
J. Functional Programming 1 (1): 1–000, January 1993 c© 1993 Cambridge University Press 1

A confluent reduction for the λ−calculus

with surjective pairing and terminal object

Pierre-Louis Curien†

Roberto Di Cosmo§

Abstract

We exhibit confluent and effectively weakly normalizing (thus decidable) rewriting systems
for the full equational theory underlying cartesian closed categories, and for polymorphic
extensions of it. The λ-calculus extended with surjective pairing has been well-studied in
the last two decades. It is not confluent in the untyped case, and confluent in the typed
case. But to the best of our knowledge the present work is the first treatment of the lambda
calculus extended with surjective pairing and terminal object via a confluent rewriting sys-
tem, and is the first solution to the decidability problem of the full equational theory of
Cartesian Closed Categories extended with polymorphic types. Our approach yields con-
servativity results as well. In separate papers we apply our results to the study of provable
type isomorphisms, and to the decidability of equality in a typed λ-calculus with subtyping.

1 Introduction

Since 1972 there has been some interest in the properties of λ-calculus extended

with products and surjective pairing (SP), which lead to J.W. Klop’s discovery

(Klop, 1980) that for pure lambda calculus this extension, which we will denote

λ1βηπ, fails to maintain confluence†, while it remains unproblematic (Pottinger,

1981) for the typed calculus. Due to the connection with Cartesian Closed Cate-

gories (ccc’s), another extension of the typed calculus has been considered: λ1βηπ∗,

which is λ1βηπ with terminal object. This calculus is relevant for the decision prob-

lem of the equational theory of ccc’s and for the coherence problem for the same

categories, which are discussed in (Lambek & Scott, 1986) and (Mints, n.d.) respec-

tively. Neither of these works provides a truly confluent reduction system for the

full calculus: the former takes advantage of type isomorphisms to ”eliminate” the

terminal object and reduces the full decision problem to the decision problem for

λ1βηπ only, the latter gives a system that is Church-Rosser only up to a congruence.

More recent is the interest in λ1βη∗, the calculus extended with a terminal object

† LIENS (CNRS URA 1327) - DMI
§ LIENS (CNRS URA 1327) - DMI and Dipartimento di Scienze dell’Informazione - Pisa
† See (Barendregt, 1984), p. 403-409 for a short history and references.

only and no products, which arose in the study of the theory of object oriented pro-

gramming. In the framework of inheritance, the terminal type T has an additional

flavour: it is a maximum type. Type inclusion is not invariant under isomorphisms,

so that, say A×T is a type greater than A×A′ for any A′, while the same is not

true of A alone‡.

Thus the method of solving word problems by first getting rid of the terminal

object as in (Lambek & Scott, 1986) is of no use in the syntactic theory of λ-calculi

with subtyping. We rather need a confluent system for the full type system, terminal

(or maximum) type included.

In this paper we exhibit confluent and effectively weakly normalizing (thus de-

cidable) rewriting systems for the full equational theory underlying cartesian closed

categories, and for polymorphic extensions of it, bringing the usual interpretation

of the extensional equalities η and SP as contractions to its extreme limits. To

the best of our knowledge, this work provides the first solution to the decidability

problem of the full equational theory of Cartesian Closed Categories extended with

polymorphic types. Moreover we can take profit of confluence to get conservativity

results in addition to decision results. Such conservativity results are needed in the

study of provable type isomorphisms.

The results are applied in two companion papers:

• (Curien & Ghelli, 1990) establishes a decidability result in the paradigmatic

language F≤, a variant of second-order λ-calculus with a maximum type and

bounded quantification: the equational theory considered consists of β, η (first

and second-order) and the terminal type rule. We show the confluence and

decidability of our system via a translation to the polymorphic λ-calculus

with a terminal type (what is called hereafter λ2βη∗), and by using a general

criterion allowing to transfer confluence in λ2βη∗ back to our source system.

• (Bruce et al., 1992) and (Di Cosmo, 1994) give an equational characterization

of all type isomorphisms which are provable in the typed λ-calculus (respec-

tively second order λ-calculus) with pairs and terminal object (what is called

hereafter λ1βηπ∗, respectively λ2βηπ∗). It turns out that this characteriza-

tion can be given quite easily if we are able to determine the structure of

invertible terms, i.e. terms that possess an inverse w.r.t. the usual opera-

tion λx.λy.λz.(x(yz)) of composition. The conservativity of equality in the

extended calculus over the calculus without products and terminal objects

allows us to reduce the problem to the invertibility in the simply typed (re-

spectively second-order) λ-calculus§.

Technically, we had to navigate between several pitfalls before we arrived to our

‡ L. Cardelli has proposed the following nice and simple exploitation of T as a maxi-
mum type: consider the well-known inheritance [age;sex] less than [age]; encode [age] as
age×T and [age;sex] as age× (sex×T). Then the desired subtyping obviously holds
componentwise, by reflexivity and maximality, respectively.

§ Ultimately the problem is reduced to the invertibility in the untyped λ-calculus (see
(Barendregt, 1984), section 21.2), where invertible terms have a simple (but not easy
to prove!) syntactic characterization due originally to Mariangiola Dezani (Dezani-
Ciancaglini, 1976).

2

solution. We survey the main steps of this eventually safe trip in the next section.

Sections 3 and 4 are devoted to confluence and weak normalization respectively. In

section 5 we state the decidability and conservativity results that follow quite obvi-

ously from confluence and weak normalization, and we put our work in perspective

with the other approaches to decidability of the same theories that we are aware

of.

2 Survey

After defining precisely the calculi we focus on, we use the Knuth-Bendix procedure

by hand to obtain locally confluent rewriting systems. We then shortly hint at a

severe technical difficulty in adapting the standard strong normalization proofs

which use the so called reducibility method. They can be adapted to a subsystem

only. From the confluence of this subsystem we get confluence of almost the whole

system by a general criterion presenting an interest of its own. At this stage, only

the second-order β-rule is left out, and it can be finally added with the help of

Hindley-Rosen’s Lemma. As for weak normalization, the ingredients developed for

confluence give it for free for first-order systems, while for the second order systems

another splitting in subsystems, and another adaptation of the standard strong

normalization proofs are needed.

We give now the full definition of the calculus λ2βηπ∗, the most complex of the

four we consider.

2.1 The calculus λ2βηπ∗

Definition 2.1

λ2βηπ∗ is the extension of second order lambda calculus defined as follows:

• Types are defined by the following grammar:

Type ::= At | V ar | Type → Type | Type × Type | ∀X.Type

where At are countably many atomic types including a distinguished constant

type T and V ar countably many type variables

• Terms (M : A will stand for M is a term of type A)

— the set of terms contains countably many variables x, y, . . . of each type

— ∗ : T

— if x is a variable of type A and M : B, then λx.M : A→ B

— if M : A→ B and N : A, then (MN) : B

— if M : A and N : B then 〈M,N〉 : A×B

— if M : A×B then p1M : A and p2M : B

— if M : A and X is a type variable not free in the type of any free variable

of M , then ΛX.M : ∀X.A

— if M : ∀X.A and B is a type, then M [B] : A[B/X].

Notice that pairing and projections are new term formation rules and not

constants added to the language.

3

• Equality

(β) (λx.M)N = M [N/x] (η) λx.Mx = M if x 6∈ FV (M)

(π) pi〈M1,M2〉 = Mi (SP) 〈p1M,p2M〉 = M

(top) M = ∗ if M : T

(β2) (ΛX.M)[A] = M [A/X] (η2) ΛX.M [X] = M if X is not free in M

We will denote =β2η2π∗ the theory of equality generated by β, η, π, SP , top,

β2and η2.

The other calculi we are interested in can be naturally defined as restrictions of

λ2βηπ∗: to obtain them we reduce the class of types and/or terms, and accordingly

redefine the equality. The calculus λ2βη∗ is λ2βηπ∗ without product types, pairing

and projections. (Equality for λ2βη∗ will be denoted =β2η2∗ and is generated by

β, η, top, β2 and η2). The calculus λ1βηπ∗ is λ2βηπ∗ restricted to the first order.

(Equality for λ1βηπ∗ will be denoted =βηπ∗ and is generated by β, η, π, SP and

top). The calculus λ1βη∗ is the restriction of λ1βηπ∗ obtained by removing product

types, pairing and projections. (Equality for λ1βη∗ will be denoted =βη∗ and is

generated by β, η and top).

2.2 Weakly confluent reduction

We will adopt the following

Notation 2.2

(Reductions) As usual, → will denote one-step reduction, while →= is the reflexive

closure of →, and →→ is the reflexive transitive closure of →. If the system we

consider is weakly normalizing, we will denote →→ | the reduction to a normal

form. Also, WN will stand for weakly normalizing, SN for strongly normalizing,

CR for confluent (or Church-Rosser) and WCR for weakly (or locally) confluent.

The systems obtained by orienting the equalities of =β2η2π∗ and its restrictions are

far from being even weakly confluent, due to a bad interaction between the rule top

on one side and the rules η and SP on the other¶. The point is that all terms of

type T are identified (in particular, x:T and ∗ are identical), so that λx:T.Mx and

λx:T.M∗ are “the same” term, and must give rise to the same reductions: since the

first reduces to M, the second must reduce to M too. This fact actually shows up

during the completion procedure. Let us consider the typical critical pairs which

arise, say, for λ2βηπ∗: after the first “stage” we find the situation described in

figure 1.

The additional rules generated by completion can be divided in two groups: rules

that behave like η (eta-like) and rules that behave like top (top-like). The former

¶ This observation seems to have been first made by A. Obtulowicz, cf. (Lambek & Scott,
1986), exercise at page 88.

