
Math. Struct. in Comp. Science (1991), vol. 1, pp. 1–20

Provable isomorphisms of types

Kim B. Bruce: ∗

Roberto Di Cosmo: ‡

Giuseppe Longo: §

Received 23 July 1990

Revised 12 December 1991

A constructive characterization is given of the isomorphisms which must hold in all

models of the typed lambda calculus with surjective pairing. By the close relation

between closed Cartesian categories and models of these calculi, we also produce a

characterization of those isomorphisms which hold in all CCC’s. By the correspondence

between these calculi and proofs in intuitionistic positive propositional logic, we thus

provide a characterization of equivalent formulae of this logic, where the definition of

equivalence of terms depends on having “invertible” proofs between the two terms.

Rittri (1989), on types as search keys in program libraries, provides an interesting

example of use of these characterizations.

1. Introduction

There has been a great deal of interest over the years in constructing models of the

various lambda calculi which satisfy various equations (isomorphisms) between types.

One reason is that recursive definitions of data types are usually interpreted as equations

to be solved over specific mathematical structures.

In previous work, Bruce and Longo [BL85], the first and third author showed that no

such non-trivial isomorphism existed in either the simply typed or second-order lambda

calculus. However, no extension of these results was known at that time for the lambda

calculus with richer type disciplines. Products and higher order types, in particular,

proved to be of special interest not only because of their common or increasing use in

programming languages, but also because of the close connection between these calculi

and relevant categorical structures and proof systems.

In this paper we characterize the isomorphisms which hold in all models of the simply

typed lambda calculus with surjective pairing (and “terminal object”). Moreover we

show that it is decidable whether two types (built from type variables) are isomorphic in

: ∗ Dept. Of Computer Science, Williams College, Williamstown, MA 01267
: ‡ Dip. di Informatica, Università di Pisa, Italy, and LIENS, 45, Rue d’Ulm, Paris, France

: § LIENS (CNRS) - DMI, Ecole Normale Superieure, 45, Rue d’Ulm, Paris, France

all models of this calculus. It is well known that these models are exactly the Cartesian

closed categories (CCC).

Once given the types which are isomorphic in every model of the lambda calculus (or

equivalently, isomorphic in every CCC), there is, in principle, no reason to believe that

there is a uniform way to witness these isomorphisms. Nevertheless it turns out that

our proof of these results is based on a simple axiomatization of type equations and

the notion of provable isomorphisms (those representable by closed terms of the lambda

calculus). Moreover any proof of the equality of two types can be used to generate an

isomorphism between the types (which holds in every model).

The axioms for our theory are given below:

2

Definition 1.1. Th1
×T

is a theory of equality plus the following axiom schemas, where

T is a constant symbol:

1 A×B = B ×A

2 A× (B × C) = (A×B)× C

3 (A×B) → C = A → (B → C)

4 A → (B × C) = (A → B)× (A → C)

5 A×T = A

6 A → T = T

7 T → A = A

The Main Theorem of this paper shows that two types A and B can be constructively

proved to be isomorphic, by two programs which act one as the inverse of the other, iff

Th1
×T

⊢ A = B.

In order to discuss the soundness of Th, and explain where it comes from, we hint

here of its categorical meaning. Note, though, that no notion nor result from Category

Theory is used in most of the paper.

Since models of the typed lambda calculus with surjective pairing are exactly the

Cartesian closed categories (CCC), our results translate directly into theorems on when

two generic objects are isomorphic in all CCC’s. In other words, Th1
×T

characterizes

which are isomorphic just by the Cartesian closed structure of the category in which

they are interpreted, no matter which particular CCC is chosen.

Observe first that Th1
×T

is realized in every Cartesian Closed Category, when “=” is

interpreted as isomorphism. The first three axioms describe properties of the Cartesian

product (associativity, commutativity, identity for ×), and the second three axioms can

be seen as the properties of the three adjunctions of a CCC that relate product, exponent

and the terminal object. The last equation (T → A = A) tells us that the arrows from

the terminal object to A in a CCC are the points of A. Thus, the theory Th1
×T

is sound.

A consequence of our main result is the completeness of Th1
×T

with respect to CCC’s.

That is, no other isomorphism is valid in all CCC’s. (This is not obvious because there

are categorical models of Th1
×T

which are not CCC’s: take a Cartesian Category with a

bifunctor “ → ” such that A → B = B, say).

A further consequence of the work below in λ-calculus will be an insight into the

composition of derivations in Proof Theory. The typed lambda calculus with surjec-

tive pairing is the language for proofs of IPC(True,∧,→), the intuitionistic positive

propositional calculus. In the proof theoretic framework we then characterize equivalent

formulae, where two formulae A and B are considered equivalent if, given a proof f of the

sequent A ⊢B, and a proof g of the sequent B ⊢ A, g f yields, after cut-elimination, the

identity proof of the sequent A ⊢ A and vice-versa. The details of both the categorical

and proof-theoretic applications are discussed in [DCL89].

As an example of the use of such results in computer science we note the two papers by

Rittri ([Rit89], [Rit90]) in which the author discusses the problem of finding applicable

functions in a program library. For example, one might be interested in looking up

various search functions. As a result it might be useful to inspect all functions which

3

take an element and a table and return an index to the table. Because trivial differences

in argument order or Currying may lead one to ignore useful functions, it is important

to be able to find all those functions whose type is isomorphic to that for which one is

searching.

Rittri’s application of the result presented here settles on the same notion of provable

isomorphism. He cites the paper by Solv’ev ([Sol83]), in which the author presents the

same result as in our main theorem (Theorem 4.9), although by an entirely different proof

which is based on taking the natural numbers as objects in a CCC (with × interpreted as

multiplication and → as exponentiation) and then showing the equational completeness

of the theory of (N, 1,×, ↑). (Meyer and Statman, personal communication, suggested

a similar proof for the exponential fragment only; also the abstract in Martin ([Mar72])

states the same fact). Solv’ev also provides a decision procedure similar to that given

here.

We note that in a forthcoming paper, the second author extends these results to

the second-order typed lambda calculus, with surjective pairings. We know no way of

extending the proof given by Solv’ev to this more complex case.

The paper is organized as follows. Section 2 sets out the basic definitions leading up

to the notion of a type normal form. Section 3 presents some rather technical lemmas

which will be used in section 4 in order to characterize the set of provable isomorphisms.

