order f.h.p. and this implies that every Mi has only one occurrence of
the xi’s (namely xσ(i)) and the same for the Ni’s. Hence

Mi[
−→
Ni/

−→xi] ≡ Mi[Nσ(i)/xσ(i)] =β2η2 yi, 1 ≤ i ≤ n

Ni[
−→
Mi/

−→yi] ≡ Ni[Mπ(i)/yπ(i)] =β2η2 xi, 1 ≤ i ≤ n

and
λxσ(i).Mi : Aσ(i) → Bi, λyi.Nσ(i) : Bi → Aσ(i)

are second order f.h.p.

Now, this exact knowledge of the shape of a coordinate finally gives us the syntactic char-
acterization of canonical bijections.

22

Theorem 4.17 (shape of a canonical bijection)
Let M:A1 × . . .×An → B1 × . . .×Bn be a canonical bijection of λ2βηπ∗. Then either M is
the identity or there is a permutation π:n → n s.t.

1. n.f.(M) = λz.(〈M1[(pπ(1)z)/xπ(1)], . . . ,Mn[(pπ(n)z)/xπ(n)]〉),

2. λxπ(i).Mi : Aπ(i) → Bi are 2-f.h.p.’s

3. in particular, M = λz.(〈M ′

1(pπ(1)z), . . . ,M
′

n(pπ(n)z)〉), with M ′

i = λxπ(i).Mi’s 2-f.h.p.’s

Proof. We have shown in Proposition 4.4 that every canonical invertible term M can be
written in terms of its coordinates Mi’s as λz.(λx1 . . . xn.(〈M1, . . . ,Mn〉))(p1z) . . . (pnz). This
latter term reduces to λz.(〈M1[(pπ(1)z)/xπ(1)], . . . ,Mn[(pπ(n)z)/xπ(n)]〉), that we claim is in
normal form if it does not reduce via SP to λz.z. This follows immediately from the fact that
the coordinates are (by construction) in normal form and that the substitutions [(pπ(i)z)/xπ(i)]
do not create any new redex. So we get 1.

Theorem 4.16 guarantees 2.
Setting now M ′

i = λxπ(1).Mi, we get 3.
Notice that in the particular case n = 1, n.f.(M) = λz.M1 and it is a 2-f.h.p.

Corollary 4.18 It is possible to decide if a generic term M : A → B is invertible.

Proof. Proceed as in Proposition 3.6 to build the term M ′ : n.f(A) → n.f.(B). Then
normalize it and check if its shape is as in Theorem 4.17.

Now we can use this characterization to prove completeness of Th2
×T for isomorphisms

of type normal forms given by canonical bijections (and hence for all isomorphisms of types,
Propositions 3.7 and 3.8) in the following Section.

5 Completeness for isomorphisms

We know now that two types A and B are isomorphic iff their normal forms are; furthermore,
Th2

×T equates a type to its normal form. Thus it is possible to show that Th2
×T is complete for

the definable isomorphisms if we can show that Th2
×T is complete for isomorphisms between

stratified types. But if two stratified types are definably isomorphic, then the isomorphism can
be defined by a canonical invertible term, and we can easily get the result by inspecting its
structure, as given in

Proposition 5.1 Let A, B be stratified type expressions that are not T.
Then A ∼=d B ⇒ Th2

×T ⊢ A= B.

Proof. Suppose A ∼=d B via a canonical invertible term M. We can assume that free and
bound type variables are all different in M, as the theory Th2

×T allows renaming of bound type
variables. If A= A1 × . . .×Am, then B= B1 × . . .×Bm (as the length of two isomorphic
stratified types is the same, see Corollary 4.14).
If m=1 then A ∼=d B via a 2-f.h.p. M and we will show the completeness of Th2

×T by induction
on the depth of the Böhm-tree BT(M) of M.

• Depth 1: M ≡ λz : C. z. Thus M : C → C, and Th2
×T ⊢ C = C by reflexivity.

• Depth d+1: M ≡ λz : A. λ−→x :
−→
B . z

−→
N . Recall z

−→
N = zN1 . . . Nn where, for some

permutation σ, if the ith abstraction in λx:D is λxi:Di then λxσ(i) : Di.Ni is a 2-f.h.p. We

will proceed by induction on the length n of
−→
N .

If n=0 then the result follows as in the case of depth 1.

23

If n=k+1, then

M≡ λz : A.λx1 : B1 . . . λxσ(k+1) : Bσ(k+1) . . . λxk+1 : Bk+1.zN1 . . . Nk+1 : A → B

In what follows, A ✷ B will stand for one among A → B and ∀A.B. First, we notice that, in
order to type check, we must have

A = (A1✷1 . . .✷kAk+1✷k+1E) for some E,

B = (B1✷1 . . .✷kBk+1✷k+1F) for some F,

with F = E[Ni1/Ai1] . . . [Nir/Air], where the ij are all the indexes s.t. ✷ir = ∀ in A.
Then, we proceed by cases on Nk+1:
1. Nk+1 is a term. Then we have

(i) λxσ(k+1) : Bσ(k+1).Nk+1 : Bσ(k+1) → Type(Nk+1)

(ii) ✷σ(k+1) = →

As | BT (λxσ(k+1) : Bσ(k+1).Nk+1) | < d+ 1, we know by induction hypothesis on d that.

(iii) Th2
×T ⊢ Bσ(k+1) = Type(Nk+1).

Furthermore, it is straightforward to see that, since free and bound type variables in M are
different, the term

λz : A.λx1 : B1 . . . λxσ(k+1)−1 : Bσ(k+1)−1.

λxσ(k+1)+1 : Bσ(k+1)+1 . . . λxk+1 : Bk+1.zN1 . . . Nk : A → B′

is well formed and is still a 2-f.h.p., with only k N ’s. Then, by induction hypothesis on n,

(iv) Th2
×T ⊢ A = B′.

Now notice that

B′ = (B1✷1 . . . Bσ(k+1)−1✷σ(k+1)−1Bσ(k+1)+1✷σ(k+1)+1 . . .✷kBk+1✷k+1Type(Nk+1) → F)

So, since equality is substitutive, (ii), (iii) and (iv) yield

Th2
×T ⊢ A = B′

= (B1✷1 . . . Bσ(k+1)−1✷σ(k+1)−1Bσ(k+1)+1✷σ(k+1)+1 . . .✷kBk+1✷k+1Bσ(k+1) → F)

= (B1✷1 . . . Bσ(k+1)−1✷σ(k+1)−1Bσ(k+1)+1✷σ(k+1)+1 . . .✷kBk+1✷k+1Bσ(k+1)✷σ(k+1)F)

Now, it suffices to show that this last type is equal to B in Th2
×T . Since we assumed free

and bound type variables to be different, if ✷j is a ∀, with j greater than σ(k+1), then Bj

cannot be free in Bσ(k+1). This allows to use axiom 10, together with 8 and the equality
A → (B → C)=B → (A → C) derived from axioms 1 and 3 (that are always applicable), in
order to repeatedly swap Bσ(k+1) ✷σ(k+1) with Bj ✷j up to Bσ(k+1)+1 ✷σ(k+1)+1. By this,
we obtain the required equality.

2. Nk+1 is a type. Then we have

M≡ λz : A.λx1 : B1 . . . λXσ(k+1).. . . λxk+1 : Bk+1.zN1 . . . Nk[Xσ(k+1)] : A → B

As in the previous case, we can reduce to a smaller k via the term

24

λz : A.λx1 : B1 . . . λxσ(k+1)−1 : Bσ(k+1)−1.

