
An extensional operational and axiomatic semantics for

type­inference with recursion and algebraic data types.

Roberto Di Cosmo

LIENS (CNRS) ­ DMI

Ecole Normale Supérieure

45, Rue d’Ulm

75005 Paris ­ France

E­mail: dicosmo@dmi.ens.fr

Abstract

In this paper, we provide an operational semantics of core­ML with recursion and algebraic data

types which agrees precisely with the usual axiomatic semantics in the presence of extensionality

axioms. This result has been missed for a long time due to the traditional use of contractive reduction

rules for familiar extensional equalities like η and Surjective Pairing: these rules do not interact nicely

with the implicit polimorphic typing discipline that is the base of many strongly typed functional

programming languages, as even such a fundamental property as Subject Reduction does not hold in

their presence.

We use here the more satisfactory approach to extensionality that uses expansion rules, and then

we can give a simple translation of (extensional) Core­ML into (extensional) System F that preserves

types and allows a proper simulation of the reductions of Core­ML. This provides an operational

notion of reduction for Core­ML that takes into account the extensional equalities on the arrow and

the product types.

But this is not all: we also show how we can add, using some simple but powerful lemmas from

the theory of rewriting, algebraic data types and recursion preserving confluence (hence determinacy)

of the system under very liberal conditions.

To the author’s best knowledge, this is the first satisfactory treatment of a polymorphic type

inference systems in the presence of extensionality.

KEYWORDS: type­inference, language design, rewriting, ML, semantics, algebraic data types

1 Introduction

It has been noticed by many people that it is difficult to add reductions corresponding to extensional

equalities to a calculus based on type­inference, like the one associated to ML. What happens is that

the usual presentation of η and Surjective Pairing not only breaks confluence when adding algebraic

data types, but it also, and more fundamentally, breaks a fundamental property of the calculus, subject

reduction (the fact that a reduct t’ of a term t can get all the types that t could get). It is possible to check

this fact in a short session with your favorite ML style functional programming language.

Take this simple program that builds a pair of identity functions, then decomposes the pair and builds

it up again via projection and pairing.

Example 1.1

#let splitpair =

let join = let pair x = (x,x) in let id x = x in pair id

#in (fst join, snd join);;

Value splitpair is (<fun>,<fun>) : (’a ­> ’a) * (’b ­> ’b)

1

Its most general type is (’a ­> ’a) * (’b ­> ’b) and it would reduce, if we allow SP
contraction, to the following

Example 1.2

#let splitpair =

let join = let pair x = (x,x) in let id x = x in pair id

#in join;;

Value splitpair is (<fun>,<fun>) : (’a ­> ’a) * (’a ­> ’a)

Anyway, (’a ­> ’a) * (’a ­> ’a) is less general than (’a ­> ’a) *(’b ­> ’b):

we lost in the reduction the possibility to instantiate the two components of the product type to different

types.

For this reason, these rules, useful for reasoning on programs, have simply been dropped up to now.

This is particularly unfortunate: an axiomatic semantics of a functional programming language

usually includes extensional equalities (as they are also valid w.r.t. observational equivalence, when

observing base types on terminating programs), and one would like to provide an operational semantics

(in the form of reduction rules), that agrees with it.

Now, by using the expansionary presentation of η and Surjective Pairing, subject reduction can be

preserved, at the price of introducing reduction rules that depend on the type of terms. The question is

then if it is possible to prove confluence (and eventually strong normalization) for this system. We can

no longer simply argue that confluence of the untyped lambda­calculus plus subject reduction for pure

ML give us the answer for free: indeed, in the presence of a contractive rule for Surjective Pairing the

untyped calculus is not confluent [Klo80], while there seems to be no sound way of using expansion

rules in an untyped context.

There has been some work (in a simpler explicitly typed framework), where some workarounds

are presented to handle extensionality [HM90], later largely improved in [DCK94a] using expansive

rules, but this paper is, to the author’s best knowledge, the first full solution for type­inference systems:

we provide a simple proof of normalization and confluence for the core language based on a natural

interpretation of the extensional ML system into the extensional System F, that we proved to be strongly

normalizing and confluent in [DCK95b], then add modularly algebraic data types preserving confluence

and normalization, and finally fixpoints preserving confluence.

Let us start by introducing the core system, then we will proceed by presenting the translation into

(extensional) polymorphic lambda calculus, and to add algebraic rewriting and fixpoints.

