
On the Power of Simple Diagrams

Roberto Di Cosmo

DMI­LIENS (CNRS URA 1327)

Ecole Normale Supérieure

45, Rue d’Ulm

75230 Paris, France

e­mail:roberto@dicosmo.org

Abstract. In this paper we focus on a set of abstract lemmas that are easy to apply and turn out to be quite

valuable in order to establish confluence and/or normalization modularly, especially when adding rewriting

rules for extensional equalities to various calculi. We show the usefulness of the lemmas by applying them to

various systems, ranging from simply typed lambda calculus to higher order lambda calculi, for which we

can establish systematically confluence and/or normalization (or decidability of equality) in a simple way.

Many result are new, but we also discuss systems for which our technique allows to provide a much simpler

proof than what can be found in the literature.

1 Introduction

During a recent investigation of confluence and normalization properties of polymorphic lambda

calculus with an expansive version of the η rule, we came across a nice lemma that gives a simple

but quite powerful sufficient condition to check the Church Rosser property for a compound rewriting

system in a modular way, providing something of a dual to the usual well­known sufficient condition

for the Hindley­Rosen Lemma. Also, under some additional assumptions, it allows to check strong

normalization in a modular way. This lemma turns out to allow quite simple and elegant modular

proofs of confluence and/or strong normalization for many rewriting systems associated to various

lambda calculi.

Our purpose here is to present the lemma and give a survey of applications not only to the case of

adding extensional equalities as conditional expansions but also as contractions. More precisely, we

will apply it to prove:

– confluence and strong normalization for simple typed lambda calculus with expansive η and SP ,

also in the presence of terminal object and iteration

– confluence and strong normalization for the monadic calculus from [26]

– confluence for the polymorphic lambda calculus with expansive η and SP , also in the presence of

algebraic term rewriting systems

– confluence for Girard’s Fω with expansive η, even with algebraic term rewriting systems

– confluence and strong normalization of the polymorphic extensional typed lambda calculus with

Axiom C and contractive η from [23]

Of these results, the confluence and normalization for the monadic calculus, confluence for poly­

morphic lambda calculus with expansions and algebraic TRS’s and confluence for Girard’s Fω with

expansions with or without algebraic TRS’s are, to the author’s best knowledge, entirely new, while

for the other results the proofs presented here are quite simpler than the previously published ones

known to this author.

2 Brief Survey and the Commutation Lemma

First of all, let us recall some basic notation from rewriting theory that we will be using along the

exposition.

Notation 1 (ARS) An abstract reduction system is a pair 〈A,
R // 〉 of a set A and a binary relation

R // on A. The transitive reflexive closure of a relation
R // is denoted by

R // // , while =

R //

denotes the reflexive closure of
R // . When working with different ARS’s 〈A,

R // 〉 〈A,
S // 〉

share the same set A, we will often just talk about reductions
R // and

S // or even R and S.

Also, R ∪ S denotes the reduction obtained as the union of R and S.

Definition 2 Commutation of reductions. Two reductions
R // and

S // commute with each

other if the following diagram holds:

∀a, b, c ∈ A, ∃d ∈ A

a c

b d

R //

S
��

S
��

�

�

�

R //_ _ _

Definition 3 Confluence. A reduction
R // is confluent if

R // // commutes with itself, and is

weakly (or locally) confluent if the following diagram holds:

∀a, b, c ∈ A, ∃d ∈ A

a c

b d

R //

S
��

S
��

�

�

�

��R //_ _ _ //

Definition 4 Normalization. For an ARS 〈A,
R // 〉, we say that

R // is strongly normalizing if,

for all a ∈ A, all reduction sequences starting from a are finite. An R­normal form is an element

a ∈ A such that no reduction out of it is possible. Also,
R // is weakly normalizing if, for all a ∈ A,

there is a finite reduction sequence out of a leading to an R­normal form.

2.1 Modularity of confluence

One of the most known lemmas for showing confluence of rewriting system (especially when they are

associated to various lambda calculi) is the following one, due to Hindley and Rosen:

Lemma 5 Hindley­Rosen ([4], section 3). If
R // and

S // are confluent, and
R // // and

S // // commute with each other, then R ∪ S is confluent.

Since establishing the commutation directly is often a very difficult task, because one has to cope

with arbitrarily long S and R reduction sequences, one does not really use this lemma directly, but via

a simpler precondition to commutation:

Lemma 6 usual sufficient condition for commutation. If, wheneverM
R // M ′ andM

S // M ′′,

there exist M ′′′ s.t. M ′ S // // M ′′′ and M ′′
=

R // M ′′′, then
R // // and

S // // commute with each

other.

The condition imposed here to use at most one step of R reduction to close the diagram is

quite restrictive, and is not satisfied for example in the presence of restricted expansion rules, that

have become quite relevant today for handling extensionality in various lambda calculi (see for

example [1, 15, 11, 9, 22]). This restriction is necessary if one does not know anything else about

the two systems R and S, as a nice counterexample based on a never ending diagram chase from [4]

shows:

· ·

· · ·

· ...