The third section also contains a discussion of the decidability of the theory and the

connections with category and proof theory. The proofs of the important (but technically

complex) lemmas in section 3 are put off into an appendix at the end of the paper.

2. Basic notions and facts

Definition 2.1. The collection Tp of type expressions, over a ground set At of atomic

type symbols, is inductively defined by:

•At ⊆ Tp, where T ∈ At is a fixed constant type symbol

•if A,B ∈ Tp, then A → B ∈ Tp;

•if A,B ∈ Tp, then A×B ∈ Tp.

The intended meaning of T is the terminal object in the categorical sense; thus ∗A
below will stand for the unique map in A → T (as required of a terminal object).

Pure λ-terms are defined as usual. In particular, for every type A there exists a

denumerable number of variables, ranged over by lower case letters near the end of the

alphabet. We use upper case letters M, N, P, . . ., as meta-variables for terms. The fact

that a term M has type A will be denoted with the expression “M : A”.

Definition 2.2.

(i) The terms of λ1βηπ∗, the typed λ-calculus with surjective pairing and terminal object,

and their associated types, are defined according to the following formation rules:

•every variable x : A is a term;

•if x : A is a variable, and M : B is a term, then λx:A . M : A → B is a term;

•if M : A → B is a term and N : A is a term, then MN : B is a term;

•if M : A is a term and N : B is a term, then 〈M,N〉: A×B is a term;

4

•p1 : A×B → A;

•p2 : A×B → B;

•∗A : A → T.

(ii) The equational theory of terms is the minimal congruence relation “=” which

satisfies the following axiom schemas:

alpha-beta-eta-csi:

(α) λx:A.M = λy:A.M[x:=y], if y is free for x in M

(→ β) (λx:A.M)N = M[x:=N], if N is free for x in M

(→ η) λx:A.(Mx) = M, if x 6∈ FV (M)

(ξ) if M=N then λx:A.M = λx:A.N

surjective pairing:

(×β1) p1(〈M,N〉) = M

(×β2) p2(〈M,N〉) = N

(×η) 〈p1(M), p2(M)〉 = M

terminal object:

(∗) If M : A → T then M = ∗A.

Notation 2.3. Given a sequence M1, . . . ,Mn of terms, and sequence x = x1, . . . ,xn of

variables, N[~M/~x] denotes the simultaneous substitution of every term Mi for the vari-

able xi in the term N (for simplicity, we always assume bound variables are renamed as

necessary to avoid capture of free variables). We also use the notation N[M/~x] to express

the simultaneous substitution of the term M for all the variables in ~x. For application

we follow the usual convention of associating to the left, i.e. N1 . . . Nn is to be parsed

as (. . . (N1N2). . .Nn). In case a substitution is applied only to a subsequence of an ap-

plication M1 . . .Mn, we will use the notation N1N2. . . {Ni. . .Nk[~M/~x]}. . .Nn to denote

the term N1 . . . Nn with the substitution [~M/~x] applied only to the terms Ni . . . Nk.

We write 〈M1, . . .Mn〉 for 〈. . . 〈〈M1,M2〉,M3〉, . . . 〉.

λ1βηπ is the calculus without terminal object and related rules, λ1βη is the classical

typed calculus, and λβη the type-free calculus. Finally, let IA = λx:A.x be the identity

of type A.

Remark 2.4. Notion of reduction for λ1βηπ∗. The notion of reduction associated with

the equational theory of λ1βηπ∗ obtained by just orienting the equalities in the axioms to

the right is not Church-Rosser. It is possible, though, to derive for this equality theory

another notion of reduction that has the Church-Rosser property; in the following we

will refer to this latter one when talking about reduction, normal forms, and so on for

λ1βηπ∗ (see [Pot81], [CDC91]).

Definition 2.5. Let A,B ∈ Tp. Then A and B are provably isomorphic (A ∼=p B)

iff there exist closed λ-terms M : A → B and N : B → A such that λ1βηπ∗⊢ M N = IB

5

and λ1βηπ∗⊢ N M = IA. We then say that M and N are invertible terms, and that M

is an inverse of N, in λ1βηπ∗.

Note that, as usual, the inverse of a term M (if it exists) is unique up to “=.” Suppose

that types A and B are provably isomorphic and consistently substitute arbitrary types

for the common base types. Then the isomorphism still holds: just use the corresponding

terms with updated types. Borrowing terminology from Statman (1983) we may say that

the notion of provable isomorphism is typically ambiguous.

Theorem 2.6. (Main Theorem (easy implication)) Th1
×T

⊢ A = B ⇒ A ∼=p B .

Proof. We give the terms associated to each axiom and rule. As Th1
×T

is a theory

of equality, one has first to observe that the usual axioms and inference rules yield and

preserve provable isomorphisms:

•λx:A.x proves A = A;

•if M, with inverse N, proves A = B , then N proves B = A;

•if an invertible M proves A = B and an invertible N proves B = C, then the term

N◦M = λx:A.N (M x), that is clearly invertible, proves A = C ;

•if an invertible term M proves A = B and an invertible term N proves C = D, then

the invertible term λx:A× C.〈M(p1x), N(p2x)〉 proves A× C = B ×D;

•if an invertible M proves A = B and an invertible N proves C = D, then λy:A →

C.λx:B.N (y (M−1 x)), where M−1 is the inverse of M, proves A → C = B → D and

it is invertible (take λy:B → D.λx:A.N−1 (y (M x))).

We next check the proper axioms:

1A×B = B ×A is proved by λx:A×B.〈p2x, p1x〉;

2A× (B × C) = (A×B)×C is proved by λx: A× (B × C).〈〈p1x, p1(p2x)〉, p2(p2x)〉,

that is invertible;

3(A×B) → C = A → (B → C) is proved by λz:(A×B) → C.λx:A.λy:B.z〈x, y〉 with

inverse λz:A → (B → C).λx:A×B.z (p1x) (p2x);

4A → (B × C) = (A → B)× (A → C) is proved by

λz:A → (B × C).〈λx : A.(p1(zx)), λx : A.(p2(zx))〉

with inverse λz:(A → B)× (A → C).λx:A.〈(p1z)x, (p2z)x〉;

5A×T = A is proved by p1 with inverse λx:A.〈x, ∗Ax〉 (to check invertibility, notice

that ∗A◦p1 = ∗
A→T = p2);

6A → T = T is proved by ∗(A→T) with inverse λx:T.∗A;

7T → A = A is proved by λz:T → A.z(∗(T→A)z) with inverse λx:A.λy:T.x.