Definition 1.3 (core­ML) The formal system for (core) ML is made of the untyped lambda terms t that

can be assigned a type in the type­assignment system given in Table 1.

Remark 1.4 Notice that in the (LET) we allow generalization over an arbitrary subset of the type

variables not bound in the term variable environment. This is to simplify the proofs, but one can of

course recover the usual system by always taking the largest subset in the typing judgements.

Notation 1.5 In what follows, we will often use Gen(A) to refer to a type ∀X1 . . . Xn.A where

{X1 . . . Xn} ⊆ FTV (A)− FTV (Γ), if Γ is clear from the context.

2

(V AR) Γ⊢x : A[τi/Xi] if x:A = ∀X1 . . . Xn.τ is in Γ and the τi are monotypes

(ABS)
Γ, x : A⊢M : B

Γ⊢λx.M : A → B

(APP)
Γ⊢M : A → B Γ⊢N : A

Γ⊢(MN) : B

(PAIR)
Γ⊢M : A1 Γ⊢N : A2

Γ⊢ < M,N >: A1 ×A2

(PROJ)
Γ⊢M : A1 ×A2

Γ⊢piM : Ai

(LET)
Γ⊢N : A Γ, x : ∀X1 . . . Xn.A⊢M : B

Γ⊢let x = N in M : B
where {X1 . . . Xn} ⊆ FTV (A)− FTV (Γ)

Table 1: Type inference rules for an ML­like functional language.

1.1 Substitution of types and terms in derivations

We prove here some basic properties of the type assignment rules that are crucial to the proof of the

subject reduction theorem, but also show how whenever a term can be assigned a type, then it can be

assigned also all instances of that type.

Lemma 1.6 (Substitution of types in derivations) Let Γ⊢M : A be a derivation and let X be any type

variable . Then it is possible to build a derivation Γ[τ/X]⊢M : A[τ/X], for τ any given monotype.

Proof. By induction on the derivation of Γ⊢M : A.

Lemma 1.7 (Minimal Environments) If Γ, x : B⊢M : A, and x 6∈ FV (M), then also Γ⊢M : A.

Proof. By a simple induction of the derivation of Γ, x : B⊢M : A.

Lemma 1.8 (Environments can be extended) If Γ⊢M : A, then also Γ∪Γ′⊢M : A, if Γ∪Γ′ is a well

formed environment.

Proof. By induction on the structure of the derivation.

Lemma 1.9 (Substitution of terms in derivations) Let Γ, x : Gen(A)⊢M : B and Γ⊢N : A be

derivations, where Gen(A) is a generalization of A w.r.t. some of the type variables not free in Γ. Then

it is possible to build a derivation Γ⊢M [N/x] : B.

Proof. By induction on the derivation of Γ⊢M : A.

2 Normalization and confluence for extensional ML

Here we present a notion of reduction on ML that we will prove confluent and strongly normalizing.

Notice that, since we work in a type­assignment framework, reductions are relativized by a basis Γ
where the types of the free term variables are declared.

3

Definition 2.1 (Notion of reduction for ML)

beta­eta:

(β) Γ⊢(λx.M)N
ML
−→ M [x := N], if N is free for x in M

(β) Γ⊢letx = NinM
ML
−→ M [x := N], if N is free for x in M

(ηexp) Γ⊢M
ML
−→ λx.(Mx) : A → B, if Γ⊢M : A → B

for x 6∈ FV (M), and M not a λ­abstraction

projections and surjective pairing:

(π) if Γ⊢〈M1,M2〉 : A1 ×A2, Γ⊢pi(〈M1,M2〉)
ML
−→ Mi : Ai

(SPexp) Γ⊢M
ML
−→ 〈p1(M), p2(M)〉 : A×B,

if Γ⊢M : A×B, for M not a pair

These basic reductions are turned into a reduction relation by context closure, but with the condition

that η expansion of applied terms and SP expansion of projected terms are forbidden, as in done for

explicitly typed calculi [Aka93, Dou93, DCK94b, Cub92, JG92].

For our reduction system, it is possible to show the property that fails when using contraction rules

for the extensional equalities.

Proposition 2.2 (Subject Reduction)

Given a derivation Γ⊢M : A and a reduction M
ML
−→M’, one can find a derivation Γ⊢M ′ : A

Proof. By induction on the derivation of Γ⊢M : A, and by cases on the reduction.