· ·

R //

S�� S��R //

S

��

S
��

R //

S
��R //

But this very counterexample suggests that, if R is a strongly normalizing system, then we can

use a dual condition to the previous one: instead of imposing to use at most one step of R reduction

(=

R //) to close the diagram, one can ask for using at least one step of R reduction (+

R // //). This

key observation is at the basis of our original lemma as it was stated in [14], which has a simple, but

quite interesting proof (the original lemma assumed implicitly that R is finitely branching, but the

version here has not such a restriction, thanks to a very helpful discussion with Pierre Lescanne).

Lemma 7 Commutation Lemma: a dual sufficient condition for commutation from [14].

Let 〈A,
R // 〉 and 〈A,

S // 〉 be two abstract reduction systems, where R is strongly normalizing.

Let the following diagram hold

(DPG) ∀a, b, c ∈ A, ∃d ∈ A

a c

b d

R //

S
��

S
��

�

�

�

��

+

R //_ _ _ //

Then
R // // and

S // // commute.

Proof. Since R is a strongly normalizing rewriting system, we have a well­founded order < on A
by setting a1 < a2 if a2

R // a1. Also, let us denote dist(a1, a2) the length of a given S­reduction

sequence from a1 to a2. The proof then proceeds by well­founded induction on pairs (b, dist(a, b)),
ordered lexicographically. Indeed, if b is an R­normal form and dist(a, b) = 0, then the lemma trivially

holds. Otherwise, by hypothesis, there exist a′, a′′, a′′′ as in the following diagram.

a a′ c

a′′ a′′′

D1 D2

b b′ d

S��

R //

S�� ��

R // //

S

��

�

�

�

�

�

��

S

����

R // R// //

S

��

�

�

�

��
R //_ _ _ _ // R //_ _ _ _ //

We can now apply the inductive hypothesis to the di­

agram D1, since

(b, dist(a′′, b)) <lex (b, dist(a, b)).

Finally, we observe that b +

R // // b′, just composing

the diagram in the hypothesis down from a.
Hence we can apply the inductive hypothesis to the diagram D2, since

(b′, dist(a′, b′)) <lex (b, dist(a, b)),

and we are done.

Alfons Geser remarked this very same property in his PhD Thesis (see [17], page 38, remark after

the proof sketch), where the (DPG) diagram is read as R strictly locally commutes over S−1.

Remark. Notice that for (DPG) to hold, it must be the case that the relation
Soo (the inverse of

S //) preserve R­normal forms. This is a simple precondition that can be useful to discover that

(DPG) does not hold: for example, if S is the usual η­contraction (see for example [4] for a discussion)

and R is simple typed β, then xy
Soo (λz : A.xz)y and (DPG) does not hold.

2.2 Modularity of confluence and/or termination

In[1] Akama gives an interesting lemma to show modularity of both confluence and termination, by

requiring some additional conditions on R and S, that presents the same difficulty as Hindley­Rosen’s

lemma, when one tries to use it directly, as the condition on S­normal forms requires to handle

arbitrarily long S­reduction sequences in the hypothesis:

Lemma 8 [1]. Let R and S be confluent and strongly normalizing reductions, s.t.

∀a, b (a
R // b) implies (aS +

R // // bS),

where aS and bS are the S­normal forms of a and b, respectively; then R ∪ S is also confluent and

strongly normalizing.

Here too, we can help improve the situation with a simpler precondition:

Lemma 9 preconditions for modularity of confluence and/or normalization.

Let 〈A,
R // 〉 and 〈A,

S // 〉 be abstract reduction systems, where R­reduction is strongly nor­

malizing. Let the following diagram hold

∀a, b, c ∈ A, ∃d ∈ A

a c

b d

R //

S
��

S
��

�

�

�

��

+

R //_ _ _ //

Then (as seen in 7)
R // // and

S // // commute and furthermore

– (i) if R preserves S normal forms (let S↓ denote reduction to S normal form), then

∀a, b, c ∈ A, ∃d ∈ A

a c

b d

R // //

S↓
������

S↓
��

�

�

�

��R //_ _ _ //

– (ii) if S normal forms are unique and R preserves S normal forms, then

∀a, b, c, d ∈ A

a c

b d

R //

S↓
������

S↓
�� ����

+

R //_ _ _ //

Proof. The first property can be shown by using 7. As for the second property, notice that by iterating

7 we can obtain:

∀a, b, c ∈ A, ∃d ∈ A

a c

b d′

R //

S↓
�� ����

S↓
��

�

�

�

��

+

R //_ _ _ //

Where d′ is an S­normal form because R preserves S­normal forms. But then, by unicity of S­normal

forms, d = d′ and we are done.

The last item tells us that to check the commutation property required by Akama’s lemma, which is

a global property, as it involves arbitrarily long reduction sequences in the hypothesis, one can resort

to just checking the same local condition we had before for commutation, which are usually boring

but simple tasks, when R is strongly normalizing, S is confluent (which implies uniqueness of normal

forms) and R preserves S­normal forms (the first two conditions beeing anyway part of the hypothesis

of Akama’s lemma). This gives

Corollary 10 Simplified Akama’s Lemma. Let S and R be confluent and strongly normalizing re­

ductions, s.t.