λxσ(k+1)+1 : Bσ(k+1)+1 . . . λxk+1 : Bk+1.zN1 . . . Nk : A → B′

that is well formed, as free and bound variables are different, so that removing the abstraction
does not cause any capture of variables by other type abstractions. It is still a 2-f.h.p., so we
get Th2

×T ⊢ A= B’. Now,

B′ = (B1✷1 . . . Bσ(k+1)−1✷σ(k+1)−1Bσ(k+1)+1✷σ(k+1)+1 . . .✷kBk+1✷k+1∀Z.F
′)

where F ≡ F’[Xσ(k+1)/Z], so that ∀Xσ(k+1).F ≡ ∀Xσ(k+1).F
′[Xσ(k+1)/Z], that is equal, by

axiom 9, to ∀Z.F ′. Hence,

Th2
×T ⊢ A = B′

= (B1✷1 . . . Bσ(k+1)−1✷σ(k+1)−1Bσ(k+1)+1✷σ(k+1)+1 . . .✷kBk+1✷k+1∀Z.F
′)

= (B1✷1 . . . Bσ(k+1)−1✷σ(k+1)−1Bσ(k+1)+1✷σ(k+1)+1 . . .✷kBk+1✷k+1∀Xσ(k+1).F)

= (B1✷1 . . . Bσ(k+1)−1✷σ(k+1)−1Bσ(k+1)+1✷σ(k+1)+1 . . .✷kBk+1✷k+1Bσ(k+1)✷σ(k+1)F)

To show that this last type is equal to B in Th2
×T , we can use the swap axioms 8 and 10, but

this last one is a conditional axiom, that can be used as we want only if we can ensure that
Bσ(k+1) ≡ Xσ(k+1) is not free in any Bj s.t. ✷j is → .

Indeed, we can show this fact, proceeding by contradiction. Suppose that Xσ(k+1) is free
in some Bj s.t. ✷j is → . Notice that the types equated by the theory Th2

×T have the
same free type variables, so that Nσ−1(j) is then a term, and Xσ(k+1) is free in its type,
which is isomorphic to Bj as already remarked. For M to type-check, then, the type of
zN1 . . . N(σ−1(j))−1 must be Type(Nσ−1(j)) → G for some G.
Now notice that, due to the structure of 2-f.h.p.’s, Xσ(k+1) occurs (in type applications) only
once and exactly as Nk+1 in M : under these conditions, we can prove by induction on k
that Xσ(k+1) must occur in the type of z. This leads to a contradiction, though, as then
the subterm λXσ(k+1).. . . λxk+1 : Bk+1.zN1 . . . Nk[Xσ(k+1)] of M is not well formed: there is
a type abstraction over a type variable (Xσ(k+1)) occurring free in the type of a free term
variable (z), and this violates the term formation rule for type abstraction of Definition A.1.

If m > 1, then by Theorem 4.17 there exist an integer m and a permutation π:m → m s.t.
the normal form of M is λz.(〈M1[(pπ(1)z)/xp(1)], . . . ,Mn[(pπ(m)z)/xp(m)]〉), where the terms
λxi.Mπ(i):Ai → Bπ(i) are second order f.h.p.’s. This means that Ai

∼=d Bπ(i) via 2-f.h.p.’s, that
are invertible. We have already shown that Th2

×T is complete for isomorphisms definable by
2-f.h.p.’s, and to get the result it is enough to notice that Th2

×T includes commutativity and
associativity for the product.

So we can finally get our Main Theorem.

Theorem 5.2 (Main Theorem, difficult implication) A ∼= B⇒ Th2
×T ⊢A = B.

Proof. By Theorem 1.3, it is enough to show that A ∼=d B ⇒ Th2
×T ⊢A = B. This is now

an easy consequence of Propositions 3.7 and 5.1.

5.1 (Definable) isomorphisms and uniform isomorphisms in every model

Corollary 5.3 If A ∼= B, then there is an uniform isomorphism between A and B.

Proof. If A and B are isomorphic in every model, then they are provably equal in Th2
×T

and since for every axiom of Th2
×T there is an uniform isomorphism, we can derive a uniform

isomorphism for B and A by just composing the ones associated to every step of the proof of
B = A.

25

6 Decidability of the equational theory

An immediate consequence of the Main Theorem is

Theorem 6.1 Given types A and B it is decidable whether they are isomorphic in all models
of λ2βηπ∗.

Proof. Let the type normal forms of A and B be (A1 × . . .×An) and (B1 × . . .×Bm),
respectively. We know that none of the Ai and Bj can contain any occurrence of T or × (by
Remark 3.4). Now we know that A and B are isomorphic if and only if n = m (Lemma 4.14),
and there exist a permutation σ : n → n such that Ai

∼=d Bσ(j). Hence, to decide A ∼=d B it
suffices to be able to decide Ai

∼=d Bj , as then we can just try Ai
∼=d Bσ(i) for all 1 ≤ i ≤ n

and all permutations σ : n → n.
By inspecting the proof of Proposition 5.1, we see that to axiomatise Ai

∼=d Bσ(i), we only
need the equational theory (that we will call S) made up of axioms 8, 9, 10 and the equality
A → (B → C)=B → (A → C) derived from axioms 1 and 3.
These equalities do not change the length of formulae (if we use the notation of Proposition 5.1),
hence, if S ⊢ Ai = Bj , then Ai and Bj have the same length.
Axiom 9, though, changes the alphabet of a formula, so that we need to gain some control on
its application in the proofs of equality modulo S if we want to provide an effective decision
procedure. Actually, if we start with two types A and B equal in S where free and bound type
variables are different (and we can do it without loss of generality), we can find a proof of
equality where any use of axiom 9 appears only at the end as follows:

• first, given a proof A = A1 = . . .= An = B, we transform it into a proof A = A′

1 =
. . .= A′

n = B where at every stage all free and bound variables are distinct5. It suffices,
whenever a variable X is replaced by Y via axiom 9 in the proof, to replace Y by a fresh
variable Z never used in the proof. It is easy to see that the resulting sequence of formulae
is still a proof in S, as the only constraint on the name of the variables appears when
using axiom 10 from right to left, and if a bound occurrence of Y is not free in some
formula C outside the scope of the ∀ that binds Y, then a fortiori Z is not free in C, by
the way it has been chosen. The proof obtained after applying orderly this procedure to
every occurrence of axiom 9 is the required proof A = A′

1 = . . .= A′

n = B.

• second, in a proof where all the free and bound variables are distinct, we can push all
the applications of axiom 9 at the end. This can be shown by noticing that a sequence of
equalities Ai−1 =axiom 9 Ai = Ai+1, where the second equality is not an application of
axiom 9 can be always replaced by a sequence Ai−1 = A′

i =axiom 9 Ai+1, where the first
equality is not an application of axiom 9 and free and bound variables are all distinct in
A′

i too. The only nontrivial case is axiom 10 after axiom 9, but under the hypothesis of
having all distinct variables, everything works fine.

This means that if A =S B, then B is just an α variant of one of the formulae equal to A
in S less axiom 9. These formulae are in finite number (as these last axioms do not change
the length nor the alphabet of a formula) and can be effectively generated (for example, by a
depth-first search of the equality proofs). So it suffices to check B against each of these for α
equality, which is a decidable task.

Since Th2
×T is the theory of isomorphic types, an immediate consequence of the theorem

above is the decidability of Th2
×T .

Corollary 6.2 Equality in Th2
×T is decidable.

5Actually, as remarked by one of the referees, what we obtain is not exactly B, but an α variant of B, as we
may rename bound variables in our procedure. In that case, we can easily complete the proof with some steps
of α equality, so we need not consider this case explicitly in the proof.

26

Deciding equality in theories containing associative and commutative operators, as well as
binding operators, like ∀, is in general far from trivial (actually it is at least as hard as deciding
Graph Isomorphism, see [Bas90]), so that the complexity of the decision procedure given above
(it essentially requires to examine all the search space) is no surprise. Actually, the very fact
that Th2

×T is decidable is not an obvious result and the insight gained by the study of invertible
terms (in Proposition 5.1) is essential in order to establish it.

7 Conclusions and Future Work

We have provided a finite, complete and decidable axiomatization of the types isomorphic in
every model of λ2βηπ∗, by means of purely syntactical proof theoretic methods. Due to the
well-known connection between typed lambda calculus and intuitionistic logic, this work also
fully characterizes the constructively equivalent formulae of IPC(∀, ⇒, ∧, True), the second
order intuitionistic positive propositional calculus.

On the practical side, these results give the necessary theoretical basis to the development
both of library search tools based on the type as specification paradigm, and of extensions of
the usual type-checking algorithms for strongly typed functional languages. In this direction,
the development of efficient algorithms to decide equality in our theory Th2

×T , as well as the
study of matching and unification up to isomorphism, need to be addressed. As pointed out by
one of the referees, another promising application is in retrieving proofs of propositions from a
theorem library.