We only consider here the case of a root expansions of a term M, for which one can always build the

needed derivation as follows:

Γ, z : A⊢M : A → B Γ, z : A⊢z : A

Γ, z : A⊢Mz : B

Γ⊢λz.Mz : A → B

Γ⊢M : A×B

Γ⊢p1M : A

Γ⊢M : A×B

Γ⊢p2M : B

Γ⊢〈p1M, p2M〉 : A×B

It suffices to notice that we can assume z 6∈ Γ, as it is a bound variable of λz.Mz that does not appear

in M , so one can build the derivations Γ, z : A⊢M : A → B and Γ, z : A⊢z : A by environment

extensions (lemma 1.8).

It is interesting to notice here that if we were to deal with the contraction rules, such a simple argument

would definitely not hold. Indeed, if Γ⊢λz.Mz : A → B, it is not obvious that Γ⊢M : A → B, while

if Γ⊢〈p1M, p2M〉 : A×B, then it is simply not true, as we remarked before, that Γ⊢M : A×B.

2.1 Mapping ML into system F

The translation e◦Γ of a term e of ML is given by induction on the derivation Γ⊢e : A of a typing in ML

(here we make the environment Γ explicit only when necessary), so we actually translate derivations

rather than simple terms.

• x◦
Γ = x[τ1] . . . [τn] if Γ⊢x : C where x : ∀X1 . . . Xn.τ ∈ Γ, and C = τ [−→τi /

−→
X]

• let x = N in M◦

Γ = (λx : Gen(A).M◦

Γ,x:Gen(A))(λ
−→
X .N◦

Γ) ifΓ⊢let x = N in M : B

is derived via the (LET) rule from Γ, Gen(A)⊢M : B and Γ⊢N : A, with the abstraction of the

type variables
−→
X of A in Gen(A).

4

• (MN)
◦

Γ = (M◦
ΓN

◦
Γ)

• 〈M1,M2〉
◦

Γ = 〈M1
◦

Γ,M2
◦

Γ〉

• piM
◦

Γ = piM
◦
Γ

• λx.M◦

Γ = λx : A.M◦
Γ,x:A if Γ⊢λx.M : A → B

One can show by induction on the derivation of Γ⊢e : A of a typing in ML that

Proposition 2.3 (Properties of the translation I)

1. for any derivation Γ⊢e : A, its translation e◦Γ is a well typed term of F with the same type in the

same environment Γ.

2. for any derivation Γ⊢e : A, with e in normal form, its translation e◦Γ is a term of F in normal

form, with no type abstractions and such that erasure(e◦Γ)=e.

Proof. By cases on the definition of the translation

Lemma 2.4 IfΓ⊢M : A1 → A2, andx 6∈ FV (M), then we can find a derivation ofΓ⊢λx.Mx : A1 → A2

s.t. λx.Mx◦

Γ is λx : A1.((M
◦
Γ)x).

Proof.

Proposition 2.5 (Properties of the translation II: Simulation)

If Γ⊢e : A and e reduces in one step to e′, then there exists a derivation Γ⊢e′ : A s.t. e◦Γ reduces in

at least one step to e′
◦

Γ,

Proof. By induction on the definition of the translation, and by cases on e.

Lemma 2.6 (Substitution vs translation, simple case) If Γ, x : A⊢M : B and Γ⊢N : A, where x 6∈
FV (N), then there is a derivation Γ⊢M [N/x] : B s.t. M◦

Γ,x:A[N
◦
Γ/x] =Fexp M [N/x]

◦

Γ.

Proof. By cases on the definition of the translation of M .

Lemma 2.7 (Substitution vs translation) If Γ, x : Gen(A)⊢M : B and Γ⊢N : A, then there is a

derivation Γ⊢M [N/x] : B s. t. M◦

Γ,x:Gen(A)[λ
−→
X .N◦

Γ/x]
Fexp
−→ M [N/x]

◦

Γ, with
−→
X the type variables of

A abstracted in Gen(A).

Proof. By cases on the definition of the translation of M .

This is enough to establish the following results about (core) ML:

Lemma 2.8 (Strong normalization of
ML
−→) The reduction relation

ML
−→ for ML is strongly normalizing.

Proof. An infinite reduction sequence leaving a term e in ML would give raise to an infinite reduction

sequence in F leaving e◦Γ, which is impossible, as this last system is strongly normalizing.

Lemma 2.9 (Confluence of
ML
−→) The reduction relation

ML
−→ for ML is confluent.