4

M M ′ M ′′ New reduction from completion

λx : T.Mx M λx : T.M∗ λx : T.M∗ −→M if x 6∈ FV (M)

eta − like 〈p1M,p2M〉 M 〈p1M, ∗〉 〈p1M, ∗〉−→M if M : A×T

〈p1M,p2M〉 M 〈∗, p2M〉 〈∗, p2M〉−→M if M : T×B

top − like λx : A.Mx M λx : A.∗ M−→λx : A.∗ if M : A → T

ΛX.M [X] M ΛX.∗ M−→ΛX.∗ if M : ∀X.T

Fig. 1. The critical pairs at the first stage of Knuth-Bendix completion.
(M ′ is reached via η or SP ; M ′′ via top)

mimick the behaviour of η and SP rules on terms that are known to be “the same

terms as” η and SP redexes, as in the example we just considered above. The latter

force to identify all the terms of type A→ T and ∀A.T, and do pick up a canonical

representative in the respective types. It turns out that a set of eta-like rules must

be generated for each of all types isomorphic (in the categorical sense, see (Bruce

et al., 1992) and (Di Cosmo, 1994)) to T. At stage n, the completion procedure

on one side creates new rules to mimick η and SP on terms that are known to be

“the same” as eta-like stage n − 1 redexes, and on the other side it discovers new

“same” terms, following the pattern:

• if A is known to be isomorphic to T at stage n − 1, then B → A and ∀X.A

are isomorphic to T at stage n

• if A and B are known to be isomorphic to T at stage n − 2, then A × B is

isomorphic to T at stage n.

These correspond to the well known isomorphisms T×T ∼= T, A→ T ∼= T and

∀X.T ∼= T. (The isomorphism T×T ∼= T shows up only from the second stage

on: consider the stage 1 eta-like redex 〈∗, p2M〉, and suppose M : T×T. Then we

reach M by the eta-like reduction, and 〈∗, ∗〉 by top.)

The following notation will allow us to present in a compact formalism the re-

sulting weakly confluent reduction system.

Definition 2.3

Terminal types and Canonical terms.

1. Iso(T) (the collection of types isomorphic to T) is the set defined as follows:

(a) T ∈ Iso(T)

(b) if B ∈ Iso(T), then A→ B ∈ Iso(T) for every type A

(c) if A ∈ Iso(T) and B ∈ Iso(T), then A×B ∈ Iso(T)

(d) if A ∈ Iso(T) and X is a type variable, then ∀X.A ∈ Iso(T).

2. for each type A ∈ Iso(T), the associated canonical representative rep(A) is

defined inductively as follows:

5

(a) rep(T) is ∗ (c) rep(A×B) is 〈rep(A), rep(B)〉

(b) rep(A→ B) is λx : A.rep(B) (d) rep(∀X.A) is ΛX.rep(A).

Definition 2.4
β2η2π∗
−→ is the notion of reduction for λ2βηπ∗ generated by orienting to the right the

equalities β, η, π, SP , β2and η2in definition 2.1 and adding the following rewriting

rules, coming from completion:

(gentop) M : A
β2η2π∗
−→ rep(A) if M : A and A ∈ Iso(T) and M is not already

rep(A)

(SPtop) 〈rep(A), p2M〉
β2η2π∗
−→ M if M : A×B

(SPtop) 〈p1M, rep(B)〉
β2η2π∗
−→ M if M : A×B

(ηtop) λx : A.Mrep(A)
β2η2π∗
−→ M if A ∈ Iso(T) and x 6∈ FV (M).

The notions of reduction for the simpler calculi can be defined as restrictions of
β2η2π∗
−→ . The notion of reduction for λ2βη∗, which we will denote

β2η2∗
−→ , is the reduc-

tion induced on λ2βη∗ by
β2η2π∗
−→ , that is to say

β2η2π∗
−→ without π, SP , and SPtop,

as these rules cannot apply to terms of λ2βη∗. For the same reason, the clauses for

product types in Definition 2.3 will never be used, so that actually only a restricted

version of gentop is used in
β2η2∗
−→ . We shall still use gentop to name this restricted

reduction, as the intended meaning will always be clear from the context.

Similarly,
βηπ∗
−→ and

βη∗
−→ are the reductions induced by

β2η2π∗
−→ on λ1βηπ∗ and λ1βη∗,

with the appropriate restrictions of gentop.

It is now just a matter of an easy structural induction on terms to see that

Proposition 2.5
β2η2π∗
−→ is weakly confluent (WCR).

What about confluence then? We cannot use the standard Tait-Martin Löf “par-

allel reduction” technique, as the non-linear rule SP may require more than one

adjustement step, which cannot be parallelized. Specifically, suppose that M one

step reduces to M ′: then 〈p1M,p2M〉 reduces both to M and to 〈p1M
′, p2M〉. The

local confluence diagram can be completed on one side in one step to M ′, but on

the other side one must go sequentially to 〈p1M
′, p2M

′〉, where the lost SP redex

is recreated, and then to M ′: this is hardly parallel.

2.3 Investigating Strong Normalization

Another ”obvious” approach to prove confluence is to attempt to show that these

notions of reduction are strongly normalizing, as then one could apply the well

known fact that SN +WCR⇒CR ‖. But here we face a serious problem: some of

‖ Known as Newman’s Lemma. See (Barendregt, 1984), pag. 58.

6

the new reduction rules, namely ηtop and SPtop, prevent us from applying the usual

reducibility techniques (see (Girard et al., 1990), (Lambek & Scott, 1986), (Tait,

1967)), as we briefly sketch now.

All variations of the reducibility method require at some point to show a key

statement like if v[u/x] ∈ REDV for all u ∈ REDU , then λx.v ∈ REDU→V ,

where REDT is the set of reducible terms of type T , and where REDU→V is the

set of s : U → V s.t. (su) ∈ REDV for all u ∈ REDU .

An auxiliary property which is available is that, for (st) : T , one has (st) ∈ REDT

as soon as s′ ∈ REDT for all s′ which are one step reducts of (st).

So the proof of the key statement reduces to the proof that all one step reducts

of (λx.v) u are reducible. Now, if v is (v′∗), then (λx.v)u can reduce to (v′u) which

is not v[u/x] = v, and we do not know if (v′u) is reducible: this does not follow

from any of the hypotheses we have at hand. A similar situation arises for SPtop

when considering the corresponding lemma for pairs. (See the Remark A.14 in

Appendix A).

But the difficulty suggests a solution. The above example is problematic only if

u is different from ∗, and this cannot happen if we restrict our attention to terms in

gentop normal form (gentop n.f.). For this to work out we have to check that gentop

normal forms are stable under reduction. Otherwise the problem could dynamically

show up later in the reduction. Unfortunately the β2 rule does not preserve gentop

normal forms:

Example 2.6

The second order term (ΛX.λx : X.λy : (X → A).yx)[T] is in gentop normal form,

but its contractum λx : T.λy : T→ A.yx is not, and reduces to λx : T.λy :

T→ A.y∗. ß

So we are forced to drop β2. Summarizing, so far we have hopes for confluence in

the system which is restricted in two ways: we work only with gentop normal forms

and we have abandoned β2. Indeed we show that this restricted system is strongly

normalizing (Appendix A), thus confluent (the proof of local confluence is easily

adapted to the subsystem). Then we lift the confluence result to the system
βη2π∗
−→ ,

as we will denote the notion of reduction induced on λ2βηπ∗ by
β2η2π∗
−→ less β2 (see

next subsection).

Finally we add up β2, which forms a confluent system that commutes with
βη2π∗
−→ .

So at last we can use Hindley-Rosen’s Lemma∗∗, and we get confluence for the full

system
β2η2π∗
−→ .

2.4 A general criterion for confluence

To get the confluence of
βη2π∗
−→ from the confluence of its restriction to gentop normal

forms, we apply the following general method. Recall that two reduction systems

∗∗ The Hindley-Rosen’s Lemma asserts the obvious but useful property that two separately
confluent, commuting subsystems form a confluent system.

7

R and S are said to commute when, for every term P , if P
R
→→ Q and P

S
→→ Q′,

there exists a term Q′′ such that Q
S
→→ Q′′ and Q′ R

→→ Q′′.

Lemma 2.7

Let R be a reduction system that can be split in two subsystems R1 and R2 s.t.

1. R1 is weakly normalizing

2. the set of R1 normal forms is closed w.r.t R2 reductions

3. R2 is confluent on R1 normal forms

4.
R
→→ commutes with →→ |R1 (see notation 2.2).

Then R is confluent.

Proof

Under the hypothesis above, any two reductions
R
→→ starting from the same term

can be completed to the commuting diagram shown in figure 2:

R2
∗

R2
∗

R2
∗

R2
∗

R
∗

R
∗

R1
∗|

R1
∗|

R1
∗|

❄

❄

❄

❍
❍
❍
❍
❍

❍
❍
❍

❍
❍❥

❍
❍
❍
❍

❍
❍
❍
❍

❍
❍❥

❍
❍
❍
❍
❍

❍
❍
❍

❍
❍❥

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟✙

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟✙

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟✙

Fig. 2. The factorization of confluence

• (1) ensures the existence of the R1 normal forms, hence we can build the

central vertical arrow in the diagram (R1*| denotes reduction to some R1

n.f.).

• (4) ensures the existence and commutation of the upper inner rhombuses.

• (2) shows that the lower diagonal arrows in the upper rhombuses are made

up of R2 reductions on R1 n.f.’s only, so that (3) guarantees the commutation

of the lower inner rhombus.