The rest of this section, as well sections 3 and 4, are dedicated to the proof of the

other implication of the Main Theorem. The first steps are done by reducing types to

a “type normal form”. The axioms of Th1
×T

suggest the following rewrite system R for

types (essentially Th1
×T

without commutativity):

Definition 2.7. [Type rewriting R]

Let “❀” be the transitive and substitutive type-reduction relation generated by:

1A× (B × C) ❀ (A×B)× C

2(A×B) → C ❀ A → (B → C)

3A → (B × C) ❀ (A → B)× (A → C)

6

4A×T ❀ A

5T×A ❀ A

6A → T ❀ T

7T → A ❀ A

The system R yields an obvious notion of normal form for types (type-n.f.), i.e.

when no type reduction is applicable. Note that 4, 5 and 6 “eliminate the T’s”, while 2

and 3 “bring the × outside”. It is then easy to observe that each type-n.f. is T or has

the structure S1 × . . . × Sn where each Si does not contain T or “× ”. We write nf(S)

for the normal form of S (there is exactly one, see 2.8), and say that a normal form is

non-trivial if it is not T.

Proposition 2.8. Each type has a unique type normal form in R.

Proof. Notice that in any R-reduction, starting with a given type S:

(i) Rules 2 and 3 can be applied only finitely many times, as they strictly decrease

the number of × ’s in the scope of an arrow of S and this number is finite and is not

increased by any other rule.

(ii) Between an application of rule 2 or 3 (yielding type S’) and the next one, the

remaining rules can be applied only finitely many times (4, 5, 7 and 6 simply throw

away some subformula reducing by one the number of products or arrows, which is

finite; rule 1 is just associativity to the left).

So, after a finite reduction path we get a type S” with no redex for rules 2 and 3,

and then, again, the remaining rules can be applied only finitely many times (at most

the length of S” plus the times required for associating S” to the left). The resulting

type nf(S) has then no products in the scope of any arrow (otherwise 2 and 3 could be

applied), and is either T or a type with no occurrence of T (otherwise 4, 5, 7 and 6 could

be applied). Thus nf(S) is a product of types, each of which has no occurrence of × .

It is easy to observe that R is Church-Rosser too and, thus, that nf(S) is unique. (Note

also that we have actually proved that R strongly normalizes)

From the implication proved above of the Main Theorem, since R ⊢ S ❀ R implies

Th1
×T

⊢ S = R , it is clear that any reduction R ⊢ S ❀ R is witnessed (or, proved, in

the “types-as-propositions” analogy) by an invertible term of type S → R. Moreover,

one clearly has:

Corollary 2.9. Th1
×T

⊢ S = nf(S) and, thus, Th1
×T

⊢ S = R ⇐⇒ Th1
×T

⊢ nf(S) = nf(R)

In conclusion, when Th1
×T

⊢ S = R, either we have nf(S) ≡ T ≡ nf(R), or Th1
×T

⊢

nf(S) ≡ S1 × . . . × Sn = R1 × . . . × Rm ≡ nf(R). A crucial lemma below will prove

that, in this case, one also has n = m.

The assertion in the corollary can be reformulated for invertible terms in a very con-

venient way:

Proposition 2.10. (Commuting diagram) Given types A and B, assume that the

invertible terms F : A → nf(A) and G : B → nf(B) prove the reductions to type-

normal-form. Then a term M : A → B is invertible iff there exist an invertible term M’

: nf(A) → nf(B), such that M = G−1◦M’◦F.

7

Proof. (⇐) Set M−1 ≡ (G−1 ◦M ′ ◦ F)−1 ≡ F−1 ◦M ′−1 ◦G , then M is invertible.

(⇒) Just set M ′ ≡ G◦M◦F−1. Then M ′−1 ≡ F ◦M−1 ◦G−1 and M’ is invertible.

The diagram in the following Figure 1 represents the situation in the corollary.

✲

✲

❄

✻✻

❄
(B1 × . . .×Bm)

(A1 × . . .×An)

M’ = G◦M◦F−1M

B

A

G

F

Fig. 1. Reduction to a subclass of isomorphic types.

Thus we have reduced isomorphisms between arbitrary types to the same problems

with respect to type normal forms. We examine next how this may affect the structure

of the terms which prove the isomorphisms.

3. More Lemmas: From λ1βηπ∗ to the Classical λ1βη

This is a technical section, where we display the statements of some crucial lemmas. Their

proofs are postponed to the appendix. Our aim is to reduce invertibility in λ1βηπ∗ to

invertibility in λ1βη.

Recall first that, when Th1
×T

⊢ S = R, one has nf(S) ≡ T ≡ nf(R), or Th1
×T

⊢

nf(S) ≡ S1 × . . . × Sn = R1 × . . . × Rm ≡ nf(R). Notice now that, in the latter

case, there cannot be any occurrence of T in either type. Indeed, a non trivial type-n.f.

cannot be provably equated to T, as can be easily seen by taking a non-trivial model.

Thus we restrict our attention to equations like S1 × . . . × Sn = R1 × . . . × Rm with no

occurrence of T and, hence, to invertible terms with no occurrence of the type constant

T in their types. We can show that these terms do not contain any occurrence of ∗A
either, for any type A, via the following lemmas.

Lemma 3.1. (Form of the terms of a product type) Given a term M of λ1βηπ∗ in

normal form such that M: A×B, then either M ≡ 〈M1,M2〉, for some M1, M2, or there

is a free variable x : C in M such that A×B is a type subexpression of C.

Proof. By induction on the length of the structure of M (see appendix).

Lemma 3.2. (There are no ∗A in a term in n.f. if its type does not contain T)

Assume that in a term M of λ1βηπ∗ in normal form there is an occurrence of ∗A, for

some type A. Then there is some occurrence of the type constant T in the type of M or

in the type of some free variable of M.

Proof. By induction on the structure of M (see appendix).

8

Proposition 3.3. (Isomorphisms between type-n.f.’s are given by terms in λ1βηπ)

Assume that S and R are non trivial type-n.f.’s. If the closed terms M and N prove S∼=pR

in λ1βηπ∗, then their normal forms contain no occurrences of the constants ∗A. (Thus,

M and N are actually in λ1βηπ).