We intend also to investigate how far our methods can be extended to yield similar results
for other or further extensions of the λ-calculus. It would be interesting to provide similar
characterizations in the presence of additional axioms, like the ones used to describe recursive or
inductive types. More difficult seems the study of isomorphisms when restricting the definition
of type isomorphism to closed terms (as is suggested for example in [CMMS91] and [ACC93]).

Finally, let us just hint at another possible application of type isomorphisms. Terms in-
habiting isomorphic types are truly interchangeable, as they do compute the same class of
functions, but they need not have the same complexity: this is the case for example for the
distributivity of arrow over product. We may expect to exploit these isomorphisms to perform
program transformations in the optimizing phase of a compiler, where one has the freedom to
choose the most efficient implementation.

Acknowledgements

Part of this work was carried out at the Department of Computer Science of the Cornell
University, Ithaca - N.Y. I wish to thank Robert Constable, for inviting me there. He gave me
the opportunity to access the great facilities of Cornell University.

I am greatly indebted to my advisor, Giuseppe Longo, for continuous encouragement in
this work, to Eugenio Moggi for insights and to Kim Bruce for valuable discussions. Thanks
also to Andy Pitts and Martin Hyland for many helpful discussions, and to Radha Jagadeesan
for listening to the first expositions of the fully detailed syntactical proofs during my stay in
Cornell University.
A special thanks goes to the anonymous referees, that carefully read this work providing an
extremely valuable feedback. This paper benefited greatly of their continuous and detailed
comments.

References

[AB91] Franco Alessi and Franco Barbanera. Strong conjunction and intersection types.
Dipartimento di Informatica, Universitá di Torino (Italy), manuscript., 1991.

27

[ACC93] Mart́ın Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal parametric poly-
morphism. In Ann. ACM Symp. on Principles of Programming Languages (POPL).
ACM, 1993.

[AL91] Andrea Asperti and Giuseppe Longo. Categories, Types, and Structures. MIT
Press, 1991.

[Bar84] Henk Barendregt. The Lambda Calculus; Its syntax and Semantics (revised edition).
North Holland, 1984.

[Bas90] David Basin. Equality of Terms Containing Associative-Commutative Functions
and Commutative Binding Operators is Isomorphism Complete in 10th Int. Conf.
on Automated Deduction. Lecture Notes in Computer Science, 449, July 1990.

[BDCL92] Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of
types. Mathematical Structures in Computer Science, 2(2):231–247, 1992. Proc. of
Symposium on Symbolic Computation, ETH, Zurich, March 1990.

[BL85] Kim Bruce and Giuseppe Longo. Provable isomorphisms and domain equations in
models of typed languages. ACM Symposium on Theory of Computing (STOC 85),
May 1985.

[CDC91] Pierre-Louis Curien and Roberto Di Cosmo. A confluent reduction system for the
λ-calculus with surjective pairing and terminal object. In Leach, Monien, and Ar-
talejo, editors, Intern. Conf. on Automata, Languages and Programming (ICALP),
volume 510 of Lecture Notes in Computer Science, pages 291–302. Springer-Verlag,
1991.

[CMMS91] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An extension
of system F with subtyping. In T. Ito and A. R. Meyer, editors, Theoretical Aspects
of Computer Software, volume 526 of Lecture Notes in Computer Science, pages
750–770. Springer-Verlag, September 1991.

[DC92a] Roberto Di Cosmo. Deciding type isomorphisms in a type assignment framework.
Journal of Functional Programming, 1992. To appear in the Special Issue on ML.

[DC92b] Roberto Di Cosmo. Type isomorphisms in a type assignment framework. In Ann.
ACM Symp. on Principles of Programming Languages (POPL), pages 200–210.
ACM, 1992.

[DCK93] Roberto Di Cosmo and Delia Kesner. Simulating expansions without expansions.
Mathematical Structures in Computer Science, 1993.

[Dez76] Mariangiola Dezani-Ciancaglini. Characterization of normal forms possessing an
inverse in the λβη calculus. Theoretical Computer Science, 2:323–337, 1976.

[DT69] J. Doner and Alfred Tarski. An extended arithmetic of ordinal numbers. Funda-
menta Mathematica, 65:95–127, 1969.

[Gur85] R. Gurevic. Equational theory of positive numbers with exponentiation. Proceedings
of the American Mathematical Society, 94(1):135–141, May 1985.

[Gur90] R. Gurevic. Equational theory of positive numbers with exponentiation is not
finitely axiomatizable. Annals of Pure and Applied Logic, 49:1–30, 1990.

[Hen77] Leon Henkin. The logic of equality. American Mathematical Monthly, 84:597–612,
October 1977.

28

[How80] W.A. Howard. The formulae-as-types notion of construction. In Hindley and Seldin,
editors, To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and for-
malism, pages 479–490. Academic Press, 1980.

[HR84] C. W. Henson and L. A. Rubel. Some applications of Nevanlinna theory to mathe-
matical logic: Identities of exponential functions. Trans. Am. Math. Soc., 282(1):1–
32, March 1984.

[Les83] P. Lescanne. Computer experiments with the REVE term rewriting systems gen-
erator. In Proceedings of 10th ACM Symposium on Principles of Programming
Languages, pages 99–108. Association for Computing Machinery, 1983.

[Les86] P. Lescanne. Reve a rewrite rule laboratory. In J. Siekmann, editor, Proc. 8th
Conf. on Automated Deduction, Lecture Notes in Computer Science, pages 696–
697, Oxford (England), 1986. Springer Verlag.

[LS86] Joachim Lambek and Philip J. Scott. An introduction to higher order categorical
logic. Cambridge University Press, 1986.

[Mac81] A. Macintyre. The laws of exponentiation. In C. Berline, K. McAloon, and J.-P.
Ressayre, editors, Model Theory and Arithmetic, volume 890 of Lecture Notes in
Mathematics, pages 185–197. Springer-Verlag, 1981.

[Mar72] C.F. Martin. Axiomatic bases for equational theories of natural numbers. Notices
of the Am. Math. Soc., 19(7):778, 1972.

[Mar91] Simone Martini. Strong equivalence in positive propositional logic: provable re-
alizability and type assignment. Dipartimento di Informatica, Universitá di Pisa
(Italy), Internal Note., June 1991.

[Min77] Gregory Mints. Closed categories and the theory of proofs. Zapiski Nauchnykh Sem-
inarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V.A. Steklova
AN SSSR, 68:83–114, 1977.

[ML71] Saunders Mac Lane. Categories for the working mathematician, volume 5 of GTM.
Springer, 1971.

[Mor91] R. Morgan. Component Library Retrieval using property models. PhD thesis, Uni-
versity of Durham - England, rick@easby.dur.ac.uk, 1991.

[Pot81] Garrel Pottinger. The Church Rosser Theorem for the Typed lambda-calculus with
Surjective Pairing. Notre Dame Journal of Formal Logic, 22(3):264–268, 1981.

[Rey84] J.C. Reynolds. Polymorphism is not set-theoretic. Lecture Notes in Computer
Science, 173, 1984.

[Rit90] Mikael Rittri. Retrieving library identifiers by equational matching of types in 10th
Int. Conf. on Automated Deduction. Lecture Notes in Computer Science, 449, July
1990.

[Rit91] Mikael Rittri. Using types as search keys in function libraries. Journal of Functional
Programming, 1(1):71–89, 1991.

[RT91] Colin Runciman and Ian Toyn. Retrieving re-usable software components by poly-
morphic type. Journal of Functional Programming, 1(2):191–211, 1991.

[Sol83] Serjey V. Soloviev. The category of finite sets and cartesian closed categories.
Journal of Soviet Mathematics, 22(3):1387–1400, 1983.

[Sta83] Rick Statman. λ-definable functionals and βη conversion. Arch. Math. Logik, 23:21–
26, 1983.

