
Journal of Functional Programming (1992), vol. 11, pp. 1–000

Deciding Type Isomorphisms in a
type-assignment framework§

ROBERTO DI COSMO
E-mail: roberto@dicosmo.org

LIENS (CNRS) - DMI, Ecole Normale Supérieure, 45 Rue d’Ulm, 75005 Paris - France

and

Dipartimento di Informatica - Corso Italia 40, 56100 Pisa -Italy

Abstract

This paper provides a formal treatment of isomorphic types for languages equipped with an
ML style polymorphic type inference mechanism. The results obtained make less justified
the commonplace feeling that (the core of) ML is a subset of second order λ-calculus: we
can provide an isomorphism of types that holds in the core ML language, but not in second
order λ-calculus. This new isomorphism allows to provide a complete (and decidable)
axiomatisation of all the types isomorphic in ML style languages, a relevant issue for the
type as specifications paradigm in library searches. This work is a very extended version
of (DC92): we provide both a thorough theoretical treatment of the topic and we describe
a practical implementation of a library search system, so that the present paper can be
used as a reference both by people interested in the formal theory of ML style languages,
and by people that is simply concerned with implementation issues. The new isomorphism
can also be used to extend the usual ML type-inference algorithm, as suggested in (DC92).
Building on that proposal, we introduce a better type-inference algorithm that behaves well
in the presence of non-functional primitives like references and exceptions. The algorithm
described here has been implemented easily as a variation to the Caml-Light 0.4 system.
Keywords: library searches, types, isomorphisms, ML, type-assignment.

Capsule Review

This paper develops a complete proof system for type isomorphism in a type-assignment
framework and gives a decision procedure. The main contribution of the paper is to set up
a formalism for this proof system, to discover a new isomorphism (split), and to develop an
efficient algorithm to check isomorphism, which can be used to improve library search sys-
tems, as investigated by Rittri and others. DiCosmo contributes to a better understanding
of type isomorphism in ML-style type systems.

1 Foreword

This paper is devoted to the study of isomorphisms of types for type-assignment

calculi based on Milner’s ML (Mil78; Dam85; DM82; MT91; CH88; MTH90). It

§ Part of the material appearing in this paper has been published in the Proceedings
of the 19th Symposium on Principles of Programming Languages, Albuquerque, New
Mexico. The author would like to thank the Association for Computing Machinery for
allowing him to use that material in this paper.

2 Roberto Di Cosmo

presents the motivations of such a study, a guide to previous works, a theoretical

treatment of isomorphic types, a description of a library search system modulo

equality up to isomorphic types, and a proposal for an extension of the ML type-

inference mechanism, both based on the new results presented in this paper. The

main focus is here on formalization of previous work in the area, and we try to

show how such a formal treatment allows us to discover unexpected isomorphisms,

and to derive naturally from the formal proofs a decision procedure more efficient

than the ones that were previously available, in an effort of providing a systematic

approach.

For this reason, this work may contain more than what you are looking for: it can

be read not only from the start to the end, and not necessarily in sequential order,

but in several different ways, depending on the interests of the reader. If you are

just looking for an introduction to the topic, read Section 2 and 3. If you are already

familiar with the topic, and your interest is for the new theoretical results, you can

browse through Section 4 and then focus on Section 5, 6 and the Appendix. If you

are just looking for a guide to the implementation of a library search system, then

Sections 6 is all you need to see. If you are looking for the extended type-inference

algorithm, then Section 7 will be your focus point.

2 Introduction

The interest in building models satisfying specific isomorphisms of types (or do-

main equations) is a long standing one, as it is a crucial problem in the denota-

tional semantics of programming languages. In the 1980s, though, some interest

started to develop around the dual problem of finding the domain equations (type

isomorphisms) that must hold in every model of a given language, or valid isomor-

phisms of types, as we will call them in the sequel. The seminal paper by Bruce

and Longo (BL85) addressed then the case of pure first and second order typed

λ-calculus with essentially model-theoretic motivations, but due to the connections

between typed λ-calculus, cartesian closed categories, proof theory and functional

programming, the notion of valid isomorphism of types showed up as a central idea

that translates easily in each of those different but related settings. In the frame-

work of category theory, Soloviev already studied the problem of characterizing

types (objects) that are isomorphic in every cartesian closed category, providing

a model theoretic proof of completeness for the theory Th1
×T

we will see later on

(actually (Sol83) is based on techniques used originally in (Mar72), while another

different proof can be found in (MS90)). A treatment of this same problem by means

of purely syntactic methods for a λ-calculus extended with surjective pairing and

unit type was developed in (BDCL92), where the relations between these settings,

category theory and proof theory, originally suggested by Mints, have been studied,

and pursued further on in (DCL89). Finally, (DC91) provides a complete charac-

terization of valid isomorphisms of types for second order λ-calculus with surjective

pairing and terminal object type, that includes all the previously studied systems.

Meanwhile, these results were starting to find their applications in the area of

Functional Programming, where the problem of retrieving functions in a library was

showing up as an increasingly relevant issue: while the size of the function libraries

Deciding Type Isomorphisms in a type-assignment framework 3

Language Name Type

ML of Edinburgh LCF itlist ∀X.∀Y.(X → Y → Y) → List(X) → Y → Y
CAML list it ”
Haskell foldr ∀X.∀Y.(X → Y → X) → X → List(Y) → X
SML of New Jersey fold ∀X.∀Y.(X × Y → Y) → List(X) → Y → Y
The Edinburgh SML Library fold right ∀X.∀Y.(X × Y → Y) → Y → List(X) → Y

Table 1. an example

grows steadily (the standard library of CAML v.2.6 contains already more than 1000

user-level identifiers, for example), the tools generally available today to retrieve

functions stored in a library are still nothing more than a prehistorical alphabetical

index of identifiers, maybe with some facility to enable regular-expression searches

(like in the CAML interpreter, see (CH88)), or some kind of thesaurus, useful when

you have to find your way in an UNIX manual (the well known -k option of the

man command).

But the name given to a function is left to the more or less original imagination

of the programmer, so if you change system, you change dialect also: borrowing an

amusing example from (Rit90b), if we look for a function that distributes a binary

operation on a list, we can easily collect a nice amount of names: itlist, list it, foldr,

fold and fold right, so that the rudimentary tools available to search the libraries

dont help at all. If we are using strongly typed functional languages, though, the

Propositions as Types paradigm just tells us that a type can be considered as a

(partial) logical specification of a program, suggesting to use the type of a function

as a search key in order to provide the programmer with a uniform and sensible

tool to retrieve data in libraries. The types, with their logical counterpart, would

provide the necessary standard language.

This simple, but rather new idea is the starting point of work done by Mikael Rittri

((Rit91), (Rit90a)), Colin Runciman and Ian Toyn ((RT91)) in this direction. They

immediately notice how functions that we want to consider essentially the same turn

out to be assigned pretty different types. Borrowing from (Rit90b), we can provide

an example of this unpleasant phaenomenon, just by looking at the type that the

itlist - list it - foldr - fold - fold right function is assigned in five different widely

used languages based on the same polymorphic type discipline originally presented

in Milner’s ML (Mil78) (see Table 1).

The syntactic equality of types is too much a fine relation on types to be used

for our purposes: so what is the right way to compare types? We need a coarser

relation on types that take into account, for example, currying-uncurrying and

argument permutation. Moreover, this notion of equivalence ought not depend on

the particular implementation of the language, and it needs to be decidable in order

to be of any use.

We can clearly see the connection with the notion of type isomorphism described

4 Roberto Di Cosmo

above: for any typed functional language L, the equivalence relation on types will

be exaclty the one given by the notion of valid isomorphism.

Definition 2.1 (Valid isomorphisms)

A ∼= B is a valid isomorphism ⇐⇒ for any M model of L, M |= A ≃ B, i.e.

∃f : A → B, g : B → A s.t. g◦f = idA, f◦g = idB .

What is needed then is the ability to search types up to such isomorphisms, i.e. a

complete and decidable characterization of the valid isomorphisms. The complete-

ness of the theory is desirable, as a sound theory that is incomplete would miss part

of the functions in the library.

In this paper, we survey the known results on valid isomorphisms of types (Sec-

tion 3) and we point out why they are not adequate to handle languages where the

let polymorphic construct is allowed. We study thereafter in Section 4 the prob-

lem of valid isomorphisms in the presence of such a polymorphic construct, and

we uncover an isomorphism that does not hold for second order explicitly typed

λ-calculus. This new isomorphism allows us to provide a complete and decidable

characterization for ML like languages (Section 5). Furthermore, it makes it possi-

ble to design an efficient decision procedure for the complete theory of isomorphic

types, that can be effectively used in an actual library search system. We provide

a description of this procedure in Section 6.1, while the code for the CAML dialect

of ML is publicly avilable by anonymous ftp (see Section 6.1 for details).

This new isomorphism can also be used to extend the usual ML type-inference

algorithm, as proposed in (DC92). Building on that proposal, in Section 7 we

introduce a more complete type-inference algorithm that is based on the notion of

inference-isomorphism and behaves well in the presence of non-functional primitives

like references and exceptions. The algorithm described here has been implemented

easily as a variation to the Caml-Light 0.4 system.

Proofs of technical results are to be found in the Appendix.

3 Survey

In this section we survey the known results about the valid isomorphisms of types

for first and second order λ-calculi, and we build up the necessary machinery to

handle valid isomorphisms in type-assignment systems with the let construct. Since

the focus of the paper is on the type-assignment systems, though, we do not give

here the full syntax of the explicitly typed systems, but the interested reader can

find a fully detailed presentation in (CDC91).

3.1 First order isomorphic types

In (BL85), Bruce and Longo showed that two types A and B are isomorphic in

every model of the simply typed λ-calculus λ1βη if and only if they can be shown

equal in the equational theory Th1 that has only the following proper axiom

(swap) A → (B → C) = B → (A → C)

Deciding Type Isomorphisms in a type-assignment framework 5

(swap) A → (B → C) = B → (A → C)

}

Th1

1. A×B = B ×A

2. A× (B × C) = (A×B)× C

3. (A×B) → C = A → (B → C)

4. A → (B × C) = (A → B)× (A → C)

5. A×T = A

6. A → T = T

7. T → A = A











































Th1
×T

8. ∀X.∀Y.A = ∀Y.∀X.A

9. ∀X.A = ∀Y.A[Y/X] (X free for Y in A, Y 6∈ FTV (A))

10. ∀X.(A → B) = A → ∀X.B (X 6∈ FTV (A))











+ swap = Th2

11. ∀X.A×B = ∀X.A× ∀X.B

12. ∀X.T = T











































































































Th2
×T

A, B, C can be arbitrary types and T is a constant for the unit type.
Notice that the axiom swap of Th1 is provable in Th1

×T
by axioms 1 and 3.

Table 2. The theories of valid isomorphisms for explicitly typed languages

where A, B, C can be arbitrary types.

A key point in the proof of completeness is the fact, very easy to show, that valid

isomorphisms are always definable by programs in the language, i.e.

Proposition 3.1 (Definable isomorphisms)

A ∼= B⇐⇒ there exist λ-terms M : A → B and N :B → A such that λ1βη ⊢M◦N =

IB and λ1βη ⊢ N◦M = IA, where IA and IB are the identities of type A and

B, and M◦N is the usual composition of terms λx.M(Nx). Such terms M and N are

each other inverses w.r.t. composition, and are called “invertible”.

This result holds for any of the languages we will survey in this section (see (DC91)

for details), so we will talk indifferently about valid or definable isomorphisms, or

just about isomorphisms.

Remark 3.2

Notice that we are in an explicitly typed framework, so the isomorphism between

type A and B is given by explicitly typed terms M : A → B and N : B → A.