Proof. By the previous lemma, as the terms are closed and no T occurs in their type.

So we have factored out the first class of constants ∗A, and we have restricted ourselves

to λ1βηπ. In the next step we eliminate pairing as well, in a sense.

There is a problem though. Our aim is to reduce the investigation of invertible terms

in λ1βηπ∗ to that of terms in λ1βηπ. This is done on the grounds of Proposition 2.10

by examining each component of the product, where the isomorphism will be given by

terms of λ1βη. However, in the notation of Proposition 2.10, consider the term M’ :

nf(A) → nf(B). M’ is invertible in (the equational theory of) λ1βηπ∗ and, thus, also

the subterms yielding the isomorphism of the components (see 3.7 and 3.8 below) are, a

priori, invertible in λ1βηπ∗, while we need to know that they are actually invertible in

λ1βη. We get rid of the problem by the following remark.

Remark 3.4. (The equational theory of) λ1βηπ∗ is a conservative extension of (the

equational theory of) λ1βη. Similarly for λ1βηπ with respect to λ1βη.

Indeed, both λ1βηπ∗ and λ1βηπ are Church-Rosser, where “the theory of reduction” for

λ1βηπ is given by orienting the equalities in the axioms from left to right (for the C-R

property see the references in the remark before 2.5) . Consider now M and N in λ1βηπ

such that λ1βηπ∗⊢ N = M and let P be the common reductum. Then λ1βηπ∗⊢ N →→ P

is actually a reduction λ1βηπ⊢ N →→ P, as N contains no T-redex, and no T-redex can

be created by the application of reduction rules. The same applies to λ1βηπ∗⊢ M →→ P

and, thus, λ1βηπ⊢ N = M. Similarly for λ1βηπ w.r.t λ1βη.

Notation 3.5. Recall that by ~x, ~y, ~M ... we denote vectors of variables, terms, etc.

Lemma 3.6. (Terms of λ1βηπ whose type is arrow-only belong to λ1βη)

Let M be a term of λ1βηπ in normal form such that M : A, where A is a type with no

occurrence of × in it. If no free variable of M has a type with occurrences of × , then

M is actually a term in λ1βη.

Proof. By induction on the structure of M (see appendix).

Proposition 3.7. (Isolate the relevant 〈M1, . . . ,Mn〉 in an isomorphism)

Let S ≡ S1 × . . . × Sm and R ≡ R1 × . . . × Rn be type-n.f.’s where neither the Si’s nor

the Rj ’s contain any occurrences of T or × . Then S ∼=p R iff there exist M1, . . . ,Mn

and N1, . . . ,Nm such that

x1 : S1, . . . , xm : Sm ⊢M1, . . . ,Mn Mi[~N/~x] =βη yi, for 1 ≤ i ≤ n

y1 : R1, . . . , yn : Rn ⊢N1, . . . ,Nm Nj [~M/~y] =βη xj , for 1 ≤ i ≤ m

(where substitution of vectors of equal length is meant componentwise).

Proof. (See appendix: it is not obvious).

In conclusion, we have isolated some interesting terms from which every constant has

9

been factored out. Next we prove that provably equal types in normal form have equal

length.

Lemma 3.8. (Isomorphic type-n.f.’s have equal length)

Assume that R1 × . . . × Rn and S1 × . . . × Sm are type-n.f.’s and M ≡ 〈M1, . . . ,Mn〉

, N ≡ 〈N1, . . . , Nm〉 are terms in λ1βηπ such that

x1 : S1, . . . , xm : Sm ⊢M1, . . . ,Mn Mi[~N/~x] =βη yi, for 1 ≤ i ≤ n

y1 : R1, . . . , yn : Rn ⊢N1, . . . ,Nm Nj [~M/~y] =βη xj , for 1 ≤ i ≤ m

then n = m and there exist permutations σ, π over n (and terms Pi, Qj) such that

Mi = λ~ui.xσi

~Pi and Nj = λ~vj .xπi

~Qj

Proof. By lemma 3.6 (recall that we may assume that each Mi and Nj is in normal

form) one has that Mi and Nj are in λ1βη. Then,

Mi = λ~ui.si ~Pi and Nj = λ~vj .tj ~Qj

Note that si is a free variable (namely some xj), since Mi[~N/~x] =βηyi. Indeed, if si is

bound then Mi is λu1 . . . si . . .uk.si ~Pi and Mi[~N/~x] is λu1 . . . si . . .uk.si ~Pi[~N/~x] so that

si would still be a bound head variable, and there would be no way to reduce it to a

term without abstraction. Similarly tj is some yi.

So there are two functions σ : n → m, π: m → n such that

Mi = λ~ui.xσ(i)
~Pi for 1 ≤ i ≤ n, Nj = λ~vj .yπ(j) ~Qj for 1 ≤ i ≤ m

In conclusion, for 1 ≤ i ≤ n we obtain:

yi=βη Mi[~N/~x] =βη (λ~ui.xσ(i)
~Pi)[~N/~x]

=βη λ~ui.Nσ(i){~Pi[~N/~x]}

=βη λ~ui.(λ~vσ(i).yπ(σ(i)) ~Qσ(i)){~Pi[~N/~x]}

=βη if ~vσ(i) is longer than ~Pi

then λ~ui.~v′σ(i).yπ(σ(i)) ~Qσ(i)[(~Pi[~N/~x])/~ui]

else λ~ui.yπ(σ(i)){ ~Qσ(i)[(~Pi[~N/~x])/~ui]}{ ~P ′
i[~N/~x]}

In either case of the last equality, each term can reduce to yi iff yi = yπ(σ(i)) and each

of the Q’s and P’s left orderly reduce to one of the bound variables, so that one can apply

η, several times, at the end. The same holds for Nj [~M/~y] for 1 ≤ j ≤ m.

Thus i = π(σ(i)) , for 1 ≤ i ≤ n, and j = σ(π(j)), for 1 ≤ j ≤ m and we can conclude

that m = n, σ is a permutation and π is its inverse.

We are then reduced to examining componentwise the terms which prove an isomor-

phism. The next point is to show that each component, indeed a term of λ1βη by

lemma 3.6, yields an isomorphism.

10

4. Finite Hereditary Permutations

In order to prove that the isomorphism between two type-n.f.’s can be expressed compo-

nentwise, we use a theorem in [Dez76]. The same result will also be applied to obtain,

at last, the remaining part of the proof of our Main Theorem.