29

A The calculus λ2βηπ∗ and some basic notations

Definition A.1 λ2βηπ∗ is the extension of the second order lambda calculus defined as follows:

• Types are defined by the following grammar:

Type ::= At | V ar | Type → Type | Type × Type | ∀X.Type

where At is a set of countably many atomic types including the distinguished constant T
and V ar is a set of countably many type variables

The intended meaning of T is the terminal object in the categorical sense, so ∗ below will
stand for the unique term of type T (as required of a terminal object)6.

• Terms (M:A will stand for M is a term of type A)

– the set of terms contains a countable set x, y, . . . of term variables for each type and
a constant ∗:T

– terms are constructed from variables and constants via the following term formation
rules (notice the perfect analogy with the introduction and elimination rules for
second order logic in natural deduction style)

Γ, x : A⊢M : B

Γ⊢λx.M : A → B

Γ⊢M : A → B Γ⊢N : A

Γ⊢ (MN) : B

Γ⊢M : A N : B

Γ⊢ 〈M,N〉 : A×B

Γ⊢M : A×B

Γ⊢ p1M : A

Γ⊢M : A×B

Γ⊢ p2M : B

Γ⊢M : A

Γ⊢λX.M : ∀X.A
7 Γ⊢M : ∀X.A

Γ⊢M [B] : A[B/X]
for any type B.

Notice that pairing and projections are new term formation rules and not constants
added to the language.

• Equality

(β) (λx.M)N = M [N/x] (η) λx.Mx = M if x 6∈ FV (M)

(π) pi〈M1,M2〉 = Mi (SP) 〈p1M, p2M〉 = M

(top) M = ∗ if M : T

(β2) (λX.M)[A] = M [A/X] (η2) λX.M [X] = M if X is not free in M

We will note =β2η2π∗ the theory of equality generated by β, η, π, SP , top, β2 and η2.

Notation A.2 (sequences, substitutions)

We will often use sequences of variables [x1,. . . ,xn] or terms [M1,. . . ,Mn], and we will note them

respectively −→x and
−→
M . The length of a sequence

−→
M of terms (or variables) is the number of

elements in the sequence, noted |
−→
M |. A sequence can be empty. As is standard notation in the

theory of λ-calculus, we will often use λ−→x .
−→
N as a short-hand for λx1 . . . xn.(. . . (N1N2) . . . Nm),

where it is intended that N1 is not an application N11N12, as otherwise we could take N11 as
the starting term of the sequence.

6This notation is different from the one originally used in [BDCL92], where the symbol ∗A stands for the
unique arrow of type A → T, and, though completely equivalent and interchangeable, is preferred here for ease
of reference to [CDC91], where confluence of related systems is studied.

7With the proviso that the type variable X is not free in the type of any free variable of the term M .

30

Given a term N , a sequence
−→
M = [M1,. . . ,Mn] of terms, and a sequence −→x = [x1,. . . ,xn] of

variables, of the same length, N [
−→
M/−→x] denotes the simultaneous substitution of every variable

xi with the term Mi in the term N (for simplicity, we always assume that bound variables are

renamed as necessary to avoid capture of free variables). We may also use
−→
N [M/−→x] for the

simultaneous substitution of all the variables in −→x with the same term M (similarly for type
variables).

Our calculus has also pairs, so we need to introduce some less standard abbreviations for
nested pairs, or n-tuples.

Notation A.3 (n-tuples, identities, free variables, types)

We write 〈M1, . . .Mn〉 for 〈M1, 〈M2, 〈. . . , 〈Mn−1,Mn〉〉 . . . 〉〉. Let IA = λx:A.x be the identity
of type A and M◦N be the usual composition λx.(M(Nx)) of lambda terms. As usual, by
FV (M) we mean the free term variables x : A of a term declared with their type, but, being
in a second order setting, we also use FTV (M) for the free type variables of a term M . As
is usual notation in the theory of λ-calculus, we will say that a variable x it is free for a term
N in a term M if the substitution of N for the free occurrences of x in M does not provoke
capture of the free variables of N . Since the calculus is explicitly typed, we can write Type(M)
for the type of the term M , which is uniquely determined once we are given the type of its free
variables.

Notation A.4 (calculi)

We will denote by λ2βηπ the calculus λ2βηπ∗ without terminal object and related rules, λ2βη
the polymorphic typed calculus, and λ the type-free calculus, while λ1βηπ∗ and λ1βηπ are the
first order restrictions of λ2βηπ∗ and λ2βηπ respectively.

Remark A.5 (Notion of reduction for λ2βηπ∗) The notion of reduction associated with
the equational theory of λ2βηπ∗ obtained by just orienting the equalities in the axioms to the
right is not Church-Rosser. It is possible, though, to derive for this equality theory another
notion of reduction that has the Church-Rosser property and is weakly normalizing, thus allowing
us to speak about normal forms for every term (see [CDC91]). In this paper we refer to this
latter one when talking about reduction, normal forms, and so on, for λ2βηπ∗, so we briefly
recall here the necessary definitions.

Definition A.6 (Terminal types and Canonical terms)

1. Iso(T) (the collection of types isomorphic to T) is the set defined as follows:

(a) T ∈ Iso(T)

(b) if B ∈ Iso(T), then A → B ∈ Iso(T) for every type A

(c) if A ∈ Iso(T) and B ∈ Iso(T), then A×B ∈ Iso(T)

(d) if A ∈ Iso(T) and X is a type variable, then ∀X.A ∈ Iso(T).

2. for each type A ∈ Iso(T), the associated canonical representative rep(A) is defined in-
ductively as follows:

(a) rep(T) is ∗

(b) rep(A → B) is λx:A.rep(B)

(c) rep(A×B) is 〈rep(A), rep(B)〉

(d) rep(∀X.A) is λX.rep(A).

31

Definition A.7 (Confluent notion of reduction for λ2βηπ∗)
β2η2π∗
−→ is the notion of re-

duction for λ2βηπ∗ generated by the following rewriting rules:

Rules obtained by orienting the equalities:

(β) (λx.M)N
β2η2π∗
−→ M[N/x]

(η) λx.Mx
β2η2π∗
−→ M if x 6∈ FV (M)

(π) pi〈M1,M2〉
β2η2π∗
−→ Mi

(SP) 〈p1M, p2M〉
β2η2π∗
−→ M

(β2) (λX.M)[A]
β2η2π∗
−→ M[A/X]

(η2) λX.M [X]
β2η2π∗
−→ M if X is not a free type variable in M

Rules coming from completion:

(gentop) M:A
β2η2π∗
−→ rep(A) if M:A and A ∈ Iso(T) and M is not already rep(A)

(SPtop) 〈rep(A), p2M〉
β2η2π∗
−→ M if M:A×B (and, of course, A ∈ Iso(T))

(SPtop) 〈p1M, rep(B)〉
β2η2π∗
−→ M if M:A×B (and, of course, B ∈ Iso(T))

(ηtop) λx:A.Mrep(A)
β2η2π∗
−→ M if A ∈ Iso(T) and x 6∈ FV(M).

Actually, the form of the rules in this rewriting system allows us to get a generalized con-
servativity result for the equational theories of λ2βηπ∗ over λ2βηπ and λ2βη, and of λ2βηπ
over λ2βη. This fact is relevant by itself, and essential in the reduction of coordinates to terms
of λ2βη (in Lemma 4.15).

Proposition A.8 (The equational theory of) λ2βηπ∗ is a conservative extension of (the equa-
tional theory of) λ2βηπ. Similarly for λ2βηπ with respect to λ2βη.

Proof.
Both the equality for λ2βηπ∗ and that for λ2βηπ can be derived from a Church-Rosser notion

of reduction, (for the C-R property without terminal object, see [Pot81] for early results on
λ1βηπ and [CDC91] for a more recent detailed discussion and the references therein). Consider
now M and N in λ2βηπ such that λ2βηπ∗ ⊢ N = M. By the Church-Rosser property, there is
common reductum P (i.e. M → P and N → P). Then λ2βηπ∗ ⊢ N → P is actually a reduction
λ2βηπ ⊢ N → P, as N contains no gentop redex, and no gentop redex can be created by the
application of reduction rules. The same applies to λ2βηπ∗ ⊢ M → P and, thus, λ2βηπ ⊢ N =
M. Similarly for λ2βηπ w.r.t λ2βη.