Proof. Let e be a term s.t. e1 ∗⇐= e =⇒∗ e2. Since =⇒ is strongly normalizing, we can

reduce the terms ei to their normal forms ei. Then we have e1 ∗⇐= e =⇒∗ e2, and by proposition 2.5

e1
◦
Γ
+⇐=e◦Γ=⇒

+e2
◦
Γ in F with expansions. As the translation of an ML normal form is a normal form

in F, and F with expansion is confluent, we get that e1
◦
Γ = e3 = e2

◦
Γ. Now, e1 = erasure(e1

◦
Γ) =

erasure(e3) = erasure(e2
◦
Γ) = e2 allows us to conclude. The following figure shows the reduction

diagram:

5

e

e1 e2

e1 e◦Γ e2

e1
◦
Γ = e2

◦
Γ

∗

E

E

E

E

E

E

E

""
∗

||yy
y

y

y

y

y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

∗

��

∗

��

�

�

�

�

�

�

�

�

�

�

∗

A

A

A

A

A

A

∗

~~}
}

}

}

}

}

�

�

�

�

�

�

�

�

�

�

3 Adding algebraic data structures

Now that our extensional core language for ML is set up, and proven confluent and strogly normalizing,

it is time to focus our attention to the addition of algebraic data types. These can be added by means

of canonical (that is, confluent and strongly normalizing) algebraic rewriting system. Here we want to

show, in the spirit of [BTG94, DCK94a, JO94], that their addition to the core language preserves strong

normalization and confluence.

There are at least three ways to prove this modularity result:

• Take directly one modularity proof for a type­inference system like the one given in [Bar90] and

extend it to expansive extensional type­inference systems, using the same lemma from [DCP95].

• Redo the proof of modularity via translation as in [DCK94b].

• Take the modularity result shown in [BTG94] for non­extensional System F and algebraic rewriting

system, extend it to expansive extensional System F using a lemma from [DCP95], and lift it to

core­ML along our translation into System F.

This last strategy yields a particularly simple proof, even if, having also to prove the result for System

F plus A, it does take some more space than just reusing the results in [Bar90]. Due to space limitations

we decided to go for the first proof strategy, even if the last one is really what we like better.

Lemma 3.1 (Lemma of [DCP95]) Let 〈A,
R // ,

S // 〉 be an Abstract Reduction System, where

R­reduction is strongly normalizing. Let the following commutation hold

∀a, b, c, d ∈ A

a c

b d

R //

S

��

S
��

�

�

�

��

+
R //_ _ _ //

then R+ and S∗ commute.

Theorem 3.2 (Modularity of confluence and strong normalization) If A is a confluent and strongly

normalizing algebraic rewriting system, then Core­ML+A is confluent.

Proof. We know from [Bar90], that the combination of Core­ML without extensional rules with A

is also strongly normalizing and confluent. It is then easy to check the following diagram:

a c

b d

core−ML
//

exp

��

exp
��

�

�

�

��

+

core−ML
//_ _ _ _ _ _ _ _ //

6

Using lemma 3.1, since core­ML is strongly normalizing and preserves expansive normal forms,

while expansion rules alone are confluent and strongly normalizing (for this see [Min77, Kes93,

DCK94a]), we obtain (n.f. exp stands for reduction to normal form w.r.t expansion rules alone):

a c

b d

core−ML
//

n.f. exp
��
����

n.f. exp
��
����

+

core−ML
//_ _ _ _ _ _ _ _ //

Also, by a simple induction on the structure of a, one gets

a c

b d

A //

n.f. exp
��
����

n.f. exp
��
����

+
A //_ _ _ _ _ _ _ _ //

Putting all together, we arrive at :

a c

b d

core−ML+A
//

n.f. exp
��
����

n.f. exp
��
����

+

core−ML+A
//_ _ _ _ _ _ _ _ //

This diagram allows to deduce:

• strong normalization for the full system (as any infinite reduction sequence in the full system can

be turned via the diagram into an infinite reduction system for core­ML+A, which would be an

absurd)

• confluence of the full system: core­ML+A is confluent, and η, SP alone are confluent and strongly

normalizing, so the previous commutation property can be used to close any divergent diagram

proceeding quite like in lemma 2.9, using expansive normal forms as the “translation”

e

e1 e2

exp− n.f.(e1) exp− n.f.(e) exp− n.f.(e2)

exp− n.f.(e1) exp− n.f.(e2)

e′

∗

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S))

∗

uukk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

∗

��

∗

��

�

�

�

�

�

�

�

�

�

�

ML+A

∗

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q ((

ML+A

∗
vvmm
m

m

m

m

m

m

m

m

m

�

�

�

�

�

�

�

�

�

�

ML+A

∗

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q((

ML+A

∗

vvmm
m

m

m

m

m

m

m

m

m

m

m

The lower diagram is closed using the confluence of ML+A.