Definition 4.1. [Finite Hereditary Permutations (f.h.p.)] Let M be an untyped term.

Then M is a finite hereditary permutation (f.h.p.) iff either

•λ1βη⊢ M = λx.x , or

•λ1βη⊢ M = λz.λ~x.z ~Nσ,

where if ‖~x‖ = n then σ is a permutation over n and z ~Nσ = (. . . (zNσ(1)) . . . Nσ(n)),

such that, for 1 ≤ i ≤ n, λxi.Ni is a finite hereditary permutation.

Thus λz.λx1.λx2.zx2x1 and λz.λx1.λx2.zx2λx3.λx4.x1x4x3 are f.h.p.’s. F.h.p.’s can

also be tidily described in terms of Böhm-trees. Recall that a Böhm-tree of a term M

is (informally) given by:

BT(M) = Ω if M has no head normal form

BT(M) = λx1 . . . xn.y if M =βλx1 . . . xn.yM1 . . .Mp

/...\

BT (M1) . . .BT (Mp)

Recall also that BT(M) is finite and Ω-free iff M has a normal form. Then one may look

at f.h.p.’s as Böhm-trees, as follows:

λz~x.z

/ . . . \

λ~y1.xσ(1) . . . λ ~yn.xσ(1)

...
...

and so on, up to a finite depth (note that ~yi may be an empty string of variables).

Clearly f.h.p.’s are closed terms and they possess normal form. In particular, exactly the

abstracted variables at level n + 1 appear at level n + 2 , modulo some permutation of

the order (note the special case of z at level 0). The importance of f.h.p.’s arises from the

following theorem. (Clearly, the notion of invertible term given in 2.5 easily translates

to the untyped λ-calculus).

Theorem 4.2. (Dezani [Dez76])

Let M be an untyped term possessing normal form. Then M is λβη-invertible iff M is a

f.h.p.

Remark 4.3. One may easily show that the f.h.p.’s are typable terms (Hint: Just follow

the inductive definition and give z, for instance, type A1 → (A2 . . . → B), where the Ai’s

are the types of the Nσ(i).) By the usual abuse of language we may then speak of typed

f.h.p.’s.

Recall now that all typed terms possess a (unique) normal form (see [Bar84]). As

we now need an interplay between typed and type-free terms, we are going to be more

explicit about which sort of terms we are dealing with, when needed. Let M be a typed

11

λ-term. We write e(M) for the erasure of M, i.e. for M with all type labels on variables

erased.

Remark 4.4. Observe that the erasures of all axioms and rules of the typed lambda

calculus are themselves axioms and rules of the untyped lambda calculus. Then, in

particular, if M and N are terms of λ1βη and λ1βη⊢ M = N, one has λβη⊢ e(M) = e(N).

Theorem 4.5. If M : A → B and N : B → A are invertible terms in λ1βη, then e(M)

and e(N) are f.h.p.’s.

Proof. e(N M) = e(N)◦e(M), and hence, by the remark, λβη ⊢ e(M)◦e(N) = e(Iσ) =

I and λβη ⊢ e(N)◦e(M) = e(Iσ) = I. Thus by Theorem 4.2, e(M) and e(N) are f.h.p.’s.

The first application of 4.2 we need is the following.

Proposition 4.6. Let M1, . . . ,Mn and N1, . . . ,Nn and permutation σ satisfy all the

assumptions in lemma 3.8. Then λxσ(i).Mi:Sσ(i) → Ri and λyi.Nσ(i):Ri → Sσ(i) are

invertible terms.

Proof. For a suitable typing of the variables it is possible to build the following terms

of λ1βη :

M = λz.λx1 . . .xn.zM1. . .Mn, N = λz.λy1 . . . yn.zN1. . .Nn.

It is an easy computation to check, by the definition of the Mi’s and of the Ni’s, that

M and N are invertible. Moreover, they are (by the construction given in the Appendix)

in normal form, thus, by Dezani’s theorem, (the erasures of) M and N are f.h.p.’s. This

is enough to show that every Mi has only one occurrence of the xi’s (namely xσ(i));

similarly for the Ni’s.

Thus we obtain Mi[~N/~x] ≡ Mi[Nσ(i)/xσ(i)] =βη yi, for 1 ≤ i ≤ n, and Ni[~M/~y] ≡

Ni[Mπ(i)/yπ(i)] =βη xi, for 1 ≤ i ≤ n,

Hence, for each i, λxσ(i).Mi:Sσ(i) → Ri and λyi.Nσ(i):Ri → Sσ(i) are invertible.

As a result of all the work done so far, we can then focus on invertible terms whose

types contain only “ → ”, i.e. investigate componentwise the isomorphisms of type-n.f.’s.

Of course, these isomorphisms will be given just by a fragment of the theory Th1
×T

.

Definition 4.7. Let Swap be the subtheory of Th1
×T

given by just the following proper

axiom (plus the usual axioms and rules for “=”),

(swap) A → B → C = B → A → C.

Swap is a subtheory of Th1
×T

by axioms 1 and 3 of Th1
×T

.

Proposition 4.8. Let A, B be type expressions with no occurrences of T or × . Then

A ∼=p B ⇒ Swap ⊢ A = B.

Proof. Suppose A ∼=p B via M and N. As usual, we may assume without loss of

generality that M and N are in normal form. By lemma 3.6, M and N actually live in

λ1βη and, by theorem 4.5, e(M) and e(N) are f.h.p.’s. We prove Swap ⊢ A = B by

induction on the depth of the Böhm-tree of M.

Depth 1: M ≡ λz : C. z. Thus M : C → C. Now, Swap ⊢ C = C by reflexivity.

12

Depth n+1: M ≡ λz : E. λ~x: ~D. z ~Nσ. Recall z ~Nσ = (. . . (zNσ(1)) . . . Nσ(n)) where if

the ith abstraction in λ~x: ~D is λxi:Di then the erasure of λxi:Di.Ni is a f.h.p. Let Fi

be the type of Ni.

In order to type check, we must have E = (Fσ(1) → . . . → Fσ(n) → B) for some B.

Thus the type of M is (Fσ(1) → . . . → Fσ(n) → B) → (Dσ(1) → . . . → Dσ(n) → B).