B Properties of n-tuples

Notation B.1 (n-fold projections) Let M : A1 × . . .×An where the A′

is have no occur-
rence of product or T. We will then write pkiM to note, if k ≤ n, 0 < i < k, the term

p1p2. . . p2
︸ ︷︷ ︸

i−1

M,

and, if k ≤ n, 1 < i = k, the term
p2. . . p2
︸ ︷︷ ︸

i−1

M.

32

The idea behind this notation is that a sequence of binary projections can be considered
as a projection over an n-tuple. Then pki is a notation for the sequence of projections that
selects the ith component in a k-tuple. Obviously, any n-tuple is also a k-tuple if k ≤ n, so one
could be tempted to drop the suffix k from pki , but this is not correct: the k-th component of
an n-tuple 〈M1, . . . ,Mn〉 is Mk, that is not at all the same thing as the last component of the
same term when considered as a k-tuple, which is 〈Mk, . . . ,Mn〉. The sequence of projections
needed to select the ith component of a term considered as an n-tuple really depends both on
i and k. So, we will drop the suffix k only when it is well understood from the context.

Remark B.2 (Simple projection arithmetics) It is easy to check the following equalities:

p1p
k
kM = pk+1

k M if k < n

p2p
k
kM = pk+1

k+1M if k < n

Lemma B.3 Let M be a term in normal form and w : A1 × . . .×An, where the A′

is have no

occurrence of product or T, be a variable not occurring free in it. Then M [
−−→
pni w/

−→yi] can only
contain Surjective Pairing redexes. During any reduction to normal form of this term the only
created redexes are Surjective Pairing redexes.

Proof. By inspection of the form of the redexes.

Theorem B.4 Let w : A1 × . . .×An, where the A′

is have no occurrence of product or T, be a
variable not occurring free in a term Q in normal form. Then the following implications hold:

1. if Q[
−−→
pni w/

−→yi]
β2η2π∗
−→ pn

′

k w, then Q =







yk if k < n′

yn if k = n′ = n
〈yn′ , . . . , yn〉 otherwise

2. if Q[
−−→
pni w/

−→yi]
β2η2π∗
−→ w, then Q = 〈y1, . . . , yn〉

Proof. By induction on the structure of Q.

• Q is a variable

1. if Q is not one of the y′s, then the claim holds vacuously, else Q is some yi and

Q[
−−→
pni w/

−→yi] is just p
n
i w, so that Q is as required

2. holds vacuously

• Q is an application Q1Q2

The only new redexes created by the substitution are Surjective Pairing redexes, and their
elimination cannot create any new β or η redexes(by Lemma B.3), so that there is no
way to get rid of the outermost application and the claims hold vacuously.

• Q is an abstraction λx.Q′ The only way to get rid of the top-level abstraction in a
reduction would be by means of an η reduction, but no such reductions are possible, due
to Lemma B.3.

• Q is a projection p1Q
′

1. for p1Q
′[
−−→
pni w/

−→yi]
β2η2π∗
−→ pn

′

k w, we have two possibilities:

– pn
′

k is actually p1p
k
k and Q′[

−−→
pni w/

−→yi]
β2η2π∗
−→ pkkw. First notice that this implies

that k is strictly smaller than n, otherwise the term p1p
k
kw would not be well

typed. Then, by inductive hypothesis 1, the term Q′ is a pair 〈yk, . . . , yn〉, hence
Q is not in normal form, contradicting the hypothesis of the theorem.

33

– pn
′

k does not start with a first projection, or Q′[
−−→
pni w/

−→yi] does not reduce to

pkkw. Then necessarily Q′[
−−→
pni w/

−→yi]
β2η2π∗
−→ to a pair 〈pn

′

k w, . . . 〉, in order for

p1Q
′[
−−→
pni w/

−→yi] to reduce to pn
′

k w. But by Lemma B.3 in the reduction path
there are only SP redexes, that can make disappear, but not create pairs. So
Q′ is already a product andQ is not in normal form, contradicting the hypothesis
of the theorem.

2. if p1Q
′[
−−→
pni w/

−→yi]
β2η2π∗
−→ w, then necessarily Q′[

−−→
pni w/

−→yi]
β2η2π∗
−→ 〈w, . . . 〉, so that, sim-

ilarly as for the previous point, Q′ is already a pair and Q in not in normal form
contradicting the hypothesis of the theorem.

• Q is a projection p2Q
′

1. for p2Q
′[
−−→
pni w/

−→yi]
β2η2π∗
−→ pn

′

k w, we have two possibilities:

– pn
′

k is actually pn
′

n′ and Q′[
−−→
pni w/

−→yi]
β2η2π∗
−→ pn

′
−1

n′−1w. First notice that n′ − 1 <
n′ ≤ n. Then, by inductive hypothesis 1, the term Q′ is a pair 〈yn′−1, . . . , yn〉,
hence Q is not in normal form, contradicting the hypothesis of the theorem.

– pn
′

k does not start with a second projection, or Q′[
−−→
pni w/

−→yi] does not reduce to

pn
′
−1

n′−1w. Then necessarily Q′[
−−→
pni w/

−→yi]
β2η2π∗
−→ to a pair 〈. . . , pn

′

n′w〉, in order for

p2Q
′[
−−→
pni w/

−→yi] to reduce to pn
′

k w. But Lemma B.3 tells us that in the reduction
path there are only SP redexes, that can make disappear, but not create, pairs.
So Q′ is already a product and Q is not in normal form, contradicting the
hypothesis of the theorem.

2. if p2Q
′[
−−→
pni w/

−→yi]
β2η2π∗
−→ w, then necessarily Q′[

−−→
pni w/

−→yi]
β2η2π∗
−→ 〈. . . , w〉, so that, sim-

ilarly as for the previous point, Q′ is already a pair and Q in not in normal form
contradicting the hypothesis of the theorem.

• Q is a pair 〈Q1, Q2〉

1. for 〈Q1, Q2〉[
−−→
pni w/

−→yi]
β2η2π∗
−→ pn

′

k w, we have two possibilities:

– k < n′: then pn
′

k w = p1p2. . . p2
︸ ︷︷ ︸

k−1

M = pnkw, so the type of pn
′

k w is Ak, that does

not contain products, and cannot be equal to a pair, whose type is a product.

– k = n′: then n′ < n as pnnw cannot be equal to a pair, because its type An

contains no product. Then,

Q1[
−−→
pni w/

−→yi]
β2η2π∗
−→ p1p

n′

n′w = pn
′+1

n′ w = pnn′w,

and

Q2[
−−→
pni w/

−→yi]
β2η2π∗
−→ p2p

n′

n′w = pn
′+1

n′+1w,

so by induction we have that

Q1 = yn′ , Q2 = 〈yn′+1, . . . , yn〉

and Q = 〈yn′ , . . . , yn〉 as required.

2. if 〈Q1, Q2〉[
−−→
pni w/

−→yi]
β2η2π∗
−→ w then necessarily Q1[

−−→
pni w/

−→yi]
β2η2π∗
−→ p1w = p21w and

Q2[
−−→
pni w/

−→yi]
β2η2π∗
−→ p2w = p22w, so by induction hypothesis

Q1 = y1, Q2 = 〈y2, . . . , yn〉

34

and
Q = 〈Q1, Q2〉 = 〈y1, . . . , yn〉

as required.

• Q is a second order application Q1[B]
There is no way to reduce Q1 to a second order abstraction by means of SP reductions
(the only ones that are allowed by Lemma B.3), and it is not already one since Q is in
normal form. So, there is no way to get rid of the second order application at the top
level, and the two claims hold vacuously.

• Q is a second order abstraction λX.Q1

Again, there is no way to get rid of the top-level second order abstraction, and the claims
hold vacuously.

C Technical Lemmas

This appendix contains some technical lemmas and the proof of the Main Lemma 4.11. Before
proceeding to the proof of the Main Lemma, let’s study some properties of DistInv, in the
following Lemma, and then some connections between types and the structure of terms in the
lemmas that follow.

