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Abstract

We introduce the Aeolus component model, which is specifically designed to
capture realistic scenarii arising when configuring and deploying distributed
applications in the so-called cloud environments, where interconnected compo-
nents can be deployed on clusters of heterogeneous virtual machines, which can
be in turn created, destroyed, and connected on-the-fly.

The full Aeolus model is able to describe several component characteristics
such as dependencies, conflicts, non-functional requirements (replication and
load limits), as well as the fact that component interfaces to the world might
vary depending on the internal component state.

When the number of components needed to build an application grows, it
becomes important to be able to automate activities such as deployment and
reconfiguration, which correspond, at the level of the model, to the ability to
decide whether or not a desired target system configuration is reachable, which
we call the achievability problem, and producing a path to reach it.

In this work we show that the achievability problem is undecidable for the
full Aeolus model, a strong limiting result for automated configuration in the
cloud. We also show that the problem becomes decidable, but Ackermann-hard
as soon as one drops capacity constraints from the model. Finally, we provide a
polynomial time algorithm for the further restriction of the model where support
for inter-component conflicts is also removed.
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1. Introduction

The expression “cloud computing” is broadly used to refer to the possibility
of building sophisticated distributed software applications that can be run, on-
demand, on virtualized hardware infrastructure at a fraction of the cost which
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was necessary just a few years ago. Reaping all the benefits of cloud computing
is not an easy task: even when the infrastructure costs fall dramatically, the
complexity of designing and maintaining distributed scalable software systems
is a serious challenge.

Attempts are being made both in industry and in the research world to model
and tame such complexity. On the industry side, a wealth of initiatives offer
different kinds of solutions for isolated aspects of the problem. Tools like Pup-
pet [1] or Chef [2] allow to automate the configuration of software components,
based on a set of descriptions stored in a central server. CloudFoundry [3] al-
lows to select, connect, and push to a cloud some predefined services (databases,
message buses, proxies, . . . ), that can then used as building blocks for writing
applications using one of the supported frameworks. Finally, Juju [4] tries to
extend the basic concepts of package managers—used by software distributions
to automate software upgrades.

On the academic side, several teams are working, with different approaches,
on the problems posed by the complexity of designing cloud applications. The
Fractal component model [5], which itself predates the popularization of the
“cloud computing” expression, focuses on expressivity and flexibility: it provides
a general notion of component assembly that can be used to describe concisely,
and independently of the programming language, complex software systems;
building on Fractal, FraSCAti [6] provides a middleware that can be used to
deploy applications in the cloud. ConfSolve [7] on the other hand aims at
helping the application designer with some of the decisions to be made, and
more specifically to optimally allocate virtual machines to concrete servers.

In all the above mentioned approaches, the goal is to allow the user (i.e., the
application designer) to assemble a working system out of components that have
been specifically designed or adapted to work together. The actual component
selection (which web server should I use? which SQL database? which load
balancer?) and interconnection (which front-end should I connect to which
back-end, in order to avoid bottlenecks?) are the responsibility of the user. And
if some reconfiguration needs to happen, it is either obtained by reassembling
the system manually, or by writing specific code that is left for the user to write.

We believe that to make further progress in taming the complexity of so-
phisticated cloud applictions, two major concerns must be taken into account.

Expressivity. We need component models that are expressive enough to capture
all the component characteristics that are relevant for designing distributed,
scalable applications which are typical in the cloud. Some of those characteris-
tics (see Section 2 for a more in-depth discussion) are:

dependencies e.g., which other components should be deployed in order to be
able to install, activate, upgrade, etc. a given component?

conflicts e.g., which other components, if any, would inhibit the deployment
of a given component?
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non-functional requirements e.g., if a component depends on others, how
many of those would be needed to guarantee the desired level of fault-
tolerance and/or load-balancing? Similarly, if a component offers func-
tionalities to other, how many of them it can reasonably satisfy before
needing to be replicated?

statefulness distributed/cloud-components have complex activation protocols,
making their contextual requirements (dependencies, conflicts, etc.) vary
over time, e.g., it might be enough to install a given component to be
able to install another one, but the requirements to activate it might be
different

Automation. While expressivity is certainly important, solving the cloud chal-
lenge also requires automation. When the number of components grows, or the
need to reconfigure appears more frequently, it is essential to be able to specify
at a certain level of abstraction a particular target configuration of the dis-
tributed software system we want to realize, and to develop tools that provide
a set of possible evolution paths leading from the current system configuration
to one that corresponds to such a user request.

Automated approaches have been developed already, but thus far mostly for
the particular case of configuring package-based FOSS (Free and Open Source
Software) distributions on a single system, and there are generic, solver-based
component managers for this task [8]. The goal of this paper is to lay the for-
mal foundations of such an automated approach for the much more complex
situation that arises when one needs to: (re-)configure not a single machine,
but a variety of possibly “elastic” clusters of heterogeneous machines, living in
different domains and offering interconnected services that need to be stopped,
modified, and restarted in a specific order for the reconfiguration to be success-
ful.

Contributions. We first elicit the expressivity requirements of a component
model that is suitable for the cloud from specific use cases presented in Sec-
tion 2. We then detail a formal component model for the cloud, called Aeolus,
where components describe resources which provide and require different func-
tionalities, and may be created or destroyed. As a major improvement over
state-of-the art component models, Aeolus components are equipped with state
machines that declaratively describe how required and provided functionalities
are enacted. The declarative information is essential to provide a planner with
the input needed for exploring the possible evolution paths of the system, and
propose a reconfiguration plan, which is the key automation enabler.

In Section 4 we study formally the complexity of finding a deployment plan
in Aeolus, a property which we call achievability. We study achievability in the
full Aeolus model, as well as in more limited variants of it that exhibit different
decidability and complexity characteristics.

We show that achievability is undecidable if one allows to impose restrictions
on the number of connections between required and provided functionalities—
as it happens in the complete version of our model. This limiting result is
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particularly significant, as some industrial tools are starting to incorporate such
restrictions to account for capacity limitations of services in the cloud.

If we remove the possibility of constraining the number of provided and re-
quired functionalities, we show that achievability becomes decidable but Ackermann-
hard. Thus even in this simplified model, that we call Aeolus core, finding a plan
can be extremely costly and unfeasible from the computational point of view.

For this reason we consider a further restricted model, called Aeolus−, where
we drop the ability of stating capacity constraints on the provided and required
functionalities, and declariing conflicts between resources. We prove that in
Aeolus− achievability is decidable in polynomial time. This is interesting since
Aeolus− corresponds to what mainstream industry tools can handle at present.
Our result explains why it is still possible, in simple cases, to manage such
systems manually.

Before concluding, we discuss related works in Section 5.

2. A gentle introduction to Aeolus

We introduce the key features of Aeolus by eliciting them, step-by-step, from
the analysis of realistic scenarii. As a running example, we consider several
deployment use cases for WordPress, a popular weblog solution that requires
several software services to operate, the main ones being a Web server and a SQL
database. We present the use cases in order of increasing complexity ranging
from the simplest ones, where everything runs on a single physical machine, to
more complex ones where the whole appliance runs on a cloud.

Use case 1 — Package installation

Before considering the services that a machine is offering to others (locally
or over the network), we need to model the software installation on the ma-
chine itself, so we will see how to model the three main components needed by
WordPress, as far as their installation is concerned.

Software is often distributed according to the package paradigm [9], popu-
larized by FOSS distributions, where software is shipped at the granularity of
bundles called packages. Each package contains the actual software artifact, its
default configuration, as well as a bunch of package metadata.

On a given machine, a software package may exists in different states (e.g., in-
stalled or uninstalled) and it should go through a complex sequence of states
in different phases of unpacking and configuration to get there. In each of its
states, similarly to what happens in most software component models [10], a
package may have contextual requirements and offer some features, that we call
provides. For instance in Debian, a popular FOSS distribution, there are pack-
ages for WordPress, Apache2 and MySQL equipped with metadata (reported in
Figure 1) including a list of requirements (the Depends field) and of functional-
ities that are offered (the Provides field).

To model a software package at this level of abstraction, we may use a simple
state machine, with requirements and provides associated to each state. The
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Package: wordpress

Version: 3.0.5+ dfsg -0+ squeeze1

Depends: httpd, mysql -client , php5 , php5 -mysql ,

libphp -phpmailer (>= 1.73-4), [...]

Package: mysql -server -5.5

Source: mysql -5.5

Version: 5.5.17 -4

Provides: mysql -server , virtual -mysql -server

Depends: libc6 (>= 2.12), zlib1g (>= 1:1.1.4) , debconf , [...]

Package: apache2

Version: 2.4.1 -2

Maintainer: Debian Apache Maintainers <debian -apache@...>

Depends: lsb -base , procps , perl , mime -support ,

apache2 -bin (= 2.4.1 -2), apache2 -data (= 2.4.1 -2)

Conflicts: apache2.2-common

Provides: httpd

Description: Apache HTTP Server

Figure 1: Debian package metadata for WordPress, Mysql and the Apache web server (excerpt)

ingredients of this model are very simple: a set of states Q, an initial state
q0, a transition function T from states to states, a set R of requirements, a
set P of provides, and a function D that maps states to the requirements and
provides that are active at that state. We call component type any such tuple
〈Q, q0, T, 〈P,R〉, D〉, which will be formalized in Definition 1.

A system configuration is then built out of a collection of components that
are instances of component types, with its current state, and a set of connections
between requirements and provides of the different components. Connections
indicate which provide is fulfilling the need of each requirement. A configuration
is correct if all the requires which are active are satisfied by active provides; this
will be made precise in Definition 4.

A straightforward graphical notation can capture all these pieces of infor-
mation together: Figure 2 presents systems built using the components from
Figure 1 (only modeling the dependency on httpd underlined in the metadata,
for the sake of conciseness). In Figure 2a the packages are available but not
installed yet. In Figure 2b the WordPress package is in the installed state and
activates the requirement on httpd; Apache2 is also in the installed state, so
the httpd provide is active and is used to satisfy the requirement, fact which is
visualized by the binding connecting together the two ports named httpd.