Later on, this approach was extended to the lambda calculus with surjective pairing

and terminal object (λ1βηπ∗). Now, this calculus has as models exactly the Carte-

sian Closed Categories, that is a further reason for the relevance of the problem

studied: in (Sol83) it is actually considered from the category theoretic point of

view, and solved by model theoretic methods that can essentially be traced down

to work done in number theory by Martin in (Mar72). A completely new argument

based on proof theoretic methods was provided by Bruce, Longo and the author

6 Roberto Di Cosmo

(see (BDCL90)), where the connections with proof theory and functional program-

ming are also outlined. The notion of isomorphism between types presented there is

exactly the same adopted by Rittri in the case of ML-style languages, to the study

of which he devotes several works ((Rit91), (Rit90a) and (Rit92)).

The resulting fundamental theorem in (Sol83) and (BDCL90) states that two types

A and B are isomorphic in every model of the calculus λ1βηπ∗ if and only if they

can be shown equal in the equational theory Th1
×T

of Table 2.

3.2 Second order isomorphic types

These results can be extended to second order typed λ-calculus, as in (BL85),

where Bruce and Longo characterized the valid isomorphism for the pure second

order λ-calculus λ2βη via the equational theory Th2 of Table 2.

This result is not powerful enough, though, to treat ML-style systems, as we miss

the product and the unit type constructors, so we need to look at (DC91), where

a finite, decidable axiomatisation of the isomorphisms holding in the models of

second order lambda calculus with surjective pairing and terminal object λ2βηπ∗ is

provided. The Main Theorem of that paper shows that two types A and B can be

constructively proved to be isomorphic, by programs which act one as the inverse

of the other, if and only if Th2
×T

⊢ A = B, where Th2
×T

is the set of axioms in

Table 2. This last theory of valid isomorphisms contains all the previous theories,

and is the largest theory of isomorphic types in explicitly typed languages for which

we have soundness and completeness results by now.

4 Isomorphisms of types in ML-style languages

In (Rit91) and (Rit90a), Rittri uses the theory Th1
×T

to develop a library search

system for strongly typed functional languages in the ML family. Languages of the

ML family are equipped with the so-called implicit type polymorphism, a brand of

type polymorphism that essentially allows to give the user the safety of a strongly

typed world without the burden of mandatory type declarations: the user writes

type-free programs and the compiler infers a type for it by filling in all the type

information.

The inference problem is easily decidable in the case of monomorphic languages,

like the simply typed λ-calculus, (see (Hin69), (Mil78)), while we do not know how

to deal with it for calculi with the full power of second order quantification over

types, like second order typed λ-calculus.

It is a common idea (but we will shortly see how it is not a very correct one)

that ML-style languages lie somewhere in between these two extremes, as any user-

defined function is given a type that can be more than monomorphic, but not fully

second order polymorphic. These types are either monomorphic types (known as

monotypes and denoted by τ below)† or the so-called type-schemes (denoted by σ

below):

† The word monotype has been used in the literature with different meanings: it is to be
noted that here a monotype is just a quantifier free type, that can contain type variables.

Deciding Type Isomorphisms in a type-assignment framework 7

Definition 4.1

ML types are the closed types generated by the following grammar (At is a collection

of atomic types)

type-schemes σ ::= τ | ∀X.σ (if X is free in σ)

monotypes τ ::= At |X | τ → τ | τ × τ

Type-schemes are essentially types where every type variable is bound by a quan-

tifier that can appear only as an outermost constructor of the type (and not inside

→ , × or other type contructors).

If we follow the common intuition that ML is somewhere in between simple typed

λ-calculus and second order λ-calculus, it is easy to conjecture that the valid iso-

morphisms of type-schemes are axiomatized by a theory ThML that includes Th1
×T

and is included in Th2
×T

.

Then, noticing that Axioms 10, 11 and 12 involve second order types that are

not type-schemes, it seems reasonable that ThML be just Th2
×T

less these three

axioms. So a simple approach to deciding equality of type-schemes σ1 = ∀
−→
X .τ1 and

σ2 = ∀
−→
Y .τ2 , would be to check if there is a way of substituting in some order the

variables
−→
X with

−→
Y in τ1 such that for the resulting type τ ′1 the theory Th1

×T
proves

τ ′1 = τ2. But in principle the restriction of Th2
×T

to ML types is not necessarily

axiomatised by the restriction to ML types of the axiomatic presentation Th2
×T

we have chosen for this equality relation. Even worse, the techniques used to show

completeness for Th2
×T

on second order types rely in an essential way on the fact

that the language considered there is explicitly typed, while ML-style languages are

type assignment systems equipped with a let construct whose typing rules have no

immediate counterpart in the explicitly typed calculi. So we could expect to find

some isomorphism that is not axiomatised even in the full theory Th2
×T

.

Rittri’s system (see (Rit91)), based on the well known soundness of Th1
×T

for

monomorphic languages, implements the procedure sketched above, and is sound

for isomorphisms in ML, but to handle the completeness problem in ML we have

to face the problem of valid type-schemes isomorphisms in its own right. It turns

out that we are in for some surprises, here, but first of all, let’s set up the right

formalism for type-assignment systems.

4.1 A formal setting for valid isomorphisms in ML-like languages

Let’s first briefly recall the basic typing rules for ML-like languages. We use pretty

standard notation for λ- terms, but maybe for FTV (A), that denotes the free type

variables occurring in A, and the expressions p1M and p2M that stand for the first

and second projection of a term M :

Definition 4.2 (Type assignment)

We write Γ⊢M : A if M can be assigned type A in the type assignment system

given in Table 3.

Remark 4.3

8 Roberto Di Cosmo

(UNIT) Γ⊢() : T

(V AR) Γ⊢x : σ[τi/Xi] if x : σ = ∀X1 . . .Xn.τ is in Γ and the τi are monotypes

(ABS)
Γ, x : τ1⊢M : τ2

Γ⊢λx.M : τ1 → τ2

(APP)
Γ⊢M : τ1 → τ2 Γ⊢N : τ1

Γ⊢(MN) : τ2

(PAIR)
Γ⊢M : τ1 Γ⊢N : τ2
Γ⊢ < M,N >: τ1 × τ2

(PROJ)
Γ⊢M : τ1 × τ2
Γ⊢piM : τi

i = 1, 2

(LET)
Γ⊢N : τ1 Γ, x : ∀X1 . . .Xn.τ1⊢M : τ2

Γ⊢(λx.M)N : τ2
({X1 . . .Xn} is FTV (τ1)− FTV (Γ))

Table 3. Type inference rules for an ML-like functional language.

Notice that the (LET) rule gets priority on the ordinary (APP) rule, that is to

say, if we have to type an application (MN) we use rule (LET) if M is a lambda

abstraction, and rule (APP) otherwise.

In the traditional presentations, one avoids the overlapping of rules (LET) and

(APP) by introducing the notation let x = e’ in e for (λx.e)e’, but it is important

to remark that this new notation is just syntactic sugar.

In what follows we will use indifferently let x = e’ in e or (λx.e)e’, at our best

convenience.

In the type-assignment framework, the Definition 2.1 used to introduce the notion

of valid isomorphism is no longer appropriate: the programs we work with are

assigned not only one, but several types, and we must take this fact into account.

Indeed, the whole point of Definition 2.1 was to relate two types A and B when they

admit bijective conversion functions; now, in explicitly typed systems, a function

that can take an A into a B has exactly the type A → B, but in a type assignment

framework it is no longer so for two reasons:

• A or B can be now quantified types, and in our ML-like systems we do not

have types like A → B in that case

• due to the let typing rule, given a function M with most general type A → B,

and an object O with most general type A, the application (MO) can have,

in principle, most general type strictly more general than B.

We proceed then as follows.

Definition 4.4

We say that A and B are isomorphic w.r.t. the context Γ (Γ⊢A ∼= B) via M,M−1

iff using the typing rules given in Definition 4.2 the following holds

• ∀P,Γ⊢P : A ⇒ Γ⊢(MP) : B and Γ⊢M−1(MP) = P : A

Deciding Type Isomorphisms in a type-assignment framework 9

• ∀Q,Γ⊢Q : B ⇒ Γ⊢(M−1Q) : A and Γ⊢M(M−1Q) = Q : B

Notice that in the empty context all empty types‡ are vacuously isomorphic: for

such types the premiss of the implication in the definition of isomorphism in the

empty context cannot be satisfied, so the implication holds vacuously. This is one

reason why ∅⊢A ∼= B is not a good choice for the notion of isomorphism we need.

Furthermore, we look for a notion of a uniform isomorphism, that does not depend

on the context, in the sense that it works in all contexts, not just in the empty one.

So we are led to the following

Definition 4.5 (ML isomorphism)

We say that A and B are isomorphic (A ∼= B) via M,M−1 iff ∀Γ,Γ⊢A ∼= B via

M,M−1.

It is an easy consequence of this definition the fact that M and M−1 are invertible,

that is to say, M◦M−1 = λx.x and vice-versa, so it is not necessary to require this

property explicitly.

Remark 4.6 (Closed terms)

With this definition, the only terms M,M−1 that can prove an isomorphism A ∼= B

are closed: this comes from the fact that such terms must work in any context, so

cannot have any free variables.

Now we can easily verify that Axiom 12 is in a sense still valid.

Remark 4.7

Let A be ∀X.σ, where σ is isomorphic to T via M,M−1. Then it is easy to check

that M,M−1 provide an ML-isomorphism between ∀X.σ and T also.

So we must already add to our tentative definition of the ThML theory the following

new Axiom unit, that is essentially Axiom 12 of Th2
×T

restricted to ML types. This

fact supports our original idea that ThML is more than just Th2
×T

less Axioms 10,

11 and 12.

(unit) ∀X.A = T if A is isomorphic to T

What comes in more as a surprise is that we also get a new isomorphism, not

derivable in Th2
×T

, that originates from the peculiar typing rule used to obtain the

traditional let polymorphism in ML-style languages.

Proposition 4.8

In ML-like languages, the following isomorphism hold

(split) ∀X.A×B ∼= ∀X.∀Y.A× (B[Y/X])

Proof

It suffices to provide M and M−1 s.t. ∀Γ,Γ⊢A ∼= B via M,M−1.

Let M be λx.〈p1x, p2x〉 and M−1 be λx.x, and let’s check the conditions of Def-

inition 4.4. Since these are closed terms, the context Γ poses no problem and it

‡ A type A is called empty if there is no closed term M of type A, i.e. no closed M s.t.
∅⊢M : A.

10 Roberto Di Cosmo

is easy to check that, given N s.t. Γ⊢N : ∀X.A×B, we can derive, using the let

polymorphic type inference rule, the following typing

Γ⊢(λx.〈p1x, p2x〉)N : ∀X.∀Y.A× (B[Y/X])

Furthermore, (λx.x)((λx.〈p1x, p2x〉)N) can clearly be assigned type ∀X.A×B.

For the other direction of the isomorphism, observe that, given N s.t. Γ⊢N :

∀X.∀Y.A× (B[Y/X]), then, by instantiating both X and Y to X, we can derive

Γ⊢(λx.x)N : ∀X.A×B

Now we can give back to the term (λ/x.〈p1x, p2x〉)((λx.x)N) the original type

∀X.∀Y.A× (B[Y/X]) using again the let polymorphic type inference rule.

Notice that there is an implicit side condition on the variable Y: it must not be

free in B. Indeed, whenever applied to a type scheme, split can rename at will

the bound type variables occurring in a product type, but it must not identify two

different type variables in B.

Well, if you really don’t believe it, just run your favorite typed functional language

and try the following example (syntax of CAML):

Example 4.9
#let id x =x;;

Value id is <fun> : ’a -> ’a

#let double x = (x,x);;

Value double is <fun> : ’a -> ’a * ’a

#let join = double id;;

Value join is (<fun>,<fun>) : (’a -> ’a) * (’a -> ’a)

#(fun (f,g) -> (f,g)) join;;

(<fun>,<fun>) : (’a -> ’a) * (’b -> ’b)

Notice that the above example works in CAML, which gives the same type to an

expression (fun x -> e1) e2 as to the equivalent let x = e2 in e1, just like the

inference rules of table 4.2, while in SML, for example, you have to explicitly tell

the system about polymorphism by writing the last line as follows

Example 4.10
#let (f,g) = join in (f,g);;

(<fun>,<fun>) : (’a -> ’a) * (’b -> ’b)

Remark 4.11

The isomorphism split is not derivable in Th2
×T

.

