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Abstract—Programming languages have evolved
rapidly over the past five decades, reflecting broader
shifts in software development practices and tech-
nological advances. Early on, entities like the U.S.
Department of Defense recognized the challenges
posed by diverse programming languages, leading to
initiatives such as the Ada programming language.
Since then, indexes like Tiobe, RedMonk, and Open
Hub have attempted to track language popularity,
though their metrics provide only a snapshot view,
and most of them do not make available their data.
We show that Software Heritage, the largest public
archive of source code, makes it now possible, and
easy, to address this question in a comprehensive,
transparent and reproducible manner through its
unified dataset, which includes over 20 billion source
files and 4 billion commits. As a result of our study,
we have created a dataset and pipeline that allows
to analyze five decades of programming language
trends, by measuring the programming activity as
seen in the Software Heritage archive, confirming
trends in language adoption, shifts in popularity,
and significant transitions linked to technological
changes. The comparison with the existing indexes
shows rather good alignment for the first positions
in the rankings, but differences emerge down the line,
as programmer activity, and language popularity are
not necessary aligned. To facilitate further research
on programming language evolution, we publish the
whole software pipeline as Open Source, and make
available the full dataset, that will be updated bi-
annually.

I. INTRODUCTION

Over the last 50 years, the evolution of program-
ming languages has mirrored the growth and di-
versification of software development practices, at
an astonishing pace. Already in the late seventies,

This work was made possible by Software Heritage, the great
library of source code: https://www.softwareheritage.org

the U.S. Department of Defense (DoD) the chal-
lenge of managing over 450 different programming
languages in use across various projects [1], and
as a consequence funded the development of the
Ada programming language as a standard for its
contractors.

The importance of understanding language de-
velopment and adoption has been recognized since
that same decade, as evidenced by the History of
Programming Languages conference (HOPL) [2]
held in Los Angeles in 1978, and that spawned
the comprehensive catalog HOPL.info, which doc-
uments over 8000 programming languages, illus-
trating the vast diversity in the programming land-
scape [3].

With the advent of the Internet, a sustained
interest emerged in tracking how programming
languages are adopted and evolve over time, with
popularity indexes like Tiobe [4], RedMonk [5],
and the former Ohloh (now Open Hub) [6]. These
indexes provide a snapshot of language popularity
based on different metrics: Tiobe assigns a score
to each language by counting the number of search
results for “[language name] programming” across
several search engines, while PYPL measures tu-
torial search popularity on Google Trends; Open
Hub publishes statistics of progamming languages
based on project activity by counting the number
of commits, which aligns more closely with public
software repositories but does not provide access
to historical data; RedMonk provides a combined
score based on GitHub projects and StackOverflow
activity but still focuses on more recent trends.

The proliferation of open-source repositories and



collaborative platforms like GitHub and GitLab
provides an unprecedented volume of historical
data to trace this evolution. However, this data
is difficult to analyze in a consolidated manner
for researchers, making it impractical to perform
a large-scale, time-based analysis of programming
language evolution across the entire history of
software development.

Karus and Gall [7] studied language usage trends
across 22 open-source software (OSS) projects,
analyzing various language co-evolution patterns.
While they uncovered useful insights into language
combinations, such as the frequent co-evolution
of JavaScript with XML, their scope was limited
to a small set of projects, reflecting the lack of
comprehensive data needed for broader analyses of
language evolution over time.

Meyerovich and Rabkin [8] explored factors
influencing language adoption, such as developer
experience and library availability, across large
datasets from platforms like SourceForge and
Ohloh. Although they provided valuable insights
into adoption drivers, their snapshot-based data did
not capture the historical evolution of languages.

Ray et al. [9] examined the effect of program-
ming languages on code quality using over 700
GitHub projects. While this study highlighted some
links between language design and software qual-
ity, it was limited to GitHub, thus restricting its
relevance to recent OSS trends.

Finally, Kochhar et al. [10] analyzed multi-
language usage in software projects and its correla-
tion with bug proneness. Although their findings on
defect rates in multi-language projects are insight-
ful, the GitHub-only scope restricts generalizability
across the software ecosystem.