∀a, b, c ∈ A, ∃d ∈ A

a c

b d

R //

S
��

S
��

�

�

�

��

+

R //_ _ _ //

and R preserves S­normal forms: then S ∪R is also confluent and strongly normalizing.

3 Variations of the Lemma that do not work

We can now wonder if it is possible to relax a little the hypothesis of the lemmas, to allow emptyR steps

at least in some cases. Indeed, in some cases one is interested in combinations of rewriting systems that

both contain erasers, i.e. rules that can erase redexes in the other system (like for example, contractive η
together with β), and this prevents the many­step commutation required as an hypothesis by the lemma.

Consider the following example (the long = signs mean equality of elements):

• •S •

• • • •

•

•

• •

•

S��

R //

��

R //

S

��

R //

S��

R // R //
{

{

{

{

{

{

S��

S��

S��

R //

~

~

~

~

The strong normalization of R and S do not help

here, since the newly built diagram can be exactly

identical to the starting one, and one never gets to

actually close it.

This is indeed a counterexample that rules out a whole bunch of possible even very weak relaxations

of the hypothesis in the Lemma, detailed here.

• Allow empty R reduction only when also the closing S reduction is empty, that is reformulating

the hypothesis as follows:

R SN, ∀a, b, c ∈ A, ∃d ∈ A

a c

b d

R //

S
��

S
��

�

�

�

��

+

R //_ _ _ //

or

a b

b b

R //

S

��

�

�

�

�

�

�

�

�

�

�

The example above is a counterexample: the only empty R reductions correspond to empty S
reductions there.

• One can think that assuming also S strongly normalizing and allowing only simultaneously empty

reductions the commutation property may hold. That is, using the following hypothesis:

R SN, S SN, ∀a, b, c ∈ A, ∃d ∈ A

a c

b d

R //

S
��

+ S
��

�

�

�

��

+

R //_ _ _ //

or

a b

b b

R //

S

��

�

�

�

�

�

�

�

�

�

�

Again, the example above respects all the conditions: there are empty S reductions only where

empty R reductions appear and vice­versa.

4 Applications : simple typed lambda calculus with expansive η and SP

As a first simple application of the lemma, consider the typed lambda calculus λ1βηπ∗ for Cartesian

Closed Categories: this consists of β, η, π, SP and a rule Top that collapses all terms of a special type

T into a single constant ∗ (with both η and SP taken as expansions). A discussion of the conditional

expansion rules falls outside the scope of this work (the interested reader will find a thorough discussion

and motivation for example in [11]), but let us just point out that using the traditional contractive rules

for η and SP , the system as it is not even confluent, and one has to go through a lot of hassle to

complete it to a confluent one [10]. It is worth noting that the same problem for confluence comes up

with algebraic rewriting rules for constant functions like f(x) // a.

(β) (λx : A.M)N
β // M [N/x]

(πi) πi〈M1,M2〉
πi // Mi, for i = 1, 2

(SP) M
SP // 〈π1(M), π2(M)〉, if

{

M : A×B
M is not a pair and is not projected

(η) M
η // λx : A.Mx, if



















x fresh
M : A⇒C
M is not a λ­abstraction

M is not applied

(Top) M
Top // ∗, if M : T and M 6≡ ∗

Table 1. Reduction system for simple typed lambda calculus with expansions and terminal object.

There have been many different proofs of confluence and strong normalization in the literature for

this calculus (or some variations of it) (for example [1, 15, 11, 9, 22]), but all of them are essentially

technically complex exercises, with only [1, 11] using some kind of modular technique, yet requiring

a serious amount of work.

Here our lemma suggests the following proof.

Theorem 11. Simple typed λ­calculus with expansions and terminal object is confluent and strongly

normalizing.

Proof. It is easy to verify that rules η and SP do not erase any redex, while the rules β and π and

Top preserve the normal forms of η and SP. Then it is quite natural to set R = β ∪ π ∪ Top and

S = η∪SP , and try to apply our lemma 9. This boils down to checking a small subset of the diagrams

one should check for the local confluence of the whole system (which is not a very easy task, because

the reduction is no longer a congruence, but is unavoidable in any other proof technique1).

Then, since confluence and strong normalization for the two separate subsystems are already well

known (and easy to show with traditional techniques), we can finally apply Akama’s lemma and get

confluence and normalization for the full system.

This gives an extremely simple and straightforward proof which is way easier than the already

published ones.

1 Actually, one can simply go over the relevant cases in [11], where local confluence is checked in detail, and verify that

the at least one step condition is indeed respected.

4.1 Handling Iteration

As was originally remarked in [1], one is faced with serious technical difficulties when trying to use

directly Akama’s lemma to handle a weaker computational principle, namely iteration:

It(a, f, 0) // a It(a, f, S(e)) // f(It(a, f, e))

Indeed, one gets involved in a complex technical analysis of the shape of expansive normal forms

that does not behave well when we add iteration.