Finally, the commutativity of the outermost rhombus follows from the commu-

tativity of the inner rhombuses.

Val Breazu-Tannen pointed out to us that he used a particular case of this very

same technique in (Breazu-Tannen, 1988), to prove Theorem 2.3, even if it was not

singled out as a general tool for confluence like here. Later, Val Breazu-Tannen

and Jean Gallier generalized in (Breazu-Tannen & Gallier, 1994) this Theorem to

polymorphic lambda calculus, and there too Theorem 4.3 is clearly a particular

8

instance of this technique. This independent discovery and use of this simple tool

stresses in our opinion its usefulness.

This criterion is very similar to the interpretation method used by T. Hardin

in her investigations of confluence properties of categorical combinators (Hardin,

1989), even if neither one is an instance of the other.

Our travel is close to the end. We shall take
βη2π∗
−→ as R, gentop as R1,

βη2π∗
−→ less

gentop as R2 and prove the four conditions of the criterion. The confluence of R2

on R1 normal forms is proved by establishing WCR and SN.

3 Confluence

Let in the following R stand for one of
βη2π∗
−→ ,

βη2∗
−→,

βηπ∗
−→ or

βη∗
−→, R1 be gentop and R2

be R less gentop. It will be intended that in the case of
βηπ∗
−→ and

βη∗
−→, we consider

only first order terms and types and hence only the corresponding restricted form

of gentop, for which the following proofs hold almost unchanged.

We first introduce some notation.

Notation 3.1

We will denote (M)T the gentop n.f. of a term M and
gentop

→→ | the reduction to gentop

normal form (M)T . Notice that throughout the paper we will use the = sign to

mean “identical up-to α-conversion”.

Lemma 3.2

The following equalities hold:

1. (PQ)T = (P)T (Q)T if (PQ):A and A 6∈ Iso(T)

2. (piP)T = pi(P)T if piP:A and A 6∈ Iso(T)

3. (λx.P)T = λx.(P)T

4. (〈P,Q〉)T = 〈(P)T , (Q)T 〉

5. (ΛX.P)T = ΛX.(P)T

6. (P [B])T = (P)T [B] if P [B]:A 6∈ Iso(T).

Proof

We only check 3, and leave the rest to the reader. Let λx.P : A→ B. If A→ B 6∈

Iso(T), then the result is trivial, otherwise (λx.P)T = rep(A→ B) = λz.(P)T for

some fresh variable z. Since (P)T , which is equal to rep(B), has no occurrence of

variables in it (easily shown by induction), then λz.(P)T is equal to λx.(P)T by

α-conversion.

Lemma 3.3
gentop

→→ | is compatible with substitution, i.e.

(M [N/x])T = (M)T [(N)T /x]

Proof

9

By an easy induction on the structure of M (see Table 1). Notice that the case

M : U and U ∈ Iso(T) is trivial since in both cases the normal form is rep(U), so

in the table we consider only the case when the normal form of a compound term

is the combination of the normal forms of its components.

M LHS RHS Comment

x (N)T (N)T ok

y y y ok

(PQ) ((PQ)[N/x])T (PQ)T [(N)T /x] def. subst., 3.2

=(P [N/x]Q[N/x])T = ((P)T (Q)T)[(N)T /x] 3.2, def. subst.

= ((P [N/x])T (Q[N/x])T) = ((P)T [(N)T /x](Q)T [(N)T /x]) ind. hyp.

= ((P)T [(N)T /x])((Q)T [(N)T /x])

λy.P (λy.P [N/x])T (λy.P)T [(N)T /x] 3.2, 3.2

= λy.(P [N/x])T = (λy.(P)T)[(N)T /x] ind. hyp., def. subst.

= λy.(P)T [(N)T /x] = λy.(P)T [(N)T /x]

piP (piP [N/x])T (piP)T [(N)T /x] 3.2, 3.2

= pi(P [N/x])T = (pi(P)T)[(N)T /x] ind. hyp., def. subst.

= pi(P)T [(N)T /x] = pi(P)T [(N)T /x]

〈P,Q〉 (〈P [N/x], Q[N/x]〉)T (〈P,Q〉)T [(N)T /x] 3.2, 3.2

= 〈(P [N/x])T , (Q[N/x])T 〉 = 〈(P)T , (Q)T 〉[(N)T /x] ind. hyp., def. subst.

= 〈(P)T [(N)T /x], (Q)T [(N)T /x]〉 = 〈(P)T [(N)T /x], (Q)T [(N)T /x]〉

Λt.P (Λt.P [N/x])T (Λt.P)T [(N)T /x] 3.2, 3.2

= Λt.(P [N/x])T = (Λt.(P)T)[(N)T /x] ind. hyp., def. subst.

= Λt.(P)T [(N)T /x] = Λt.(P)T [(N)T /x]

P [A] (P [A][N/x])T (P [A])T [(N)T /x] def. subst., 3.2

= (P [N/x][A])T = (P)T [A][(N)T /x] 3.2, def. subst.

= (P [N/x])T [A] = (P)T [(N)T /x][A] ind. hyp.

= (P)T [(N)T /x]A[]

Table 1. Compatibility of gentop n.f. with substitution.

Lemma 3.4

If M
R
−→ M ′ then (M)T

R
−→= (M ′)T .

Proof

We will proceed by induction on the structure of M . Notice that whenever M is a

gentop redex, the claim holds trivially since the reductions we consider all preserve

the type of the redex: so the type of M ′ is the same as that of M and their gentop

10

normal forms are the same††. We shall thus assume that M is not a gentop redex.

Furthermore, if the R reduction takes place in a proper subterm of M , the result

follows easily by induction in each case (by Lemma 3.2), so we will not state it

explicitly. We are left with the hypothesis that M is a redex which is not a gentop

redex.

• M is a variable x. No reduction is possible, and the statement holds vacuously.

• M is an application. There is only one case:

— M is (λx.P ′)Q and it β reduces to P ′[Q/x]. Then (M)T = ((λx.P ′)T (Q)T)

= (λx.(P ′)T)(Q)T , and it β reduces to (P ′)T [(Q)T /x], which is equal to

(P ′[Q/x])T by compatibility of
gentop

→→ |with substitution (Lemma 3.3).

• M is an abstraction. There are two cases:

— M is λx.(Px) and it η reduces to P . Then we have two possibilities for

(M)T (notice that (Px)T = rep(V) is excluded as then M would be a

gentop redex):

– λx.((P)Tx) which η reduces to (P)T

– λx.((P)T rep(U)) which ηtop reduces to (P)T

— M is λx.(P rep(U)) and it ηtop reduces to P . Then (M)T = λx.((P)T rep(U))

which ηtop reduces to (P)T .

• M is a projection.The only case to consider is

— M is pi〈P1, P2〉 and it π reduces to Pi. Then (M)T is pi(〈P1, P2〉)
T , which

is pi〈(P1)
T , (P2)

T 〉, which π reduces to (Pi)
T .

• M is a pair. There are three cases:

— M is 〈p1P , p2P 〉 and it SP reduces to P . By lemma 3.2, we focus only on

the following three possibilities for (M)T :

– 〈p1(P)T , p2(P)T 〉 which SP reduces to (P)T

†† Remember that the contractum of a gentop redex depends only on the type of the redex,
not on its structure.

11

– 〈p1(P)T , rep(V)〉 which SPtop reduces to (P)T

– 〈rep(U), p2(P)T 〉 which SPtop reduces to (P)T

— M is 〈p1P , rep(V)〉 and it SPtop reduces to P .

Then (M)T is 〈p1(P)T , rep(V)〉 which SPtop reduces to (P)T

— M is 〈rep(U), p2P 〉 and it SPtop reduces to P .

Then (M)T is 〈rep(U), p2(P)T 〉 which SPtop reduces to (P)T .

• M is an abstraction Λt.P . There is only one case to consider, namely P is

P ′[X] and reduces to P ′ via η2. We can assume P ′[X] not to be a gentop redex,

as otherwise M = ΛX.P ′[X] would be a gentop redex too, while we already

factored out the case M :U ∈ Iso(T). By Lemma 3.2, (M)T = (ΛX.P ′[X])T

= ΛX.(P ′[X])T = ΛX.(P ′)T [X], which reduces via η2 to (P ′)T , as required.

Hence we have shown that (M)T
R
−→= (M ′)T .

Using the criterion for confluence, we will now show

Theorem 3.5
R is confluent.

Proof
We check the four hypotheses of lemma 2.7 for R split in R1 and R2 as above.

1. gentop is a strongly normalizing confluent reduction system.

Each gentop step strictly decreases the number of gentop redexes in the term

it is applied to. Since it is also trivially WCR, Newman’s Lemma applies and

we get CR too.

2. R2 reductions do not create new gentop redexes.

By cases on the rule which is used. For all rules but β the result obviously

follows from the fact that the reduct is a subterm of the redex. The case β

is settled by noticing that, if M and N are in gentop n.f., then M [N/x] is in

gentop n.f. too. Indeed, this last property can be easily shown by induction

on the structure of M .

If M is x or if it does not contain x free, then M [N/x] is either M or N and

the result follows from the hypothesis. We can also rule out the case where

M is rep(A), as then it has no free variables. So M : A 6∈ Iso(T). If M [N/x]

contains a gentop redex P , then P cannot be M [N/x], which has the same

type as M , so P must be a proper subterm of M [N/x]. P cannot be a subterm

of N either, or an unchanged subterm of M , as they are already in normal

form, so it must be M ′[N/x] with M ′ a proper subterm of M containing a

free occurrence of x. But M ′ is in gentop normal form as M is, hence, by in-

duction hypothesis M ′[N/x] is not a gentop redex, so M [N/x] is in gentop n.f.