Use case 2 — Services and packages

Installing the software on a single machine is a process that can already be
automated using package managers: on Debian for instance, you only need to
have an installed Apache server to be able to install WordPress. But bringing
it in production requires to tune and activate the associated service, which is
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(a) Available components, not installed.

(b) Installed components, bound together on the httpd port.

Figure 2

Figure 3: A graphical description of the basic model of services and packages.

more tricky and less automated: the system administrator will need to edit con-
figuration files so that WordPress knows the network addresses of an accessible
MySQL instance.

The ingredients we have seen up to now in our model are sufficient to capture
the dependencies among services, as shown in Figure 3. There we have added
to each package an extra state corresponding to the activation of the associated
service, and the requirement on mysql up captures the fact that WordPress
cannot be started before MySQL is running. In this case, the bindings really
correspond to a piece of configuration information, i.e., where to find a suitable
MySQL instance.

Notice how this model does not impose any particular way of modeling the
relations between packages and services. Instead of using a single component
with an installed and a running state, we can simply model services and packages
as different components, and relate them through dependencies.
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Figure 4: A graphical description of the model with redundancy and capacity constraints
(internal sate machines are omitted for simplicity).

Use case 3 — Redundancy, capacity planning, and conflicts

Services often need to be deployed on different machines to reduce the risk
of failure or to increase the load they can withstand by the means of load-
balancing. To properly design such scalable architectures system administrators
might want, for instance, to indicate that a MySQL instance can only support a
certain number of connected WordPress instances. Symmetrically, a WordPress
hosting service may want to expose a reverse web proxy/load balancer to the
public and require to have a minimum number of distinct instances of WordPress
available as its back-ends.

To model this kind of situations, we allow capacity information to be added
on provides and requires of each component in Aeolus: a number n on a provide
port indicates that it can fulfill no more than n requirements, while a number
n on a require port means that it needs to be connected to at least n provides
from n different components.

As an example, Figure 4 shows the modeling of a WordPress hosting sce-
nario where we want to offer high availability by putting the Varnish reverse
proxy/load balancer in front of several WordPress instances, all connected to
a cluster of MySQL databases.1 For a configuration to be correct, the model
requires that Varnish is connected to at least 3 (active and distinct) WordPress
back-ends, and that each MySQL instance does not serve more than 2 clients.

As a particular case, a 0 constraint on a require means that no provide
with the same name can be active at the same time; this can be effectively
used to model global conflicts between components. For instance, we can use
this feature to model the conflict between the apache2 and apache2.2-common

packages that had been omitted in Figure 2.

1All WordPress instances run within distinct Apache instances, which have been omitted
for simplicity.
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Use case 4 — Creating and destroying components

Use cases like WordPress hosting are commonplace in the cloud, to the point
that they are often used to showcase the capabilities of state of the art cloud
deployment technologies. The features of the model presented up to here are
already expressive enough to encode these static deployment scenarii, where the
system architecture does not evolve over time in reaction to load changes.

To model faithfully deployment runs on the cloud, where an arbitrary num-
ber of instances of virtual machine images can be allocated and deallocated on
the fly, we also allow in our model creation and destruction of all kinds of com-
ponents, provided they belong to some existing component type. For instance,
in the configuration of Figure 4, to respond to an increase in traffic load one
will need to spawn 2 new WordPress instances, which in turn will require to
create new MySQL instances, as the available MySQL-s are no longer enough
to handle the load increase.

3. The Aeolus model

We now formalize the Aeolus model, implementing all the features elicited
from the use cases discussed in the previous section.

Notation. We assume given the following disjoint sets: I for interfaces and Z
for components. We use N to denote strictly positive natural numbers, N∞ for
N ∪ {∞}, and N0 for N ∪ {0}.

We model components as finite state automata indicating all possible compo-
nent states and state transitions. When a component changes state, the sets of
ports it requires from/provide to other components will also change: intuitively,
the component interface with the external world varies with its state.

Definition 1 (Component type). The set Γ of component types of the Aeolus
model, ranged over by T1, T2, . . . contains 5-ple 〈Q, q0, T, P,D〉 where:

• Q is a finite set of states;

• q0 ∈ Q is the initial state and T ⊆ Q×Q is the set of transitions;

• P = 〈P,R〉, with P,R ⊆ I, is a pair composed of the set of provide and
the set of require ports, respectively;

• D is a function from Q to 2-ple in (P 7→ N∞)× (R 7→ N0).

Given a state q ∈ Q, D(q) returns two partial functions (P 7→ N∞) and (R 7→
N0) that indicate respectively the provide and require ports that q activates. The
functions associate to the activate ports a numerical constraint indicating:

• for provide ports, the maximum number of bindings the port can satisfy,

• for require ports, the minimum number of required bindings to distinct
components,
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– as a special case: if the number is 0 this indicates a conflict, meaning
that there should be no other active port, in any other component,
with the same name.

When the numerical constraint is not explicitly indicated, we assume as
default value ∞ for provide ports (i.e., they can satisfy an unlimited amount of
requires) and 1 for require (i.e., one provide is enough to satisfy the requirement).
We also assume that the initial state q0 has no demands (i.e., the second function
of D(q0) has an empty domain).

Example 1. Figure 2a depicts two component types: wordpress and apache2.
In particular wordpress is formally defined as the 5-ple 〈Q, q0, T, P,D〉 with:

• Q = {uninstalled, installed},

• q0 = uninstalled,

• T = {(uninstalled 7→ installed), (installed 7→ uninstalled)},

• P = 〈{wordpress},
{httpd,mysql-client, php5, php5-mysql, libphp-phpmailer}〉,

• D = {(uninstalled 7→ 〈∅, ∅〉),
(installed 7→ 〈{(wordpress 7→ ∞)}, f〉)}

where f is a function that associates 1 to all require ports.

We now define configurations that describe systems composed by component
instances and bindings that interconnect them. A configuration, ranged over by
C1, C2, . . ., is given by a set of component types, a set of deployed components
with a type and an actual state, and a set of bindings. Formally:

Definition 2 (Configuration). A configuration C is a 4-ple 〈U,Z, S,B〉 where:

• U ⊆ Γ is the finite universe of all available component types;

• Z ⊆ Z is the set of the currently deployed components;

• S is the component state description, i.e., a function that associates to
components in Z a pair 〈T , q〉 where T ∈ U is a component type 〈Q, q0, T, P,D〉,
and q ∈ Q is the current component state;

• B ⊆ I × Z × Z is the set of bindings, namely 3-ples composed by an
interface, the component that requires that interface, and the component
that provides it; we assume that the two components are distinct.

Example 2. Figure 2b depicts a configuration with two components and one
binding. Formally, it corresponds to the 4-ple 〈U,Z, S,B〉 where:

• U is a set of component types including wordpress and apache2,

• Z = {z1, z2},
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• S = {(z1 7→ 〈wordpress, installed〉), (z2 7→ 〈apache2, installed〉)},

• B = 〈httpd, z1, z2〉.

In the following we will use a notion of configuration equivalence to relate
configurations having the same instances up to renaming:

Definition 3 (Configuration equivalence). Two configurations 〈U,Z, S,B〉 and
〈U,Z ′, S′, B′〉 are equivalent, noted 〈U,Z, S,B〉 ≡ 〈U,Z ′, S′, B′〉, iff there exists
a bijective function ρ from Z to Z ′ s.t.:

1. S(z) = S′(ρ(z)) for every z ∈ Z; and

2. 〈r, z1, z2〉 ∈ B iff 〈r, ρ(z1), ρ(z2)〉 ∈ B′.

Notation. We write C[z] as a lookup operation that retrieves the pair 〈T , q〉 =
S(z), where C = 〈U,Z, S,B〉. On such a pair we then use the postfix projection
operators .type and .state to retrieve T and q, respectively. Similarly, given
a component type 〈Q, q0, T, 〈P,R〉, D〉, we use projections to (recursively) de-
compose it: .states, .init, and .trans return the first three elements; .prov, .req
return P and R; .P(q) and .R(q) return the two elements of the D(q) tuple.
When there is no ambiguity we take the liberty to apply the component type
projections to 〈T , q〉 pairs.

For example,C[z].R(q) stands for the partial function indicating the active
require ports (and their arities) of component z in configuration C when it is in
state q.

We are now ready to formalize the notion of configuration correctness:

Definition 4 (Configuration correctness). Let us consider the configuration
C = 〈U,Z, S,B〉.

We write C |=req (z, r, n) to indicate that the require port of component z,
with interface r, and associated number n is satisfied. Formally, if n = 0 all
components other than z cannot have an active provide port with interface r,
namely for each z′ ∈ Z \ {z} such that C[z′] = 〈T ′, q′〉 we have that r is not
in the domain of T ′.P(q′). If n > 0 then the port is bound to at least n active
ports, i.e., there exist n distinct components z1, . . . , zn ∈ Z \ {z} such that for
every 1 ≤ i ≤ n we have that 〈r, z, zi〉 ∈ B, C[zi] = 〈T i, qi〉 and r is in the
domain of T i.P(qi).

Similarly for provides, we write C |=prov (z, p, n) to indicate that the provide
port of component z, with interface p, and associated number n is not bound
to more than n active ports. Formally, there exist no m distinct components
z1, . . . , zm ∈ Z \ {z}, with m > n, such that for every 1 ≤ i ≤ m we have that
〈p, zi, z〉 ∈ B, S(zi) = 〈T i, qi〉 and p is in the domain of T i.R(qi).