Since λxi:Di.Ni is a f.h.p, λxi:Di.Ni gives (half of) a provable isomorphism from i

to Fi. By induction, since the height of the Böhm tree of (of the erasure of) each

λxi:Di.Ni is less than the height of the Böhm tree of M, one has Swap ⊢ Di = Fi

for 1 ≤ i ≤ n. By repeated use of the rules for “=”, we get

Swap ⊢ (Fσ(1) → . . . → Fσ(n) → B) = (Dσ(1) → . . . → Dσ(n) → B)

Hence it suffices to show

Swap ⊢ (Dσ(1) → . . . → Dσ(n) → B) = (D1 → . . . → Dn → B)

This is quite simple to show by repeated use of axiom (swap) above in conjunction

with the rules for equality.

Clearly, also the converse of proposition 4.8 holds, since the “⇐” part in 4.8 is provable

by a fragment of the proof in theorem 2.6. Thus one has:

Swap ⊢ A = B⇐⇒ A ∼=p B by terms in λ1βη.

The result we aim at is just the extension of this fact to Th1
×T

and λ1βηπ∗.

Theorem 4.9. (Main Theorem) S ∼=p R ⇐⇒ Th1
×T

⊢ S = R

Proof. In view of theorem 2.6, we only need to prove S ∼=p R ⇒ Th1
×T

⊢ S = R. By

proposition 2.10, this is equivalent to proving nf(S) ∼=p nf(R) ⇒ Th1
×T

⊢ nf(S) = nf(R).

Now, for nf(S) ≡ S1 × . . . × Sn and R1 × . . . × Rm ≡ nf(R), we have shown, in

lemmas 3.7, 3.8 and proposition 4.6, that nf(S) ∼=p nf(R) ⇒ n = m and there ex-

ist M1, . . . ,Mn, N1, . . . ,Nn and a permutation σ such that λxσ(i).Mi:Sσ(i) → Ri and

λyi.Nσ(i):Si → Rσ(i).

By 4.6, these terms are invertible too, for each i. Thus, by 4.8, Swap ⊢ Ri = Sσ(i)

and, hence, by the rules, Th1
×T

⊢ S = R.

This concludes the proof of the main theorem. Here is an immediate consequence.

Corollary 4.10. Given types A and B, it is decidable whether they are isomorphic in all

models of λ1βηπ∗. (And thus whether A and B name isomorphic objects in all CCC’s.)

Proof. Let the type-n.f. of A be R1 × . . . × Rn and that of B be S1 × . . . × Sn where

neither the Ri’s nor the Sj ’s contain any occurrences of T or × . (If one of A or B is

T, the other must be as well if they are to be isomorphic.) By propositions 3.7 and

3.8, and theorem 4.9, A and B are isomorphic iff m = n and there is a permutation σ

over n such that for 1 ≤ i ≤ n, Ri
∼=p Sσ(i). By proposition 4.8, we know that Swap

⊢ Ri = Sσ(i). Note that the axioms and rules of Swap do not change the length of

type expressions. Hence if Swap ⊢ Ri = Sσ(i) , Ri and Sσ(i) have the same length. We

provide a decision procedure to determine if Swap ⊢ R = S (and hence whether they

13

are isomorphic in all models) by induction on the length of R (and hence S). We restrict

ourselves to type expressions of the same length since otherwise they are not provably

equal. If R and S are both type symbols then they are equal if and only if they are the

same symbol. Suppose we have a decision procedure for all types of length less than n,

and R and S have length n. Decompose R and S into terms of the form R1 → . . . → Rk

and S1 → . . . → Sm where Rk and Sm are type symbols. If Rk and Sm are different or

k 6= m then it is not the case that Swap ⊢ R = S. Otherwise, for each Ri determine if

there is a distinct Sj such that ⊢ Rk = Sm. Each of these tests is decidable by hypothesis.

If each Ri can be paired with a distinct Sj , then Swap ⊢ S = R. Otherwise it fails. The

proof of the correctness of this decision proceed follows the same lines as the proof of the

(⇒) direction of proposition 4.8.

Indeed, more can be said about the connection to Category Theory. We also hint here

of a simple application to Proof Theory, but refer to [DCL89] for more discussions on

both topics.

Take the intuitionistic positive calculus, IPC, i.e. Intuitionistic Logic with only →,×

(i.e. conjunction), and True, and consider the following notion of strong equivalence (see

[Mar91], [LE85] and [AB91]).

Definition 4.11. Two formulas A and B of IPC are strongly equivalent iff there are

proofs f of the sequent A ⊢ B and g of the sequent B ⊢ A such that the proofs g◦f and

f◦g obtained by composition reduce, by cut-elimination, to the one step deductions A ⊢

A and B ⊢ B.

Notice that this notion of equivalence is much stronger than the classical notion of

logical equivalence: all tautologies of IPC are logically equivalent, for example, but only

a few are strongly equivalent.

Corollary 4.12. (Connection with deductive systems) Two formulas A and B of

IPC are strongly equivalent iff Th1
×T

⊢ A = B.

Appendix

We give here the proofs of the lemmas in section 3. The numbers refer to that section.

Lemma 3.1(Form of the terms of a product type) Given a term M of λ1βηπ∗ in

normal form such that M: A×B, then either M ≡ 〈M1,M2〉, for some M1, M2, or there

is a free variable x : C in M such that A×B is a type subexpression of C.

Proof. By induction on the length of the structure of M.

Basis of induction: if M is of length 1, then it can be only a free variable of type A×B.

Inductive step: M ≡ λ~x.r ~P , as it is in normal form. Observe first that this case reduces

to M ≡ r~P , as its type is α× β, and we proceed by case analysis on r as follows:

r is a variable: then r is free and has type type(P1) → (... → (type(Pn) → A×B)...).

r is 〈M1,M2〉: then M ≡ 〈M1,M2〉, in order to type check.

r is p1 or p2: then M ≡ (...(piM1)M2...Mk) with M1:S × U in normal form with

S or U ≡ type(M2) → (... → (type(Mk) → A×B)...). By induction hypothesis

14

either M1 is 〈N1, N2〉 or M1 has a free variable x : C with S × U (hence A × B

too) a type subexpression of C. The first case is not possible, as pi〈N1, N2〉 is a

redex, so M has a free variable x : C with A×B a type subexpression of C.

r is a constant ∗A for some type A: this is not possible as ∗A has type A → T,

which would prevent M from having type A×B.