Lemma C.1 Let DistInv(
−→
M,

−→
V ,

−→
N ,

−→
W) , let

−→
M types = {Mi | Mi is a type variable}
−→
N types = {Ni | Ni is a type variable}
−→
V types = {Vi | Vi is a type variable}
−→
W types = {Wi | Wi is a type variable}

and define

mtype = |
−→
M types |

ntype = |
−→
N types |

vtype = |
−→
V types |

wtype = |
−→
W types |

then mtype = ntype = vtype = wtype.

Proof. First recall condition 3 of Definition 4.5: we have

Mi[
−→
N /

−→
V] = Wi Nj [

−→
M/

−→
W] = Vj

for
−→
V = V1, . . . , Vm ⊆ FV (

−→
M) and

−→
W = W1, . . . ,Wn ⊆ FV (

−→
N) sequences of variables,

that can be either type variables Xi which are part of the list
−→
M = [M1, . . . ,Mn] (resp. type

variables Yj from
−→
N = [N1, . . . , Nm]), or term variables xi : Ai (resp. yi : Bi).

Since in our calculus terms are not types, the members of the above equalities are either
both types or both terms, so we can already establish that

mtype = wtype and ntype = vtype

35

Now types do not contain terms either, so when we specialize condition 3 of Definition 4.5 to
type expressions we get

−→
M types[

−→
Y /

−→
V types] =

−→
W types and

−→
N types[

−→
X/

−→
W types] =

−→
V types

Now, recall that the
−→
M types and the

−→
N types are simple type variables (Remark 4.6), and let’s

focus on the first equality: we know that no Xi ∈
−→
M types can be equal to a Wi, as Wi cannot

be a free variable of
−→
M , while Xi clearly is. This means that the substitution [

−→
Y /

−→
V types] must

affect all the
−→
V types, and this can happen only if

−→
V types includes

−→
M types, i.e. if

mtype = |
−→
M types | ≤ |

−→
V types | = vtype = ntype

Analogously we get

ntype = |
−→
N types | ≤ |

−→
W types | = wtype = mtype

Hence mtype = ntype = vtype = wtype.

Lemma C.2 Given r
−→
P : C where r is a variable and C a type containing an occurrence of a

product type A × B then either r:E and D ×H occurs in E for some D, H or some Pi = [E]
and D ×H occurs in E for some D, H.

Proof. By induction on the length n of
−→
P .

Base: for n = 0 then r : C, that contains the product type A×B by hypothesis.
Inductive step: the lemma holds for n ≤ k, we prove it for n = k + 1
By cases on Pk+1:

• it is a term. Then (r
−−−→
P1...k)Pk+1:C and (r

−−−→
P1...k): Type(Pk+1) → C so we can apply the

induction hypothesis and get either r:E and D×H occurs in E for some D, H or some Pi

= [E] and D ×H occurs in E for some D, H for i ≤ k, hence for i ≤ k + 1 too.

• it is a type [F]. Then (r
−−−→
P1...k): ∀X.T with T[F/X] = C. Now we have again two cases:

either T does not contain any products, but then F must, or T contains products and we
can apply induction as in the previous case.

Lemma C.3 Given r
−→
P : C where r is a variable and C a type containing an occurrence of T

then either r:D and T occurs in D or some Pi = [D] and T occurs in D.

Proof. By induction on the length n of
−→
P .

• (Base) for n = 0 then r:C and C contains T by hypothesis.

• (Inductive step) let the lemma be true for n ≤ k and prove it for n = k + 1.

By cases on Pk+1:

– it is a term. Then (r
−−−→
P1...k)Pk+1:C and (r

−−−→
P1...k): Type(Pk+1) → C so we can apply

the induction hypothesis and get either r:D and T occurs in D or some Pi = [D] and
T occurs in D for i ≤ k, hence for i ≤ k + 1 too.

– it is a type [E]. Then (r
−−−→
P1...k): ∀X.T with T[E/X] = C. Now we have again two

cases: either T does not contain T, but then E must, or T contains T and we can
apply induction as in the previous case.

36

Lemma C.4 Let z:A0 ⊢ (z
−−−→
P1...n): C. If no product or T appears in the types A0, C and in

the Pi’s that are types, then no product or T appears in the types of the Pi’s that are terms
either.

Proof. By induction on n.
Base case: n = 0 trivial.
Inductive step: let the lemma be true for n ≤ k and prove it for n = k + 1
By cases on Pk+1:

• it is a term.

By cases on the type E of Pk+1:

– it has no occurrence of products or T: then the type of (r
−−−→
P1...k) = E → C has no

occurrence of products or T too, so we can apply the induction hypothesis.

– it has occurrences of products or T: this is impossible as (r
−−−→
P1...k): E → C contains

products or T so by lemma C.2 or lemma C.3 either r has a type containing products
or T or some Pi’s that is a type must contain a product or T, in contradiction with
the hypothesis.

• it is a type [E]. Then (r
−−−→
P1...k): ∀X.T and in ∀X.T there are no occurrences of products or

T (as there are not in E by hypothesis and T[E/X] = C). So we can apply the induction
hypothesis.

Lemma 4.11 (Main Lemma)

Let
−→
N ,

−→
M (with m = |

−→
N | and n = |

−→
M |) be sequences of terms and/or types and ◦ and • be

head-free substitutions such that DistInv(
−→
M,−→x ,

−→
N ,−→y))

◦•

, then the following hold:

1. the substitutions • and ◦ are idempotent, i.e. •• = • and ◦◦ = ◦

2. when Mi and Nj are terms,

Mi = λ−→vi .xσ(i)
−→
Pi , Nj = λ−→uj .yπ(j)

−→
Qj

where σ:n → m, π:m → n are integer functions s.t. σ(π(i))=i if Mi is a term and
π(σ(j))=j if Nj is a term

3. n = m

4. every Pik (Qjh) that is a type expression is just a type variable

5. every variable free in Pik (Qjh) has no occurrence of × or T in the type expressions
occurring in it

6. Pik (Qjh) has no occurrence of × or T in its type if Pik (Qjh) is a term

7. Define s1 = |
−→
P i |, r2 = | −→u σ(i) |, r1 = | −→v i |, s2 = |

−→
Q σ(i) |. Without loss of generality,

suppose s1 ≥ r2. Then r1 ≥ s2. Furthermore,
−→
Q σ(i) can be extended with a sequence of

type and/or term variables [u′′

1, . . . , u
′′

r1−s2] to a sequence
−→
Q′

σ(i) such that

DistInv(
−→
P i,

−→v i,
−→
Q′

σ(i),
−→
u′

σ(i))
⊲⊳

holds, where
−→
u′

σ(i) = −→u σ(i)∪ [u′′

1, . . . , u′′

r1−s2] and
⊳, ⊲ are suitable head-free substitutions.

37

Proof. We will show properties 1 - 7 in order, but we factor out here a remark that is
needed along with most of the proof. We will very often make use of the Church-Rosser rewrite
system associated to the calculus in order to exclude possible reductions. In all these cases the
reduction (gentop) will not be possible, as in order to be applied to a term M gentop needs
that M has a type in Iso(T), which will never be the case in the following as no T type will be
involved, and any type in Iso(T) contains at least one occurrence of T. We will not state this
fact explicitly all the time.

1. is trivial due to the requirements 1 and 2 on the domain and codomain of the head-free
substitutions ◦ and • in the definition 4.10 of DistInv(, , ,).

2. since the Mi in
−→
M and the Ni in

−→
N are terms are in normal form, we know that

Mi = λ−→vi .Ri

−→
Pi

and

Ni = λ−→ui .Si

−→
Qi

Where Ri,
−→
Pi (respectively Si,

−→
Qi) are terms in normal form and Ri (respectively Si) is

not an abstraction nor an application (first or second order).

Now notice that Ri (respectively Si)

• cannot be a pair 〈Ri1 , Ri2〉, as otherwise, for typing reasons, Mi = λ−→vi .〈Ri1 , Ri2〉
has type A → . . . → B × C that is not an arrow-only type;

• cannot be ∗:T, as otherwise the type of the term would contain T;

• cannot be a bound variable, as otherwise M•

i [
−→
N

◦

/−→x] could not reduce to the free

variable yi. Indeed, if it is bound, then M•

i [
−→
N

◦

/−→x] is λ−→vi .Ri

−→
P •

i[
−→
N

◦

/−→x], since a
substitution affects only free variables. So Ri is still bound. Now, yi is in normal

form, and the equality M•

i [
−→
N

◦

/−→x] = yi can be turned, by the Church-Rosser prop-

erty, into a reduction sequence M•

i [
−→
N

◦

/−→x]→→yi. But no reduction rule can make
disappear from a term in head normal form a bound variable that is in the head
position.