Indeed, split allows to change the number of free type variables even in types that

are not isomorphic to the unit type T, while all the axioms in Th2
×T

preserve

that number for such types. This fact shows that type-assignment systems allow to

prove constructively equivalent some proofs that are not so in the explicitly typed

versions of the calculus, even at a higher order: actually, take the terms that are

Deciding Type Isomorphisms in a type-assignment framework 11

(1) λx.〈p
1
x,p

2
x〉 : A×B ∼= B ×A : λx.〈p

1
x,p

2
x〉

(2) λp.〈〈p
1
p,p

1
p

2
p〉,p

2
p

2
p〉 : A× (B × C) ∼= (A×B)× C : λp.〈p

1
p

1
p,〈p

2
p

1
p,p

2
p〉〉

(3) λf.λx.λy.(f〈x,y〉) : (A×B) → C ∼= A → (B → C) : λf.λp.(fp
1
p)p

2
p

(4) λf.〈λx.p
1
(fx),λx.p

2
(fx)〉 : A → (B × C) ∼= (A → B)× (A → C) : λp.λx.〈p

1
px,p

2
py〉

(5) λp.p
1
p : A×T ∼= A : λx.〈x,()〉

(6) λf.() : A → T ∼= T : λx.λy.()

(7) λf.(f()) : T → A ∼= A : λx.λy.x

(8) λx.x : ∀X.∀Y.A ∼= ∀Y.∀X.A : λx.x

(9) λx.x : ∀X.A ∼= ∀Y.A[Y/X] : λx.x

(split) λx.x : ∀X.A×B ∼= ∀X.∀Y.A× (B[Y/X]) : λx.〈p
1
x,p

2
x〉

(unit) f : ∀X.A ∼= T : g if f : A ∼= T : g

A, B, C arbitrary types, T a constant for the Unit type

(in Axiom 9 X is free for Y in A, Y 6∈ FTV(A)).

Table 4. The isomorphisms of types for ML-like languages, and their realizers§.

the natural candidates for proving (split) in λ2βηπ∗ (they are retyping functions,

in the terminology of (Mit88)):

M = λp : (∀X.A×B).λX.λY.〈p1(p[X]), p2(p[Y])〉

M ′ = λp : (∀X.∀Y.A×B[Y/X]).λX.〈p1(p[X][X]), p2(p[X][X])〉

They provide just a retraction, and not an isomorphism: M ′◦M is the identity on

∀X.A×B, but M◦M ′ reduces to

λz : (∀X.∀Y.A×B[y/x]).λX.λY.〈p1(z[X][X]), p2(z[Y][Y])〉

which is in normal form, and not the identity.

So the original idea that ML is just a limited version of explicitly typed second

order λ-calculus seems now to be a little less obvious: in (core) ML we cannot do

everything we can do in explicitly polymorphic calculi, as it is well known, but it

is also true that we can do in (core) ML something that cannot be done in the

explicitly typed version of second order λ-calculus. Of course, it is to be noticed

that if we take the type-assignment version of the second order λ-calculus, like the

one used by (Kri90), then split becomes valid too: the erasure of the normal form

of M◦M ′ above reduces to the identity with one step of Surjective Pairing. So it

seems that the lesson to be learned here is that we need to be careful when using

results from explicitly typed calculi in type-assignment frameworks and vice-versa.

5 Completeness and conservativity results

Are there any more unexpected isomorphisms coming out of the let construct?

What about the Axioms 10 and 11 of Th2
×T

we were forced to leave out? Do they

induce some other derived isomorphisms on ML types?

§ Recall that we write M : A ∼= B : N when we want to make the realizers of an
isomorphism explicit.

12 Roberto Di Cosmo

This is not the case, as we will see in a moment, and the Axioms we have found

sound up to now are also complete, so we can finally give a name to our theory of

ML isomorphisms.

Definition 5.1

ThML is the theory of equality defined by Th2
×T

less Axioms 10, 11 and 12 plus

unit and split.

We will present here two main results concerning ThML: one is completeness for ML

isomorphisms, while the other shows how on ML types ThML is actually strictly

more powerful than Th2
×T

.

Since the details of the proofs are rather technical, we postpone them to the Ap-

pendix, where the interested reader can find also the necessary technical definitions

and references to previous related work. We provide here just the statement of the

theorems, with a short sketch of the arguments of the proofs.

5.1 Completeness

The theory ThML can be shown complete by adapting to the type assignment

framework the techniques introduced in (BDCL90). We first define a split normal

form (see Definition 6.3) of types suggested by the Axioms of ThML, and we notice

that completeness for ML isomorphisms reduces to completeness for isomorphisms

of split normal forms . Then we provide a suitable notion of reduction on ML terms

(Definition A.11) that is compatible with type assignment (Theorem A.12) and al-

lows to study the invertible terms associated to these latter isomorphisms: we can

find a syntactic characterization of such terms (Proposition A.21). This character-

ization is suitable to show completeness of ThML by induction on (roughly) the

complexity of these invertible terms.

Theorem 5.2

The theory ThML is complete for ML isomorphisms.

Proof

See Theorem A.23 in Appendix.

5.2 Relating Th2
×T

and ThML

As for the relation between Th2
×T

and ThML, a careful analysis of the invertible

terms in λ2βηπ∗ allows to show that split and unit give us back the full power of

Th2
×T

on ML types.

Proposition 5.3

Let A and B be ML types. If Th2
×T

proves A = B, then ThML proves A = B too.

Proof

See Theorem A.27 in Appendix.

To use standard terminology, one could say that on ML types the theory Th2
×T

is

conservative over ThML. Usually, though, when a conservativity result is stated,

Deciding Type Isomorphisms in a type-assignment framework 13

it refers to some theory Th′ that extends a theory Th but does not prove more

equations on the language of Th. This is not the case here: since split is not

derivable in Th2
×T

(Remark 4.11), the theory ThML is strictly more powerful then

Th2
×T

on ML types. The previous proposition actually states that, on the class of

ML types, ThML is an extension of Th2
×T

, and not the reverse, as one could have

expected.

6 Deciding ML isomorphism

The proof of completeness allows to derive an easy decision algorithm for valid

isomorphisms of ML types based on a variant of the narrowing technique. Every

type A is first rewritten to a (unique) type normal form n.f.(A) via a strongly

normalizing confluent type rewriting system derived from the axioms of ThML (it

is a sub-system of the one used in (DC91), see Proposition 3.5 there).

Definition 6.1

(Type rewriting R) Let ❀ be the transitive and compatible type-reduction relation

generated by:

A× (B × C) ❀ (A×B)× C T×A ❀ A

(A×B) → C ❀ A → (B → C) A → T ❀ T

A → (B × C) ❀ (A → B)× (A → C) T → A ❀ A

A×T ❀ A ∀X.T ❀ T.

Remark 6.2

A type normal form n.f.(A) of a type A is just a type ∀
−→
X .(A1 × . . .×An), where

no product or unit type appear in the Ai. We call the Ai the coordinates of A.

Then the presence of split suggests a further elaboration up to another normal

form (no longer unique).

Definition 6.3

The split-normal-form s.n.f.(A) of a type A is obtained from n.f.(A) by applying as

far as possible split to rename generic type variables.

Remark 6.4

As split-normal-form of a type A we can take a type of the form

∀
−→
X1 . . .

−→
Xn.(A1 × . . . ×An),

where no product ot unit type appears in the Ai, no two Ai share generic type

variables, and the
−→
Xi are exactly the free type variables of the Ai, noted FTV (Ai).

In Appendix A, we will show that ThML proves A = B iff s.n.f.(A) is proven equal to

s.n.f.(B) via associativity and commutativity of product, bound variable renaming

(Axiom 9), quantifier swap (Axiom 8) and the derived Axiom swap.

This provides us with a very simple algorithm to decide equality in ThML.

Theorem 6.5 (Decidability of ThML)

The theory of ML isomorphisms ThML is decidable.

14 Roberto Di Cosmo

Proof

Given types A and B, first reduce them to their split normal forms s.n.f.(A) and

s.n.f.(B).

Now, associativity, commutativity of product, swap and quantifier swap do not

change the length nor the alphabet of type expressions, so that equality up these Ax-

ioms is trivially decidable. Furthermore, associativity and commutativity of product

and swap can be applied independently of variable renaming or quantifier swap,

swap can be applied independently of associativity and commutativity of product

and variable renaming and quantifier swap can be interchanged in a proof, so that

any proof of equality

s.n.f.(A) = A1 = . . . = An = s.n.f.(B)

of the two split normal forms can be transformed, by reordering the axioms used,

in a proof

s.n.f.(A) = A′

1 = . . . = A′

n = s.n.f.(B)

that uses associativity and commutativity of product, swap and quantifier swap

only after the other axioms, and we can restrict without loss of generality to proofs

having this shape: a prefix where only variable renaming is used to prove s.n.f.(A)

equal to some type expression A’, and then a proof of A’ = s.n.f.(B) where we

have in this order quantifier swap, associativity and commutativity of product and

swap.

Unfortunately, variable renaming can change the alphabet of a type expression, so

it is potentially dangerous as it generates an infinite class of equal formulae, so the

prefix of the equality proofs can be of arbitrary length endangering decidability, but

it is actually harmless in this context: we are interested only in those proof prefixes

that rename s.n.f.(A) to a A’ that contain exactly the type variables of s.n.f.(B),

as the rest of the proof cant change name of variables, and there is only a finite

number of such renamings.

These observations give us the decision procedure: for every possible variable re-

naming σ (just n! where n is the number of type variables in s.n.f.(A)), for every

possible permutation of the coordinates (there are n! if the coordinates are n) check

for equality componentwise up to swap (this requires another factorial step). Suc-

ceed if you can find a variable renaming and a permutation of coordinates that

provide componentwise equality. Fail otherwise.

But what about efficient decidability? The simple algorithm used to prove decid-

ability seems to imply a high complexity. We will describe here an improved decision

procedure as it is implemented in the CAML system.

6.1 An Improved Decision Procedure

A careful analysis of the steps performed in the proof of decidability of ThML can

help to develop a much more efficient algorithm, that can be used in a practical

implementation.

Our algorithm, involving the simple steps described in the rest of this section, has

been successfully implemented and is now part of the CAML system (the french

Deciding Type Isomorphisms in a type-assignment framework 15

implementation of Milner’s ML (CH88; WAL+90)). The interested reader will find

a fully documented implementation, together with some historical remarks, on the

anonymous ftp server nuri.inria.fr¶, but we could not resist presenting here

the real code at least for the first step of the algorithm: indeed, in the CAML

system the availability of a user level grammar to describe expressions and types of

the language itself makes the implementation task very easy and the resulting code

very elegant. A type can be described with the usual concrete syntax: it just suffices

to declare it as a type expression (which is recognized by the grammar gtype) to

the system by quoting it with <:gtype< >>.

Rewriting Types

The first step of our algorithm, following the line of our proof, will be to actually

rewrite types to a split-normal form. In CAML, we can declare that the standard

grammar will be gtype (the grammar for types) so our CAML code for the type

rewriting function can be defined by cases almost exactly as in Definition 6.1.