The configuration C is correct if for each component z ∈ Z, given S(z) =
〈T , q〉 with T = 〈Q, q0, T, P,D〉 and D(q) = 〈P,R〉, we have that (p 7→ np) ∈ P
implies C |=prov (z, p, np), and (r 7→ nr) ∈ R implies C |=req (z, r, nr).
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Example 3. Figure 3 and 4 report examples of correct configurations. In Fig-
ure 3 it is easy to see that all active require ports are bound to an active provide
port: this condition is enough when the numerical constraints has the default
values.

In Figure 4 there are two kinds of non-default numerical constraints: the
constraint 3 on the require port wp back of the component of type varnish which
is satisfied because there are at least three bindings connecting it to three distinct
components (we assume that the wp back provide ports of these three components
are activate) and the constraint 2 on the provide port mysql of the components
of type mysql which are satisfied because those ports are connected to less than
two bindings.

We now formalize how configurations evolve from one state to another, by
means of atomic actions:

Definition 5 (Actions). The set A contains the following actions:

• stateChange(z, q1, q2) where z ∈ Z;

• bind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I;

• unbind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I;

• new(z : T ) where z ∈ Z and T is a component type;

• del(z) where z ∈ Z.

The execution of actions can now be formalized using a labeled transition
systems on configurations, which uses actions as labels.

Definition 6 (Reconfigurations). Reconfigurations are denoted by transitions

C α−→ C′ meaning that the execution of α ∈ A on the configuration C produces a
new configuration C′. The transitions from a configuration C = 〈U,Z, S,B〉 are
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Figure 5: On the need of a multiple state change: how to install a and b?

defined as follows:

C stateChange(z,q1,q2)−−−−−−−−−−−−−→ 〈U,Z, S′, B〉
if C[z].state = q1
and (q1, q2) ∈ C[z].trans

and S′(z′) =

{
〈C[z].type, q2〉 if z′ = z
C[z′] otherwise

C bind(r,z1,z2)−−−−−−−−→ 〈U,Z, S,B ∪ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 6∈ B
and r ∈ C[z1].req ∩ C[z2].prov

C unbind(r,z1,z2)−−−−−−−−−−→ 〈U,Z, S,B \ 〈r, z1, z2〉〉 if 〈r, z1, z2〉 ∈ B

C new(z:T )−−−−−−→ 〈U,Z ∪ {z}, S′, B〉
if z 6∈ Z, T ∈ U

and S′(z′) =

{
〈T , T .init〉 if z′ = z
C[z′] otherwise

C del(z)−−−−→ 〈U,Z \ {z}, S′, B′〉

if S′(z′) =

{
⊥ if z′ = z
C[z′] otherwise

and B′ = {〈r, z1, z2〉 ∈ B | z 6∈ {z1, z2}}

Notice that in the definition of the transitions there is no requirement on the
reached configuration: the correctness of these configurations will be considered
at the level of deployment runs.

Also, we observe that there are configurations that cannot be reached through
sequences of the actions we have introduced. In Figure 5, for instance, there
is no way for package a and b to reach the installed state, as each package re-
quires the other to be installed first. In practice, when confronted with such
situations—that can be found for example in FOSS distributions in the presence
of loops of Pre-Depends that impose an order in the installation of two depend-
ing packages—current tools either perform all the state changes atomically, or
abort deployment.
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We want our planners to be able to propose deployment runs containing
such atomic transitions. To this end, we introduce the notion of multiple state
change:

Definition 7 (Multiple state change). A multiple state change
M = {stateChange(z1, q11 , q

1
2), · · · , stateChange(zl, ql1, q

l
2)} is a set of state change

actions on different components (i.e., zi 6= zj for every 1 ≤ i < j ≤ l). We use

〈U,Z, S,B〉 M−−→ 〈U,Z, S′, B〉 to denote the effect of the simultaneous execution
of the state changes in M: formally,

〈U,Z, S,B〉 stateChange(z1,q11 ,q
1
2)−−−−−−−−−−−−−−→ . . .

stateChange(zl,ql1,q
l
2)−−−−−−−−−−−−−−→ 〈U,Z, S′, B〉

Notice that the order of execution of the state change actions does not matter
as all the actions are executed on different components.

We can now define a deployment run, which is a sequence of actions that
transform an initial configuration into a final correct one without violating cor-
rectness along the way. A deployment run is the output we expect from a
planner, when it is asked how to reach a desired target configuration.

Definition 8 (Deployment run). A deployment run is a sequence α1 . . . αm of
actions and multiple state changes such that there exist Ci such that C = C0,

Cj−1
αj−→ Cj for every j ∈ {1, . . . ,m}, and the following conditions hold:

configuration correctness for every i ∈ {0, . . . ,m}, Ci is correct;

multi state change minimality if αj is a multiple state change then there
exists no proper subset M ⊂ αj, or state change action α ∈ αj, and

correct configuration C′ such that Cj−1
M−−→ C′, or Cj−1

α−→ C′.

Example 4. Consider the configuration reported in Figure 3. Starting from an
empty configuration. Such configuration can be reached upon execution of the
following deployment run:

new(z1 : wordpress),
new(z2 : apache2),
stateChange(z2, uninstalled, installed),
bind(httpd, z1, z2),
stateChange(z1, uninstalled, installed),
new(z3 : mysql),
stateChange(z3, uninstalled, installed),
stateChange(z3, installed, running),
bind(mysql up, z1, z3),
stateChange(z2, installed, running),

This sequence of actions is a deployment run because it guarantees the correct-
ness of all the traversed configurations. Notice that this sequence of actions
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continues to be a deployment run even if stateChange(z1, uninstalled, installed)
is postponed.

On the contrary, it is no longer a deployment run if such action is anticipated
because the requirement on the httpd port is not yet fulfilled. It is no longer a
deployment run even if such action is joined with other state changes to form
a multiple state change action (like, e.g., {stateChange(z1, uninstalled, installed),
stateChange(z2, installed, running)}) because this violates minimality.

We now have all the ingredients to define the notion of achievability, that
is our main concern: given an universe of component types, we want to know
whether it is possible to deploy at least one component of a given component
type T in a given state q.

Definition 9 (Achievability problem). The achievability problem has as input
an universe U of component types, a component type T , and a target state q.
It returns as output true if there exists a deployment run α1 . . . αm such that
〈U, ∅, ∅, ∅〉 α1−→ C1

α2−→ · · · αm−−→ Cm and Cm[z] = 〈T , q〉, for some component z in
Cm. Otherwise, it returns false.

Example 5. Consider the achievability problem for the universe of component
types wordpress, apache2, and mysql in Figure 3, and the target expressed by
wordpress in its running state. In this case the problem returns true because there
exists, for instance, the deployment run obtained by adding
stateChange(z1, installed, running) at the end of the sequence of actions in Ex-
ample 4.

Notice that the restriction in this decision problem to one component in a
given state is not limiting. One can easily encode any given final configuration
by adding a dummy provide port enabled only by the required final states and
a dummy component with requirements on all such provides.

4. Decidability and Complexity of Achievability

In this section, we establish our main results concerning the decidability
and complexity of the achievability problem. The results change significantly
depending on the restrictions imposed on the numerical constraints that are
allowed as co-domains of the two D(q) partial functions. We consider here
three cases, which are detailed in the table below:

model co-domain(.P()) co-domain(.R())
Aeolus− {∞} {1}

Aeolus core {∞} {1, 0}
Aeolus N∞ N0

Aeolus (last row) is the same model of Definition 1, while Aeolus− is a re-
striction of it where only the default numerical constraints can be used: provide
ports always serve an unlimited amount of bindings, and require ports cannot
conflict with other active ports, nor require a minimum number of bindings

14



strictly higher than 1. Aeolus core, instead, is similar to Aeolus− but with the
added possibility of expressing conflicts.

In the following we will show that: achievability is undecidable in Aeolus; it
is decidable, but not primitive recursive (i.e., Ackermann-hard) in Aeolus core;
it is decidable and polynomial in Aeolus−.

4.1. Achievability is undecidable in Aeolus

The proof that achievability is undecidable is by reduction from the reach-
ability problem in 2 Counter Machines (2CMs) [11], a well-known Turing-
complete computational model.

A 2CM is a machine with two registers R1 and R2 holding arbitrary large
natural numbers and a program P consisting of a finite sequence of numbered
instructions of the two following types:

• j : Inc(Ri): increments Ri and goes to the instruction j + 1;

• j : DecJump(Ri, l): if the content of Ri is not zero, then decreases it by 1
and goes to the instruction j + 1, otherwise jumps to the l instruction.

A state of the machine is given by a tuple (i, v1, v2) where i indicates the
next instruction to execute (the program counter) and v1 and v2 are the values
contained in the two registers, respectively.

Notation. In the following we use the notation (i, v1, v2) → (i′, v′1, v
′
2) to say

that the state of the machine changes from (i, v1, v2) to (i′, v′1, v
′
2) as effect of

the execution of the i-th instruction.

It is not restrictive to assume that the initial configuration of the machine
is (1, 0, 0). In 2CMs, the problem of checking whether a given l-th instruction
is reachable from the initial configuration is undecidable.

We model a 2CM as follows. We use a component to simulate the execution
of the program instructions. The contents vi of the register Ri is modeled by vi
components in a particular state ri. Increment instructions add one component
in this state ri, while decrement instructions move one component in state ri to
a different state. The state ri activates a provide port onei , so the simulation
of a test for zero has simply to check the absence in the environment of active
onei ports.

The component types used to model 2CMs in Aeolus are depicted in Figure 6.
Namely, we consider four component types: TP to simulate the execution of the
program instructions, TR1

and TR2
for the two registers and TB used to guarantee

that the components involved in the simulation cannot be deleted.
In TP we assume one state qj for each instruction j. If the j-th instruction

is j : Inc(Ri) (see the state qj in Figure 6), a protocol with three intermediary
states is executed that completes by entering the state qj+1, representing the
next instruction to execute. This protocol has the effect to force a component
of type TRi

to execute a complementary protocol that completes by entering
the state ri, thus representing the increment by one of the register Ri. A
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Figure 6: Modeling 2 counter machines (2CMs) in the Aeolus model.

description of this protocol is reported in the proof of Proposition 1. If the
m-th instruction is m : DecJump(Ri, l) (see the state qm in Figure 6), two state
changes are possible from the state qm. The first one starts a protocol similar
to the previous one, whose effect here is to force one component of type TRi

to
exit from the state ri, thus representing the decrement by one of the register Ri.
The second one traverses a state that requires the absence in the configuration
of active onei provide port, thus checking that the content of Ri is zero, and
then enters state ql.