Overall, these studies underscore the limitations
researchers faced due to the lack of an infrastruc-
ture providing easy access to extensive, open and
well structured data to perform large scale studies.

The advent of Software Heritage (SWH) [11],
[12] changes the landscape, as it is the largest pub-
lic archive of source code, capturing development
history across a vast array of software projects. It
enables large-scale empirical studies of software
evolution by offering access to over 20 billion
unique source files and 4 billion commits, stored
in a unified, Merkle-based graph representation
that has been used in several large scale studies
since swh-graph, a highly efficient in memory
representation, has been released [13].

This study leverages Software Heritage to tackle
for the first time a comprehensive longitudinal anal-
ysis of the evolution of programming languages
over five decades, that is missing in all previous
studies, and answer the following Research Ques-
tions:

• RQ1: Can the Software Heritage archive be
used to estimate the evolution of programming
language adoption over time at a global scale?

• RQ2: How has the usage of programming
languages evolved over the last 50 years in
terms of adoption and decline? What are
the major shifts in programming language
popularity over time, particularly around key
technological transitions (e.g., the rise of web
development, mobile platforms)?

• RQ3: How do the trends observed in Software
Heritage’s dataset compare with other lan-
guage popularity indexes like Tiobe, PYPL,
RedMonk and Open Hub?

In the following, we describe how we lever-
aged the SWH’s comprehensive dataset and
swh-graph to produce intermediate derived
datasets used to uncover trends in programming
language adoption, shifts in popularity, and a pic-
ture of the overall dynamics of the software ecosys-
tem. Beyond the results presented in this work, we
provide researchers with ready to use datasets and
a pipeline to easily reuse and expand on this work.

The article is organised as follows: Section II
recalls the basic concepts of the Software Heritage
data structure, Section III details the method used
to estimate the activity, per year, for each program-
ming language, Section IV presents and discusses
the results, Section V compares our findings with
existing language popularity indexes, and then we
present the answers to the research questions, dis-
cuss threats to validity and conclude with paths for
future works.

II. GENERAL PRESENTATION OF SOFTWARE
HERITAGE AND THE STRUCTURE OF THE

MERKLE GRAPH

The Software Heritage archive [11], [12] con-
tains more than 20 billion unique source files,
with the full history of development contained
in 4 billion unique commits, coming from more
than 300 million software projects. The software
artifacts are retrieved during periodic crawls from
major collaborative development platforms (for ex-
ample GitHub, GitLab) and package repositories
(for example PyPI, Debian, NPM). They are stored



in a uniform representation, the swh-graph [13],
linking source files (“contents”), directories, com-
mits (“revisions”), snapshots, and origins (“ori-
gins”) of version control system (VCS) reposito-
ries.

The structure of the Merkle graph used by
Software Heritage ensures the integrity and trace-
ability of the archived files. Each file, directory,
commit, and snapshot is uniquely identified by a
cryptographic hash identifier called SWHID (see
https://swhid.org for a detailed presentation),
enabling efficient data verification and content
deduplication.

In particular, this ensures that each file content
is present only once in the archive. This feature of
the data structure simplifies significantly the task
of analysing the evolution of language usage by
avoiding the need to deal with duplicates, which
are commonplace since the creation of distributed
version control systems and with the popularization
of contributions via pull or merge requests.

Merkle DAG
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contents

Fig. 1. Structure of the Merkle graph underlying Soft-
ware Heritage

III. TECHNICAL APPROACH: FROM CONTENTS
TO FILENAMES AND EXTENSIONS

In order to perform our analysis on the pro-
gramming language evolution, we need to identify
the programming language used for each of the
unique file contents in the archive. Unfortunately,
Software Heritage does not compute yet the pro-
gramming language information by analysing the
contents of each file, and it is impractical to run a
language detector on tens of billions of files, so we
decided to resort to an heuristic approach: use the
file extension as an indicator of the programming
language used.

This in turns requires to find the proper filename
for each file content, but due to the structure of
the Merkle tree, the same file content may have
different file names in different projects. This issue
has been already addressed in the work originally
done to build the “Popular Content Filenames
Dataset”, a dataset that associates to each of the
20+ billion contents (identified by the SWHID) its
most popular filename [14], i.e., the name that was
assigned to it the most times. This file contains
more than 20 billion lines, with one line per content
file.