#set default grammar gtype:gtype;;

let rec rew_type =

function

| <<^x * ^y>> -> rew_type_irr <<^(rew_type x) * ^(rew_type y)>>

| <<^x -> ^y>> -> rew_type_irr <<^(rew_type x) -> ^(rew_type y)>>

| x -> x

and rew_type_irr =

function

<<^x -> unit>> -> <<unit>>

| <<unit -> ^x>> -> x

| <<^x * unit>> -> x

| <<unit * ^x>> -> x

| <<(^x * ^y) -> ^z>> ->

rew_type_irr <<^x -> ^(rew_type_irr <<^y -> ^z>>)>>

| <<^x -> (^y * ^z)>> ->

<<^(rew_type_irr <<^x -> ^y>>) * ^(rew_type_irr <<^x -> ^z>>)>>

| x -> x ;;

type Type_Coords == int * gtype list;;

let TypeRewrite t = (flatten (rew_type t))

where rec flatten = function

<<^x * ^y>> -> let (lgt1,l1) = flatten x and (lgt2,l2) = flatten y

in (lgt1+lgt2,append l1 l2)

| x -> (1,[x]);;

Then we procede to rename the variables in the coordinates of a type: finally,

rewriting a type to split normal form is accomplished by first rewriting it in the

first order system, then renaming the variables as necessary.

let SplitTR typ = split_vars (TypeRewrite typ);;

¶ The search package has been added in directory user lib/FIND IN LIB of the CAML
distribution, that is in /lang/caml/V3.1 on the server.

16 Roberto Di Cosmo

The function split vars splits type variables in a type (represented as a coordinate

list) by renaming them consecutively (further details are given and documented in

the full implementation).

Next, we start by having another, different look at the problem of deciding equality

in ThML, to discover that it can usefully be considered a special case of equational

unification.

6.2 Equality as Unification with Variable Renamings

Since order and name of quantified type variables is irrelevant (Axioms 8 and 9),

we can consider the problem of deciding

∀
−→
X .(A1 × . . .×An) = ∀

−→
Y .(B1 × . . .×Bn)

in the last subtheory consisting of Axioms 1, 2, 8, 9 and swap as a special case of

unification of

(A1 × . . .×An) = (B1 × . . .×Bn),

where we are not allowed to substitute arbitrary types for the type variables
−→
X

and
−→
Y , but just other type variables, with the constraint of not identifying vari-

ables that were originally different. Essentially, we restrict to unifiers that are just

bound variable renamings. We will also call them in the following consistent variable

renamings.

Again, two split normal forms are equal iff for some permutation σ : n → n their

coordinates Ai and Bσ(i) can be unified modulo swap with a variable renaming.

Unification up to swap (left-commutativity of →) is decidable (see (Kir85)), so

we can perform the necessary unification modulo swap for all permutations, and

then check if there exists a permutation where unification succeeds with variable

renamings.

6.2.1 Divide and Conquer

Actually, since all the variables are distinct in the different components, the result

of unification on Ai and Bσ(i) for a given permutation σ is completely independent

of the outcome of unification on the other coordinates: the variable renaming we

are looking for is actually made up of n independent variable renamings (one for

each coordinate), so we can use a standard quadratic test to check only the n(n+1)
2

relevant permutations instead of trying all the n! possible ones.

This is a significant cut-down on the number of coordinates checking: even without

adopting dynamic programming techniques, we can see that the complexity goes

steeply down from a monstruous m!n!S that corresponds to trying equality modulo

swap (of cost S) for all permutations of m variables and all permutation of n

coordinates to an average (still fearful, but much lower) n2(m
n
)!S that corresponds

to testing equality up to swap for each relevant permutation of coordinates and

each permutation of the (average) m
n

type variables in a coordinate.

But there is still room for improvements.

Deciding Type Isomorphisms in a type-assignment framework 17

6.3 Dynamic Programming

We can now try to attack also the complexity of checking variable-renamings. In-

stead of the naive approach consisting in, first, generation of all possible variable

renaming, and then checking equality up to swap, we can use our knowledge that

the needed variable renaming will have to satisfy equality up to swap to signifi-

cantly cut down the number of renamings to generate and test.

Actually, any variable occurring rightmost in A cannot be moved by left commu-

tativity, and must be renamed to a corresponding variable in B occurring in the

same position. Any variable in rightmost position provides a part of the renaming

that we look for, and rules out all the (n − 1)! renamings that do not agree. For

example, when trying to show equal

A → B → X = A′ → B′ → Y ,

we know that X must be associated with Y, so we need not try renamings that dont

do this.

In unification up to left commutativity one takes this fact into account by using

suitable flat normal forms (Kir85), where all permutable subformulas are flattened

into a list, and the only rightmost non permutable subformula is singled out.

The unification procedure scans this data structure using all the variables in un-

movable positions to build partial renamings, and stops as soon as an inconsistent

variable renaming is reached (for example, as soon as the same variable is forced to

be identified to more than one other variable). Anyway, when such inconsistencies

are not encountered, and when we find variables whose binding is not determined,

it is necessary to examine all possible permutations of the flat premisses list, and

the associated renamings.

Our algorithm tries to adopt as much as possible dynamic programming techniques:

we keep the current tentative variable renaming, and we fail as soon as it is made

inconsistent by variable bindings imposed by the unification procedure. A renaming

becomes inconsistent as soon as a same variable gets bound to more than one other

variable, and one can check for this event while updating the variable renaming.

The basic steps of the unification procedure are as follows:

• Check if their flat lists have the same length and fail if it is not the case:

swap does not change the length of flat lists.
• Unify the heads, that cannot be moved, and build a partial renaming.
• Unify the flat lists of premisses starting from the partial renaming built

during the unification of the heads.

In case of failure, we restore the partial variable renaming to the state before the

call to unification, in order to allow the backtracking that is necessary to perform

unification of the premisses lists.

Once we are able to perform unification up to left commutativity, we are almost

done: we just need a standard quadratic test to check equality of two lists of coor-

dinates representing a type, and then we can put all together to get a function that

tests for equality modulo ML isomorphisms.

Having this function, we can build a filter to be applied to the CAML system table

in search for identifiers satisfying a type query.

18 Roberto Di Cosmo

As remarked in (Rit92), the rule A → T = T , equates too much functions: in ML

a function with only does side effects usually returns type T , so that the premiss

A is relevant to spot the behaviour of the function. For this reason, it is advisable

to also provide a routine that does not implement the axiom A → T = T (this is

done in our CAML implementation).

6.4 Experimental results

An experimental implementation of the improved algorithm has been performed in

CAML (CH88) for the functional library of more than 1000 user identifiers that

is available in the system. No preprocessing of the library has been performed, so

that the reduction to normal form is repeated for every library identifier on every

call to the search procedure, even if this work could be done once for all in a future

stable version of the library search module.

Here are same examples of usage with their performance. The machine used to

perform tests is a DECstation 5000 running CAML V3.1.

#timers true;;

() : unit

#search_iso "(’a ->’b ->’b) * ’b * ’a list -> ’b";;

it_list : (’b -> ’a -> ’b) -> ’b -> ’a list -> ’b

list_it : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

() : unit

Evaluation has needed: Runtime: 3.14s GC: 0.96s

This first execution time includes the loading time for the search module.

#search_iso "(’a -> ’b) -> ’a list -> ’b list";;

map : (’a -> ’b) -> ’a list -> ’b list

rev_map : (’a -> ’b) -> ’a list -> ’b list

map_succeed : (’a -> ’b) -> ’a list -> ’b list

() : unit

Evaluation has needed: Runtime: 1.06s GC: 0.91s

#search_iso "int * ’a list -> ’a";;

nth : ’a list -> int -> ’a

item : ’a list -> int -> ’a

() : unit

Evaluation has needed: Runtime: 1.05s GC: 0.88s

#search_iso "string*int -> string";;

first_n_string : int -> string -> string

last_n_string : int -> string -> string

following_word : string -> int -> string

() : unit

Evaluation has needed: Runtime: 1.05s GC: 0.88s

#search_iso "(’a -> ’b * ’c -> ’a) -> ’a -> ’b list -> ’c list -> ’a";;

it_pair_list : (’a -> ’b * ’c -> ’a) -> ’a -> ’b list * ’c list -> ’a

list_it2 : (’b * ’c -> ’a -> ’a) -> ’b list -> ’c list -> ’a -> ’a

Deciding Type Isomorphisms in a type-assignment framework 19

it_list2 : (’a -> ’b * ’c -> ’a) -> ’a -> ’b list -> ’c list -> ’a

() : unit

Evaluation has needed: Runtime: 1.01s GC: 0.88s

#search_iso "(’a -> ’a) -> ’a list -> ’a list";;

map_share : (’a -> ’a) -> ’a list -> ’a list

share_map_share : (’a -> ’a) -> ’a list -> ’a list

() : unit

Evaluation has needed: Runtime: 1.01s GC: 0.88s

#search_iso "(’a * ’b -> ’c) -> ’a -> ’b -> ’c";;

C : (’a -> ’b -> ’c) -> ’b -> ’a -> ’c

uncurry : (’a -> ’b -> ’c) -> ’a * ’b -> ’c

curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c

() : unit

Evaluation has needed: Runtime: 1.00s GC: 0.88s

7 Adding isomorphisms to the ML type checker

Up to now, we have been interested in isomorphisms of types just from the point

of view of library searches using types as search keys, that is to say, we used such

isomorphisms “after the fact”: such a point of view is not the only interesting

one, especially in the case of type-inference languages. One could be tempted to

modify the very basic mechanism of the language, the type-inference algorithm,

to incorporate these isomorphisms of types, in such a way that functions with

isomorphic types can be simply interchanged, with the improved algorithm taking

care of inserting the correct type conversion terms where and when necessary.

Now, it is doubtful if the isomorphisms in Th1
×T

ought to be made part of the

type-inference algorithm of an ML-style language essentially for two reasons:

• Correctness: the witnesses of the isomorphisms in Th1
×T

do change the orig-

inal program, so that the intended meaning of the program is not necessarily

preserved when the program type-checks up to isomorphisms, but not in the

original system. An easy example is the interaction of the commutativity of

product on equal types with functions that are not commutative, like sub-

traction on numbers. There are ways to recover this particular case: one can

either rule out commutativity completely, as done in (Nip90) (but then type

errors deriving from erroneous argument order are not avoided), or one can

try to control very careful the use of commutativity, forbidding it only on

isomorphic types. Anyway, the whole matter is not clear enough to suggest

such a modification right now.

• Complexity: adding all these isomorphisms at the type-inference level would

probably require unification up to Th1
×T

, which is known to be undecidable

(see (NPS92) for recent results), and even equality up to ThML is at least

as hard as Graph Isomorphism (like in the case for Th2
×T

, see (Bas90) for

details), so such a modification of the ML type-inference algorithm seems to

be not feasible.

20 Roberto Di Cosmo

But if we look closer at split, we notice that there is something special in it w.r.t.

the other isomorphisms: the terms that witness this isomorphism are essentially the

identity. The invertible terms associated to all the other isomorphisms perform a

coding that is simple, but does something to the term, while this is not so in the

case of λx.x and λx. < p1x, p2x >.

Indeed, the only interesting effect of the term λx. < p1x, p2x > is to allow the use

of the let polymorphism necessary to change the type of the original term. This fact

suggests that (split) has more to do with the type-inference algorithm than with the

notion of coding we found at the basis of the equivalences needed in library searches

performed on the basis of the type seen as a search key. So our concern about

correctness of the transformation of program induced by the isomorphisms is no

longer there if we consider (split) alone: there is no transformation of programs, so

the intended meaning is surely preserved. We simply type check more programs, and

we will see in a moment that the new program we allow to type-check should already

type-check. As for complexity, we will propose below a straightforward modification

of the type-inference rules that includes (split) at a very reasonable cost.

It is time for a working example: let’s see the same program in ML that type checks

only if written “the right way”, while with (split) it would type-check in any case.

Since it seemingly cracks the ML type checker, we will call the following program

crack.