Lemma 3.2(There are no ∗A in a term in n.f. if its type does not contain T)

Assume that in a term M of λ1βηπ∗ in normal form there is an occurrence of ∗A, for

some type A. Then there is some occurrence of the type constant T in the type of M or

in the type of some free variable of M.

Proof. By induction on the structure of M.

Basis for induction: ∗A has type A → T.

Inductive step: M ≡ λ~x.r ~P , as M is in normal form, and we proceed by case analysis

on r as follows:

r is a variable: then r has type type(P1) → (... → (type(Pn) → C)...); by hypothe-

sis, the Pi’s are in normal form and in some Pj there are occurrences of a constant

∗A, so by induction hypothesis there are T’s in type(Pj), hence in the type of r.

By this, either r is a free variable or (since r occurs among the ~x) there are T’s in

the type of M.

r is 〈P,Q〉: then M ≡ λ~x.〈P,Q〉 where P and Q are in normal form. The type of M

is D1 → ... → Dn → (A×B), with P : A and Q : B, and ∗A occurs in P or Q. By

inductive hypothesis, either T occurs in A × B (hence in the type of M, too) or

in the type of some free variable y of P or Q. In either case, as above, some T’s

occur in the type of M or in the type of y, which is free in M.

r is p1 or p2: then M ≡ λ~x.((piM1)M2...Mk) where:

• Mj is in normal form, for each j.

• M1 : S × U with either S or U ≡ type(M2) → (... → (type(Mk) → C)...).

• ∗A occurs in Mj for some j; consider than

case j = 1: then T occurs in S × U , by induction hypothesis. By lemma 3.1,

as M cannot be a redex, M1 is not a pair and has a free variable y :

C with S × U a type subexpression of C. Notice that y is also free in

((piM1)M2...Mk). Thus as in the earlier cases either y is free in M or some

T’s occur in the type of M (because y is one of the variables in ~x);

case j > 1: then by induction hypothesis either

(a)there is a T occurring in the type of Mj , and, hence, in S × U or

(b)there is a free variable y of Mj with type T occurring in its type.

In case (a), we can conclude the proof as in the case for j = 1 above. In

case (b), if y is free in Mj then it is also free in ((piM1)M2 . . .Mk). We

can thus conclude the proof again as for i = 1.

r is ∗A: then M ≡ λ~x. ∗A M1 or M ≡ λ~x.∗A and the type of M is D1 → ...Dn → T,

for some D1, . . . , Dn.

15

Lemma 3.6(Terms of λ1βηπ whose type is arrow-only belong to λ1βη)

Let M be a term of λ1βηπ in normal form such that M : A, where A is a type with no

occurrence of × in it. If no free variable of M has a type with occurrences of × , then

M is actually a term in λ1βη.

Proof. By induction on the structure of M.

Basis for induction: if M is of length 1, then it can be only a variable of type A, as

any constant has a type with occurrences of × .
Inductive step: M ≡ λ~x.r ~P , as M is in normal form, and we proceed by case analysis

on r as follows:

r is a variable: then r has type type(P1) → (... → (type(Pn) → C)...) and no matter

if r is free or bound, by hypothesis on the type of M and its free variables, the

Pi’s (which are in normal form) have a type with no × ’s and free variables whose

type have no × ’s, so by induction hypothesis they contain no constants nor pairs,

hence M contains no constants or pairs either.

r is 〈P,Q〉: this is impossible, otherwise M ≡ λ~x.〈P,Q〉 and the type of M would be

S1 → ... → Sn → (A×B), which contains × .

r is p1 or p2: this cannot be either, since:

• M ≡ λ~x.pi must have a type containing × ,

• M ≡ λ~x.((piM1)M2...Mk) implies, by lemma 3.1, that either M1 is 〈N1, N2〉

or M1 has a free variable x : C with S × U a type subexpression of C. The

first case is not possible, as pi〈N1, N2〉 is a redex while M is in normal form.

Thus M1 has a free variable x : C with S ×U a type subexpression of C, and,

hence, either x ∈ FV (M) or S × U is a type subexpression of the type of M,

since the type of M includes the types of bound variables. Impossible.

Proposition 3.7(Isolate the relevant 〈M1, . . . ,Mn〉 in an isomorphism)

Let S ≡ S1 × . . . × Sm and R ≡ R1 × . . . × Rn be type-n.f.’s where neither the Si’s nor

the Rj’s contain any occurrences of T or × . Then S ∼=p R iff there exist M1, . . . ,Mn

and N1, . . . ,Nm such that

x1 : S1, . . . , xm : Sm ⊢M1, . . . ,Mn Mi[~N/~x] =βη yi, for 1 ≤ i ≤ n

y1 : R1, . . . , yn : Rn ⊢N1, . . . ,Nm Nj [~M/~y] =βη xj, for 1 ≤ i ≤ m

(where substitution of vectors of equal length is meant componentwise).

Proof. (⇒) Let M◦: S → R and N◦ : R → S be closed terms (in normal form) of

λ1βηπ∗ such that M◦◦N◦ = IR and N◦◦M◦ = IS . Then by standard currying, consider

the term λx1...xm.M < x1, ...xm >: (S1 → . . . → (Sm → (R1×. . . ×Rn)...), and observe

that the normal form M’ of M < x1, ...xm > : R1 × ...×Rn, by lemma 3.1, must be of

the form < M1, ...,Mn >, with FV(M’) = {x1 : S1, ...xm : Sm} (by assumption, the Si’s

contain no occurrences of ×). The same applies for N.

As for the other properties, let

M ′′ ≡ λz.(λx1...xm.M◦ < x1, ...xm >)(p1z)...(pmz)

and

N ′′ ≡ λz.(λy1...yn.N
◦ < y1, ...yn >)(p1z)...(pnz),

16

where the xi’s, yj ’s, and z are chosen to be distinct.

Then

M ′′ =β λz.M◦ < p1z, ...pmz >=η λz.M◦z =η M◦,

and similarly

N ′′ =β λz.N◦z =η N◦.

Compute then

M◦◦N◦ =βη M ′′◦N ′′ ≡ λx.(M ′′(N ′′x)) for x a variable not occurring in M” or N”.