We want to show that Ri cannot be a projection pkQ either. Suppose Ri is pkQ (k =
1,2), then

Mi = λ−→vi .pkQPi1 . . . Pil

with Q in normal form. More precisely, Q = O
−→
Ri, where O is in normal form and is not

an abstraction or an application8. Again, O cannot be a pair 〈O1, O2〉 (as otherwise Q =
〈O1, O2〉 and the subterm pkQ = pk〈O1, O2〉 of Mi would be a π redex, while we know
that Mi is in n.f.) nor a bound variable (for the same reasons shown above for Ri). This
argument can be iterated to show that

Mi = λ−→vi .pk1
(. . . (pkz

(r
−→
O z+1)

−→
O z) . . .

−→
O 1)Pi2 . . . Pil

with r a free variable.

With the same argument we show that

Ni = λ−→ui .ps1(. . . (psw(s
−→
U w+1)

−→
U w) . . .

−→
U 1)Qi2 . . . Qih

Now we can use the property
−→
M

•

i [
−→
N

◦

/−→x] = yi to show that r ∈ −→x considering the
following cases:

8If it is an abstraction, then the term is not in normal form, while if it is an application O1O2 we would take
O1 instead. Notice also that Q itself is not an abstraction for typing reasons.

38

(a) If • does not affect r, then r must be one of the −→x , otherwise it is impossible to
reduce the sequence of projections in front of r or (if the sequence is empty) to reduce
−→
M

•

i [
−→
N

◦

/−→x] to a term not containing r, as r is the head variable in
−→
M

•

i [
−→
N

◦

/−→x] too.

(b) Otherwise, notice that • is a head-free substitution and cannot, by hypothesis, gen-

erate any yi, so that again
−→
M

•

i [
−→
N

◦

/−→x] has a head free variable w that is not any
yi and cannot be erased by reductions, no matter if the sequence of projections in
front of it is empty or not.

So r must be some xσ(i) for some integer function σ : n → m. Analogously, s must be
some yπ(i) for some integer function π : m → n. This means that

−→
M

•

i [
−→
N

◦

/−→x] = λ−→vi .pk1
(. . . (pkz

(N◦

σ(i)

−→
O

⊲

z+1)
−→
O

⊲

z) . . .
−→
O

⊲

1)
−→
P

⊲

i2...il

where ⊲ is the substitution •[
−→
N

◦

/−→x]. But since

Nσ(i) = λ−−→uσ(i).ps1(. . . (psw(yπ(σ(i))
−→
U w+1)

−→
U w) . . .

−→
U 1)

−→
Q σ(i)2...σ(i)h

then if | −−→uσ(i) | ≤ |
−→
O

⊲

z+1 | we have

−→
M

•

i [
−→
N

◦

/−→x] =

= λ−→vi .pk1
(. . .

(pkz
(((ps1(. . . (psw(yπ(σ(i))

−→
U

◦⋄

w+1)
−→
U

◦⋄

w) . . .
−→
U

◦⋄

1))
−→
Q

◦⋄

σ(i)2...σ(i)h
)
−→
O′

⊲

z+1)
−→
O

⊲

z)

. . .
−→
O

⊲

1)
−→
P

⊲

i2...il

(where
−→
O′

⊲

z+1 is what is left of
−→
O

⊲

z+1 after the β reductions on (
−→
N

◦

σ(i)

−→
O

⊲

z+1) and ⋄ is

the substitution [
−→
O

⊲

z+1/
−−→uσ(i)])

Otherwise

−→
M

•

i [
−→
N

◦

/−→x] =

= λ−→vi .pk1
(. . .

(pkz
(λ
−→
u′

σ(i).((ps1(. . . (psw(yπ(σ(i))
−→
U

◦⋄

w+1)
−→
U

◦⋄

w) . . .
−→
U

◦⋄

1))
−→
Q

◦⋄

σ(i)2...σ(i)h
))
−→
O

⊲

z)

. . .
−→
O

⊲

1)
−→
P

⊲

i2...il

(where
−→
u′

σ(i) is what is left of −→u σ(i) after the β reductions on (
−→
N

◦

σ(i)

−→
O

⊲

z+1) (actually,
for typing reasons, this sequence must be empty: we have a projection pkz

applied to this

term, that cannot have, then, a functional type!) and ⋄ is the substitution [
−→
O

⊲

z+1/
−−→uσ(i)]

)

In any case, these terms must be equal to yi, which is a normal form, and equality can be
turned into reduction due to the Church-Rosser property. Now, this reduction is possible
iff z = w = 0 and yπ(σ(i)) = yi, i.e. π(σ(i)) = i: there is no reduction rule that allows us
to get rid of the sequence of projections, because they are blocked by the variable yπ(σ(i))
(that is free and is already in normal form). So ri must be xs(i) and π(σ(i)) = i for i

s.t. Mi is a term. Analogously we can proceed for
−→
N and get that sj must be yπ(j) and

σ(π(j)) = j for j s.t. Nj is a term.

39

3. Since we already know that the number of type variables in
−→
M ,

−→
N ,−→x and−→y is equal

(Lemma C.1) it is possible to extend the previous functions π and σ in order to get
π(σ(i)) = i and σ(π(j)) = j for all i and j: just let σ map indexes of different type

variables in
−→
M to indexes of different type variables in −→x and π be the inverse of σ on

the indexes of type variable of
−→
N .

Namely, from Lemma C.1 we obtain also that the type variables in both
−→
M and

−→
N are

just a permutation of each other, so that there exists σtype:n → m, πtype:m → n s.t.
σtype(πtype(i)) = i if Mi is a type variable and πtype(σtype(j)) = j when Nj is a type
variable, hence we can define σ′ : n → m, π′ : m → n as

• σ′(i) = σ(i) if Mi is a term

• σ′(i) = σtype(i) if Mi is a type variable

• π′(i) = π(j) if Nj is a term

• π′(i) = πtype(j) if Nj is a type variable

with the property that π′(σ′(i)) = i and σ′(π′(j)) = j for all i and j, as every Mi and Nj

is either a term or a type variable.

Due to well known properties of permutations, this entails n = m and furthermore π’ and
σ’ are permutations that are each other’s inverses. This says, besides, that the number
of terms is the same in both sequences.

4. let’s consider again
−→
M

•

i [
−→
N

◦

/−→x]. Now we know from 3 and the proof of 2 that

−→
M

•

i [
−→
N

◦

/−→x] =

= λ−→vi .N
◦

σ(i)P
⊲
i2
. . .P⊲

il
(where ⊲ is •[

−→
N

◦

/−→x])

= λ−→vi .(λ
−−→uσ(i).yπ(σ(i))

−→
Q

◦

σ(i))P
⊲
i2
. . .P⊲

il

= λ−→vi .(λ
−−→uσ(i).yi

−→
Q

◦

σ(i))P
⊲
i2
. . .P⊲

il

=







λ−→vi .(λ
−−−→
u′

σ(i).yi
−→
Q

◦

σ(i))[P
⊲
i2
. . .P⊲

il
/
−−−−−−→
u− u′

σ(i)] if | −−→uσ(i) | > l − 1

λ−→vi .((yi
−→
Q

◦

σ(i))[P
⊲
i2
. . .P⊲

il′
/−−→uσ(i)])P

⊲
il‘+1

. . .P⊲
il

otherwise

Some care is needed in checking the last equality: in the case | −→u σ(i) | > l− 1, we named
−→
u′

σ(i) the abstracted variables that are left after the β reductions, and the notation [P⊲
i2

. . .P⊲
il
/
−−−−−−→
u− u′

σ(i)] is a shorthand to indicate that the substitution is performed on the first

l − 1 variables of −→u .
The only way to reduce both expressions to yi is a series of η reductions. This means
that every Qi type expression must be a type variable. The same can be shown for Pi

considering
−→
N

◦

i [
−→
M

•

/−→y] instead.