Nevertheless, here again our simple precondition applies with no difficulty, and one gets confluence

and strong normalization (local confluence is easy to check even with expansions, as the only nontrivial

divergence, namely an expansion of f , can be closed by using β).

It is worth recalling here that using a modular technique presented in [12], it is now quite easy to

show that the previous systems stays confluent if we add a recursion operator.

5 The monadic calculus for database query languages

This calculus, that arises from category theoretic considerations and forms the basis for an elegant

database query language, was first introduced in [26]. An equivalent calculus NRC (see table 3)without

these two last features has been proven confluent and strongly normalizing by Woong in his PhD

thesis [28]. It contains a subset of the simple typed lambda calculus we have seen above, as it provides

a limited form of β reduction (arguments of functions cannot be functions themselves), an equality

axiom for the terminal object and the extensional equality axiom for pairs (SP) and functions (η).

{} : {s}

e : s

{e} : {s}

{e1} : {s} {e2} : {s}

{e1 ∪ e2} : {s}

{e1} : {s} {e2} : {t}
⋃

{e1|x ∈ e2} : {s}

Table 2. The typing rules for sets in NRC

But it also provides constructors and operations to manipulate sets of values (terms and types for

sets ({}), union (∪) and a form of set comprehension (
⋃

{e1|x ∈ e2}).

We are now able to state our result:

Theorem 12. The reduction system for the monadic calulus with expansive η and SP is confluent and

strongly normalizing.

Proof. Take R to be the system proved CR and SN by Woong (that is the system of table 3 without

expansions), and S to be expansive SP and η rules alone. The (DPG) diagram is easily checked, as

expansive SP and η does not erase any R redex. Since R is SN and SP ∪ η is known to be CR and

SN, this is enough to get confluence for the system with expansive SP using 7. It is very easy to check

that R preserves SP ∪η expansive normal forms: all rules in R preserve types (this ensure that no new

redex due to types is created) and no rule can move a subterm from a position where an expansion is

not legal to one where it is legal (the substitution rules can destroy expansion redexes, but not create

them). So we get also strong normalization for the full system, using 9.

(β) (λx : A.M)N
β // M [N/x] (A not a functional type)

(πi) πi〈M1,M2〉
πi // Mi, for i = 1, 2

(SP) M
SP // 〈π1(M), π2(M)〉, if

{

M : A×B
M is not a pair and is not projected

(η) M
η // λx : A.Mx, if



















x fresh
M : A⇒C
M is not a λ­abstraction

M is not applied

(Top) M
Top // ∗, if M : T and M 6≡ ∗

(Set monad operations)

(empty)
⋃

{e|x ∈ ∅} // ∅
(flat)

⋃

{e1|x ∈ {e2}} // e1[e2/x]
(distrib)

⋃

{e|x ∈ (e1 ∪ e2)} //
⋃

{e|x ∈ e1} ∪
⋃

{e|x ∈ e2}
(assoc)

⋃

{e1|x ∈
⋃

{e2|y ∈ e3}} //
⋃

{
⋃

{e1|x ∈ e2}|y ∈ e3}

Table 3. The reduction system for the monadic query calculus NRC

6 The polymorphic lambda calculus with expansive SP , η and η2

The polymorphic lambda calculus (also known as Girard’s System F , see [20]) adds to the simple

typed lambda calculus the possibility of taking types as parameters, via type abstraction ΛX.M and

type application M [A]. The essential features from the rewriting point of view are a new β2 rule that

is analogous to β, but operates on types, and a contractive extensional rule η2c :

(β2) (ΛX.M)[A]
β2

// M [A/X]

(η2c) (ΛX.M [X])
η2

c // M (if X 6∈ FTV (M))

where FTV (M) is the set of free type variables of M .

For the same reasons why expansions are recognized as a necessity for first order calculi, one would

also like better to use an expansive rule for η2

(η2) M
η2

// (ΛX.M [X]) if



















Xfresh
M : ∀X.A
M is not a polymorphic λ­abstraction

M is not applied

Now, our simple lemmas allow us to derive in a very straightforward way the confluence of this system

with expansion rules.

Theorem 13 Confluence with expansions. The polymorphic lambda calculus with expansive SP , η
and η2 is confluent.

Proof. First of all, notice that SP ∪ η ∪ η2 is confluent, as it enjoys the diamond property. Now, for

the full calculus, take R to be the usual polymorphic lambda calculus without expansion rules, which

we know is confluent and strongly normalizing, and let S be the system made up of the expansion

rules alone (SP , η and η2). It is an easy task to check (DPG), as the only new cases are due to η2 and

β2 (see [13]), and the expansion rules do not erase R redexes. Again, we can apply 7, and confluence

for the full system follows.

It should be noted that the strategy consisting in doing all non­expansive steps first and then only

expansions is normalizing, so this very simple proof (that gives us confluence) is already enough both

for getting decidability of equality and getting the unicity of polymorphic βη­long normal forms,

which is useful in higher order unification [21].