In our model, when a component z is not used to satisfy requirements, it
could be removed by executing the del(z) action. The cancellation of a com-
ponent of type TRi

could then erroneously change register contents during the
simulation. To avoid that, we force the connection of each component of type
TRi with a corresponding instance of a component of type TB . These types of
components reciprocally connect through the ports c and d as soon as they move
from their initial state q0. Such connections remain active during the entire sim-
ulation, ensuring that components will not be deleted by mistake. Notice that
it is necessary to add the capacity constraint 1 to the provide ports c and d, in
order to have an exact one-to-one correspondence between the components of
type TRi

and those of type TB .
As a final remark, notice that the first state q1 of the component type TP

has a requirement on the absence in the environment of an active provide port
e, port which is activated by all the states in TP . This guarantees that at most
one component of type TP can be in a state different from q0. Moreover, we
also have to avoid that such component is removed by a del action: this can
be guaranteed by using the same pairing technique with a component of type
TB described above. It is sufficient to impose that all the states of TP , but q0,

16



activate a provide port on c with numerical constraint 1, and a require port on
d, as shown in Figure 6.

We are now ready to formally prove our undecidability result. In the follow-
ing we assume given a 2CM program P and use C#〈T ,q〉 to denote the number of

components of type T in state q in the configuration C.

Definition 10. Let (i, v1, v2) be a state of a 2CM. We define

C0 = 〈{TP , TR1
, TR2

, TB}, ∅, ∅, ∅〉

[[(i, v1, v2)]] = { C | C is a correct conf. with universe {TP , TR1 , TR2 , TB},
C#〈TP ,qi〉 = 1, C#〈TR1

,r1〉 = v1, and C#〈TR2
,r2〉 = v2 }

In the following we call program step a sequence of reconfigurations that,
beyond other actions, includes state changes of the component TP until entering
a state qj (corresponding to an instruction of the program P ). Formally, it is a

non empty sequence of reconfigurations C1
α1−→ C2

α2−→ · · · αm−1−−−−→ Cm such that:

• there exists an index j of a program instruction2 for which Cm#
〈TP ,qj〉 = 1

while Cm−1#〈TP ,qj〉 = 0;

• for every 1 < i < m there exists no index j of a program instruction for
which Ci#〈TP ,qj〉 = 1 while Ci−1#〈TP ,qj〉 = 0.

Notice that in our modeling of 2CMs there exists also infinite sequences of
reconfigurations that do not contains program steps: in these cases they include
infinitely many actions that are irrelevant for the simulation (like creation or
destruction of components, or bindings and unbindings) and only finitely many
state changes of components of type TP that are not sufficient to reach a new
qj state.

We first observe that the deployment run composed by the actions new(z1 :
TP ),new(z2 : TB), bind(c, z2, z1), bind(d, z1, z2), and the multi stage change ac-
tion {stateChange(z1, q0, q1), stateChange(z2, q0, q

′)} guarantees the possibility
to reach, from the initial empty configuration C0, a configuration corresponding
to the initial state of the 2CM, i.e., a configuration in [[(1, 0, 0)]]. Moreover, ev-
ery program step from C0 reaches a configuration in [[(1, 0, 0)]]. In fact, it is not
possible for components of type TRi

to enter their state ri if components of type
TP perform only the state change action from q0 to q1.

Fact 1. There exists a deployment run from C0 to a configuration in [[(1, 0, 0)]].
Moreover, for every program step from C0 to a configuration C′, we have that
C′ ∈ [[(1, 0, 0)]].

The proof of undecidability is based on two distinct propositions, a first one
about completeness of the simulation (i.e., each computational step of the 2CM

2Notice that 0 is not a correct index as we have assumed that the program P starts from
instruction 1.
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can be mimicked by a deployment run), and a second one about soundness
(i.e., each program step of a configuration C ∈ [[(j, v1, v2)]] corresponds to a step
(j, v1, v2)→ (j′, v′1, v

′
2) of the 2CM).

Proposition 1. Let (j, v1, v2) be a state of the 2CM and let C ∈ [[(j, v1, v2)]]. If
(j, v1, v2) → (j′, v′1, v

′
2) then there exits a deployment run from C to a configu-

ration C′ ∈ [[(j′, v′1, v
′
2)]].

Proof. It is sufficient to perform an analysis of the three possible computational
steps of the 2CM: increment, decrement and test for zero. We detail only the
increment case (the other cases are treated similarly). If the j-th instruction is
an increment on Ri then in C the component of type TP is in state qj . This
means that an action can be executed to move it in the state that activates the
oni provide port (see Figure 6). This permits to create a new pair of components
of type TRi

and TB , bind them on their ports c and d, and then move the former
in the state requiring oni (notice that a multiple state change is needed to satisfy
the mutual requirements between the two new components). The deployment
run can then be extended by moving the new component of type TRi

in the
state that activates the provide port inci , moving the component of type TP
in state qj+1 (with two state changes) and finally the new component of type
TRi

in its state ri. The reached configuration C′ belongs to [[(j′, v′1, v
′
2)]] because

C′#〈TRi
,ri〉 = C#〈TRi

,ri〉 + 1 and in this case j′ = j + 1.

We now move to the proof of the soundness result.

Proposition 2. Let (j, v1, v2) be a state of the 2CM and let C ∈ [[(j, v1, v2)]].
If there exists a program step from C that reaches a configuration C′ then C′ ∈
[[(j′, v′1, v

′
2)]] and (j, v1, v2)→ (j′, v′1, v

′
2).

Proof. We perform an analysis of the reconfiguration actions executed during
the program step. There are three kinds of actions: state changes of the com-
ponent of type TP moving from state qj to qj′ , state changes inside one of the
components TRi

and other actions. The other actions can be creation or de-
struction of resources, creation or deletion of bindings (that do not alter the
configuration correctness), and multi state changes of new pairs of components
of type TRi and TB . All these actions are irrelevant as their modifications on
the configuration have no impact on the properties checked by the definition
of [[(j′, v′1, v

′
2)]]. It is now sufficient to perform a case analysis on the three pos-

sible kinds of state changes from state qj to qj′ in the component of type TP :
increment, decrement, and test for zero.

In the “test for zero” case, we have that the j-instruction is of the kind
DecJump(Ri, j

′). Moreover, in the configuration (j, v1, v2) we have vi = 0
because during the program step no component of type TR1

or TR2
can per-

form state changes (this would require the activation of either the port oni

or the port offi) and the component of type TP traverses a state that checks

the absence of active onei ports (this implies C#〈TRi
,ri〉 = 0). Hence, we have

(j, v1, v2)→ (j′, v1, v2) and C′ ∈ [[(j′, v1, v2)]].
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In the other two cases, it is sufficient to check that the execution of a protocol
like the one described in the proof of Proposition 1 is executed by the component
of type TP and one component of type TRi

.

We can finally state the main undecidability result:

Theorem 1. The achievability problem is undecidable in the Aeolus model.

Proof. Let M be a 2CM with program P , and let U = {TP , TR1 , TR2 , TB} be
the set of the corresponding component types defined as in Figure 6.

We have that (1, 0, 0)→∗ (j, v1, v2) if and only if there exists a deployment
run from C0 to a configuration C ∈ [[(j, v1, v2)]]. The only if part follows from
Fact 1 and the Propositions 1, while the if part follows from Fact 1 and the
Propositions 2. Hence we have that the j-instruction is reachable in M if and
only if the achievability problem is satisfied for the universe U , the component
type TP and the state qj .

The undecidability of achievability thus follows from the undecidability of
reachability for 2CMs.

4.2. Achievability is decidable in Aeolus core

We demonstrate decidability of the achievability problem by resorting to the
theory of Well-Structured Transition Systems (WSTS) [12, 13].

A reflexive and transitive relation is called quasi-ordering. A well-quasi-
ordering (wqo) is a quasi-ordering (X,≤) such that, for every infinite sequence
x1, x2, x3, · · · , there exist i < j with xi ≤ xj . Given a quasi-order ≤ over X,
an upward-closed set is a subset I ⊆ X such that the following holds: ∀x, y ∈
X : (x ∈ I ∧ x ≤ y) ⇒ y ∈ I. Given x ∈ X, its upward closure is ↑ x = {y ∈
X | x ≤ y}. This notion can be extended to sets in the obvious way: given a
set Y ⊆ X we define its upward closure as ↑ Y =

⋃
y∈Y ↑ y. A finite basis of an

upward-closed set I is a finite set B such that I =
⋃
x∈B ↑ x.

Definition 11. A WSTS is a transition system (S,→,�) where � is a wqo
on S which is compatible with →, i.e., for every s1 � s′1 such that s1 → s2,
there exists s′1 →∗ s′2 such that s2 � s′2 (→∗ is the reflexive and transitive
closure of →). Given a state s ∈ S, Pred(s) is the set {s′ ∈ S | s′ → s}
of immediate predecessors of s. Pred is extended to sets in the obvious way:
Pred(S) =

⋃
s∈S Pred(s). A WSTS has effective pred-basis if there exists an

algorithm that, given s ∈ S, returns a finite basis of ↑ Pred(↑ s).

The following proposition is a special case of Proposition 3.5 in [13].

Proposition 3. Let (S,→,�) be a finitely branching WSTS with decidable �
and effective pred-basis. Let I be any upward-closed subset of S and let Pred∗(I)
be the set {s′ ∈ S | s′ →∗ s} of predecessors of states in I. A finite basis of
Pred∗(I) is computable.