4 Adding recursion

We have proved confluence and strong normalization for our core ML language, and even if we have

added algebraic data types, we do not have recursion neither at the level of types nor at the level of terms,

so we would like to extend now our results to a more realistic language, namely, by adding a fixpoint

operator.

7

4.1 Recursive terms

Let us focus first on adding a fixpoint operator fix for terms, with the reduction rule

(fix) fix M
fix
−→ M(fix M)

Usually, to prove that a reduction relation with such a fixpoint operator is confluent, one considers an

auxiliary reduction relation with bounded fixpoint operators fixn with the more strict reduction rule

(fixn) fixn M
fixn

−→ M(fixn−1 M) n > 0

This trick essentially puts a bound on the depth of any recursive call, so the reduction relation with such

a rule is usually still strongly normalizing; if we can show that local confluence also still holds, then

by Newman’s Lemma we have confluence of this auxiliary reduction relation, and then it is possible to

derive the confluence of the reduction relation with unbounded recursion by means of an easy simulation

trick essentially due to Lévy (see [Lév76]):

Remark 4.1 If M
fixn

−→N , then |M |
fix
−→|N |, where |M | is obtained from M by removing all the indices

from the fix terms.

Lemma 4.2 For any reduction sequenceM0
fix
−→M1

fix
−→ . . .

fix
−→Mn, there exists an indexed computation

N0
fixn

−→N1
fixn

−→ . . .
fixn

−→Nn such that |Ni| = Mi, for i = 0 . . . n.

Proof. Index all the fix constructors in M0 by a number n+ k, with k ≥ 0.

To fully follow this approach, one is left to prove two things:

1. the auxiliary reduction relation is strongly normalizing

2. the auxiliary reduction relation is locally confluent

This is not only combersome and repetitive (as it is usually a rewriting of an existing proof for the

language without bounded fixpoints), but is also not necesary, as has been shown by Delia Kesner and

the author in [DCK94a, DCK95a]: indeed, for any left­linear rewriting system, the addition of this

fixpoint operator preserves confluence (but, obviously, not normalization).

Theorem 4.3 (Algebraic left­linear core­ML plus fixpoints is confluent) If A is a canonical left­linear

algebraic rewriting system, then core­ML + A + fix is confluent.

Proof. A direct consequence of theorem 4.11 of [DCK94a]1. The main idea of that theorem is that

one can translate the language with bounded fix into the language without bounded fix, and then

redo Levy’s trick in a completely generic form, that reduces confluence in the presence of fixpoints to

left­linearity and confluence without fixpoints (which is our case here). We refere the interested reader

to [DCK94a, DCK95a] for the details of the proof.

Before concluding, let us remark that left­linearity is indeed required.

The reason is that if there is some rule (like the contractive version of Surjective Pairing) where some

metavariable appears more than once, it is easy to build counterexamples like the following one to Lévy’s

trick:

Example 4.4

(λp.(〈p1p, p2〈p1p, p2p〉〉))(fix(λx.〈p1x, p2x〉))

−→ 〈p1(fix(λx.〈p1x, p2x〉)), p2〈p1(fix(λx.〈p1x, p2x〉)), p2(fix(λx.〈p1x, p2x〉))〉〉

→→ 〈p1〈p1(fix(λx.〈p1x, p2x〉)), p2(fix(λx.〈p1x, p2x〉))〉,

p2〈p1(fix(λx.〈p1x, p2x〉)), p2(fix(λx.〈p1x, p2x〉))〉〉
SP
−→ 〈p1(fix(λx.〈p1x, p2x〉)), p2(fix(λx.〈p1x, p2x〉))〉

1Or, better theorem 4.9 of [DCK95a].

8

Whatever index n we associate to the original fix operator, there is no way to simulate this reduction in

the labeled calculus, as the occurrences of fix in the last redex will have labels differing by 1.

5 Conclusion

Using the expansionary presentation of η and Surjective Pairing, we showed that subject reduction in

the type­inference framework can be preserved, at the price of introducing reduction rules that depend

on the type of terms.