6.1 Handling confluent algebraic term rewriting systems (TRS’s)

It is also possible to go on further and show that whenever we have a canonical (that is, confluent and

strongly normalizing) algebraic TRS, then it can be added to system F with expansion rules, preserving

decidability of equality. One important property we will use is the following, that holds for arbitrary

TRS’s:

Lemma 14 Algebraic reduction commutes with reduction to expansive normal form. LetM ,M ′

be arbitrary terms, and ME , M ′E be their repective expansive normal forms. Then whenever

M
T // M ′, we have ME T // // M ′E .

Proof. A simple induction on the structure of terms, using in the crucial case the fact (proven by

induction on the structure of algebraic terms) that (A[M/x])E = A[ME/x] for any algebraic term A.

Now, we will first show a simple and self­contained proof technique that works only in the case that

the rewriting system is also left­linear (i.e. when variables occur at most once in the l.h.s. of any

algebraic rewriting rule):

Theorem 15 Expansive System F plus left­linear TRS’s. LetT be a left­linear algebraic TRS which

is confluent and strongly normalizing. Then System F with expansions together withT forms a confluent

system.

Proof. We already established that (DPG) holds taking system F as the horizontal system and expan­

sions as the vertical one. Left linearity makes it easy to show that (DPG) holds also taking the algebraic

system T as the horizontal reduction and expansions as the vertical reduction. Taken together, these

two facts give
F∪T //

η∪η2∪SP

��

η∪η2∪SP

��

�

�

�

�

��
+

F∪T //_ _ _ _ //

We know from [6, 8] that combining the non­extensional simply typed lambda calculus with a confluent

first­order algebraic rewriting system preserves confluence. On the other hand, this combination yields

a strongly normalizing system when the algebraic one is [7, 25]. This is enough to apply lemma 7 and

obtain confluence of F with expansions together with T .

Corollary 16. System F together with a left­linear canonical TRS is a decidable system.

Proof. The expansions preserve also algebraic normal forms (because the system is left linear), and

the strategy consisting in going to F ∪ T normal form first and then normalize w.r.t. the expansion

rules is normalizing. This, together with confluence, gives a decision procedure for equality.

Handling non left­linear TRS’s

The restriction to left­linear TRS’s is imposed here by the necessity to ensure that (DPG) holds,

which cannot be the case in the presence of non­left­linear rules: a vertical reduction could destroy an

horizontal redex. But it is possible to raise this restriction by using some technical results from [8]:

there it is shown that algebraic reductions commute with reduction to normal form in F without

extensional rules(which we write here F ↓)

T //

F↓

��

F↓

��

�

�

�

�

T //_ _ _ _ //

We can show the same result w.r.t. expansion rules.

Lemma 17 Expansions commute with reduction to F normal form. Reduction to F normal form

commutes w.r.t. expansion rules, i.e. the following diagram holds:

η∪SP
//

F↓

��

F↓

��

�

�

�

�η∪SP
//_ _ _ _ //

Proof. We have shown above, by establishing (DPG) and using our commutation lemma, that expan­

sions commute with the reductions in F without extensional rules, that is

η∪SP
//

F

��

F

��

�

�

�

�η∪SP
//_ _ _ _ //

Now the result is a direct consequence of the fact that expansions preserve F ­normal forms (the

restriction are there exactly to insure this).

We can now state the main result:

Theorem 18 Expansive System F with confluent TRS’s. System F plus expansion rules plus an

arbitrary confluent TRS T is confluent.

Proof. Lemmas 17 together with 14 and lemma 4.1 of [8] (which states that algebraic reduction com­

mutes with reduction to β normal form) allow us to establish the following simulation property:

F∪T ∪η∪SP
//

F↓

��

F↓

��

�

�

�

�T ∪η∪SP
//_ _ _ _ //

since F ↓ is confluent, this allows to reduce the confluence of F ∪ T ∪ η ∪ SP to confluence of

T ∪ η ∪ SP , which can be in turn reduced, due to the confluence of expansion rules, to confluence of

T via the simulation established in 14. But T is confluent by hypothesis, and we are done.

It is worth noting that the normal forms in this rewriting system are exactly Huet’s second order long

βη normal forms.

7 Girard’s F ω with expansion rules

A quite surprising fact, the proof strategy we used to show decidability of F plus expansion rules even

in the presence of canonical left linear TRS’s can be used with no changes at all to show decidability of

Girard’s Fω with expansive η, even with left linear canonical TRS’s added. We do not fully introduce

here the syntax and typing judgements for System Fω (see [16] for a detailed introduction to the

topic), but let’s recall that this system is basically System F with a simple typed lambda calculus over

its types, the types of the types being now called kinds. More formally, kinds, types and terms are

defined by the following grammar:

(Kinds) K := ∗|K → K

(Types) T := t|A|T⇒T |∀t : K.T |λt : K.T |T T

(Terms) M := x|λx : T.M |M M |Λt : K.M |M [T]

and one only works with those types that kind­check and terms that type­check w.r.t. appropriate

kinding and typing rules (here we follow essentially the presentation from [16]).