12

3. The systems
βη2π∗
−→ ,

βη2∗
−→,

βηπ∗
−→ and

βη∗
−→ are confluent over gentop normal

forms.

All the systems introduced so far are weakly confluent. We will prove in

the appendix (theorem A.19, which follows closely the proof plan of (Girard

et al., 1990)), that
βη2π∗
−→ is strongly normalizing over gentop normal forms.

This implies strong normalization (over gentop normal forms) for all the oth-

ers subsystems of it. Hence they are confluent over gentop n.f.’s by Newman’s

Lemma.

4. If M
R
→→ M’ then for any gentop n.f. N of M and N’ of M’ N

R
→→ N’.

By Lemma 3.4 above and a simple diagram chase.

We can finally conclude, by lemma 2.7, that R is confluent.

Remark 3.6

Statement 4 of the previous theorem holds for all the reduction systems we are

considering, as we showed it for
βη2π∗
−→ , and the statements for the other ones are

particular cases of it.

Corollary 3.7

R2 is confluent on gentop n.f.’s

Proof

Statement 3 of the previous theorem tells us that if M
R
→→M ′ and M

R
→→M ′′, where

M is in gentop normal form, then we can find M ′′′ s.t. M ′ R
→→M ′′′ and M ′′ R

→→M ′′′.

Now the second point shows that any reduction path starting from a gentop n.f.

cannot contain gentop reductions, so the R reductions are made up only of R2 steps

and we get the result.

We still have a gap to fill for the second-order systems, since we have left out β2.

We shall prove CR for
β2η2π∗
−→ and

β2η2∗
−→ by using Hindley-Rosen’s Lemma.

Let R1 be the system
βη2π∗
−→ (or

βη2∗
−→) and R2 be β2.

Lemma 3.8

β2 is confluent.

Proof

The system consisting of β2 alone satisfies the diamond property, hence is CR.

We just proved that R1 is CR (Theorem 3.5), so we are left to show that R1

commutes with R2, and the CR property will follow by Hindley-Rosen’s Lemma.

Theorem 3.9

R1 and R2 commute with each other.

Proof

It suffices to prove that, if M
R1
−→ M ′ and M

R2
−→ N , then there exist a term M ′′

s.t. N
R2
→→ M ′′ and M ′ R1

−→= M ′′ (see Lemma 3.3.6 in (Barendregt, 1984), pag.

65). The only superpositions arise with η2 and gentop, and are easily closed up,

13

so that it suffices to notice that β2 cannot duplicate existing redexes (β2 can only

duplicate types, that are not redexes), so that the constraint on the R1 reduction

which closes the diagram gives no problem. The details are left to the reader.

So we finally get, by Hindley-Rosen’s Lemma.

Theorem 3.10

The systems
β2η2π∗
−→ and

β2η2∗
−→ are confluent ‡‡.

4 Weak Normalization

For the first order systems, we get from the previous section a normalizing strategy

for free: first go to the gentop normal form, then use the SN property on gentop

normal forms.

Summarizing, we have obtained:

Theorem 4.1

The calculi λ1βη∗, λ1βηπ∗are effectively weakly normalizing.

Since for the second order systems we have left out β2and η2, we find them on the

way: we can deal with them at the price of a splitting of the set of rules which is

different from the splitting which lead us to confluence.

Theorem 4.2

The calculi λ2βη∗, λ2βηπ∗ are effectively weakly normalizing.

Proof

The reduction system R can be split into the two subsystems R1 = {β, π, gentop,

β2, η2} and R2 = { η, SP , ηtop, SPtop}. R1 is shown to be SN by a straightforward

adaptation of the technique of (Girard et al., 1990) (see Appendix B). R2 is obvi-

ously SN since the rules strictly decrease the size of the terms they apply to. One

can then show by an easy induction on the structure of the context surrounding an

R2 redex that no R2 reduction creates any new R1 redex.

Theorem 4.3

R2 reductions do not create new R1 redexes.

Proof

It suffices to consider the case of λ2βηπ∗, as the R1 and R2 systems for it embody

the R1 and R2 systems for all the others.

First notice that since R2 reductions preserve the type, no new gentop redex can

be created as gentop redexes depend only on the type of the terms.

‡‡ We also found an alternative proof of the confluence of
β2η2∗
−→ that does not extend to

the case with SP . It relies on yet another splitting of the rules, taking gentop and the β
rules on one hand, and the eta-like rules on the other. The proof uses the same criterion
for confluence as we used in this section. In order to check the last condition, we rely on
a parallelization of R2, which does not work well when the non linear surjective pairing
rule is added to R2 (cf. introduction). So we abandoned that proof technique which we
were not able to extend to the full system.

14

As for β, π, β2 and η2, let P
R2
−→ P ′.

A context with a single hole for our calculus can be defined inductively as follows:

C[] := [] | (QC[]) | (C[]Q) | piC[] |λx.C[] | 〈Q,C[]〉 | 〈C[], Q〉 |ΛX.C[] |C[][A]

We prove the lemma by induction on the context C[] where the R2 redex P occurs.

Notice that the only interesting cases are when P appears in a position where a

new R1 redex can be created, i.e. when it is applied to a term or it appears in piP.

• [] trivial since P ′ is a subterm of P for all rules in R2

• (QC[]) by induction hypothesis, C[P ′] contains no R1 redexes not appearing

in C[P]. Since the fact that the application (QC[]) is a redex depends on Q

only, which does not change, and redexes inside Q do not change too, we are

done.

• (C[]Q) by induction hypothesis, C[P ′] contains no R1 redexes not appearing

in C[P]. Q does not change, so redexes inside Q do not change too.

The only possible new redex would be the application (C[P ′]Q) if C[P ′] is an

abstraction and C[P] is not. This can happen only if C[P] is P , and due to

typing reasons, this means (PQ)
η
−→ (P ′Q) or (PQ)

ηtop

−→ (P ′Q).

In both cases P is already an abstraction, so this redex is not new either and

we are done.

• piC[] by induction hypothesis, C[P ′] contains no R1 redexes not appearing

in C[P].

The only possible new redex would be piC[P ′] if C[P ′] is a pair and C[P] is

not. Again, this can happen only if C[P] is P , and due to typing reasons, this

means P
SP
−→ P ′ or P

SPtop

−→ P ′.

In both cases P is already a pair, so this redex is not new either and we are

done.

• λx.C[] by induction hypothesis, C[P ′] contains no R1 redexes not appearing

in C[P]. Since an abstraction is not an R1 redex, the same holds for λx.C[P].

• 〈Q,C[]〉, 〈C[], Q〉, ΛX.C[], C[][A]: similarly as for abstraction.

This has the following important consequence

Corollary 4.4

The set of R1 normal form is closed w.r.t. R2 reductions.

Since R2 is obviously SN, as the rules strictly decrease the size of the terms they

apply to, this corollary gives us the following, very easy, effective normalizing (stan-

dard) strategy.

Given a term M ,

1. first R1–normalize it reaching, say, M ′,

2. then R2–normalize M ′ reaching, say, M ′′.

M ′′ is the desired normal form.

15

The previous result about weak normalization for the first order fragment can

obviously be derived as a corollary from this theorem, but we actually needed the

ingredients of the previous proof to get the confluence of our systems.

5 Decidability and conservative extension results

From the confluence and weak normalization for our calculi, it is now easy to get

also the decidability of the associated equational theories as well as conservativity

results.

Corollary 5.1

The equational theories for λ1βη∗, λ1βηπ∗, λ2βη∗ and λ2βηπ∗are decidable.

Proof

Given terms M and N , consider their normal forms M ′ and N ′ (they exist by WN).

If M = N , then (by CR) M ′ is syntactically equal to N ′. So, to decide equality it

suffices to take the normal forms (which is effective, as we provided a normalizing

strategy for each one of these calculi) and to check if they are equal.

Corollary 5.2

(Conservative extensions) For L any of the calculi λ2βηπ∗, λ2βη∗, λ1βηπ∗ or λ1βη∗,

call
L
−→ the rewriting system corresponding to L, that is

β2η2π∗
−→ ,

β2η2∗
−→ ,

βηπ∗
−→ or

βη∗
−→.

Let L’ be a subtheory of L which has the following stability property. If M is in the

sublanguage of L’ and M
L
−→ N , then N is also in L’ and M and N are provably

equal in L’. If M and N are terms of L’ that are equal in L, then they are already

equal in L’.

Proof

If M and N are equal in L, then, by the CR property, there exist a term P s.t. M

and N reduce to P in L. But M and N are terms of L’, and no reduction in any

of the calculi we consider can reach terms outside L’, then the reductions M
L
→→ P

and N
L
→→ P correspond to provable equations in L’, so that M is equal to N in

L’.

In (Bruce et al., 1992), for example, we need the conservativity of the equational

theory of λ1βηπ∗ over the simple typed λ-calculus, while in (Di Cosmo, 1994), we

actually use the conservativity of λ2βηπ∗ over the second order lambda calculus.

As far as we know, our results are new for what concerns polymorphism, while

other proofs of corollary 5.1 have been given in the literature, for the case of the

first order calculi. We already briefly hinted at the method used in (Lambek &

Scott, 1986), which is based on

• the elimination of Top

• a proof of confluence via WCR and SN (WCR holds there without a need to

add funny rules, and the computability method works well without special

restrictions, as was first shown by R. De Vrijer (de Vrijer, 1987)).