Example 7.1

CAML (mips) (V 2-6.1) by INRIA Fri Nov 24 1989

#let join = let pair x = (x,x)

in let id x = x

in pair id;;

Value join = (<fun>,<fun>) : ((’a->’a)*(’a->’a))

#let split = let f x = x in (f,f);;

Value split = (<fun>,<fun>) : ((’a->’a)*(’b->’b))

#let crack f x y = ((fst f) x, (snd f) y);;

Value crack = <fun> : ((’a->’b)*(’c->’d)->’a->’c->’b*’d)

(* crack on split and different types *)

#crack split 3 true;;

(3,true) : (num * bool)

(* crack on join and different types *)

#crack join 3 true;;

line 1: ill-typed phrase, the constant true of type

bool cannot be used with type instance num in

crack join 3 true

1 error in typechecking

Typecheck Failed

Deciding Type Isomorphisms in a type-assignment framework 21

Both functions, join and split, define a pair of identity functions, but only the

split version survives the test of the context crack 3 true!

We can try to understand better what is going on by getting rid of the let construct

via the usual translation let x = e’ in e ⇒ (λx.e) e’.

• join translates to

(λpair.(λf.pairf)(λx.x))(λx. < x, x >)

• split translates to (λf. < f, f >)(λx.x)

Now it is easy to see what is going on: join and split translate to two terms that

are not syntactically equal, but only up to the usual β conversion. Actually, join

β-reduces to split.

Now, let’s recall the key idea in let polymorphism: the polymorphic rule allows

to give a type to an application if this application is typable in the monomorphic

system after one step of evaluation. That is to say, to type (λx.M)N, we change the

type-inference algorithm, that would try to give a type to (λx.M) and N separately,

and only if it succeeds it tries to type their application. Instead, we look forward

just one step of reduction, that is to say, we try to give a type to M[N/x]: if we

succeed, that will be the type the original expression (λx.M)N will be given.

Well, crack split 3 true is two steps from crack join 3 true, so the original

form of polymorphic type inference cannot get it! Adding (split) corresponds in a

sense to moving forward more than one step in the type-inference process.

Remark 7.2

Of course there are lots of terms that are typable in the monomorphic discipline only

after some steps of reductions, but the examples that are usually given typically

involve a non typable subterm that is erased during these steps of reduction. For

example, (λx.λy.y)Ω, where Ω is a diverging term, is of course not typable, while

its reduct λy.y trivially has a type.

It is important to notice that this is not the case of split and join, as no interesting

subterm is erased during the two steps of reductions that separate them.

So adding (split) to the type-checker is not just one of the various possible exten-

sions of ML that can be suggested, but in a sense is a necessary completion of a

language that allows, as it is now, one way of defining a pair of identity functions,

while forbidding another that seems as perfectly correct.

7.1 A modified type inference algorithm featuring just (split)

polymorphism.

We can easily modify the polymorphic type inference algorithm to accommodate

(split) in the type-inference phase: it is just a matter of taking into account the

renaming of type variables allowed by this axiom in the polymorphic type inference

rule. So it is enough to add to the original ML type-inference algorithm the rule

split-let of Table 5, with priority on the original let one.

This type checking algorithm assigns to join the same type as split, thus pre-

venting the type error we saw in Example 7.1 above.

22 Roberto Di Cosmo

The original let inference rule

(let)
Γ⊢N : A Γ, x : Gen(A)⊢M : C

Γ⊢(λx.M)N : C
Gen(A) = ∀X1 . . .Xn.A where
{X1 . . .Xn} is FTV (A)−FTV (Γ)

The let inference rule modified as in (DC92)

(split− let)
Γ⊢N : A Γ, x : SplitGen(A)⊢M : C

Γ⊢(λx.M)N : C

• SplitGen(A×B) = ∀X1 . . .XnY1 . . .Ym.A× (B[Y1 . . .Ym/Xi1 . . .Xim]),
where Xi1 . . .Xim are the type variables shared by A and B,
and Y1 . . .Ym are fresh type variables.

• SplitGen(A) = Gen(A) if A is not a product type.

Table 5. Modifying the let inference rule: a first attempt.

Adapting an existing type-checker to accommodate this further rule is rather easy:

the necessity of checking for shared type variables in product types requires some

care in the actual implementation, but there is no need for new, complex unification

procedures.

7.2 What is special in (split)

Why is it possible to add seamlessly (split) to the type checker, while other iso-

morphisms pose problems? Now, (split) essentially allows to rename the generic

variables of any type schema that has a product as the outermost type constructor,

in such a way that the two factors of the product do not share any generic type

variable, but there are two very crucial properties enjoyed by (split) that make it

suitable for use in type-inference:

• it is Identity Based: as pointed out before, its realizer is the identity . This

means that to convert a given program P from one type to another in the

equivalence class of types modulo split we need only apply to it a program

equivalent to the identity, that does not alter P in any way‖.

• it is an Instantiation Isomorphism: the left hand side of split is a generic

instance, in the usual sense, of its right hand side, but not viceversa. This

do provides a best representative in the equivalence classes of the types iso-

morphic via split: the most generic type, that is to say the one obtained by

applying split as far as possible from left to right.

These facts suggest to extend the original ML type-inference algorithm in such a

way that the principal type schema inferred for a term is also the most generic one

w.r.t. (split), as we have done in the previous section. Anyway, while this extension

is obviously sound (it is easy to verify that we preserve all the good properties of the

‖ As is not the case of curry and uncurry, that do modify the functional behaviour of
programs.

Deciding Type Isomorphisms in a type-assignment framework 23

original inference algorithm in (Dam85; Mil78)), it is not so sure that it is the only

possible one. Actually, the two properties of split that make it a good candidate for

extension of the type-checker can be assumed as a criterion. We will use it to select,

among the known isomorphisms, which ones are suitable for being incorporated in

the type-inference mechanism and which ones are best left to be used in library

searches only.

Criterion 7.3 (inference-isomorphisms)

Any isomorphism of types that is identity based (i.e. its realizers are the identity)

and that is an instanciation isomorphism (i.e. one side of the isomorphism is a

(generic) instance of the other side) can be incorporated in the ML type-inference

algorithm.

For this reason, we will call such isomorphisms inference-isomorphisms.

We try now to support this “criterion” and apply it to the isomorphisms known to

hold in the case of ML. This will lead us to the discovery of some more inference-

isomorphisms than split, and we will describe in the last section how to modify

the existing type-inference algorithm to accomodate the new isomorphisms, both

in the pure calculus and in presence of imperative features like reference types and

polymorphic exceptions.

We think that any inference-isomorphism of types M : A ∼= B : N should be

incorporated into the type-inference algorithm for ML-like languages and, in our

opinion, the following facts strongly support this view.

Correctness and Coherence. If M : A ∼= B : N , then any program P of type A

can be transformed in a program (MP) with type B. Since M is a program equivalent

to the identity (as our isomorphism is identity-based), (MP) does exactly what P

did, and the program transformation is trivially correct: inference-isomorphism do

not harm. But B is a type more general than A (since our isomorphism is an

instantiation): inference-isomorphisms improve the system . Here is an example of

such phenomenon, using split.
Consider the following way of defining a pair of identity functions (syntax of
CAML)∗∗.

#let pair x = (x,x);;

Value pair is <fun> : ’a -> ’a * ’a

#let id x = x;;

Value id is <fun> : ’a -> ’a

#let idpair = pair id;;

Value idpair is (<fun>,<fun>) : (’a -> ’a) * (’a -> ’a)

This is not the best type one could expect: in fact, applying split we can get a
better one:

∗∗ Again, remember that the last line in this example must be written in SML as follows
to get the right type:
#let f = idpair in (fst f, snd f);;
(<fun>,<fun>) : (’a -> ’a) * (’b -> ’b)

24 Roberto Di Cosmo

#(fun f -> (fst f, snd f)) idpair;;

(<fun>,<fun>) : (’a -> ’a) * (’b -> ’b)

Principal Type Schema. If one side of the isomorphism is an instance of the

other, then the principal type schema (pts) property of ML-style languages is pre-

served: we just get a “more general” pts (as in the previous example).

7.3 Choosing the Right Isomorphisms

In Table 4 we have an axiomatization of the theory of ML-style isomorphism, to-

gether with the realizers associated with each axiom. We can start looking for possi-

ble combinations of the axioms that give raise to isomorphisms complying with our

criterion. We first notice that Axioms 8 and 9 are not interesting to us: even if they

are realized by the identity, neither side is more general than the other. Actually

they just tell us that the order and name of generic variables in type-schemas are

inessential, fact that we already know. Then, it is easy to see that the following

combinations work.

• Axiom 2 (associativity of ×), 8 and split allow to extend split from pairs

to n-tuples:

∀X.A1 × . . . ×An = ∀XX2 . . .Xn.A1 ×A′

2 × . . . ×A′

n where A′

i = Ai[Xi/X]

• Axiom 4 (distributivity of →), 8 and split allow to extend split to higher

order in a controlled way: if X 6∈ FTV (Ai) we can state that

∀X.A1 → . . . → An → (B × C) = ∀XY .A1 → . . . → An → (B × (C[Y/X]))

Now these new inference-isomorphisms can be implemented in the ML type-inference

algorithm by smarter and smarter generalizations procedures: the first ones require

to split all the shared variables in all components of a tuple type, and not just the

two components of a product; the second ones require to split the varibles of tuples

also on the right of an arrow type constructor, and not only when the product is

the toplevel type constructor (as in split). Furthermore, these new isomorphisms

can be combined again with themselves allowing more and more splitting of shared

generic type variables, and the final picture we get is the following:

Proposition 7.4

Given an ML-type A, the most general type B isomorphic to it via an inference-

isomorphism derived by Axioms 2, 4 and split can be computed inductively as

SplitGenIso(A, ∅), with SplitGenIso(A, V) defined as follows.

• SplitGenIso(A×B, V) = SplitGenIso(A, V)× SplitGenIso(B′, V)

where B’ is B with FTV(B) - V replaced by fresh type variables

• SplitGenIso(A → B, V) = A → SplitGenIso(B, V ∪ FTV (A))

• SplitGenIso(C, V) = C otherwise

Hence, we propose to extend the ML type-inference mechanism by adding on top of

the ordinary generalization mechanism the greater generality provided via inference-

isomorphisms by SplitGenIso, as follows.

Deciding Type Isomorphisms in a type-assignment framework 25

(split− gen− let)
Γ⊢N : A Γ, x : SplitGenIso(Gen(A), ∅)⊢M : C

Γ⊢(λx.M)N : C

This modified rule for typing the let construct is the one that has been added

to Caml-Light (Ler90; Mau91). It clearly subsumes the original one, so that all

programs accepted by the original ML algorithm can still be typed. But programs

like pair id above are given more general types and it is very easy to find programs

that type-check only in the new system.

7.4 Right Isomorphisms in Impure context

In the existing implementations of ML, it is necessary to take into account the

impure features that are usually supported: polymorphic reference types and ex-

ceptions. The original ML type-inference algorithm is not sound in the presence

of such constructs, as explained in (MT91) pagg. 41-46: it needs to be restricted.

In SML (MTH90), generic variables are divided into imperative (noted ’ a) and

applicative ones (noted ’a), and a simple restriction on the generalization of im-

perative variables guarantees soundness. For our isomorphism-based extension, we

have a similar restriction: since an imperative generic variable represents a shared

piece of memory, it is unsound to instantiate it to different types, so SplitGenIso(,)

must not split imperative generic type variables. A careful analysis shows that this

is already guaranteed by the restrictions imposed on imperative variables in SML,

combined with the restriction on applicability of (split) on the right of the arrow.

8 Related Works

Isomorphisms of types are proving more and more powerful tools to increase the

power and usability of typed functional programming languages. As pointed out

in (DC92), where most of the results proved here were first presented without much

proof, isomorphisms of types can be used either in collaboration with a human user

to perform library searches based on types, or automatically to improve existing

type-checkers.