Γ, t : K1 ⊢ s : K2

Γ ⊢ (λt : K1.s) : K1 → K2

Γ ⊢ t : K1 → K2 Γ ⊢ s : K1

Γ ⊢ ts : K2

Γ, t : ∗ ⊢ s : ∗

Γ ⊢ ∀t : ∗.s : ∗

Γ ⊢ t : ∗ Γ ⊢ s : ∗

Γ ⊢ t⇒s : ∗

Table 4. Kinding judgements

Over the types, that now form a simple typed lambda calculus, we have the usual β and η equality,

that we turn into rewriting by choosing the usual β­reduction and restricted expansion rule for η. Once

the well­kinded types are defined, one defines the well­typed terms as in table 5.

Γ, x : t1 ⊢ M : t2

Γ ⊢ (λx : t1.M) : t1⇒t2

Γ ⊢ M : t1⇒t2 Γ ⊢ N : t1

Γ ⊢ MN : t2

Γ, t1 : K ⊢ M : t2

Γ ⊢ Λt1 : K.M : ∀t1 : K.t2

Γ ⊢ M : ∀t1 : K.t2 Γ ⊢ s : K

Γ ⊢ M [s] : t2[s/t1]

Γ ⊢ M : t t =βη s

Γ ⊢ M : s

Table 5. Typing judgements

Over terms, one has the usual β reduction, both for term application and for type application. The

most remarkable fact is that now a term has no longer a unique type, and this is a fact that we need to

consider when defining expansion rules.

We have no difficulty in writing the higher order η­expansion rule by simply generalizing the one for

System F:

(ηω) M
ηω

// (Λt : K.M [t]) if



















t fresh
M : (∀t : K.A)
M is not a polymorphic λ­abstraction

M is not applied

But for the first order expansion, due to the type conversion rules, the usual η expansion rule taken

alone is now not even confluent, as it can be the case that:

λx : A′.Mx
ηoo M

η // λx : A.Mx

where we only know that A =βη A′ in the type­conversion relation.

For this reason, we chose to work with a somewhat more restrictive rule, that only allow expansion

with types in normal form w.r.t. the simple typed lambda calculus over types.

(η) M
η // λx : A.Mx, if



















x fresh
M : A⇒C,with A⇒C in type normal form

M is not a λ­abstraction

M is not applied

Let’s call Fω
exp the rewriting system composed by the usual rules for Fω plus expansive η and ηω,

and call Fω
exp the system Fω

exp with our limited expansion rule η instead of η. The choice of a limited

version of η expansion does not make us loose any equality.

Lemma 19 Fω
exp and Fω

exp vs. Fω­equality. The reflexive, symmetric and transitive closure of
Fω

exp//

generates the usual equality over terms of Fω. The same holds for
Fω

exp// .

Proof. This comes from the fact that all η equalities M = λx : A.Mx that seem to be forbidden by

our restrictions on the expansions can be obtained either by β­reduction of λx : A.Mx (both for Fω
exp

and Fω
exp) or by the type reduction (which we know is confluent) of A (needed for Fω

exp).

Now, for this system, we can use the same proof strategy as for System F :

Theorem 20 Confluence with expansions. System Fω
exp is confluent and weakly normalizing (thus

decidable).

Proof. The proof proceeds exactly as for System F (the only novelty is the need to show that η ∪ ηω

is confluent, which is trivial as they enjoy the diamond property).

Much in the same way as for System F , we can then also establish the following:

Theorem 21 System Fω
exp plus left­linear TRS’s. Let T be a left­linear algebraic TRS which is con­

fluent and strongly normalizing. Then Fω
exp ∪ T forms a confluent and weakly normalizing (thus

decidable) system.

Indeed, we can now even prove the following:

Corollary 22 Confluence with general η­expansion. The system Fω
exp (where η is not restricted to

type normal forms) is confluent and weakly normalizing.

Proof. Consider a divergence M ′ oooo M // // M ′′ in the system Fω
exp. This means that M ′ =

M ′′, and since the equality generated by Fω
exp is the same as the usual one for Fω, we have that

M ′
Fω

exp// // M ′′′
Fω

expoooo M ′′, and since an expansion on type­normal form is a special case of the non­

restricted one, this is also M ′
Fω

exp// // M ′′′
Fω

expoooo M ′′.

As for normalization, the same strategy as for Fω
exp will obviously do.

Corollary 23. The union of the system Fω
exp with a canonical left­linear TRS is confluent and weakly

normalizing (hence decidable).