In the remainder of this section, we assume a given universe U of component
types; so we can consider that the set of distinct component type and state pairs
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〈T , q〉 is finite. Let k be its cardinality. We will resort to the theory of WSTS
by considering an abstract model of configurations in which bindings are not
taken into account.

Definition 12 (Abstract Configuration). An abstract configuration B is a finite
multiset of pairs 〈T , q〉 where T is a component type and q is a corresponding
state. We use Conf to denote the set of abstract configurations.

A concretization of an abstract configuration is simply a correct configura-
tion that for every component type and state pair 〈T , q〉 has as many instances
of component T in state q as pairs 〈T , q〉 in the abstract configuration.

Definition 13 (Concretization). Given an abstract configuration B we say that
a correct configuration C = 〈U,Z, S,B〉 is one concretization of B if there exists a
bijection f from the multiset B to Z s.t. ∀〈T , q〉 ∈ B we have that S(f(〈T , q〉)) =
〈T , q〉. We denote with γ(B) the set of concretizations of B. We say that an
abstract configuration B is correct if it has at least one concretization (formally
γ(B) 6= ∅).

An interesting property of an abstract configuration is that from one of its
concretizations it is possible to reach via bind and unbind actions all the other
concretizations (up to instance renaming). This is because it is always possible
to switch one binding from one provide port to another one by adding a binding
to the new port and then removing the old binding.

Property 1. Given an abstract configuration B and configurations C1, C2 ∈
γ(B) there exists α1, · · · , αn sequence of binding and unbinding actions s.t.

C1
α1−→ · · · αn−−→ C ≡ C2.

We now move to the definition of our quasi-ordering on abstract configu-
rations. In order to be able to exploit the WSTS techniques in our context,
we need to consider a quasi-ordering which is compatible with the notion of
correctness, i.e., given a correct abstract configuration, all the greater config-
urations must be correct as well. For this reason, we cannot adopt the usual
multiset inclusion ordering. In fact, the addition of one component to a correct
configuration could introduce a conflict. If the type-state pair of the added
component was absent in the configuration, the conflict might be with an al-
ready present component of a different type-state. If the type-state pair was
present in a single copy, the new conflict might be with that component if the
considered type-state pair activates one provide and one conflict port on the
same interface. This sort of self-conflict is revealed when there are at least two
instances, as one component cannot be in conflict with itself (by definition of
correctness). If the type-state pair was already present in at least two copies,
no new conflicts can be added otherwise such conflicts were already present in
the configuration (thus contradicting its correctness).

In the light of the above observation, we define an ordering on configurations
that corresponds to the product of three orderings: the identity on the set of
type-state pairs that are absent, the identity on the pairs that occurs in one
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instance, and the multiset inclusion for the projections on the remaining type-
state pairs.

Definition 14 (≤). Given a pair 〈T , q〉 and an abstract configuration B, let
#B(〈T , q〉) be the number of occurrences in B of the pair 〈T , q〉. Given two
abstract configurations B1,B2 we write B1 ≤ B2 if for every component type T
and state q we have that #B1

(〈T , q〉) = #B2
(〈T , q〉) when #B1

(〈T , q〉) ∈ {0, 1}
or #B2(〈T , q〉) ∈ {0, 1}, and #B1(〈T , q〉) ≤ #B2(〈T , q〉) otherwise.

As discussed above, this ordering is compatible with correctness.

Property 2. If an abstract configuration B is correct than all the configurations
B′ such that B ≤ B′ are also correct.

Another interesting property of the ≤ quasi-ordering is that from one con-
cretization of an abstract configuration, it is always possible to reconfigure it to
reach a concretization of a smaller abstract configuration. In this case it is pos-
sible to first add from the starting configuration the bindings that are present in
the final configuration. Then the extra components present in the starting con-
figuration can be deleted because not needed to guarantee correctness (they are
instances of components that remain available in at least two copies). Finally
the remaining extra bindings can be removed.

Property 3. Given two abstract configurations B1,B2 s.t. B1 ≤ B2, C1 ∈ γ(B1),

and C2 ∈ γ(B2) we have that there exists a deployment run C2
α1−→ · · · αn−−→ C ≡

C1.

We have that ≤ is a wqo on Conf because, as we consider finitely many
component type-state pairs, the three distinct orderings that compose ≤ are
themselves wqo.

Lemma 1. ≤ is a wqo over Conf .

Proof. The proof is based on a representation of abstract configurations as 3-ples
of tuples: namely, given B ∈ Conf we represent it as the triple 〈a, b, c〉 where
a is used to represent the component type-state pairs with cardinality 0 in B,
b represents those with cardinality 1, and c describes all the other pairs. We
assume a total ordering on the set (of cardinality k) of the possible type-state
pairs. The three elements a, b and c are vectors of arity k such that a[i] = 1
(resp. b[i] = 1) if the i-th component type-state pair has cardinality 0 (resp. 1)
in B and a[i] = 0 (resp. b[i] = 0) otherwise, while c[i] contains the cardinality of
the i-th pair in B if it is greater or equal to 2 and c[i] = 0 otherwise. Consider
now two abstract configurations B1,B2 ∈ Conf and the corresponding triple
representations 〈a1, b1, c1〉 and 〈a2, b2, c2〉. We have that B1 ≤ B2 iff a1 = a2,
b1 = b2 and c1 ≤k c2 (where ≤k is the extension of the standard ordering on
natural numbers to vectors of length k).

The equality on bit vectors of length k (a and b are indeed of length k)
is a wqo as there are only finitely many such vectors (namely, 2k). Dickson’s
lemma [14] states that a product of wqo is a wqo, thus ≤k is a wqo too. We can
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conclude that the ordering on the triples is a wqo by applying again Dickson’s
lemma.

We now define a transition system on abstract reconfigurations and prove it
is a WSTS with respect to the ordering defined above.

Definition 15 (Abstract reconfigurations). We write B −→ B′ if there exists

C α−→ C′ for some C ∈ γ(B) and C′ ∈ γ(B′).

Lemma 2. The transition system (Conf ,−→,≤) is a WSTS.

Proof. The ≤ is a wqo for Conf by Lemma 1. To prove the thesis we need to
prove that ≤ is compatible with −→ (i.e., if B1 ≤ B2 and B1 −→ B′1 then B2 −→∗ B′2
for some B′2 s.t. B′1 ≤ B′2). This is straightforward since we have B2 −→∗ B1 (by
Property 3), B1 −→ B′1 (by hypothesis), and B′1 ≤ B′1 (by reflexivity of ≤).

The following lemma is rather technical and it will be used to prove that
(Conf ,−→,≤) has effective pred-basis. Intuitively it will allow us to consider,
in the computation of the predecessors, only finitely many different (multiple)
state change actions.

Lemma 3. Let k be the number of distinct component type-state pairs. If B1 −→
B2 then there exists B′1 −→ B′2 such that B′1 ≤ B1, B′2 ≤ B2 and |B′2| ≤ 2k + 2k2.

Proof. If |B2| ≤ 2k+2k2 the thesis trivially holds. Consider now |B2| > 2k+2k2

and a transition C1
α−→ C2 such that C1 ∈ γ(B1) and C2 ∈ γ(B2). We now show

that is possible to remove one component from C1 while keeping the possibility
to perform an action leading to a configuration corresponding to C2 without the
component removed form C1. We consider two subcases.
Case 1. There are three components z1, z2 and z3 having the same component
type and internal state that do not perform a state change in the action α.
Without loss of generality we can assume that z3 does not appear in α (this is not
restrictive because at most two components that do not perform a state change
can occur in an action). We can now consider the configuration C′1 obtained
by C1 after removing z3 (if there are bindings connected to provide ports of

z3, these can be rebound to ports of z1 or z2). Consider now C′1
α−→ C′2 and

the corresponding abstract configurations B′1 and B′2. We have that B′1 −→ B′2,
B′1 ≤ B1, B′2 ≤ B2 and |B′2| < |B2|. If |B′2| ≤ 2k + 2k2 the thesis is proved,
otherwise we repeat this deletion of components.
Case 2. There are no three components of the same type-state that do not
perform a state change. Since |B2| > 2k + 2k2 we have that α is a multiple
state change involving strictly more than 2k2 components (otherwise there are
strictly more than 2k components that do not perform state changes, thus at
least three of them are of the same type-state). This ensures the existence of
three components z1, z2 and z3 of the same type that perform the same state
change from q to q′. As in the previous case we consider the configuration
C′1 obtained by C1 after removing z3 and α′ the state change similar to α but

without the state change of z3. Consider now C′1
α′−→ C′2 and the corresponding

22



abstract configurations B′1 and B′2. As above, B′1 ≤ B1, B′2 ≤ B2 and |B′2| < |B2|.
If |B′2| ≤ 2k + 2k2 the thesis is proved, otherwise we repeat the deletion of
components.

We are now in place to prove that (Conf ,−→,≤) has effective pred-basis.

Lemma 4. The transition system (Conf ,−→,≤) has effective pred-basis.

Proof. We first observe that given an abstract configuration the set of its con-
cretizations up to configuration equivalence is finite, and that given a configu-
ration C the set of preceding configurations C′ such that C′ α−→ C is also finite
(and effectively computable). Consider now an abstract configuration B. We
now show how to compute a finite basis for ↑ Pred(↑ B) by considering the
preceding configurations of a finite set of corresponding concrete configurations.
First of all we consider the finite set of abstract configurations composed by B, if
|B| > 2k+2k2, or all the configurations B′ such that B ≤ B′ and |B′| ≤ 2k+2k2,
otherwise. Then we consider the (finite) set of concretizations of all such ab-
stract configurations. Finally we compute the (finite) set of the preceding con-
figurations of all such concretizations. The finite basis is obtained by taking the
set of abstract configurations corresponding to the latter: this is finite and it is
a basis for ↑ Pred(↑ B) as a consequence of Lemma 3.