=βη λx.(λz.(λx1...xm.M ′)(p1z)...(pmz))(N ′′x)

=βη λx. < M1[~pj(N ′′x)/ ~xj], ...,Mn[~pj(N ′′x)/ ~xj] >

where the substitution is done simultaneously for all 1 ≤ j ≤ m,

=βη λx. < M1[~N [~pix/~y]/~x], . . . ,Mn[~N [~pix/~y]/~x] >

since N ′′x =βη λy1...yn.N
′(p1x) . . . (pnx)

=βη < N1[~pix/~y], ..., Nm[~pix/~y] >

where substitution is done simultaneously for all 1 ≤ i ≤ n,

=βη λx. < M1[~N/~x][~pix/~yi], . . . ,Mn[~N/~x][~pix/~yi] >

by substitution properties, as noyi is free in M ′

=βη λx. < p1x, ..., pnx >

since M◦◦N◦ =βη λx.x and x =βη< p1x, ..., pnx > .

Observe now that the equality just proved implies, componentwise, thatMk[~N/~x][~pix/~yi] =βη

pkx. For the purpose of the final argument of the proof, we refer now to
βηπ∗
→→ as a “several

steps reduction” in λ1βηπ∗. In view of the Church-Rosser property for this calculus, the

last equality is equivalent to

Mk[~N/~x][~piw/~yi]
βηπ∗
→→ pkw.

where w is a fresh variable (to avoid confusion between ~x and x; in other words, w is not

free in Mk nor in any Ni and cannot be free in any reduct of Mk[~N/~x] either.)

Notice now that by hypothesis the terms ~M and ~N are in normal form and have no

T or × involved in their types or in the types of their free variables (the ~Si and ~Ri),

so by lemma 3.6 they are actually terms of λ1βη. This allows us to conclude that the

substitution [~piw/~yi] creates no new redexes: the ~piw could only create new redexes for

surjective pairing reductions, i.e. when they appear in < p1w, ..., pnw >. But VecM and
~N do not contain any pair, so surjective pairing reductions cannot apply.

This fact has an important consequence: the reductions are actually performed in-

side Mk[~N/~x], so if we have Mk[~N/~x][~piw/~yi]
βηπ∗
→→Q, then Mk[~N/~x]

βηπ∗
→→Q′ with Q ≡

Q′[~piw/~yi].

17

This implies, in the case of Mk[~N/~x][~piw/~yi]
βηπ∗
→→ pkw, the reduction Mk[~N/~x]

βηπ∗
→→Q′

with pkw ≡ Q′[~piw/~yi], that is Mk[~N/~x]
βηπ∗
→→ pkw. In conclusion, Mk[~N/~x] = yk, as re-

quired.

Symmetrically, one obtains Nj [~M/~y] =βη xj from N◦◦M◦ = λx.x.

(⇐) Just step through the above proof in reverse order, defining the required closed

terms by

M ≡ λz.(λx1...xm. < M1, ...Mn >)(p1z)...(pmz),

N ≡ λz.(λy1...yn. < N1, ...Nm >)(p1z)...(pnz).

Acknowledgements

The authors would like to express their gratitude to Gregory Mints for pointing out to us

the work of Soloviev, and Rittri for informing us of his own work in the topic. We would

also like to thank Albert Meyer and John Mitchell for several helpful conversations on

these matters.

REFERENCES

AB91 Franco Alessi and Franco Barbanera. Strong conjunction and intersection types. Diparti-

mento di Informatica, Universitá di Torino (Italy), manuscript., 1991.

AL91 Andrea Asperti and Giuseppe Longo. Categories, Types, and Structures. MIT Press, 1991.

Bar84 Henk Barendregt. The Lambda Calculus; Its syntax and Semantics (revised edition). North

Holland, 1984.

BL85 Kim Bruce and Giuseppe Longo. Provable isomorphisms and domain equations in models

of typed languages. ACM Symposium on Theory of Computing (STOC 85), May 1985.

BS82 A. A. Babaev and S. V. Soloviev. Coherence theorem for canonical maps in cartesian closed

categories. Journal of Soviet Mathematics, 20, 1982.

CDC91 Pierre-Louis Curien and Roberto Di Cosmo. A confluent reduction system for the λ-

calculus with surjective pairing and terminal object. In Leach, Monien, and Artalejo, editors,

ICALP, pages 291–302. Springer-Verlag, 1991.

DCL89 Roberto Di Cosmo and Giuseppe Longo. Constuctively equivalent propositions and iso-

morphisms of objects (or terms as natural transformations). Workshop on Logic for Computer

Science - MSRI, Berkeley, November 1989.

Dez76 Mariangiola Dezani-Ciancaglini. Characterization of normal forms possessing an inverse

in the λβη calculus. Theoretical Computer Science, 2:323–337, 1976.

LE85 E. G. K. Lopez-Escobar. Proof functional connectives. Lecture Notes in Mathematics,

1130:208–221, 1985.

LS86 Joachim Lambek and Philip J. Scott. An introduction to higher order categorical logic.

Cambridge University Press, 1986.

Mar72 C.F. Martin. Axiomatic bases for equational theories of natural numbers. Notices of the

Am. Math. Soc., 19(7):778, 1972.

Mar91 Simone Martini. Strong equivalence in positive propositional logic: provable realizability

and type assignment. Dipartimento di Informatica, Universitá di Pisa (Italy), Internal Note.,

June 1991.

18

NPS89 Paliath Narendran, Frank Pfenning, and Rick Statman. On the unification problem for

cartesian closed categories. Hardware Verification Workshop, September 1989.

Pot81 Garrel Pottinger. The Church Rosser Theorem for the Typed lambda-calculus with Sur-

jective Pairing. Notre Dame Journal of Formal Logic, 22(3):264–268, 1981.

Rey84 J.C. Reynolds. Polymorphism is not set-theoretic. Lecture Notes in Computer Science,

173, 1984.

Rit89 Mikael Rittri. Using types as search keys in function libraries. Journal of Functional

Programming, 1(1), 1989.

Rit90 Mikael Rittri. Retrieving library identifiers by equational matching of types in 10th Int.

Conf. on Automated Deduction. Lecture Notes in Computer Science, 449, July 1990.

Sol83 Serjey V. Soloviev. The category of finite sets and cartesian closed categories. Journal of

Soviet Mathematics, 22(3):1387–1400, 1983.

Sta83 Rick Statman. λ-definable functionals and βη conversion. Arch. Math. Logik, 23:21–26,

1983.

19