8 The polymorphic lambda calculus with Axiom C

This calculus stems from a promising new analysis of parametricity proposed in [23], where it is

shown that it is sound to add the following axiom C to the polymorphic lambda calculus (system F):

(Axiom C)
Γ | −M : ∀X.α, X 6∈ FV (Γ) ∪ FV (α)

Mσ = Mτ

Where FV (M) is the set of free variables of M . It has been long open the problem to prove that the

equational theory of the resulting system FC is decidable, which can be done for example showing that

the usual reduction rules for system F plus the following new ones form a confluent and normalizing

system:

(β2
C) M [σ/X] // M [∀X.X/X] (M : α,X 6∈ FTV (α), σ 6= ∀X.X)

(η2C) ΛX.M [∀X.X] // M (M : ∀Y.α, Y 6∈ FV (α), X 6∈ FV (M))

Only recently in [5] it has been proved that this system is indeed CR and SN, using a non modular

approach. We show here how, using our simple lemma, we can get the decidability of equality in FC in

a very straightforward manner (via confluence and weak normalization). Let us start with the system

FC without the extensional rules η2 and η2C . We apply our technique taking system F without η2 (we

will denote it F ′) as R (the horizontal reduction) and just β2
C as S (the vertical reduction).

Lemma 24. System F ′ plus β2
C is confluent and strongly normalizing.

Proof. The two systems are separately confluent and strongly normalizing (normalization for β2
C is

trivial as each reduction strictly decreases the number of redexes, while confluence comes from a rather

sophisticated result in [23], but again this is out of the scope of the present paper). The commutation

can be easily checked, and the at least one step is guaranteed by the fact that β2
C does not erase redexes

of F ′, as no reduction in this system depends on the particular form of a type (which is not the case

of η2). Finally, it is easily seen that system F ′ preserves β2
C normal forms. Then, we can apply our

lemma 9 and Akama’s lemma and we are done.

Then we focus on a restricted version of the rules η2C and η2:

(η2C
′
) ΛX.M [∀X.X] // M if











X 6∈ FTV (M)
M 6= ΛZ.M ′ with Z 6∈ FTV (M ′)
ΛX.M [∀X.X] is not applied to the type ∀X.X

(η2
′
) ΛX.M [X] // M if











X 6∈ FTV (M)
M 6= ΛZ.M ′

ΛX.M [X] is not applied to a type

Lemma 25. The system η2
′
∪ η2C

′
is strongly normalizing and confluent.

Proof. Strong normalization is trivial, as the rules decrease the number of Λ’s in a term. Confluence

is also easy, as the system has the diamond property.

We are now in a position to state the main results:

Theorem 26. The rewriting system for FC is confluent.

Proof. For confluence, take R as system F ′ ∪ β2
C and S as η2

′
∪ η2C

′
: it is easy to check the (DPG)

diagram, where the at least one step is guaranteed by the restrictions imposed on η2
′
and η2C

′
, and then

we get confluence of the system F ′∪β2
C ∪η2

′
∪η2C

′
using lemma 7. But it is quite easy to check that if

M
η2

C // M ′, then we have either M
η2

C

′

// M ′ or M
β2

// M ′, and that if M
η2

// M ′, then either

M
η2′

// M ′or M
β2

// M ′, so F ′ ∪ β2
C ∪ η2

′
∪ η2C

′
is the same as F ∪ β2

C ∪ η2C and we are done.

To show that equality in FC is decidable, it is enough to provide a normalizing strategy (like the

one that does η2 ∪ β2
C ∪ η2C after F ′), but we are able to show more:

Theorem 27. The rewriting system for FC is strongly normalizing.

Proof. Since β2 does not preserve η2C normal forms, we cannot obtain strong normalization directly

from our lemma, but the commutation we have shown using our lemma between β2
C and F ′ allow to

obtain the result indirectly via a sort of postponement of η2 ∪ η2C . Indeed, in the system FC η2 can be

postponed to any other rule, while it is possible to show that from any infinite reduction containing

η2C one can build an infinite reduction not containing it. The only case when η2C cannot be simply

postponed arises when we have a reduction sequence

C[(ΛX.(ΛY.M)[∀X.X])[A]]
η2

C // C[(ΛY.M)[A]]
β2

// C[M [A/Y]]

and then the only thing we can do to perform β2 first is either

C[(ΛX.(ΛY.M)[∀X.X])[A]]
β2

// C[(ΛX.M [∀X.X/Y])[A]]
β2

// C[M [∀X.X/Y]]

where the last step uses the fact that X 6∈ FTV (M), or

C[(ΛX.(ΛY.M)[∀X.X])[A]]
β2

// C[(ΛY.M)[∀X.X]]
β2

// C[M [∀X.X/Y]]

where the first step uses the fact that X 6∈ FTV (M). In any case, we did not achieve a real

postponement, as we do not get to C[M [A/Y]]. Nevertheless, remark that an infinite reduction

sequence can be projected via β2
C into another infinite reduction sequence (using (DPG) as established

in 24 this is quite easy), and then we can proceed as follows to build an infinite sequence without

η2C from an infinite sequence containing it: postpone the rule whenever possible, and when it is not

possible we can build the diagram

· · ·

· · ·

η2
C //

β2

��

?

?

?

?

β2

//

β2

C

��

�

�

�

�

��β2

//_ _ _ _ //

where we have managed to bring to front at least one β2 step, while still having an infinite sequence

available (the one projected via β2
C is still infinite). This is enough to reduce normalization of FC to

the already known normalization for F .