We are finally ready to prove our decidability result.

Theorem 2. The achievability problem in Aeolus core is decidable.

Proof. Let k be the number of distinct component type-state pairs according
to the considered universe of component types. We first observe that if there
exists a correct configuration containing a component of type T in state q then
it is possible to obtain via some binding, unbinding, and delete actions another
correct configuration with k or less components. Hence, given a component type
T and a state q, the number of target configurations that need to be considered
is finite. Moreover, given a configuration C′ ∈ γ(B′) there exists a deployment
run from C ∈ γ(B) to C′ iff B ∈ Pred∗(↑ B′).

To solve the achievability problem it is therefore possible to consider only
the (finite set of) abstractions of the target configurations. For each of them,
say B′, by Proposition 3, Lemma 2, and Lemma 4 we know that a finite basis
for Pred∗(↑ B′) can be computed. It is sufficient to check whether the initial
empty configuration is in such basis.

In this section we have considered just the problem of reaching a target
configuration starting from an initial empty configuration. The proof presented
holds however also for the more general problem of finding if the target configu-
ration can be reached by an initial (possibly non empty) configuration. Indeed,
in this cases, it is sufficient to check whether at least one of the abstract config-
urations in Pred∗(↑ B′) contains a configuration that is ≤ w.r.t. the abstraction
of the initial configuration.
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Figure 7: Example of a component type transformation η.

4.3. Achievability is Ackermann-hard in Aeolus core

We now prove that the achievability problem in Aeolus core is Ackermann-
hard by reduction from the coverability problem in reset Petri nets, a problem
which is indeed known to be Ackermann-hard [15].

We start with some background on reset Petri nets.
A reset Petri net RN is a tuple 〈P, T, ~m0〉 such that P is a finite set of

places, T is a finite set of transitions, and ~m0 is a marking, i.e., a mapping from
P to N that defines the initial number of tokens in each place of the net. A
transition t ∈ T is defined by a mapping •t (preset) from P to N, a mapping t•

(postset), and by a set of reset arcs t ↓⊆ P . A configuration is a marking ~m.
Transition t is enabled at marking ~m iff •t(p) ≤ ~m(p) for each p ∈ P . Firing

t at ~m leads to a new marking ~m′ defined as ~m′(p) = ~m(p) −• t(p) + t•(p) if

p 6∈ t ↓, and ~m′(p) = 0 otherwise; we denote this marking transformation with

~m 7→ ~m′. A marking ~m is reachable from ~m0 if ~m0 7→∗ ~m, i.e., it is possible to
produce ~m after firing finitely many times transitions in T . Given a reset net
〈P, T, ~m0〉 and a marking ~m, the coverability problem consists in checking for

the existence of a reachable marking ~m′ such that ~m ≤ ~m′, i.e. ~m(p) ≤ ~m′(p)
for every p ∈ P . In [15] it is proved that the coverability problem for reset nets
is Ackermann-hard.

Before entering into the details of our modeling of reset Petri nets, we observe
that given a component type T it is always possible to modify it in such a way
that its instances are persistent and unique. The uniqueness constraint can be
enforced by allowing all the states of the component type to provide a new port
with which they are in conflict. To avoid the component deletion it is sufficient
to impose its reciprocal dependence with a new type of component. When this
dependence is established the components cannot be deleted without violating
it. In Figure 7 we show an example of how a component type having two states
can be modified in order to reach our goal. A new auxiliary initial state q′0 is
created. The new port e ensures that the instances of type T in a state different
from q′0 are unique. The require port f provided by a new component type Taux
forbids the deletion of the instances of type T , if they are not in state q′0. We
assume that the ports e and f are fresh. We can therefore consider, without loss
of generality, components that are unique and persistent. Given a component
type T we denote this component type transformation with η(T ).

We now consider a given reset Petri net RN = 〈P, T, ~m0〉 and discuss how
to encode it in Aeolus core component types. We will use three types of com-
ponents: one modeling the tokens, one for the transitions and one for defining
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Figure 8: Token and counter component types.

a counter. The components for the transitions and the counter are unique and
persistent, while those for the tokens cannot be unique because the number of
tokens in a Petri net can be unbounded. The simplest component type, denoted
with Tp, is the one used to model a token in a given place p ∈ P . Namely, one
token in a place p is encoded as one instance of Tp in the on state. There could
be more than one of these components deployed simultaneously representing
multiple tokens in a place. In Figure 8a we represent the component type Tp.
The initial state is the off state. The token could be created following a protocol
consisting of requiring the port ap and then providing the port bp. Symmetri-
cally, a token can be removed by providing the port cp and then requiring the
port dp. Even if multiple instances of the token component can be deployed
simultaneously, only one of them at a time can initiate the protocol to change
its state. This is guaranteed by the conflict on the port z, which is provided by
all the states of the state change protocols. The component provides the port p
when it is in the on state.

In order to model the transitions without having an exponential blow up of
the size of the encoding we need a mechanism to count up to a fixed number.
Indeed, a transition can consume and produce a given number of tokens from
and to several places. To count a number up to n we will use instances of
the component types TC1 , · · · , TCdlog(n)e ; the type TCi will be used to represent
the i-th less significant bit of the binary representation of the counter that,
for our purposes, needs just to support the increment and reset operations. In
Figure 8b we represent one of the bits implementing the counter. The initial
state is 0. To increment the bit it is necessary to provide and require in sequence
the upi and up

′

i ports, while to reset it the reseti and reset
′

i ports. If the bit is
in state 1 the increment will trigger the increment of the next bit (except for
the component representing the most significant bit that will never need to do
that). The instance of TCi

can be used to count how many tokens are consumed
or produced by checking if the right number is reached via the ports counteri(0)
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and counteri(1). We transform the component types TC1 , · · · , TCdlog(n)e using
the η transformation to ensure uniqueness and persistence of its instances.

The transitions in T can be represented with a single component interacting
with token and counter components. This component, represented in Figure 9a,
during a so-called initialization phase, performs state changes until reaching a
state q. The initialization phase is used to generating the representation of the
initial marking ~m0. From the state q it can nondeterministically selects one
transition t to fire, by entering a corresponding qt state. The subsequent state
changes can be divided in three phases: consumption, production, and reset.
These phases respectively model the consumption of tokens from the places in
the preset of the transition t, the production of tokens in the places in the
postset of t, and the complete elimination of the tokens in the reset places of t.
Notice that, as the transition t to be fired is selected nondeterministically, the
corresponding deployment run could block due to the unavailability of instances
of token components required during the consumption phase. As we will discuss
later, these blocking deployment runs are not problematic.

We now describe in details the three consumption, production and reset
phases, and then comment the initialization phase. In the consumption phase,
for every place p in the preset of the transition, the counter is first reset providing
the reseti and requiring the reset′i ports for all the counter bits. Then a cycle
starts incrementing the counter, by providing and requiring the ports up1 and
up′1, and consuming a token, by providing and requiring the ports cp and dp.
The cycle ends when all the bits of the counter represent in binary the right
number of tokens that need to be consumed from p. If instead at least one bit
is wrong the cycle restarts. In Figure 9b we depict the part of the component
type modeling the consumption of n tokens from the place p.

The production phase is similar to the consumption phase. For every kind of
token that needs to be produced, the counter components are used to count the
actual number of instances. The production of a single token follows a protocol
similar to the one used for their consumption with the only difference that the
ports ap and bp are required and provided in sequence, instead of providing and
requiring cp and dp.

Reset arcs are instead modeled with a single state conflicting with the tokens
in places that must be reset. For instance in Figure 9c we depicted the part of
the component modeling the reset of a place p: the conflict on the port p forces
the deletion of all the instances of component type Tp in the on state. At the
end of the reset phase, the component has a transition to returns in its state q.

The initialization phase is like a production phase in which the tokens of ~m0

are produced; at the end of the initialization phase the state q is entered.
We will denote with TT the component type explained above.

Definition 16 (Reset Petri net encoding in Aeolus core). Given a reset Petri
net RN = (P, T,m0) if n is the largest number of tokens that can be consumed
or produced by a transition in T , the encoding of RN in Aeolus core is the set
of component types:

ΓRN = {Tp | p ∈ P} ∪ {η(TCi
) | i ∈ [1..dlog(n)e]} ∪ {η(TT )}
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Notice that the components of type Tp are not guaranteed to be persistent,
so they can be deleted even when they are in the on state. This corresponds to
a nondeterministic elimination of one token from the place p. As we will discuss
later, this token elimination in our net simulation is not problematic because
it is not necessary to faithfully reproduce the net behaviour, but it is sufficient
to preserve coverability (i.e., the possibility to generate at least a predefined
number of tokens in some given places).

Before moving to the proof of the correspondence between the reset Petri
net RN and its encoding ΓRN , we observe that the size of the component types
ΓRN is polynomial w.r.t. the size of the reset Petri net. This is due to the fact
that the counter and place components have a constant amount of states and
ports while the component for the transitions has a number of states that grows
linearly with respect to the number of places involved in the transitions.

We now introduce the notation C0 for denoting the empty initial configu-
ration of our encoding, and [[~m]] to characterize configurations corresponding to
the net marking ~m.

Definition 17. Let RN = (P, T,m0) be a reset Petri net and ~m one of its
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markings. We define:

C0 = 〈ΓRN , ∅, ∅, ∅〉

[[~m]] = { C | C is a correct configuration with universe ΓRN ,

C#〈TT ,q〉 = 1, ∀p ∈ P.C#〈Tp ,on〉 = ~m(p) }

We call net step a sequence of reconfigurations on components instances
of the universe ΓRN that, beyond other actions, includes state changes of the
component TT until entering the state q. Formally, it is a non empty sequence

of reconfigurations C1
α1−→ C2

α2−→ · · · αm−1−−−−→ Cm such that Cm#
〈TT ,q〉 = 1, while

Ci#〈TT ,q〉 = 0, for every 1 < i < m.