While the only other work that tries to incorporate type isomorphisms at the type

checker level is (Nip90), after the seminal paper (Rit91), several new works have

appeared recently, all dealing with the use of types as search keys: Mikael Rittri

has studied the possibility of performing searches by using pattern matching of

types modulo Th1
×T

(Rit90a; Rit90b), and has proposed also a search mechanism

based on unification of types modulo linear isomorphisms (Rit92), which Brian

Matthews (Mat) has extended to Haskell’s system of type classes, in which type

variables can be restricted to range only over certain types. There have also been

two attempts to use formal specifications as search keys; both use a plain type

as search key before they try to check whether any retrieved functions satisfy the

given specification (Mor91; RW91). For the types, (Mor91) uses matching modulo

isomorphism, while (RW91) uses incomplete unification.

These proposal turn library search via type-isomorphism into a very flexible tool,

and show how the interest in this topic is rapidly growing, but none of them takes

26 Roberto Di Cosmo

into account (split): our work shows how this new isomorphism proves to be useful

in designing an efficient search algorithm for the case of type equality. It is hopefully

the case that it can help reduce the complexity of matching or unification too.

9 Conclusions

This paper has a twofold purpose: on one hand, it completes all the proofs sketched

in (DC92), thus providing a firm basis to the theory of ML isomorphisms, on the

other, it focuses on the practical issues of library searches, developing in details

the search algorithm implemented in the CAML system. This algorithm is more

efficient than the ones described in the references, and takes full advantage of the

new split isomorphism to achieve its performance.

The very same new isomorphism (split) leads us to a more consistent version of

the original ML type checker due to Milner (Dam85; Mil78). Even if the suggested

modification is a minor one, it surely points out how misleading can be a certain

use of terms like completeness theorems for type inference algorithms: our result

does not contradict completeness theorems like the one in (Dam85), which states

the completeness of the inference-algorithm w.r.t the ML type-assignment rules,

and not the completeness of these typing rules w.r.t. to some class of models.

It deserves to be noticed here that recent works on parametricity (introduced in

(Rey83), but see (ACC93) for very recent results and bibliography), seem to shed

some light on the apparent anomalous (split) isomorphism. We have already hinted

that the real issue is more an “explicitly vs. implicitly” typed than a “polymorphic

λ- calculus vs. ML” one: if we take the somewhat less known implicitly typed

version of the polymorphic λ- calculus, then (split) becomes provable. What one

would really like to see is a result bridging this gap between the implicit and explicit

presentations: the implicit calculi seem to be able to say “more” than the explicit

ones (like what happens in the case of (split) here). Actually, in (LMS92) a simple

extension of the explicit polymorphic λ- calculus is proposed, consisting of a single,

very natural axiom saying that the result of a function f : ∀X.A does not depend on

the type argument if X does not occur free in A. Such slight addition is enough to

derive the (split) isomorphism in the new calculus. We may hope that the results

presented here can provide further motivations and applications to the theory of

parametricity.

Acknowledgments

I’m greatly indebted to my advisor, Giuseppe Longo, for his continuous encourage-

ment, discussions and insights: he strongly motivated me to carry on all the work

that supports the results presented in this paper.

Mikael Rittri not only inspired this work on library searches, but has been a constant

and copious source of information on the ongoing work in this area.

I wish to thank Hubert Comon and Jean-Pierre Jouannaud, as well as all the work-

ing group of the LRI at the University of Orsay, for several unvaluable discussions:

they helped and pushed me in the essential phases of the development of this work.

Deciding Type Isomorphisms in a type-assignment framework 27

I am grateful to Pierre-Louis Curien for the long and fruitful cooperation on the

study of λ2βηπ∗.

The whole group working at INRIA at the CAML system has provided unvalu-

able support in the development of the code that implements the library search

system, and I’m particularly grateful to Pierre Weis whose help was crucial in the

integration of this new tool in the CAML system, and to Xavier Leroy, whose im-

pressive programming skill led to a working experimental implementation of the

new type-inference mechanism for CamlLight 0.4 in less than an afternoon.

Thanks finally to Pierre Cregut and Delia Kesner for several afternoons spent dis-

cussing all these matters, and to the anonymous referees for their very stimulating

reports.

References

Mart́ın Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal parametric polymorphism.
In Ann. ACM Symp. on Principles of Programming Languages (POPL). ACM, 1993.
To appear.

Henk Barendregt. The Lambda Calculus; Its syntax and Semantics (revised edition). North
Holland, 1984.

David Basin. Equality of Terms Containing Associative-Commutative Functions and Com-
mutative Binding Operators is Isomorphism Complete in 10th Int. Conf. on Automated
Deduction. Lecture Notes in Computer Science, 449, July 1990.

Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of types.
Technical Report 90-14, LIENS - Ecole Normale Supérieure, 1990. To appear in Proc.
of Symposium on Symbolic Computation, ETH, Zurich, March 1990, Mathematical
Structures in Computer Science, 2(2).

Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of types.
Mathematical Structures in Computer Science, 2(2), 1992. Proc. of Symposium on
Symbolic Computation, ETH, Zurich, March 1990.

Kim Bruce and Giuseppe Longo. Provable isomorphisms and domain equations in models
of typed languages. ACM Symposium on Theory of Computing (STOC 85), May 1985.

Pierre-Louis Curien and Roberto Di Cosmo. A confluent reduction system for the λ-
calculus with surjective pairing and terminal object. In Leach, Monien, and Artalejo,
editors, Intern. Conf. on Automata, Languages and Programming (ICALP), pages 291–
302. Springer-Verlag, 1991.

Guy Cousineau and Gerard Huet. The caml primer. Technical report, LIENS - Ecole
Normale Supérieure, 1988.

Luis Damas. Types Disciplines in Programming Languages. PhD thesis, Computer Science
Dept., University of Edimburgh, April 1985.

Roberto Di Cosmo. Invertibility of terms and valid isomorphisms. a proof theoretic study
on second order λ-calculus with surjective pairing and terminal object. Technical Re-
port 91-10, LIENS - Ecole Normale Supérieure, 1991. Submitted to Information and
Computation.

Roberto Di Cosmo. Type isomorphisms in a type assignment framework. In Ann. ACM
Symp. on Principles of Programming Languages (POPL), pages 200–210. ACM, 1992.

Roberto Di Cosmo and Giuseppe Longo. Constuctively equivalent propositions and iso-
morphisms of objects (or terms as natural transformations). Workshop on Logic for
Computer Science - MSRI, Berkeley, November 1989.

Mariangiola Dezani-Ciancaglini. Characterization of normal forms possessing an inverse
in the λβη calculus. Theoretical Computer Science, 2:323–337, 1976.

Luis Damas and Robin Milner. Principal type schemes for functional programs. In Ann.
ACM Symp. on Principles of Programming Languages (POPL), pages 207–212. ACM,
1982.

28 Roberto Di Cosmo

R. Hindley. The principal type-scheme of a an object in combinatory logic. Transactions
of the American Mathematical Society, 146, 1969.

Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and λ-calculus. Lon-
don Mathematical Society, 1980.

C. Barry Jay. Strong normalisation for simply-typed lambda-calculus as in lambek-scott.
LFCS, University of Edimburgh, February 1991.

Claude Kirchner. Methodes et utiles de conception systematique d’algoritmes d’unification
dans les theories equationnelles. PhD thesis, Université de Nancy, 1985.

Jean-Louis Krivine. Lambda calculus. Types et Modéles. Masson, 1990.
Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.

Technical report 117, INRIA, 1990.
Giuseppe Longo, Kathleen Milsted, and Sejey V. Soloviev. The genericity theorem and

the notion of parametericity in the polimorphic λ-calculus. E-mail: longo@di.ens.fr
and milsted@prl.dec.com., August 1992.

C.F. Martin. Axiomatic bases for equational theories of natural numbers. Notices of the
Am. Math. Soc., 19(7):778, 1972.

Brian Matthews. Reusing functional code using type classes for library search. Dept.
Comput. Sci, University of Glasgow, Scotland. E-mail: brian@dcs.glasgow.ac.uk.

Michel Mauny. Functional programming using Caml Light. INRIA, 1991. Included in the
Caml Light distribution.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Science, 17(3):348–375, 1978.

J.C. Mitchell. Polymorphic type inference and containment. Information and Computa-
tion, 76:211–249, 1988.

R. Morgan. Component Library Retrieval using property models. PhD thesis, University
of Durham - England, rick@easby.dur.ac.uk, 1991.

L. Meertens and A. Siebes. Universal type isomorphisms in cartesian closed categories.
Centrum voor Wiskunde en Informatica, Amsterdam, the Netherlands. E-mail: lam-
bert,arno@cwi.nl, 1990.

Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press, 1991.
Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT

Press, 1990.
Tobias Nipkow. A critical pair lemma for higher-order rewrite systems and its application

to λ∗. First Annual Workshop on Logical Frameworks, 1990.
Paliath Narendran, Frank Pfenning, and Rick Statman. On the unification problem for

cartesian closed categories. E-mail: dran@cs.albany.edu, 1992.
J.C. Reynolds. Types, abstraction and parametric polymorphism. In R.E.A. Mason,

editor, Information Processing ’83. North Holland, 1983.
Mikael Rittri. Retrieving library identifiers by equational matching of types in 10th Int.

Conf. on Automated Deduction. Lecture Notes in Computer Science, 449, July 1990.
Mikael Rittri. Searching program libraries by type and proving compiler correctness by

bisimulation. PhD thesis, University of Göteborg, Göteborg, Sweden, 1990.
Mikael Rittri. Using types as search keys in function libraries. Journal of Functional

Programming, 1(1):71–89, 1991.
Mikael Rittri. Retrieving library functions by unifying types modulo linear isomorphisms.

Technical Report 66, Chalmers University of Technology and University of Göteborg,
1992. Programming Methodology Group.

Colin Runciman and Ian Toyn. Retrieving re-usable software components by polymorphic
type. Journal of Functional Programming, 1(2):191–211, 1991.

E. J. Rollins and J. M. Wing. Specifications as search keys for software libraries. In
K. Furukawa, editor, Eighth International Conference on Logic Programming, pages
173–187. MIT Press, 91.

Serjey V. Soloviev. The category of finite sets and cartesian closed categories. Journal of
Soviet Mathematics, 22(3):1387–1400, 1983.

Deciding Type Isomorphisms in a type-assignment framework 29

Pierre Weis, Maŕıa Virginia Aponte, Alain Laville, Michel Mauny, and Ascánder Suárez.
The CAML reference manual. Technical Report 121, INRIA, Roquencourt B.P.105 -
78153 Le Chesnay Cedex - France, September 1990.

A Technical proofs.

This Appendix contains the proofs of Theorems 5.2 and Proposition 5.3, and the

definitions of the technical notions needed for them. The interested reader should

refer to (BDCL90; DC91) too.

A.1 Technical definitions and properties

We will use in what follows many notions for which we provide here all the relevant

definitions. Anyway, the interested reader can find in (Bar84) a detailed account of

the properties of finite-hereditary-permutations (f.h.p.’s) and Böhm tree (BT(M))

of a term M and in (BL85) and especially (DC91) the relevant facts about second

order finite-hereditary-permutations (2-f.h.p.’s).

Definition A.1

The Böhm-tree BT(M) of a term M is (informally) given by:

BT(M) = Ω if M has no head normal form

BT(M) = λx1 . . . xn.y if M =βλx1 . . . xn.yM1 . . .Mp

/...\

BT (M1) . . .BT (Mp)

It is easy to observe that BT(M) is finite and Ω-free iff M has a normal form.

Definition A.2

[Finite Hereditary Permutations (f.h.p.)] Let M be an untyped term. Then M is a

finite hereditary permutation (f.h.p.) iff either

• λ1βη⊢ M = λx.x , or

• λ1βη⊢ M = λz.λ−→x .z
−→
N σ,

where if |−→x | = n then σ is a permutation over n and z
−→
N σ = (. . . (zNσ(1)) . . . Nσ(n)),

such that, for 1 ≤ i ≤ n, λxi.Ni is a finite hereditary permutation.