16

Another method, which was found independently by A.S. Troelstra (see (Troel-

stra, 1986), where it is used to prove SN rather than CR) and T. Hardin (see

(Hardin, 1989)) goes further by eliminating products as well as Top. The two meth-

ods allow to prove conservativity as well as decidability, but the overall construction

is quite tedious. Let us be more specific, since the explanations provided by Lambek

and Scott, in (Lambek & Scott, 1986) pp. 81 and 82, are somewhat handwaving.

The exploitation of the type isomorphisms can be formalized as follows. To every

type T we associate a T-free type T ⋄.

Definition 5.3

For any type T , we define its “top-free” form T ⋄ as the normal form of T w.r.t. the

following (confluent and strongly normalizing) type rewrite system ❀:

A×T ❀ A T×A ❀ A

T→ A ❀ A A→ T ❀ T

Thus a “T-free” type is either T, or a type where T does not occur. Then one may

extend this mapping to terms, so that for a term M : A we have M⋄ : A⋄, in such

a way that

M=βηπ∗N⇐⇒M⋄=βηπN
⋄

Similarly, to a type A of λ1βηπ∗ we can associate a sequence of types A∗ constructed

from type variables with the arrow only, and to a term M a sequence M∗ of terms

of the types that appear in A∗. Then M =βηπ∗ N iff M1 =βη N1, ... , Mn =βη Nn,

where M∗=M1,...,Mn and N∗=N1,...,Nn.

This formalizes the assertion of Lambek and Scott that there is “no loss of gen-

erality”, as far as decision is concerned, if one removes the terminal object (or both

the terminal object and the products).

Moreover these translations of types and terms are conservative in the sense that

if A is a type where T (respectively T and ×) does not occur, and M : A, then A⋄

and M⋄ (respectively A∗ and M∗) are just A and M . Corollary 5.2 is an immediate

consequence of this.

Yet another solution to the decidability problem for equational theories of carte-

sian closed categories has been proposed by A. Obtulowicz (Obtulowicz, 1987). His

approach is very algebraic in nature. Obtulowicz defines effectively operations on

some canonical forms, turning the set of canonical forms into an initial algebra.

Then, to decide that two terms are equal, one computes their interpretation in

the initial algebra, and checks whether the resulting canonical forms coincide. This

approach is very technical, and contains hidden rewriting techniques. But it is in-

teresting, because it does not a priori require such strong assumptions as to find a

noetherian and confluent rewriting system.

Anyway, A. Obtulowicz did not show decidability for exactly the same equational

theories as we do here. Specifically, he deals with the critical pairs which lead us to

the SPtop rules in a different way. He forces an equational theory on types as well as

on terms. Specifically, the canonical type isomorphisms underlying the translation
⋄ above are forced to be true equalities (and models of these theories have thus to

identify on the nose, say A × T and A). A set E of new equations between terms

17

are added, which witness these identifications at the level of terms. Here is one of

them

〈M, ∗〉 =E M for M : A×T

With the aid of this equation and of one of its consequences, namely

p1M =E M for M : A×T

one can solve the critical pair

〈p1M, ∗〉 ← 〈p1M,p2M〉 → M

by just noting that 〈p1M, ∗〉 → p1M → M. It would be worthwhile to investigate

these theories from a rewriting point of view.

Another treatment of the terminal object with identification of types can be

found in (Nipkow, 1990), which is only concerned with local confluence.

Let us mention that the problem of finding a confluent completion of the theory

λ1βηπ∗ has been considered in (Poigné & Voss, 1987), where it was believed to be

solved. Unfortunately the authors of (Poigné & Voss, 1987) missed the critical pair

leading to ηtop, which in turn induced them to believe that the adaptation of the

standard SN proof was straightforward.

Another interesting approach is based on the idea of turning η and SP into

expansions instead of contractions, getting a strongly normalizing system at the

price of some restrictions on the reductions which take into accout the context

where a redex occurs. The system so obtained is not a rewrite system in the usual

sense, not even a conditional one, due to these contextual constraints that invalidate

several usual properties of reductions in the λ-calculus, but has the advantage of

using a finite number of rules. This approach was taken in several works ((Akama,

1993; Cubric, 1992; Di Cosmo & Kesner, 1994b; Dougherty, 1993; Jay & Ghani,

1992; Di Cosmo & Kesner, 1994a). For a full discussion of this approach, and

complete references, we refer the interested reader to (Di Cosmo & Kesner, 1994b).

References

Akama, Yohji. (1993). On Mints’ reductions for ccc-Calculus. Pages 1–12 of: Typed lambda
calculus and applications. LNCS, no. 664. Springer Verlag.

Barendregt, Henk. (1984). The lambda calculus; its syntax and semantics (revised edition).
North Holland.

Breazu-Tannen, Val. 1988 (July). Combining algebra and higher order types. Pages 82–90
of: IEEE (ed), Proceedings of the symposium on logic in computer science (lics).

Breazu-Tannen, Val, & Gallier, Jean. (1994). Polymorphic rewiting preserves algebraic
confluence. Information and computation. To appear.

Bruce, Kim, Di Cosmo, Roberto, & Longo, Giuseppe. (1992). Provable isomorphisms of
types. Mathematical structures in computer science, 2(2), 231–247. Proc. of Symposium
on Symbolic Computation, ETH, Zurich, March 1990.

Cubric, Djordje. (1992). On free CCC. Distributed on the types mailing list.

Curien, Pierre-Louis, & Ghelli, Giorgio. (1990). Confluence and decidability of βηtop≤
reduction on F≤. To appear in Information and Computation.

18

de Vrijer, R.C. (1987). Surjective pairing and strong normalization: two themes in λ-
calculus. Ph.D. thesis, Universiteit van Amsterdam.

Dezani-Ciancaglini, Mariangiola. (1976). Characterization of normal forms possessing an
inverse in the λβη calculus. Theoretical computer science, 2, 323–337.

Di Cosmo, Roberto. (1994). Second order isomorphic types. A proof theoretic study on
second order λ-calculus with surjective pairing and terminal object. Information and
computation. To appear.

Di Cosmo, Roberto, & Kesner, Delia. (1994a). Combining first order algebraic rewriting
systems, recursion and extensional lambda calculi. Pages 462–472 of: Abiteboul, Serge,
& Shamir, Eli (eds), Intern. conf. on automata, languages and programming (icalp).
Lecture Notes in Computer Science, vol. 820. Springer-Verlag.

Di Cosmo, Roberto, & Kesner, Delia. (1994b). Simulating expansions without expansions.
Mathematical structures in computer science, 4, 1–48. A preliminary version is available
as Technical Report LIENS-93-11/INRIA 1911.

Dougherty, Daniel J. (1993). Some lambda calculi with categorical sums and products.
Proc. of the fifth international conference on rewriting techniques and applications (rta).

Girard, Jean-Yves, Lafont, Yves, & Taylor, Paul. (1990). Proofs and types. Cambridge
University Press.

Hardin, Thérèse. (1989). Confluence results for the pure strong categorical logic C.C.L.;
λ-calculi as subsystems of C.C.L. Theoretical computer science, 65(2), 291–342.

Jay, Colin Barry, & Ghani, Neil. (1992). The Virtues of Eta-expansion. Tech. rept.
ECS-LFCS-92-243. LFCS. University of Edimburgh, to appear inJournal of Functional
Programming.

Klop, Jan Willem. (1980). Combinatory reduction systems. Mathematical center tracts,
27.

Lambek, Joachim, & Scott, Philip J. (1986). An introduction to higher order categorical
logic. Cambridge University Press.

Mints, Gregory. A simple proof of the coherence theorem for cartesian closed categories.
Bibliopolis, to appear.

Nipkow, Tobias. (1990). A critical pair lemma for higher-order rewrite systems and its
application to λ∗. First annual workshop on logical frameworks.

Obtulowicz, Adam. (1987). Algebra of constructions I. The Word Problem for Partial
Algebras. Information and computation, 73(2), 129–173.

Poigné, Axel, & Voss, Josef. (1987). On the implementation of abstract data types by
programming language constructs. Journal of computer and system science, 34(2-3),
340–376.

Pottinger, Garrel. (1981). The Church Rosser Theorem for the Typed lambda-calculus
with Surjective Pairing. Notre dame journal of formal logic, 22(3), 264–268.

Tait, W.W. (1967). Intensional interpretation of functionals of finite type I. Journal of
symbolic logic, 32.

Troelstra, Ann S. (1986). Strong normalization for typed terms with surjective pairing.
Notre dame journal of formal logic, 27(4).

19

Appendix: Strong normalization for subsystems

Our proof of confluence in Theorem 3.5 relies upon the strong normalization of
βη2π∗
−→ over the set of gentop normal forms, while we need the strong normalization

of
β2η2π∗
−→ less ηtop and SPtop over the full set of terms in order to provide an effective

weakly normalizing strategy for
β2η2π∗
−→ in Theorem 4.2.

This appendix provides these two proofs of strong normalization in section A and

B respectively, by suitably adapting one of the various versions of the reducibility

method. We choose here to apply Girard’s method, following essentially the same

proof plan as in (Girard et al., 1990), pagg. 42-47. Since there is almost no difference

in the proofs for the two systems, we will detail the first one only , and only point

out the differences for the second case.

As we briefly suggested in the introduction (Section 2.3), the reducibility method

fails for the full system where ηtop and SPtop are allowed to freely interact with any

term of the calculus: we are not able to deal in the crucial proofs of the abstraction

and pairing lemmas (Lemmas A.13 and A.12) with some reductions that arise in

the full system.

To rule out these reductions, one can either restrict the system to gentop normal

forms only (this requires in turn to rule out the β2 rule, that does not preserve

gentop normal forms, as shown in Example 2.6), or one can simply rule out ηtop
and SPtop.