We first observe that the deployment run that creates an instance of TT and
then performs the state changes in the initialization phase until entering the
state q guarantees the possibility to reach a configuration in [[ ~m0]]. Moreover,
every net step from the initial empty configuration reaches a configuration in
[[~m]] where ~m ≤ ~m0. Notice that we need to consider markings [[~m]] smaller than
[[ ~m0]] because token components moved in the on state during the initialization
could be nondeterministically deleted.

Fact 2. There exists a deployment run from C0 to a configuration in [[ ~m0]].
Moreover, for every net step from C0 to a configuration C′, we have that C′ ∈ [[~m]]
and ~m ≤ ~m0.

The proof of correspondence between a reset Petri net RN and its encoding
ΓRN is based on two distinct propositions, a first one about completeness of the
simulation (i.e., each firing of a net transition can be mimicked by a deployment
run), and a second one about soundness (i.e., each net step of a configuration
corresponds to the firing of a net transition).

Proposition 4. Let RN = (P, T,m0) be a reset Petri net, ~m one of its mark-

ings, and C a configuration in [[~m]]. If ~m 7→ ~m′ then there exits a deployment

run from C to a configuration C′ ∈ [[ ~m′]].

Proof. It is sufficient to observe that if ~m 7→ ~m′ then there exists a transition
t ∈ T that, by consuming and producing tokens and resetting places, transforms
~m in ~m′. This transition can be selected in a deployment from C that starts by
changing the state of TT form q to qt. Then the corresponding consumption,
production and reset phases can be executed to reach a configuration in [[ ~m′]].

We now move to the proof of the soundness result by showing that, if there
exists a net step from a configuration in [[~m]] to a configuration in [[ ~m′]], then there

exists a marking ~m′′ ≥ ~m′ such that ~m 7→ ~m′′. We need to consider a greater
marking in the net because, as already observed, token components could be
deleted during the deployment run and a perfect correspondence between the
reset Petri net and its simulation is not guaranteed.
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Proposition 5. Let RN = (P, T,m0) be a reset Petri net, ~m one of its mark-
ings, and C a configuration in [[~m]] having a net step to C′. Then, there exists a

marking ~m′ such that C′ ∈ [[ ~m′]] and a marking ~m′′ ≥ ~m′ such that ~m 7→ ~m′′.

Proof. We first observe that the final configuration C′ of a net step contains the
TT component in the q state; thus there exists [[ ~m′]] s.t. C′ ∈ [[ ~m′]].

The net step from C ∈ [[~m]] to C′ ∈ [[ ~m′]] includes the state changes, on the
instance of component type TT , corresponding to the consumption, production
and reset phases for some transition t in T . The execution of the consumption
phase guarantees that •t ≤ ~m thus t can fire in ~m: let ~m 7→ ~m′′ be the effect
of firing such transition. We have that ~m′′ ≥ ~m′ because ~m′′ is obtained from
~m by performing the same consumption, production and reset executed during
the net step from C ∈ [[~m]] to C′ ∈ [[ ~m′]]. Notice that during this net step some
token component in the on state could be nondeterministically deleted, but this
has no impact on the property ~m′′ ≥ ~m′ because its effect is simply to remove
more instances of active token components w.r.t. those removed during the
consumption phase.

Notice that besides the net step from C to C′ considered in the above Propo-
sition, there are deployment runs starting from C that do not corresponds to net
steps. For instance, there could be an infinite sequence of creations and dele-
tions of components or, more interesting, a non habilitated transition t could
be tried. In this case the deployment run could block because the consumption
phase cannot be completed. These additional deployment runs are not prob-
lematic as our encoding needs to preserve the possibility to reach specific target
configurations (i.e., those that contain at least a given amount of instances of
token components in the on state), and additional deployment runs that do not
reach such configurations are irrelevant.

We are finally ready to prove Ackermann-hardness of the achievability prob-
lem for Aeolus core.

Theorem 3. The achievability problem for Aeolus core is Ackermann-hard.

Proof. Consider a reset Petri net RN = 〈P, T, ~m0〉 and a target marking ~m. The
problem of checking whether ~m can be covered in RN is Ackermann-hard [15].
We first construct a new reset Petri net RN ′ = 〈P ] {p′}, T ] {t′}′, ~m0〉 with
an additional place p′ and a transition t′ such that •t′ = m and t′• = {p′}. It
is immediate to see that ~m can be covered in RN iff at least one token can be
placed in p′ in RN ′. Moreover this transformation increases the size of the Petri
net by a constant. We now consider the set of component types ΓRN ′ , i.e., the
encoding of RN ′ in Aeolus core. We have already observed that the size of ΓRN ′

is polynomial w.r.t. the size of the reset net RN ′. We complete the proof by
showing that a token can be placed in p′ in RN ′ iff the component type-state
pair 〈TT , qp′〉 is achievable with the universe of component types ΓRN ′ , where
qp′ is the state of TT that provides the port bp′ , necessary to move in the on
state a component of type Tp′ .
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The “only if” part follows from Fact 2 and Proposition 4, that guarantee the
existence of a deployment run reaching a configuration C ∈ [[~m]] with m(p′) > 0.
As in C there is at least one instance of type Tp′ in the on state, at least one
configuration is traversed with the instance TT in the qp′ state.

The proof of the “if” part proceeds as follows. The achievability of the pair
〈TT , qp′〉 guarantees the existence of a deployment run C0

α1−→ C1
α2−→ · · · αn−−→ Cn

where Cn contains one instance of TT in the qp′ state. Such computation can
be extended in such a way that one instance of Tp′ reaches the on state and
the TT component enters in the state q. Let C be the reached configuration. As
the TT component is in the state q, we have that C ∈ [[~m]] for some marking ~m.
Moreover, m(p′) > 0 because an instance of Tp′ is in the on state. Fact 2 and

Proposition 5 guarantees the reachability in the net RN ′ of a marking ~m′ such
that ~m ≤ ~m′, thus guaranteeing m′(p′) > 0.

4.4. Achievability is polynomial in Aeolus−

The achievability problem becomes polynomial in case no capacity con-
straints are specified on require and provide port, and no conflicts are allowed
(i.e., the value 0 on require ports is forbidden). We prove this by presenting a
decision algorithm for the achievability problem in Aeolus−.

The underlying idea is to perform an abstract forward exploration of all
reachable configurations. Since conflicts cannot be specified the addition to
a configuration of new components cannot forbid the execution of previously
possible actions. Moreover, since in Aeolus− provide ports have capacity∞ and
require ports have numerical constraint 1, the correctness of a configuration can
be checked simply by verifying that the set of active require ports is a subset of
the set of active provide ports.

In the light of the second observation, and knowing that the sets of active
require and provide ports are functions of the internal state of the components,
we abstractly represent configurations simply as sets of pairs 〈T , q〉 indicating
the type and the state of the components in the configuration. This way, sym-
bolic configurations abstract away from the exact number of instances of each
kind of component, and from their current bindings.

We consider symbolic runs representing the evolutions of abstract configura-
tions. Thanks to the first observation we can restrict ourselves to consider only
evolutions where the set of available pairs 〈T , q〉 does not decrease. Namely, we
perform a symbolic forward exploration starting from an abstract configuration
containing all the pairs 〈T ′, T ′.init〉 representing components in their initial
state. Then we extend the abstract configuration by adding step-by-step new
pairs 〈T ′, q′〉.

Algorithm 1 checks achievability by relying on two auxiliary data struc-
tures: absConf is the set of pairs 〈T ′, q′〉 indicating the type and state of the
components in the current abstract configuration, and provPort is the set of
provide ports active in such a configuration. The algorithm incrementally ex-
tends absConf until it is no longer possible to add new pairs. Termination of the
algorithm is guaranteed because there are only finitely many type-state pairs in
a universe of component types.
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Algorithm 1 Verifying achievability in Aeolus−

function Achievability(U , T , q)
absConf := {〈T ′, T ′.init〉 | T ′ ∈ U}
provPort :=

⋃
〈T ′,q′〉∈absConf {dom(T ′.P(q′))}

repeat
new := {〈T ′, q′〉 | 〈T ′, q′′〉 ∈ absConf , (q′′, q′) ∈ T ′.trans} \ absConf
newPort :=

⋃
〈T ′,q′〉∈new{dom(T ′.P(q′))}

while ∃〈T ′, q′〉 ∈ new . dom(T ′.R(q′)) 6⊆ provPort ∪ newPort do
new := new \ {〈T ′, q′〉}
newPort :=

⋃
〈T ′,q′〉∈new{dom(T ′.P(q′))}

end while
absConf := absConf ∪ new
provPort := provPort ∪ newPort

until new = ∅
if 〈T , q〉 ∈ absConf then return true
else return false
end if

end function

At each iteration, the potential new pairs are initially computed by checking
the automata transitions, and then they are stored in the set new . Not all those
states could be actually reached as one needs to check whether their require ports
are included in the available provide ports provPort or in the ports activated
by the new states. This is done by a one-by-one elimination of pairs 〈T ′, q′〉
from new when their requirements are unsatisfiable. During elimination, we use
newPort to keep track of the provide ports which are activated by the component
states currently in new .

When the final set absConf is computed, achievability for the component
type T and state q can be simply checked by verifying whether 〈T , q〉 is in
absConf .

We are now ready to prove our polynomiality result for the Aeolus− model.

Theorem 4. Let U be a set of component types of the Aeolus− model. Given
the component type T and the state q, the achievability problem for U , T , and
q can be checked in polynomial time (with respect to the size of the descriptions
of the components in U).

Proof. We first prove completeness and soundness of the Algorithm 1, i.e., if a
pair 〈T , q〉 is achievable then it will be included in absConf at the end of the
algorithm, and if 〈T , q〉 is added to absConf then there exists a deployment run
to deploy one instance of T in the q state.