Thus λz.λx1.λx2.zx2x1 and λz.λx1.λx2.zx2λx3.λx4.x1x4x3 are f.h.p.’s.

F.h.p.’s possess normal forms that are closed terms. In particular, exactly the ab-

stracted variables at level n + 1 appear at level n + 2 , modulo some permutation

of the order (note the special case of z at level 0). The importance of f.h.p.’s arises

from the following theorem, where the notion of invertible term given in 3.1 easily

translates to the untyped λ-calculus.

Theorem A.3 (Dezani (Dez76))

Let M be an untyped term possessing normal form. Then M is λβη-invertible iff M

is a f.h.p.

Remark A.4

30 Roberto Di Cosmo

One may easily show that the f.h.p.’s are typable terms (Hint: Just follow the

inductive definition and give z, for instance, type A1 → (A2 . . . → B), where the

Ai’s are the types of the Nσ(i).) By the usual abuse of language we may then speak

of typed f.h.p.’s.

When dealing with second order lambda calculus, we can get a similar characteri-

zation of invertible terms, where also types are allowed in the f.h.p.

Definition A.5

A second order term M of λ2βη is a second order finite hereditary permutation

(2-f.h.p.) iff

• M = λx.x, or

• M = λz.λ−→vi .z
−→
Pi where z

−→
Pi is zP1 . . .Pn and, if | −→vi | = n, there exists a

permutation σ:n → n, such that

if λvi = λxi:C then λxi:C.Pσ(i) is a 2-f.h.p.

if λvi = λXi then Pσ(i) is Xi.

Theorem A.6

2-f.h.p.’s are the invertible terms of λ2βη.

Proof

See (BL85), Lemma 2.4 and Theorem 2.5.

Finally, let’s make it precise what is the formal system we consider here as (core)

ML:

Definition A.7

[The ML formal system] Consider the untyped lambda terms generated by the

following grammar:

t := ()| x| λx.t| (tt)| 〈t, t〉| p1t| p2t

The formal system for (core) ML is made of the untyped lambda terms t that can

be assigned a type in the type-assignment system given in Table 3.

A.2 Completeness

To show completeness of ThML, we first notice that each type reduction rule in

❀ (see Definition 6.1) derives from a valid isomorphism. So to each such type

reduction is associated an isomorphism, and then, since isomorphisms compose,

any isomorphism M can be decomposed as in Figure 1, where F and G, with their

inverses F−1 and G−1, are the isomorphisms associated to the rules used to rewrite

the types A and B to their split-normal-form.

It is evident from the diagram that two types A and B are isomorphic iff their split

normal forms are. Now, reduction to split normal form is done accordingly to some

axioms of ThML, so that to prove completeness of this theory it suffices to prove

completeness for isomorphisms between types in split-normal-form. In order to do

this, we study the structure of a generic invertible term providing an isomorphisms

between such types. We follow the techniques introduced in (BDCL90) and (DC91)

Deciding Type Isomorphisms in a type-assignment framework 31

✛ ✲

✛ ✲

❄

✻✻

❄
∀
−→
Y .(B1 × . . .×Bm)

∀
−→
X .(A1 × . . .×An)

M’ = G◦M◦F−1M

B

A

G

F

Fig. 1. Decomposition of an ML isomorphism.

for the case of explicitly typed languages, that we adapt here to the type assignment

framework.

To deal with the strucure of terms we need to work on representatives of the equiv-

alence classes of terms w.r.t. the equality theory of the calculus, such as a normal

form. So we first need to provide a suitable notion of reduction that preserves (or

at least does not decrease) the set of types that can be assigned to a term. This is

not a concern in the case of explicitly typed languages, but in this type assignment

framework it requires some care, as the following remark shows.

Remark A.8

The reduction rule for Surjective Pairing

(SP) 〈p1M, p2M〉 reduces to M

strictly decreases the set of types that can be assigned to a term by the type-

inferernce algorithm of Definition 4.1.

Indeed, take this simple program that builds a pair of identity functions, then

decomposes and builds it up again via projection and pairing.

Example A.9

#let splitpair =

let join = let pair x = (x,x) in let id x = x in pair id

#in (fst join, snd join);;

Value splitpair is (<fun>,<fun>) : (’a -> ’a) * (’b -> ’b)

Its most general type is (’a -> ’a) * (’b -> ’b) and it would reduce, if we

allow SP contraction, to the following

Example A.10

#let splitpair =

let join = let pair x = (x,x) in let id x = x in pair id

#in join;;

Value splitpair is (<fun>,<fun>) : (’a -> ’a) * (’a -> ’a)

Anyway, (’a -> ’a) * (’a -> ’a) is not an instance of (’a -> ’a) * (’b -> ’b),

32 Roberto Di Cosmo

which is more general: we lost in the reduction the possibility to instantiate the two

components of the product type to different types.

It is necessary to devise a notion of reduction that is compatible with the type

assignment, i.e. that allows to prove a Subject Reduction theorem. Actually, if we

orient (SP) the other way round, to get a Surjective Pairing Expansion as suggested

for example in (Jay91), we get a normalizing calculus for which the reductum of a

term M can be given at least all the types that are legal for M . Notice that, since

we work in a type assignment framework, reductions are relativized by a basis Γ

where the types of the free term variables are declared.

Definition A.11

(Notion of reduction for ML)

alpha-beta-eta-csi:

(→ β) Γ⊢(λx.M)N
ML
−→ M[x:=N] : A, if N is free for x in M

(→ η) Γ⊢λx.(Mx)
ML
−→ M : A → B, if x 6∈ FV (M)

surjective pairing:

(×β) if Γ⊢〈M1,M2〉 : A1 ×A2, Γ⊢pi(〈M1,M2〉)
ML
−→ Mi : Ai

(×η) if Γ⊢M:A×B, Γ⊢M
ML
−→ 〈p1(M), p2(M)〉:A×B††

terminal object:

(∗) if Γ⊢M : T then Γ⊢M
ML
−→().

When talking about reduction, normal form and similar notion in what follows, we

will refer to this notion
ML
−→ of reduction on ML terms.

Theorem A.12 (Subject reduction)

Let Γ⊢M
ML
−→ M’. If Γ⊢M:A, then Γ⊢M’:A.

Proof

Essentially the same as in (HS80), Theorem 15.17.

The Subject Reduction theorem provides us immediately with a nice relation be-

tween typings derivable with or without the let rule.

Proposition A.13

Any closed term M that is in normal form can be turned into an explicitly typed

term of λ1βηπ∗.

Proof

Typing with the let rule corresponds to typing without the let rule after one step

of parallel reduction, so, unless there are free variables with polymorphic types,

on normal forms the two typing mechanism coincide. Since we do not need poly-

morphism to type M , and M has no free variables, we can decorate every lambda

abstraction with the type in the derivation of ∅⊢M : A and get a term of λ1βηπ∗

with the same type.

Remark A.14

Deciding Type Isomorphisms in a type-assignment framework 33

Due to the Subject Reduction theorem, we can always consider that in A ∼= B via

M,M−1, the terms M and M−1 are in normal form.

Remark A.15

Isomorphisms do compose.

Now we can carry on our analysis of invertible terms. The key results in Section 3

of (BDCL92) essentially allow us to characterize the invertible terms of λ1βηπ∗,

and can be used indirectly to chracterize invertible terms for the type assignment

case. We provide here the statements of these results, while the proofs are detailed

in (BDCL92):they tell us that isomorphic types of λ1βηπ∗ in split-normal-forms

have the same number of coordinates, so that, in Figure 1, n = m. Furthermore,

for any given isomorphism M between split-normal-forms there exist a permutation

σ : n → n such that M can be split into componentwise isomorphisms Mi between

Ai and Bσ(i).

Proposition A.16 (Isolate the relevant 〈M1, . . . ,Mn〉 in a λ1βηπ∗ isomorphism)

Let S ≡ ∀
−→
X .S1 × . . . × Sm and R ≡ ∀

−→
Y .R1 × . . . × Rn be type-n.f.’s where

neither the Si’s nor the Rj ’s contain any occurrences of T or × . Then S ∼= R iff

there exist M1, . . . ,Mn and N1, . . . ,Nm such that

x1 : ∀
−→
X .S1, . . . , xm : ∀

−→
X .Sm ⊢〈M1 : R1, . . . ,Mn : Rn〉 : R1 × . . . × Rn

y1 : ∀
−→
Y .R1, . . . , yn : ∀

−→
Y .Rn ⊢〈N1 : S1, . . . , Nm : Sm〉 : S1 × . . . × Sm

Mi[
−→
N /−→x] =βηπSP yi, for 1 ≤ i ≤ n and Nj [

−→
M/−→y] =βηπSP xj , for 1 ≤ i ≤ m

(where substitution of vectors of equal length is meant componentwise).

Proof

One uses the fact that

M = λz.(λx1 . . .xn.M〈x1, . . .xn〉)(p1z) . . . (pnz)

Now, the type of M〈x1, . . .xn〉 is R, an n-tuple, so the right hand side term is also

equal to

λz.(λx1 . . .xn.〈M1, . . .Mn〉)(p1z) . . . (pnz)

where theMi (which are the normal forms of piM〈x1, . . .xn〉), are the sought terms,

as shown in Proposition 3.7 of (BDCL92) using the fact that M and N are each

other’s inverses.

Lemma A.17 (Isomorphic type-n.f.’s have equal length)

Assume that S ≡ ∀
−→
X .S1 × . . . × Sm and R ≡ ∀

−→
Y .R1 × . . . × Rn are type-n.f.’s

and M ≡ 〈M1, . . . ,Mn〉, N ≡ 〈N1, . . . , Nm〉 are terms in λ1βηπ such that

x1 : ∀
−→
X .S1, . . . , xm : ∀

−→
X .Sm ⊢Mi : Ri Mi[

−→
N /−→x] =βηπSPexp

yi, for 1 ≤ i ≤ n

y1 : ∀
−→
Y .R1, . . . , yn : ∀

−→
Y .Rn ⊢Nj : Sj Nj [

−→
M/−→y] =βηπSPexp

xj , for 1 ≤ i ≤ m

then n = m and there exist permutations σ, π over n (and terms Pi, Qj) such that

34 Roberto Di Cosmo

Mi = λ−→ui .xσi

−→
P i and Nj = λ−→vj .xπi

−→
Q j

Proof

This result is obtained by a short computation of λx.M(Nx) and λy.N(My), in

Lemma 3.8 of (BDCL92).

Furthermore, these terms Mi can be used to build componentwise isomorphisms

between Ai and Bσ(i).

Proposition A.18

Let M1, . . . ,Mn and N1, . . . ,Nn and permutation σ be as above. Then λxσ(i).Mi

and λyi.Nσ(i) are invertible terms.

Proof

Using Dezani’s theorem (Dez76), one shows that each of the Mi, Nj contain exactly

one free variable, and then it is easy to show that λxσ(i).Mi and λyi.Nσ(i) are

invertible terms (BDCL92).

Now, to go back to the type assignment framework, we already know that, if A ∼=
B via M,M−1, and M is in normal form, then

• M is typable in λ1βηπ∗, with the same type A′ → B′ it gets in ML

• M is invertible, and provides an isomorphism between A’ and B’.

Using these facts, we obtain the following characterization:

Proposition A.19

Let A = ∀
−→
X .(A1 × . . .×An) and B = ∀

−→
Y .(B1 × . . .×Bm) be isomorphic split-

normal-forms in ML. Then n = m and there exist an invertible term M in normal

form proving A ∼= B and a permutation π : n → n s.t.

M = λz.〈M1[pπ(1)z/xπ(1)], . . . ,Mn[pπ(n)z/xπ(n)]〉

where λxπ(i).Mi are f.h.p.’s.