A Normalization without β2 on gentop n.f.’s

In this section we will show that the system
βη2π∗
−→ (the full system

β2η2π∗
−→ less β2)

is strongly normalizing over the set of gentop normal forms. This means that all

along the proof any gentop reduction is ruled out, so we will not explicitly state

all the time that gentop reductions cannot occur. Moreover, to improve readability,

−→ will stand for
βη2π∗
−→ in this section.

Definitions

Definition A.1 (neutral terms)

A term t:U is neutral iff one of the following conditions is satisfied:

• if U 6∈ Iso(T) and t is not an abstraction, a type abstraction or a pair, or

• if U ∈ Iso(T) (then t is rep(U), as we consider only terms in gentop normal

form).

Definition A.2 (longest reduction path for a term)

For a term u, ν(u) denotes the length of the longest reduction path starting from

u. Notice that, by König’s Lemma, if u is strongly normalisable, then ν(u) is finite.

Definition A.3

A reducibility candidate of type U is a set R of terms of type U with the following

properties.

20

CR1 if t ∈ R, then t is strongly normalisable.

CR2 if t ∈ R and t → t′, then t′ ∈ R.

CR3 if t is neutral and for all t′ s.t. t → t′ we have that t′ ∈ R, then t ∈ R.

Remark A.4

A reducibility candidate R of type U is never empty:

• If U ∈ Iso(T), then rep(U) is neutral and in normal form and hence belongs

to R by (CR3).

• If U 6∈ Iso(T), then any variable of type U is neutral and in normal form and

hence belongs to R by (CR3).

Proposition A.5

The set of strongly normalizable terms of type U is a reducibility candidate.

Proof

• (CR1) is a tautology.

• (CR2) if t is strongly normalisable, then every t’ s.t. t −→ t’ is strongly

normalisable.

• (CR3) every reduction path leaving t must pass through one of the terms

t′ that are one step from t. Since all t′ are strongly normalizable, then t is

strongly normalisable also.

Definition A.6 (product and arrow of reducibility candidates)

If R and S are reducibility candidates of types U and V , we can define sets R→ S

of terms of type U → V and R× S of terms of type U × V as follows:

• t ∈ R→ S (of type U → V) ⇐⇒

— for all u ∈ R, (tu) ∈ S if V 6∈ Iso(T)

— t = rep(U → V) if V ∈ Iso(T)

• t ∈ R× S (of type U × V) ⇐⇒

— p1t ∈ R and p2t ∈ S if U , V are not in Iso(T)

— p1t ∈ R if U 6∈ Iso(T), V ∈ Iso(T)

— p2t ∈ S if U ∈ Iso(T), V 6∈ Iso(T)

— t = rep(U × V) if U, V ∈ Iso(T)

Remark A.7

Notice that, as t and u are in gentop normal form, and due to the conditions on U

and V , the terms (tu), p1t and p2t above are still in gentop normal form.

Theorem A.8

If R1 and R2 are reducibility candidates of types U1 and U2, then R1 × R2 and

R1 → R2 are reducibility candidates of type U1 × U2 and U1 → U2 respectively.

Proof

Assume that R1 and R2 are reducibility candidates of type U1 and U2, respectively.

21

1. R1×R2 is a reducibility candidate of type U1×U2. If U1 × U2 ∈ Iso(T), then

(CR1), (CR2) and (CR3) hold vacuously due to the fact that we consider

only gentop normal forms, so let’s assume in the following that U1 6∈ Iso(T)

and/or U2 6∈ Iso(T).

• (CR1) if t ∈ U1 × U2 and Ui 6∈ Iso(T), then pit is strongly normalisable

by the induction hypothesis on Ui, since pit ∈ Ui by definition. Hence t is

strongly normalisable.

• (CR2) if t−→ t′, then p1t−→ p1t’ and/or p2t −→ p2t’. As t ∈ U1×U2, then

p1t ∈ U1 and/or p2t ∈ U2. By induction hypothesis CR2 for U1 and/or

U2 we get p1t’ ∈ U1 and/or p2t’ ∈ U2 and hence, by definition, t′ ∈ U1×U2.

• (CR3) t is neutral and all t′ one step from t are in U1 × U2.

We need to show p1t ∈ U1 and/or p2t ∈ U2. Now notice that applying a

conversion inside pit can only result in some pit’ as t is not a pair (it is

neutral and it is not rep(U1 × U2)). But p1t’ ∈ U1 and/or p2t’ ∈ U2 as t′

is in U1 × U2. In any case, p1t and/or p2t are neutral and every term one

step from it is in U1 × U2, so the induction hypothesis for U1 and/or U2

ensure p1t ∈ U1 and/or p2t ∈ U2. So t ∈ U1 × U2.

2. R1 → R2 is a reducibility candidate of type U1 → U2.

We can assume that U2 6∈ Iso(T) since otherwise U1 → U2 ∈ Iso(T), and

then (CR1), (CR2) and (CR3) hold vacuously.

• (CR1) if t ∈ U1 → U2, then let u be a variable x of type U1 if U1 6∈

Iso(T) or else rep(U1). Since u ∈ any reducibility candidate, (remark A.4),

we get that (tu) ∈ U2 by definition, hence (tu) is strongly normalisable

by induction hypothesis for U2, that suffices to show that t is strongly

normalisable.

• (CR2) if t −→ t′, we need to show (t′u) ∈ U2 for all u ∈ U1. Take then

u ∈ U1; we have (tu) ∈ U2 and (tu)−→(t′u), and hence (t′u) ∈ U2 by

induction hypothesis on U2.

• (CR3) t is neutral and all t′ one step from t are in R1 → R2. In order to

show t ∈ U1 → U2, we need to show (tu) ∈ U2 for all u ∈ U1. By induction

hypothesis on U1, we get u is strongly normalisable, so we can argue by

induction on ν(u). In one step, (tu) converts to:

— (t′u) with t′ one step from t.

As t′ ∈ U1 → U2, we get (t′u) ∈ U2 by definition.

— (tu′) with u′ one step from u.

By induction hypothesis on U1, u
′ ∈ U1 and ν(u’) < ν(u), so (tu′) ∈

U2 by the induction hypothesis on u.

— there is no other possibility, as t is already in gentop n.f. and it is

neutral, hence not of the form λx.v (it cannot be rep(U1 → U2) as we

already assumed U1 → U2 6∈ Iso(T)).

22

A.1 Reducibility with parameters

Let T be a type, and let
−→
X be a set of type variables containing at least all the free

type variables of T . For
−→
U a sequence of types of the same length, let T [

−→
U /
−→
X] be

the type obtained by simultaneous substitution of the X’s with the U ’s, and let
−→
R

a sequence of reducibility candidates of corresponding types.

Definition A.9

The set REDT [
−→
R/
−→
X] of reducible terms of type T [

−→
U /
−→
X] is defined by reducibility

with parameters induction on the type T as follows.

• if T is atomic, REDT [
−→
R/
−→
X] is the set of strongly normalizable terms of type

T [
−→
U /
−→
X] = T

• if T is Xi, REDT [
−→
R/
−→
X] is Ri

• if T is U × V , then REDT [
−→
R/
−→
X] is REDU [

−→
R/
−→
X]×REDV [

−→
R/
−→
X]

• if T is U → V , then REDT [
−→
R/
−→
X] is REDU [

−→
R/
−→
X]→ REDV [

−→
R/
−→
X]

• if T is ∀Y.W , then REDT [
−→
R/
−→
X] is the set of terms t of type [

−→
U /
−→
X] such

that, for every type V and reducibility candidate S of this type, t[V] ∈

REDW [
−→
R/
−→
U , S/Y]

Lemma A.10

rep(U) is normal for all U ∈ Iso(T).

Proof

By a straightforward induction on the structure of the term.

Theorem A.11

REDT [
−→
R/
−→
X] is a reducibility candidate of type T [

−→
U /
−→
X]

Proof

We proceed by structural induction on the type T .

Since we consider only terms in gentop normal form, there is no term of type

U besides rep(U) if U ∈ Iso(T). Moreover, due to the previous lemma and the

definition of reducibility, rep(U) trivially satisfies (CR1), (CR2) and (CR3), so we

will not consider explicitly the case of types in Iso(T) in the induction.

Atomic types

If T is atomic, then REDT [
−→
R/
−→
X] is the set of strongly normalizing terms of type

T , and we already proved it to be a reducibility candidate (Proposition A.5).

Type Variables

If T is Xi, then REDT [
−→
R/
−→
X] is Ri, that is a reducibility candidate by definition.

23

Product types

Let T be U1×U2. Then REDT [
−→
R/
−→
X] = REDU1

[
−→
R/
−→
X]×REDU1

[
−→
R/
−→
X] by defini-

tion. We can apply the induction hypothesis forREDU1
[
−→
R/
−→
X] andREDU2

[
−→
R/
−→
X],

so that the result then follows by Theorem A.8.

Arrow types

Let T be U1 → U2. Then REDT [
−→
R/
−→
X] = REDU1

[
−→
R/
−→
X] → REDU1

[
−→
R/
−→
X] by

definition. We can apply the induction hypothesis forREDU1
[
−→
R/
−→
X] andREDU2

[
−→
R/
−→
X],

so that the result then follows by Theorem A.8.

Universal types

Let T = ∀Y.W . We can assume that W 6∈ Iso(T) as otherwise ∀Y.W ∈ Iso(T).

• (CR1) if t ∈ RED∀Y.W [
−→
R/
−→
X], then let V be an arbitrary type and S be

an arbitrary reducibility candidate of this type (for example, the strongly

normalizable terms of type V). Then t[V] ∈ REDW [
−→
R/
−→
X ,S/Y], and so, by

induction hypothesis, we know that t[V] is strongly normalizable. A fortiori

t is strongly normalisable.