A. Computing first occurrence information

Now that we have the filename for each content,
we need to know when it was first seen in the
archive: this will be the date of creation or modifi-
cation of the file, and provides the basic indicator
of activity that we can use to build an objective
view of programming language popularity at a
given moment in time.

By visiting the Software Heritage graph, one can
propagate the date associated to each revision or
release node downwards, and associate to the file
content nodes the date of its first appearance in the
archive. This is performed in a single visit of the
graph, and leads to a new version of the popular
contents filenames dataset that now includes the
following fields:

Name Type Explanation
id bigint Numeric identifier for

each entry in the dataset.
length bigint Length or size of the file

content in bytes.
filename binary Encoded most popular

name of the file content,
stored in binary format.

timestamp bigint Timestamp marking the
first occurrence of the file
in the dataset.

revrel bigint Numeric identifier of the
revision or release associ-
ated with the first occur-
rence of the file.

origin bigint Numeric identifier for the
original source where the
file first appeared.

Tab. I. Dataset Fields with Types and Explanations

Numeric identifiers can be converted to Software
Hash Identifiers (or URLs, for origins) using the
“nodes” table provided alongside the dataset, but
are not used in our analysis.

As a result, for each unique file content one now
has at hand its most popular file name, and the
date of its first appearence in the archive. As a

https://swhid.org


first application, it is quite easy to sum the number
of different file seen per year, and get a picture of
the cumulative growth of the original contents in
the archive, as shown in Figure 2, that confirms the
exponential trend already identified in [15].
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Fig. 2. Growth of the unique contents of the Software
Heritage archive over time

The last two fields in the dataset are provided to
make it easier to find the context where each file
content has been found in the archive.

B. Building a Table of Occurrences by Year and
Extension

Having performed this initial processing, we can
now extract the file extension for each file, and
construct a table that associates each file exten-
sion with its number of occurrences per year, as
described in Algorithm 1:

Algorithm 1 Counting File Extensions by Year

Initialize by_year
for each line in agg_data do

nm ← get(line, ’filename’)
dt ← get(line, ’timestamp’)
ext ← get_ext(nm)
year ← get_year(dt)
if ext not in by_year then

Initialize by_year[ext]
increment(by_year[ext][year])

Write by_year to file.

In this phase, that is computationally expensive,
we use a very lax implementation of get_ext
that considers as an extension any aphanumeric
sequence of characters following the last dot in a
filename, postponing filtering to a later phase.

IV. PRESENTATION OF THE RESULTS

We filter out irrelevant data from the raw
data produced by the processing phases described

above, which contains almost 3 million lines, as
follows:

• disregard files dated before 1967 (there is no
significant data in the archive) or after the cur-
rent year (2024) when counting occurrences of
extensions

• group extensions that differ only by case,
summing their occurrences per year

Since other researchers may want to fil-
ter the data differently, we make available
the full raw data before filtering in the file
nb_extensions_alphanum.csv of the re-
producibility package.

We then use the extensive catalog of file ex-
tensions known to GitHub’s linguist [16], that
are associated to data formats, markup and pro-
gramming languagues, to compute a broad series
of charts and tables that highlight the evolution
over time of the most popular file extensions, for
data formats and programming languages, that can
be found in the directory graphs/clean of the
reproducibility package.

Due to space limitations, we present here only a
selection of these charts.

A. Evolution of activity, top file extensions

As a first step, we looked at the file extensions,
without distinction of kind, with the most activity
over the whole period of time: the results for the
top ten are shown in Figure 3

It is no surprise to observe a majority of “.c” files
between 1980 and 2000, along with a significant
portion of files without extensions and “.h” files:
this reflects the dominance of the C language
during this period.

However, there are also some noticeable anoma-
lies in the data: for example, there are 441 “.php”
files in 1971, even though PHP was created in
1994. One can examine their contents by entering
their SWHID on https://archive.softwareheritage
.org/ and indeed a few files we opened all start
with the header <?php and contain PHP code.
These anomalies are typically caused by erroneous
conversions between version control systems that
end up squashing file modification or creation date
around the Unix epoch, and indeed there is a huge
spike in the number of files in 1970.