5. Any free variable in any Pi is either free in
−→
M (and then the claim holds by hypothesis)

or is one of the −→vi . In the second case, notice that the type of the
−→
M contains as type

subexpressions the type of the −→vi , so that it cannot contain any product or T either.

6. By Lemma C.4 (lemma on type of sequences not including complex type expressions) and
properties 4 and 5 (recall that T is a type constant, not a variable)

7. w.l.o.g., let s1(= |
−→
P i |) ≥ r2(= | −→u σ(i) |). Notice that this implies r1(= | −→v i |) ≥ s2(=

|
−→
Q σ(i) |), as by inspecting both cases in the proof of 4 we get r1 + r2 = s1 + s2 (due to

40

the η reductions that must occurr). Then
−→
Q σ(i) can be extended with a sequence of type

and/or term variables [u′′

1, . . . , u
′′

r1−s2] to a
−→
Q′

σ(i) so that (we will drop the suffix σ(i)
now for clarity)

(
−→
Q

◦

1...s2 [
−→
P

⊲

1...r2/
−→u 1...r2])

−→
P

⊲

r2+1...s1 =

= (
−→
Q

◦

1...s2 [
−→
P

⊲

1...r2/
−→u 1...r2])

−→
u′′

1...r1−s2 [
−→
P

⊲

r2+1...s1/
−→
u′′

1...r1−s2]

=
−→
Q′

◦

[
−→
P

⊲

1...r2/
−→u 1...r2 , . . .,

−→
P

⊲

r2+1...s1/
−→
u′′

1...r1−s2]

=
−→
Q′

◦

[
−→
P

⊲

1...s1/
−→
u′

1...s1]

= v1, . . . , vr1

while

−→
P

•

[
−→
Q

⊳

1...s2u
′′

1, . . . , u
′′

r1−s2/
−→v 1...r1] = u1, . . . , ur2 , u

′

1, . . . , u
′

r1−s2

where ⊳ is the substitution ◦[
−→
M

•

/−→y] that plays the symmetric role of ⊲ on the
−→
Q .

Now notice that [
−→
M

•

/−→y] does not affect any u’s and does not create any v’s, since by

the variable convention they are not free in the M’s. Symmetrically, [
−→
N

◦

/−→x] does not
affect the v’s and does not create any u’s, so we get also:

−→
Q′

⊳

[
−→
P

⊲

1...s1/
−→
u′

1...s1] =
−→
Q′

◦

[
−→
M

•

/−→y][
−→
P

⊲

1...s1/
−→
u′

1...s1]

= v1, . . . , vr1

and

−→
P

⊲

[
−→
Q

⊳

1...s2u
′′

1, . . . , u
′′

r1−s2/
−→v 1...r1] =

−→
P

•

[
−→
N

◦

/−→x][
−→
Q

⊳

1...s2u
′′

1, . . . , u
′′

r1−s2/
−→v 1...r1]

= u1, . . . , ur2 , u
′′

1, . . . , u
′′

r1−s2

= u′

1, . . . , u
′

s1

so that DistInv(
−→
Pi ,

−→vi ,
−→
Q′

σ(i),
−→
u′

σ(i))
⊲⊳

.

This concludes the proof of the main lemma.

D Miscellanea

Proposition 3.2 Each type has a unique type normal form in R.

Proof. Here is a direct proof of the Proposition.
We show that R is a strongly normalizing Church-Rosser rewriting system. Since it is

straightforward to show that the system is weakly Church-Rosser, it is enough to show SN (as,
due to the well known Newman’s lemma, WCR + SN ⇒ CR).

We will show strong normalization by exibiting a measure that strictly decreases each time
one of the rewriting rules is applied to a formula. Let h be a complexity measure on formulae
defined as follows:

h(A) = 3 if A is atomic

h(A×B) = h(A) ∗ h(B)
2
+ 1

h(A → B) = h(B)
h(A)

h(∀X.A) = 2h(A)

41

It is obvious that this measure is an integer always greater than 2. Then it is easy to show
by induction that h(C[A]) > h(C[A′]) if h(A) > h(A′), where C[] is an arbitrary context. To
show that every rewriting decreases h, it suffices now to show that every reduction rule in R
strictly decreases this measure. Since 5, 6, 7, 8 and 9 trivially decrease h, we will focus only on
1, 2, 3 and 4.

h(A× (B × C)) = h(A) ∗ (h(B × C))
2
+ 1

= h(A) ∗ (h(B) ∗ h(C)
2
+ 1)

2
+ 1

> h(A) ∗ h(B)
2 ∗ h(C)

4
+ 1

= (h(A) ∗ h(B)
2 ∗ h(C)

2
) ∗ h(C)

2
+ 1

> h(A) ∗ h(B)
2 ∗ h(C)

2
+ h(C)

2
+ 1

as h(C)
2
> 2 and h(A) ∗ h(B)

2 ∗ h(C)
2
> 2

= (h(A) ∗ h(B)
2
+ 1) ∗ h(C)

2
+ 1

= h(A×B) ∗ h(C)
2
+ 1

= h((A×B)× C).

Similarly,

h((A → B)× C) = h(C)
(h(A)∗h(B)2+1)

> h(C)
(h(A)∗h(B))

= h(A → (B → C))

h(A → (B × C)) = (h(B) ∗ h(C)2 + 1)
h(A)

> (h(B) ∗ h(C)2)
h(A)

+ 1

as h(A) > 2 and h(B) ∗ h(C)
2
> 2

= h(B)
h(A) ∗ h(C)

2∗h(A)
+ 1

= h(B)
h(A) ∗ (h(C)

h(A)
)
2
+ 1

= h((A → B)× (A → C))

h(∀X.A×B) = 2(h(A)∗h(B)2+1)

= 2 ∗ 2h(A)∗h(B)2

= 2 ∗ 2h(A) ∗ 2h(B)2

≥ 2h(A) ∗ 2h(B)2 + 1

as 2h(A) ∗ 2h(B)2 ≥ 1

> 2h(A) ∗ 22∗h(B) + 1

as h(B)
2
> 2 ∗ h(B) since h(B) > 2

= 2h(A) ∗ (2h(B))
2
+ 1

= h(∀X.A× ∀X.B)

Proposition D.1 If A is a type not containing T, then there is no invertible term M of type
A → T. Hence T is not definably isomorphic to any such type A.

Proof. We can assume M is in normal form with respect to the confluent notion of reduction
introduced in A.7. Due to its type, M is λx:A.∗, and we show that no term N in normal form

42

can be its inverse, considering the possible normal forms of N that would be compatible with
its type. There are five cases:

• N is not x:T → A, as

x◦M = λw : A.(x(Mw))

= λw : A.(x((λx : A.∗)w))

= λw : A.(x∗)

that is in normal form and is not the identity of type A.

• N is not λx:T.P, as

(λx : T.P)◦M = λw : A.((λx : T.P)(Mw))

= λw : A.((λx : T.P)((λx : A.∗)w))

= λw : A.((λx : T.P)∗)

= λw : A.(P [∗/x])

= λw : A.P as λx : T.P is in normal form, hence x 6∈FV (P)

= (as otherwise a reduction x : T
T
−→ ∗ could apply).

Since P is normal, λw:A.P is normal too, and due to the variable convention P cannot be
w, so that λw:A.P is not the identity of type A.

• N is not (PQ), as

(PQ)◦M = λw : A.((PQ)(Mw))

= λw : A.((PQ)((λx : A.∗)w))

= λw : A.((PQ)∗)

that is in normal form, as (PQ) is and ((PQ)∗) is not a gentop redex as its type is A,
that contains no occurrence of T, and is not the identity of type A.

• N is not λX.P for typing reasons.

• N is not P [B] for any type B, as

(P [B])◦M = λw : A.((P [B])(Mw))

= λw : A.((P [B])((λx : A.∗)w))

= λw : A.((P [B])∗)

that is in normal form, as P [B] is and ((P [B])∗) is not a gentop redex as its type is A,
that contains no occurrence of T, and is not the identity of type A.

It follows that M as in the hypothesis has no inverse.

43