• (CR2) if t
βηπ∗
−→ t′, then for all types V and reducibility candidate S of this

type, we have that t[V] ∈ REDW [
−→
R/
−→
X ,S/Y] and (t[V])

βηπ∗
−→ (t’[V]), hence

t’[V] ∈ REDW [
−→
R/
−→
X ,S/Y] by induction hypothesis on W. So, by definition,

t′ ∈ RED∀Y.W [
−→
R/
−→
X].

• (CR3) t is neutral and all t′ one step from t are in REDT [
−→
R/
−→
X]. Take V and

S: if we apply a conversion inside t[V], the result is t′[V] since t is neutral (and,

again, not rep(∀Y.W), as t
βηπ∗
−→ t’). Now, t′[V] is in REDW [

−→
R/
−→
X ,S/Y] as t′

is inREDT [
−→
R/
−→
X]. By induction hypothesis, we get t′[V] ∈REDW [

−→
R/
−→
X ,S/Y],

so t ∈ REDT [
−→
R/
−→
X].

Reducibility theorem

We shall need some lemmas to deduce reducibility of a term from reducibility of its

subterms.

Lemma A.12

(Pairing) Let u1 ∈ REDU1
[
−→
R/
−→
X] and u2 ∈ REDU2

[
−→
R/
−→
X].

Then 〈u1, u2〉 ∈ REDU1×U2
[
−→
R/
−→
X].

Proof

24

We can assume that U1 6∈ Iso(T) and/or U2 6∈ Iso(T), as otherwise 〈u1, u2〉 =

rep(U1 × U2) and then REDU1×U2
[
−→
R/
−→
X] is {rep(U1 × U2)}.

We can argue by induction on ν(u1)+ν(u2), by CR1, to show that, for i = 1 and/or

i = 2, pi〈u1, u2〉 ∈ REDUi
[
−→
R/
−→
X].

Let i = 1 for simplicity. The term p1〈u1, u2〉 converts to:

• u1, which is in REDU1
[
−→
R/
−→
X] by hypothesis.

• p1〈u
′, u2〉 with u′ one step from u1.

Then u′ is in REDU1
[
−→
R/
−→
X] by CR2 and ν(u’) < ν(u1), so p1〈u

′, u2〉 ∈

REDU1
[
−→
R/
−→
X] by induction hypothesis.

• p1〈u1, v
′〉 with v′ one step from u2. We get p1〈u1, v

′〉 ∈ REDU1
[
−→
R/
−→
X] as

above.

• p1w if u1 is p1w and u2 is p2w.

But p1w = u1 is in REDU1
[
−→
R/
−→
X] by hypothesis.

• p1w if u1 is p1w and u2 is rep(U2).

By definition of parametric reducibility for product types when one of the

factor types is in Iso(T), we get that u1 ∈ REDU1
[
−→
R/
−→
X] as p1w = u1 is in

REDU1
[
−→
R/
−→
X] by hypothesis.

In every case, the neutral terms pi〈u1, u2〉 convert to terms in REDUi
[
−→
R/
−→
X] only,

for i = 1 and/or i = 2, so they are in REDUi
[
−→
R/
−→
X] by CR3. Hence 〈u1, u2〉 is in

REDU1×U2
[
−→
R/
−→
X].

Lemma A.13

(Abstraction) Let x:U and v:V . If for all u ∈ REDU [
−→
R/
−→
X] we have that v[u/x] ∈

REDV [
−→
R/
−→
X], then λx.v ∈ REDU→V [

−→
R/
−→
X].

Proof

We can assume that V 6∈ Iso(T) as otherwise v is rep(V), and λx.v is rep(U → V)

as U → V ∈ Iso(T), and it is reducible by definition.

To show that λx.v ∈REDU→V [
−→
R/
−→
X], we need to show that (λx.v)u ∈REDV [

−→
R/
−→
X]

for all u ∈ REDU [
−→
R/
−→
X].

There are two cases: either U ∈ Iso(T) or not.

In the first case, v[u/x] = v as it is in gentop normal form, hence there is no free

occurrence of x in v, and the only term u of type U is rep(U). Since t = (λx.v)u is

neutral, it suffices to show that for every term t′ one-step from it t′ ∈ REDV [
−→
R/
−→
X].

Since v = v[rep(U)/x] ∈ REDV [
−→
R/
−→
X] by hypothesis, hence strongly normalizing,

we can argue by induction on ν(v). The one-step reducts of (λx.v)u are:

25

• v[u/x] which is in REDV [
−→
R/
−→
X] by hypothesis

• (λx.v′)u with v′ one step from v. Then v′[u/x] is in REDV [
−→
R/
−→
X] by CR2

as it is one step from v[u/x] and we are done by induction hypothesis as

ν(v’) < ν(v)

• (v′u) via ηtop if v = v′rep(U).

Now, u = rep(U) so (v′u) = v′rep(U) = v = v[u/x] which is in REDV [
−→
R/
−→
X]

by hypothesis.

In the second case, x:U is in REDU [
−→
R/
−→
X] (Remark A.4). So v = v[x/x] is

in REDV [
−→
R/
−→
X] and hence strongly normalizable by CR2, and we can argue by

induction on ν(u)+ν(v) to show that all terms one step from (λx.vu) are reducible.

The one-step reducts of(λx.v)u are:

• v[u/x] that is in REDV [
−→
R/
−→
X] by hypothesis.

• (λx.v′)u with v′ one step from v. Since v′[u/x] is one step from v[u/x], then

it is in REDV [
−→
R/
−→
X] by CR2. Furthermore, ν(v’) < ν(v), so by induction

hypothesis we get (λx.v′u) ∈ REDV [
−→
R/
−→
X].

• (λx.v)u′ with u′ one step from u. Then u′ ∈ REDU [
−→
R/
−→
X] by CR2, ν(u’) <

ν(u) and v[u′/x] ∈ REDV [
−→
R/
−→
X] by repeated applications of CR2, as it is

some step from v[u/x]. So we can apply again the induction hypothesis.

• (v′u) via η if λx.v is λx.v′x and x 6∈ FV(v’).

It is in REDV [
−→
R/
−→
X] as v[u/x] = (v′u) is in REDV [

−→
R/
−→
X] by hypothesis.

Since (λx.v)u is neutral and it converts to reducible terms only, it is reducible.

Hence λx.v is reducible.

Remark A.14

Working only with terms in gentop normal form allows us to rule out all the other

reductions that are possible when considering all the terms of the calculus. This

restriction is essential since otherwise we ought now to face, in Lemma A.12, re-

ductions like p1〈rep(U1), p2w〉 −→ p1w, that we cannot handle, for nothing in

our induction hypothesis allows us to conclude that p1w is reducible. (We al-

ready pointed out the difficulty in Section 2.3.) This reduction is now ruled out

as p1〈rep(U1), p2w〉 is not a gentop normal form (its normal form being rep(U1)).

Similarly, in Lemma A.13, the restriction to terms in gentop normal form allows us

to rule out (in the case U ∈ Iso(T)) all the other reductions otherwise possible in

Can be shown by an easy induction on v.
And its symmetric p2〈p1w, rep(U2)〉 −→ p2w.

26

the full calculus. As pointed out in the introduction (Section 2.3), we do not know

how to handle the general reduction (λx.(v′rep(U)))u−→(v′u) via ηtop: if u is not

rep(U), then we have nothing in our induction hypothesis to tell us that (v′u) is

reducible. But here u must be in gentop normal form, that is to say, u = rep(U),

and the ηtop reduction can be handled as above.

Lemma A.15

(Universal abstraction) If for every type V and candidate S of type V , v[V/Y] ∈

REDW [
−→
R/
−→
X ,S/Y], then ΛY.v ∈ RED∀Y.W [

−→
R/
−→
X].

Proof

We need to show that (ΛY.v)[V] ∈ REDW [
−→
R/
−→
X ,S/Y] for every type V and

candidate S of type V . We argue by induction on ν(v), using the fact that (ΛY .v)[V]

is neutral. Converting a redex of (ΛY .v)[V] can yield:

• (ΛY .v’)[V] with v′ one step from v; now, by induction hypothesis on ν(v), we

know that (ΛY.v′)[V] ∈ REDW [
−→
R/
−→
X ,S/Y].

The result follows by CR3.

Lemma A.16

REDT [V/Y][
−→
R/
−→
X] = REDT [

−→
R/
−→
X ,REDV [

−→
R/
−→
X]/Y]

Proof

By induction on T .

Lemma A.17

(Universal application) If t ∈ RED∀Y.W [
−→
R/
−→
X], then t[V] ∈ REDW [V/Y][

−→
R/
−→
X]

for every type V .

Proof

By hypothesis, t[V] ∈ REDW [
−→
R/
−→
X ,S/Y] for every candidate S. Taking S =

REDV [
−→
R/
−→
X], the result follows by Lemma A.16.

The theorem

As in (Girard et al., 1990), we say here that a term t of type T is reducible if it

is in REDT [
−→
SN/

−→
X], where

−→
X are the free type variables of T and SN i is the set

of strongly normalizable terms of type Xi. In the proof of the theorem, there is

the need of a stronger induction hypothesis, from which the strong normalization

follows by putting ui = xi and Ri = SNi.