9 Conclusions

We have studied a few lemmas for proving the commutation of two rewriting relations and/or the

preservation of strong normalization. Despite their extreme simplicity, we showed that they can be

of great utility in proving confluence and/or normalization of many rewriting systems associated to

various typed lambda calculi, especially (but not only) when one needs to use expansive rewriting

rules for η and surjective pairing in order to get a confluent system in the presence of rules like Top or

of general algebraic rewriting systems. The major advantages of the lemmas are the simplicity of the

preconditions that one needs to establish. This has allowed us to collect in just one paper a survey of

results that, with the traditional approaches, would have required (or have required, for the old results

like the simple typed lambda calculus), a full paper by themselves. It is worth mentioning that what

we presented here is also a relevant contribution to the study of expansion rules in rewriting with typed

lambda calculi, which are now widely used.

Acknowledgements I am endebted to Delia Kesner, for many discussions and comments on the whole

work, and to Adolfo Piperno for many pleasurable discussions on the rewriting lemma.

References

1. Y. Akama. On Mints’ reductions for ccc­Calculus. In TLCA, n. 664 in LNCS, pages 1–12. Springer Verlag, 1993.

2. F. Barbanera. Combining term­rewriting and type­assignment systems. In 3rd It. Conf. on TCS, 1989.

3. F. Barbanera, M. Fernandez, and H. Geuvers. Modularity of strong normalization and confluence in the algebraic­λ­

cube. In LICS, Paris, 1994.

4. H. Barendregt. The Lambda Calculus; Its syntax and Semantics (revised edition). North Holland, 1984.

5. G. Bellè. Syntactical properties of an extension of girard’s system f where types can be taken as “generic” inputs.

1995. Available as ftp://idefix.disi.unige.it/pub/gbelle/systemFC.ps.Z.

6. V. Breazu­Tannen. Combining algebra and higher order types. In LICS, pages 82–90, July 1988.

7. V. Breazu­Tannen and J. Gallier. Polymorphic rewriting preserves algebraic strong normalization. TCS, 83:3–28, 1991.

8. V. Breazu­Tannen and J. Gallier. Polymorphic rewiting preserves algebraic confluence. Inf. and Comp., 114:1–29,

1994.

9. D. Cubric. On free CCC. Distributed on the types mailing list, 1992.

10. P.­L. Curien and R. Di Cosmo. A confluent reduction system for the λ­calculus with surjective pairing and terminal

object. JFP, 1995. To appear. A preliminary version appeared in ICALP 91.

11. R. Di Cosmo and D. Kesner. Simulating expansions without expansions. MSCS, 4:1–48, 1994.

12. R. Di Cosmo and D. Kesner. Combining algebraic rewriting, extensional lambda calculi and fixpoints. TCS, 1995. To

appear.

13. R. Di Cosmo and D. Kesner. Rewriting with polymorphic extensional λ­calculus. In CSL’95 (extended abstract),

1995. Full version accepted for CSL95 Proceedings, to appear in 1996.

14. R. Di Cosmo and A. Piperno. Expanding extensional polymorphism. In M. Dezani­Ciancaglini and G. Plotkin, editors,

TLCA, volume 902 of LNCS, pages 139–153, Apr. 1995.

15. D. J. Dougherty. Some lambda calculi with categorical sums and products. In RTA, 1993.

16. J. Gallier. On Girard’s “Candidats de Reductibilité”, pages 123–203. Logic and Computer Science. Academic Press,

1990.

17. A. Geser. Relative termination. Dissertation, Fakultät für Mathematik und Informatik, Universität Passau, Germany,

1990.

18. N. Ghani. βη­equality for coproducts. In M. Dezani­Ciancaglini and G. Plotkin, editors, TLCA, volume 902 of LNCS,

1995.

19. N. Ghani. Extensionality and polymorphism. University of Edimburgh, Submitted, 1995.

20. J.­Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1990.

21. G. Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. Thèse d’Etat, Université Paris VII, 1976.

22. C. B. Jay and N. Ghani. The Virtues of Eta­expansion. JFP, 5(2):135–154, Apr. 1995.

23. G. Longo, K. Milsted, and S. Soloviev. The Genericity Theorem and effective Parametricity in Polymorphic lambda­

calculus. TCS, 121:323–349, 1993.

24. G. Mints. Teorija categorii i teoria dokazatelstv.I. Aktualnye problemy logiki i metodologii nauky, pages 252–278,

1979.

25. M. Okada. Strong normalizability for the combined system of the types lambda calculus and an arbitrary convergent

term rewrite system. In Symp. Symb. and Alg. Comp., 1989.

26. V. Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In

4th Int. Conf. on Database Theory, n. 646 in LNCS, 1992. Available as

ftp://www.cis.upenn.edu/pub/papers/db­research/icdt92.dvi.Z.

27. V. van Oostrom. Developing developments. Draft, 1994.

28. L. Wong. Querying nested collections. PhD thesis, University of Pennsylvania, 1994. Available as

ftp://www.cis.upenn.edu/pub/papers/db­research/limsoonphd.ps.Z.

This article was processed using the LATEX macro package with LLNCS style