Completeness is proved as follows. The symbolic representation of the ini-
tial configuration 〈U, ∅, ∅, ∅〉 is included in the initial set absConf . Consider

now a reconfiguration C α−→ C′. If the symbolic representation of C is included in
absConf at the beginning of an iteration of the repeat, then the symbolic rep-
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resentation of C′ will be surely included in absConf at the end of such iteration.
This because the newly reached states in C′ will be also in the new set at the
end of the while. Therefore, if there exists a deployment run able to achieve a
component of type T in the state q, then the algorithm will eventually include
the pair 〈T , q〉 in absConf .

The soundness is proved as follows. Let absConf i be the set absConf at the
end of the i-th iteration of the repeat, and let absConf 0 be the set containing
only the pairs 〈T ′, T ′.init〉. By induction on i, we prove that there exists a
deployment run that includes at least one instance for every type-state pair in
absConf i. For the base case i = 0, this trivially holds (it is sufficient to consider
a deployment run that creates at least one instance for each component type).
In the induction case we consider absConf i, and by induction hypothesis we

assume the existence of a deployment run C0
α1−→ · · · αn−−→ C that generates at

least one instance for the type-state pairs in absConf i. We show the existence
of a deployment run for the pairs in absConf i+1. Consider the new pairs 〈T ′, q′〉
added in absConf i+1 and let P be the multiset of pairs necessary to generate
such new pairs, i.e.,

P = {{〈T ′, q′′〉 | (q′′, q′) is the transition used to add 〈T ′, q′〉 to absConf }}

Consider now a deployment run obtained by repeating the actions α1, · · · , αn of
the deployment run C0

α1−→ · · · αn−−→ C until the reached configuration contains at
least one instance for the pairs in absConf i plus one additional instance for each
occurrence of the pairs in the multiset P. This deployment run can be extended
with state changes of these additional instances to reach the new 〈T ′, q′〉 pairs.

We now show that the complexity of the algorithm is polynomial w.r.t. the
size of the description of the universe of component types U . Polynomiality is
guaranteed by the fact that both the repeat and the while cycles perform a
number of iterations smaller than the number of different pairs 〈T ′, q′〉 in the
universe U .

5. Related work

To the best of our knowledge Aeolus is the first model that is designed on
purpose to formally addresses the specific needs of software component deploy-
ment in the cloud. It was first introduced in [16] and further developed within
the ANR project Aeolus “Mastering the Complexity of the Cloud” [17, 18]. Dif-
ferently from the definition of the language presented here, in [16] an additional
kind of requirements—called weak requirements—was present. Whereas the re-
quirements presented in this paper (formerly known as strong requirements)
need to be enforced every step, weak requirements are verified only at the end
of a deployment run and thus need to be satisfied only in the final configura-
tion. We decided to drop the notion of weak requirements all together for two
reasons: firstly, we notice that they were not very used in practice; secondly,
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their behavior can easily be simulated with strong requirements, so there was
no real gain in terms of model expressivity.3

This paper extends the complexity result about achievability in the Aeolus
core model, which was first proven decidable in [19]. In that paper, reconfig-
urability (the version of achievability with a non empty initial configuration)
was proved to be ExpSpace-hard by reduction from the coverability problem in
standard Petri nets; here we have considered reset Petri nets thus proving that
the problem is furthermore Ackermann-hard.

5.1. Formal models

We now compare the Aeolus approach to related formal models that have
been proposed in slightly different contexts.

Automata have been adopted long ago in the context of component-oriented
development frameworks. One of the most influential model are interface au-
tomata [20], where automata are used to represent the component behavior in
terms of input, output, and internal actions. Interface automata support au-
tomatic compatibility check and refinement verification: a component refines
another if its interface has weaker input assumptions and stronger output guar-
antees. Differently from that approach, we are not interested in component
compatibility or refinement, and we do not require complementary behavior of
components. We simply check in the current configuration whether all required
functionalities are provided by currently deployed components. The automata
in Aeolus do not represent the internal behavior of components, but the effect
on the component of an external deployment or reconfiguration actions.

Aeolus reconfiguration actions show interesting similarities with transitions
in Petri nets [21], a very popular model already presented in the previous sec-
tions and born from the attempt to extend automata with concurrency. At
first sight one might encode our model in Petri net, representing Aeolus compo-
nent states as places, each deployed component as a token in the corresponding
place, and reconfiguration actions as transitions that cancel and produce to-
kens. Achievability in Aeolus would then correspond to coverability in Petri
nets. But there are several important differences. Multiple state change actions
can atomically change the state of an unbounded number of components, while
in Petri net each transition consumes a predefined number of tokens. More im-
portantly, we have proved that achievability can be solved in polynomial time
for the Aeolus− fragment and that it is undecidable for the Aeolus model, while
in Petri nets coverability is an ExpSpace problem [22].

3In order to impose requirements only on the final configuration one can duplicate every
state q of the components into a new state q′. The state q′ will then provide and require the
same ports of q, and can be reached from q via a transition. Intuitively, q′ states should be
the ones that the components reach at the end of the plan. A weak requirement of state q in
this case is modeled as a requirement of state q′. To impose that at the end of the deployment
run only states q′ are present it is enough to add to every q state a provide port that is in
conflict with the target state of the desired component.
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Several process calculi extend/modify the π-calculus [23] in order to deal
with software components. The Piccola calculus [24] extends the asynchronous
π-calculus [23] with forms, first-class extensible namespaces, useful to model
component interfaces and bindings. Calculi like KELL [25] and HOMER [26]
extends a core π-calculus with hierarchical locations, local actions, higher-order
communication, programmable membranes, and dynamic binding. More re-
cently, MECo [27] has extended this approach by proposing also explicit com-
ponent interfaces and channels to realize tunneling effects traversing the hier-
archical location boundaries. On the one hand, all these proposals differ from
Aeolus in that they focus on the modeling of component interactions and com-
munication, while we focus on their interdependencies during system deploy-
ment and reconfiguration. On the other hand, we plan to take inspiration from
these calculi in order to extend our model with boundaries and administrative
domains.

We have already briefly discussed in the introduction the Fractal compo-
nent [5], and the related cloud middleware FraSCAti [6]. In terms of the un-
derlying formal model, we observe that Fractal does provide an object-oriented
API to manage the life-cycle of components which, in spirit, is close to what
Aeolus aims to do with component automata. However, the OO API approach
is more limited when it comes to the ability to reason on component activa-
tion: in Aeolus we can, within limits due to the problem complexity, reason
on and automate component activation; in Fractal an external reasoner will
have to stop at API invocation, without knowledge of what a specific method
implementation will do. Also, in Aeolus component states are not limited to
active/inactive, i.e., each component type can define its own life-cycle in detail.

5.2. Tools

The complementary tools Zephyrus and Metis are directly related to the
Aeolus model. Zephyrus [28] tackles the problem of computing a valid system
configuration (according to the Aeolus model), starting from an existing con-
figuration, a universe of available component types, and a formal specification
that captures user desiderata for the target system. Furthermore, Zephyrus also
takes into account limited machine resources, such as CPU, memory, bandwidth,
etc. The computation is done via translation to a set of integer constraints, plus
a dedicated algorithm to compute bindings, and the approach make it is possible
to add an objective function that can be minimized or maximized to optimize
the resulting configuration.

Metis [29, 30] tackles instead the problem of quickly computing a plan that
migrates a valid Aeolus configuration into a different one (possibly synthesized
by Zephyrus). The authors consider a model similar to Aeolus− without the
possibility of using multi-state changes and propose an algorithm to compute a
deployment run to reach a given target state in a specific component. The algo-
rithm has been proven to be sound, complete, and polynomial in time w.r.t. the
size of the encoding of the components in the universe.

In the same area of Zephyrus and Metis we find various tools, coming from
the both industry and the academia.
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ConfSolve [7] relies on a constraint solver to propose an optimal allocation of
virtual machines to servers, and of applications to virtual machines, but it does
not handle connections among services, nor capacity or replication constraints,
and is unable to cpature package-level incompatibilities.

Two recent efforts, Juju and Engage, are similar to Zephyrus, but they
both avoid the problem of dealing with conflicts. In Juju [4], each service is
deployed on a single machine (or, more recently, in a virtual container inside
one). That avoids the issue of component incompatibilities, but does so at the
price of potentially wasting resources. Engage [31] relies on a solver to plan
deployments, but offers no support for conflicts in the specification language:
one can only indicate that a service can be realized by exactly one out of a list
of components. Furthermore, neither Juju nor Engage—or any other tool that
we are aware of—allows to declare capacity or replication constraints, which are
essential non functional constraints for any non-trivial, scalable application.

6. Conclusions

The Aeolus formalism is a component model designed specifically to capture
most common deployment scenarii for distributed software applications in the
cloud, and it allows to study formally the operations that are needed to deploy
complex applications on modern computing infrastructure.

In this work, we provide precise complexity results for several variants of
this model. We have shown that it is possible to generate a deployment plan
in polynomial time for the fragment Aeolus− that corresponds to the limited
industrial tools currently in use.

Adding support for defining conflicts among components corresponds to us-
ing the fragment Aeolus−, and we have shown that it is still possible to auto-
matically generate a plan, at the price of a very high worst case complexity, as
the problem becomes Ackermann-hard problem.

As for the generation of deployment plans in the full generality of the Aeolus
model, we have present an indecidability result, which provides a clear limit to
what automated tools can do.

We plan to investigate realistic restrictions on the Aeolus model for which
efficient reconfigurability algorithms could be devised. For instance one can con-
sider imposing an upper limit on the number of resources that can be allocated
during a deployment run, or investigate the impact of restricting the shape or
size of the internal state machine of the components.

It will also be interesting to extend the Aeolus model to take into account
nested components or administrative domains and explore the impact of such
extensions on the complexity of the generation of deployment plans.
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