Proposition A.18

Let t:T be any term of λ2βηπ∗ (in gentop normal form), whose free variables are

among x1 : U1, . . . , xn : Un, and all the free variables of T , U1, · · ·Un are among

X1, · · ·Xm. If R1, . . . Rm are reducibility candidates of types V1, · · ·Vm, and u1, · · ·,

um are terms of types U1[
−→
V /
−→
X], . . . Um[

−→
V /
−→
X] which are in REDU1

[
−→
R/
−→
X], . . . ,

REDUn
[
−→
R/
−→
X], then t[

−→
V /
−→
X][−→u /−→x] ∈ REDT [

−→
R/
−→
X].

27

Proof
By induction on t. Notice that there are no variables of type U if U ∈ Iso(T).

• t = ∗: t is in the only reducibility candidate {∗} of type T.

• t = xi : in this case the statement of the theorem becomes a tautology.

• t = piu : then u : U1 × U2 and Ui 6∈ Iso(T) as we consider only terms in gentop

normal form. By induction hypothesis, u[
−→
V /
−→
X][−→u /−→x] ∈REDU1×U2

[
−→
R/
−→
X].

Hence (piu)[
−→
V /
−→
X][−→u /−→x] = piu[

−→
V /
−→
X][−→u /−→x] ∈ REDUi

[
−→
R/
−→
X] by defini-

tion of reducibility for product types.

• t= 〈u, v〉 : u[
−→
V /
−→
X][−→u /−→x] ∈REDU1

[
−→
R/
−→
X] and v[

−→
V /
−→
X][−→u /−→x] ∈REDU2

[
−→
R/
−→
X]

by the induction hypothesis, so Lemma A.12 gives 〈u[
−→
V /
−→
X][−→u /−→x], v[

−→
V /
−→
X][−→u /−→x]〉 ∈

REDU1×U2
[
−→
R/
−→
X]. Now, 〈u, v〉[

−→
V /
−→
X][−→u /−→x] is 〈u[

−→
V /
−→
X][−→u /−→x], v[

−→
V /
−→
X][−→u /−→x]〉,

and hence 〈u, v〉[
−→
V /
−→
X][−→u /−→x] ∈ REDU1×U2

[
−→
R/
−→
X].

• t = λz.v : by induction hypothesis, we know that v[
−→
V /
−→
X][−→u /−→x][u/z] ∈

REDV [
−→
R/
−→
X] for all u ∈REDU [

−→
R/
−→
X]. Then Lemma A.13 gives λz.v[

−→
V /
−→
X][−→u /−→x] ∈

REDU→V [
−→
R/
−→
X]. But (λz.v)[

−→
V /
−→
X][−→u /−→x] is λz.v[

−→
V /
−→
X][−→u /−→x] by defini-

tion, and the result follows.

• t = vu : then v[
−→
V /
−→
X][−→u /−→x] ∈ REDU→V [

−→
R/
−→
X], so u[

−→
V /
−→
X][−→u /−→x] ∈

REDU [
−→
R/
−→
X] by induction hypothesis. Hence we know that (v[

−→
V /
−→
X][−→u /−→x] u[

−→
V /
−→
X][−→u /−→x]) ∈

REDV [
−→
R/
−→
X], as it is (vu)[

−→
V /
−→
X][−→u /−→x] by definition.

• t = ΛY.v : then we know by induction hypothesis that for every type V and re-

ducibility candidate S we have v[V/Y][
−→
V /
−→
X][−→u /−→x] ∈ REDW [

−→
R/
−→
X ,S/Y].

Then, applying Lemma A.15, we get that (ΛY.v)[
−→
V /
−→
X][−→u /−→x] ∈RED∀Y.W [

−→
R/
−→
X].

• t = t[V] : then we know by induction hypothesis that t[
−→
V /
−→
X][−→u /−→x] ∈

RED∀Y.W [
−→
R/
−→
X] and, by Lemma A.17, for every type V t[V][

−→
V /
−→
X][−→u /−→x] ∈

REDW [V/Y][
−→
R/
−→
X].

Theorem A.19
βη2π∗
−→ is strongly normalizing over the set of gentop normal forms.

Proof
Let t be any term in gentop normal form. All its free variables are in any reducibility

candidate by CR3, so that t = t[
−→
SN/

−→
X][−→x /−→x] is reducible by the previous lemma.

By CR1 it is strongly normalizing. That is,
βη2π∗
−→ is strongly normalizing over gentop

normal forms.

B Normalization without ηtop and SPtop

The proof of strong normalization is essentially the same as the one given above

for the full system without β2 over the subset of terms in gentop normal form.

28

The main difference, besides the fact that we add β2 and gentop and exclude ηtop
and SPtop, is that now we work on the full set of terms, so that there are plenty of

terms t:U , besides rep(U), when U ∈ Iso(T). We keep essentially the same notion

of neutral term (A.1), but it is to be noted that only rep(U) is neutral, not every

term of type U ∈ Iso(T).

Definition B.1 (neutral terms)

A term t : U is neutral iff at least one of the following conditions is satisfied:

• if U 6∈ Iso(T) and t is not an abstraction, a type abstraction or a pair,

• if U ∈ Iso(T) and t is rep(U).

Since we drop ηtop and SPtop, there is no need to give a special status to the types

U ∈ Iso(T) (besides the fact that rep(U) is neutral), and we resort to the usual

definition of product and function space of reducibility candidates, which allows us

to deal with all the terms of type U ∈ Iso(T).

Definition B.2 (product and arrow of reducibility candidates)

If R and S are reducibility candidates of types U and V , we define:

• t ∈ R→ S ⇐⇒ for all u ∈ R, tu ∈ S

• t ∈ R× S ⇐⇒ p1t ∈ U and p2t ∈ V

With this new definition, the proofs of the previous appendix go through almost

unchanged, with the only care to keep in mind that now rep(U) is no longer the

only term of type U ∈ Iso(T), and that types in Iso(T) have no longer a special

status. This means that wherever there is a distinction between types that are in

Iso(T) and types that are not, one follows the proof given for types that are not

in Iso(T). The new cases arising from gentop reductions are easily dealt with, as

rep(U) is still in any reducibility candidate by CR3.

For completeness, we detail here all the changes that are needed.

• Remark A.4 now extends to all variables and also the variables of type U ∈

Iso(T). It is just the matter of noticing that a variable x:U ∈ Iso(T) is

neutral and reduces only to rep(U), that is, in any reducibility candidate by

CR3, and the result follows by CR3.

• In Theorem A.8, we can no longer factor out the types in Iso(T), that must

be treated exactly as the other types:

Product Types (CR3)

– t can be rep(U1 × U2). In that case the only possible reduction for

pit (that is not in gentop normal form) is to rep(Ui), that belongs to

all reducibility candidate (Remark A.4), hence in REDUi
[
−→
R/
−→
X] that

is a reducibility candidate by induction hypothesis on Ui. So pit ∈

REDUi
[
−→
R/
−→
X] by CR3 on Ui and we get t ∈ REDU1×U2

[
−→
R/
−→
X] by

definition.

– t can be a neutral term different from rep(U1 × U2). Then the only

possible reduction for pit (that is not in gentop normal form) is to

rep(Ui), and we conclude as above.

29

Arrow Types (CR3)

– t (or t′) can be rep(U1 → U2). Then (tu) (or (t′u)) can only reduce to

rep(U2) that is in any reducibility candidate (Remark A.4), hence in

REDU2
[
−→
R/
−→
X] that is a reducibility candidate by induction hypothesis

on U2. So (tu)(or (t′u)) ∈ REDU2
[
−→
R/
−→
X] for all u ∈ REDU1

[
−→
R/
−→
X],

and we get t ∈ REDU1→U2
[
−→
R/
−→
X] by definition.

– t can be a neutral term different from rep(U1 → U2). Then the only

possible reduction for (tu) (or (t′u)) is to rep(U2), and we conclude as

above.

• In Theorem A.11, we can no longer factor out the types in Iso(T) that must

be treated exactly as the other types.

Universal Types (CR3)

– t (or t′) can be rep(∀Y.W). Then t[V] can only reduce to rep(W), that

is in any reducibility candidate (Remark A.4), hence in REDW [
−→
R/
−→
X]

that belongs to all reducibility candidate by induction hypothesis on

W. Again we get t(or t′) ∈ RED∀Y.W [
−→
R/
−→
X] by definition.

– t (or t′) can be a neutral term different from rep(∀Y.W). Then t[V]

can only reduce to rep(W), and we conclude as above.

• In Lemmas A.12 and A.13 we can no longer factor out the case of types

U ∈ Iso(T), which must be treated uniformly as the other types. Since the

rules SPtop and ηtop are not present, only the first four cases considered in

Lemma A.12 can occur, and the proof goes through unchanged for them,

while for Lemma A.13 we follow the proof given for V 6∈ Iso(T).

There is now the further possibility of a gentop reduction, that in both cases

is dealt with in the usual way by remembering that any reducibility candidate

of type U ∈ Iso(T) contains rep(U).

• In Lemma A.15 we have now two additional cases:

— (ΛY.v)[V] reduces to the term rep(W[V/Y]), that must belong toREDW [V/Y][
−→
R/
−→
X]

since this latter is a reducibility candidate.

— (ΛY.v)[V] reduces to v[V/Y]. But we know by hypothesis that

v[V/Y] ∈ REDW [V/Y][
−→
R/
−→
X ,S/Y]

• In the proof of the Proposition A.18, it suffices to apply to the types V ∈

Iso(T) the same arguments used for types U 6∈ Iso(T), as now there is no

longer any difference in the definition of the function space and product of

reducibility candidates.

Using again the fact that t=t[
−→
SN/

−→
X][−→x /−→x], we similarly get our final result.

Theorem B.3
β2η2π∗
−→ without ηtop and SPtop is strongly normalizing.

30