Proof

The term M is typable in ML with some type C → D, with D more general than

B1×. . .×Bm. Without loss of generality, we can assume that the invertible termM

in ML providing the isomorphism is of type C → B1 × . . .×Bm. Then it provides in

λ1βηπ∗ an isomorphism between C and B1× . . .×Bm, so that by Proposition A.16

and A.17,

M = λz.〈M1[pπ(1)z/xπ(1)], . . . ,Mn[pπ(n)z/xπ(n)]〉

where λxπ(i).Mi are f.h.p.’s. In particular, this allows to conclude that n = m.

Proposition A.13 allows us to prove immediately a nice result on arrow only types.

Corollary A.20

Let A, B be ML types without occurrence of products or unit type. If Γ⊢A ∼= B via

invertible terms M,M−1 in normal form, then it is possible to decorate M,M−1

with types and get terms M ′:A′ → B′, M ′−1:B′ → A′ of λ1βηπ∗, where A and B

are just Gen(A’) and Gen(B’) up to generic type variable renaming.

Deciding Type Isomorphisms in a type-assignment framework 35

Proof

By Proposition A.13, any type derivable for M,M−1, which are closed (see Re-

mark 4.6) is derivable without use of let, and M ′,M ′−1 are then just the λ1βηπ∗

terms of Proposition A.13, with types A′ → B′ and B′ → A′. Furthermore, since

these terms are f.h.p.’s, any term variable occurring in them occurs exactly once

and bound.

Now recall what Γ⊢A ∼= B viaM,M−1 means: for any term P s.t. Γ⊢P:A, Γ⊢(MP):B

and Γ⊢M−1(MP) = P : A (and viceversa).

Even if the let rule is not needed in typing M , it can be used in typing the

application MP , as M (a f.h.p.) is actually a lambda abstraction. But the bound

variable occurs only once in M , so the result of applying the let rule is nothing

more than an instantiation of A to A’ and a renaming and a generalization of B’

to B.

This result can actually be extended to all split-normal-forms by examining the

structure of invertible terms that transform split-normal-forms to split-normal-

forms.

Proposition A.21

Let A = ∀
−→
X .(A1 × . . .×An) and B = ∀

−→
Y .(B1 × . . .×Bn) be isomorphic split-

normal-forms, of length n. Then there exist an invertible term M in normal form

proving A ∼= B and a permutation π : n → n s.t.

M = λz.〈M1[pπ(1)z/xπ(1)], . . . ,Mn[pπ(n)z/xπ(n)]〉

where λxπ(i).Mi are f.h.p.’s that can prove Gen(Aπ(i)) isomorphic to a variable

renaming of Gen(Bi).

Proof

We first obtain from M , using Proposition A.19 above the Mi such that λxπ(i).Mi :

A′ → B′, then use Corollary A.20 to show the relation between A’, B’ and A, B.

Remark A.22

The invertible term M in the previous Proposition A.21 is already in normal form

(the only potential redexes are the occurrences of z that could be SP expanded,

but the expansion is not allowed as z is under the action of a projection).

The following Completeness Theorem can now be shown as Proposition 4.8 of (BDCL90)

by induction on the structure of the invertible terms.

Theorem A.23 (Completeness)

The theory ThML is complete for ML isomorphisms.

Proof

If two types A and B are isomorphic, then there is an invertible term M proving

it of the form shown in Proposition A.21. Then one can show by induction on the

Böhm tree of M that ThML ⊢A = B, as in Proposition 4.8 of (BDCL92).

36 Roberto Di Cosmo

A.3 Conservativity

Lemma A.24

Let M:A → B be a 2-f.h.p. (in normal form). If A and B are types not containing

quantifiers, them M is a term of λ1βη (the simple typed λ-calculus) and Axiom

(swap) suffices to prove A = B.

Proof

By induction on the depth n of the Böhm-tree BT(M) of M.

• n = 1.

Then M = λx : A. x : A → A and A = B, so the thesis holds.

• n = k + 1.

Then M = λz : A.λ−→vi .z
−→
Pi where the vi are all term variables whose type

Ci does not contain ∀., since B does not contain ∀.. Now, we know from

the definition of second order f.h.p. that the λvi : Ci.Pσ(i) are second order

f.h.p.’s for some permutation σ : n → n. Furthermore, we know that the type

Di of each of the Pi has no occurrence of ∀. in it as otherwise A would have

occurrences of ∀., in order for z
−→
Pi to type-check.

Summing up, we know that the second order f.h.p. λvi : Ci.Pσ(i) has type

Ci → Dσ(i) with no occurrence of ∀., and its Böhm-tree has a strictly lower

depth than BT(M). So we can apply the induction hypothesis and we get that

each of these terms is just a simply typed term, hence M, which is built up

out of them, is a simply typed term.

Secondly, this proves that Th1 ⊢ Ci = Dσ(i). But

A ≡ D1 → . . .Dn → E and B ≡ C1 → . . .Cn → E

for some base type E, in order for M to typecheck. So we get the second part

of the thesis by:

B ≡ C1 → . . .Cn → E

= Dσ(1) → . . .Dσ(n) → E(by the induction hypothesis)

= D1 → . . .Dn → E(by swapping the premisses)

≡ A

where the last equality step uses several times the proper axiom of Th1 in

order to re-arrange the premisses of the → in the right order.

Theorem A.25

Let ∀
−→
X .A and ∀

−→
Y .B be second order types such that A and B do not contain

quantifiers, products and the unit type. If Th2
×T

⊢ ∀
−→
X .A = ∀

−→
Y .B, then ThML⊢

∀
−→
X .A = ∀

−→
Y .B.

Proof

Deciding Type Isomorphisms in a type-assignment framework 37

Suppose that the given types are equal in Th2
×T

. They are already in normal form

w.r.t. the rewriting system R of (DC91), Definition 3.4, so by Theorem 3.32 of

(DC91) their isomorphism is witnessed by an invertible term M that is actually a

2-f.h.p. (a term of λ2βη).

Now, Th2
×T

does not allow to change the number of quantifiers in a type unless

there is at least an occurrence of the unit type in their scope, and this is forbidden

by our hypotheses, so we know that the length n of
−→
X is equal to that of

−→
Y .

Knowing all this, let’s study the term M. It is a 2-f.h.p., so (see (DC91), Defini-

tion 3.29)

M = λz : (∀
−→
X .A).λY1 . . .Yn.λxn+1 . . .xn+k.zP1 . . .Pn+k

In a 2-f.h.p., all the abstracted type variables must appear once and only once at

the level immediately below that where they are abstracted, so, due to the type

of z and the fact that A does not contain quantifiers, the first n Pi’s must be

exactly the type variables
−→
Y in some order. This means that, for the permutation

σ : n+ k → n+ k associated to the 2-f.h.p. M, we have that λxi.Pσ(i) are 2-f.h.p.’s

whose types do not contain quantifiers (or otherwise, due to the fact that A does

not contain quantifiers, M would not type-check). Hence the real structure of M is

λY1 . . .Ynλxn+1 . . .xn+k.z[Yσ(1) . . .Yσ(n)]Pn+1 . . .Pn+k,

where we know by Lemma A.24, that the 2-f.h.p.’s λxi.Pσ(i) (and hence the Pn+i’s),

are simple typed terms of λ1βη.

Now, by a simple induction on the depth of the Böhm tree of M it is easy to show

that ∀
−→
X .A = ∀

−→
Y .B can be proved using only (swap) and Axioms 8 and 9, that

are all derivable in ThML.

Corollary A.26

Let ∀
−→
X .A and ∀

−→
Y .B be second order types as above in Theorem A.25. Let ∀

−→
X ′.A

and ∀
−→
Y ′.B be the ML types obtained from them by erasing all quantifications on

type variables not occurring in A and B respectively. Then Th2
×T

⊢∀
−→
X .A = ∀

−→
Y .B

⇒ ThML⊢∀
−→
X ′.A = ∀

−→
Y ′.B

Proof

Suppose Th2
×T

⊢∀
−→
X .A = ∀

−→
Y .B.

The terms Pn+i’s and the variables xi’s in Theorem A.25 contain as free type

variables only the
−→
Y ′

i’s, as only these variables occur in the type B, so we can build

the term M ′ = λw : (∀
−→
X ′.A).λ

−→
Y ′.λxn+1 . . .xn+k.w[Y

′

σ]Pn+1 . . .Pn+k where Y ′

σ is

what is left of Yσ(1). . .Yσ(n) after erasing the type variables not occurring in B.

The term M’ type checks‡‡, and proves (in Th2
×T

) ∀
−→
X ′.A = ∀

−→
Y ′.B, so we can apply

once more Theorem A.25 and finally get ThML⊢∀
−→
X ′.A = ∀

−→
Y ′.B, as required.

‡‡ Notice that
−→
Y ′ and

−→
X ′ have the same length, since the rules in Th2

×T
do not change

the number of bound variables to prove ∀
−→
X .A = ∀

−→
Y .B

38 Roberto Di Cosmo

Theorem A.27

(ThML subsumes Th2
×T

on ML types)

Let C and D be any ML types. If Th2
×T

⊢ C = D, then ThML ⊢ C = D.

Proof

Let C = ∀
−→
X .A, and C = ∀

−→
Y .B be ML types equated in Th2

×T
. Take their normal

forms n.f.(C) and n.f.(D) w.r.t. the type rewriting system R of (DC91). We know

that, since they are equal in Th2
×T

, there is an n s.t. n.f.(C) = (C1 × . . .× Cn) and

n.f.(D) = (D1 × . . .×Dn), where no product or unit type appears in the Ci’s and

the Di’s. Moreover, the rewriting rules in R do not push any ∀ inside → or × , and

we start with ML-style types (that have ∀ only as the outermost type constructors),

so we know that the Ci and the Di are still ML-style types. More than that, we

know that for some types Ai and Bi not containing quantifiers Ci ≡∀
−→
X .Ai and

Di ≡∀
−→
Y .Bi. Now, Theorem 3.32 in (DC91) says that there exist a permutation

σ : n → n s.t. for all i Th2
×T

⊢ ∀
−→
X .Ai = ∀

−→
Y .Bσ(i). Let’s call

−→
Xi and

−→
Yi the type

variables free in the Ai’s and the Bi’s respectively. Now Corollary A.26 states

that ThML⊢∀
−→
Xi.Ai = ∀

−−→
Yσ(i).Bσ(i) Since we can rename bound type variables in

ThML, these equalities can be turned into ThML⊢∀
−→
X ′

i.A
′

i = ∀
−−−→
Y ′

σ(i).B
′

σ(i) where

all the type variables have been renamed in such a way that no two A′

i’s or B
′

σ(i)’s

share any type variable. If M ′

i’s are the ML terms associated to these equalities in

ThML, then we can build the ML term λw.〈M ′

1(pσ(1)w), 〈. . . ,M
′

n(pσ(n)w)〉 . . . 〉

that proves

ThML ⊢ ∀
−→
X ′

1 . . .
−−→
X ′

n.(A
′

1 × . . .×A′

n) = ∀
−→
Y ′

1 . . .
−→
Y ′

n.(B
′

1 × . . .×B′

n)

These two last types are in normal form w.r.t the type rewriting system ❀, that

is a subsystem of R in (DC91), and moreover all the coordinates have disjoint type

variables: they are actually split-normal-forms of C and D.

Now, ThML proves that any ML type is equal to any of its split-normal-forms (see

again Figure 1), so, by transitivity, ThML⊢ C = D, as required.

Remark A.28

Notice that the proof relies in an essential way on the equivalence between an ML

type and its split-normal-form, that is due to Axiom split. Actually, without it,

the previous theorem is false, as the following example shows.

Example A.29

Let A and B be type expressions that cannot be equated in Th2
×T

nor in ThML.

Then it is easily seen that

Th2
×T

⊢ ∀XY .(X → (X → Y) → A)× (Y → (Y → X) → B)

= ∀ZW.(Z → (Z → W) → B)× (Z → (Z → W) → A).

But ThML without Axiom split cannot prove it: these types are already in normal

form w.r.t. ❀, and there is no way to equate them with only variable renaming,

permutation or swapping of premisses.