We then provided a natural interpretation of the extensional ML system into the extensional System

F, that allows to give a simple proof of normalization and confluence for the core language. We also

showed how algebraic rewriting can be very easily handled with expansive extensional rules (while it

is quite incompatible with contractive extensional rules) preserving confluence and normalization, and

finally we could add fixpoints to the whole system preserving confluence (and this preservation is now

a simple corollary of a general lemma).

This set of results allows to fully reconcile the axiomatic and operational semantics of a realistic type­

inference language like the one presented here. This is one of the main achievement of the paper, but

perhaps another interesting contribution is, indeed, the very simplicity and clarity of the proof techniques

used here: this should set the basis for a faster achievement of important analogous results for more

complex languages.

References

[Aka93] Yohji Akama. On Mints’ reductions for ccc­Calculus. In Typed Lambda Calculus and

Applications, number 664 in LNCS, pages 1–12. Springer Verlag, 1993.

[Bar90] Franco Barbanera. Combining term rewriting and type assignment systems. Int. Journal of

Found. of Comp. Science, 1:165–184, 1990.

[BTG94] Val Breazu­Tannen and Jean Gallier. Polymorphic rewiting preserves algebraic confluence.

Information and Computation, 1994.

[Cub92] Djordje Cubric. On free CCC. Distributed on the types mailing list, 1992.

[DCK94a] Roberto Di Cosmo and Delia Kesner. Combining first order algebraic rewriting systems,

recursion and extensional lambda calculi. In Serge Abiteboul and Eli Shamir, editors, Intern.

Conf. on Automata, Languages and Programming (ICALP), volume 820 of Lecture Notes

in Computer Science, pages 462–472. Springer­Verlag, July 1994.

[DCK94b] Roberto Di Cosmo and Delia Kesner. Simulating expansions without expansions. Mathe­

matical Structures in Computer Science, 4:1–48, 1994. A preliminary version is available

as Technical Report LIENS­93­11/INRIA 1911.

[DCK95a] Roberto Di Cosmo and Delia Kesner. Combining algebraic rewriting, extensional lambda

calculi and fixpoints. Theoretical Computer Science, 1995. Submitted.

[DCK95b] Roberto Di Cosmo and Delia Kesner. Rewriting with polymorphic extensional λ­calculus.

In CSL’95 (extended abstract), 1995. Full version submitted.

[DCP95] Roberto Di Cosmo and Adolfo Piperno. Expanding extensional polymorphism. In Mar­

iangiola Dezani­Ciancaglini and Gordon Plotkin, editors, Typed Lambda Calculus and

Applications, volume 902 of Lecture Notes in Computer Science, pages 139–153, April

1995.

9

[Dou93] Daniel J. Dougherty. Some lambda calculi with categorical sums and products. In Proc. of

the Fifth International Conference on Rewriting Techniques and Applications (RTA), 1993.

[HM90] Brian Howard and John Mitchell. Operational and axiomatic semantics of pcf. In Pro­

ceedings of the LISP and Functional Programming Conference, pages 298–306. ACM,

1990.

[JG92] Colin Barry Jay and Neil Ghani. The Virtues of Eta­expansion. Technical Report ECS­

LFCS­92­243, LFCS, 1992. University of Edimburgh, to appear inJournal of Functional

Programming.

[JO91] Jean­Pierre Jouannaud and Mitsuhiro Okada. A computation model for executable higher­

order algebraic specification languages. In Proceedings, Sixth Annual IEEE Symposium

on Logic in Computer Science, pages 350–361, Amsterdam, The Netherlands, 15–18 July

1991. IEEE Computer Society Press.

[JO94] Jean­Pierre Jouannaud and Mitsuhiro Okada. Executable higher­order algebraic specification

languages. Draft (Extended Version of [JO91]), 1994.

[Kes93] Delia Kesner. La définition de fonctions par cas à l’aide de motifs dans des langages

applicatifs. Thèse de doctorat, Université de Paris XI, Orsay, december 1993. To appear.

[Klo80] Jan Willem Klop. Combinatory reduction systems. Mathematical Center Tracts, 27, 1980.

[Lév76] Jean­Jaques Lévy. An algebraic interpretation of the λβκ­calculus and a labelled λ­calculus.

Theoretical Computer Science, 2:97–114, 1976.

[Min77] Gregory Mints. Closed categories and the theory of proofs. Zapiski Nauchnykh Seminarov

Leningradskogo Otdeleniya Matematicheskogo Instituta im. V.A. Steklova AN SSSR, 68:83–

114, 1977.

10