To mitigate the impact of these erroneous con-
versions, in the following we have removed from
the graphs the 1970 spike, and only counted exten-

https://archive.softwareheritage.org/
https://archive.softwareheritage.org/


Fig. 3. Evolution of activity percentages per file extension since 1967. The 10 extensions with the highest cumulative
percentage over this period are shown.

sions for programming languages after the year of
their creation. Indeed, by retrieving the publication
dates of languages from Wikipedia, we were able
to ignore all occurrences of files from a language
that had not yet been published. However, this
correction has a negligible effect on the data for
the years 2000 to 2021.

Full data, and many detailed figures about the
whole 50 years time span are available in the
reproducibility package. Due to lack of space,
we do not present them here, but focus on the
activity starting from the year 2000, where the
larger amount of activity gives more stable results,
as shown in Figure 4.

Fig. 4. Evolution of percentage of activity per file
extensions from 2000 to 2023. The 10 extensions with the
highest cumulative quantity over this period are shown.

Several extensions associated with programming
languages appear: “.c”, “.h”, “.java”, “.js”, “.php”.

We can observe that the share of unique “.c” and
“.h” files posted each year is decreasing, while
the share of “.js” files is increasing. We also
observe data-related language extensions, such as
“.html”, “.json”, and “.xml”, as well as files without
extensions and “.png” files, which correspond to
the large amount of images included in software
projects.

Figure 5 shows the activity as absolute value.

Fig. 5. Evolution of the number of file extensions from
2000 to 2023, on a logarithmic scale. The 10 extensions
with the highest cumulative quantity over this period are
shown.

While the overall quantity of files increases ex-
ponentially over time, as already seen in Figure 2,
this graph shows a global decrease in the number
of files between 2021 and 2023. This anomaly
seems to come from the lag that Software Heritage
(SWH) crawlers accumulate with respect to new
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Fig. 6. Evolution of the percentage of files for programming, markup, and data languages from 2000 to 2021. The
vertical dotted lines represent the publication year of the language indicated at the bottom left of each bar.

projects, which is overall estimated to 30 months.
The archive used for our analysis was exported on
August 2024, so for the remainder of this study,
we will ignore data after 2021.

B. Detailed Analysis of Popular Programming
Languages

We are now ready to present the results of
the detailed analysis of popular languages that we
conducted using all the extensions recognized by
GitHub Linguist [16].

We proceeded as follows: each extension from
the GitHub Linguist language file was associated
with a unique programming language. For exten-
sions corresponding to multiple languages, such
as “.pl” for both Perl and Prolog, we decided on
a case-by-case basis which language to associate.
In most cases, we opted for the most popular
language, such as Perl for “.pl”.

From this association table, we grouped the
extensions from the same language by summing
their number of occurrences, in order to visualize
the evolution of programming languages overall.

The GitHub Linguist file categorizes languages
by type: programming (Python, Java, C...), markup
(HTML, CSS...), data (SQL, CSV, Graphviz...),
and prose (Text, Markdown...). In particular, this
excludes plain text and binary formats, such as
images and compiled files like Python bytecode

(“.pyc”). The tool graph.py has command line
options that allow selecting one or more language
types to display on the charts.

Figure 6 and the following ones show the evolu-
tion of programming, markup, and data languages
between the years 2000 and 2021.

This confirms C’s position as the most popular
language in publicly available code in the first
decades of compunting. Its share in the archive
increased until 2000, when it constituted almost
half of the file activity of that year (around 45%).
C++ and HTML were also quite popular, each
occupying more than 10% of the activity seen in
the archive.

Between 2000 and 2010, we see the popularity
of C and C++ decline, while other languages
quickly gaind traction: Java, HTML, XML, PHP,
Python, and C#. From 2010 to 2021, these six
languages maintain a relatively stable popularity,
with the exception of Java, whose popularity de-
creases, along with C++. Meanwhile, JavaScript
rises steadily from 2005. Activity related to JSON
files explodes between 2011 and 2016 and contin-
ues to grow, representing about 25% of the activity
in the archive in 2021.

The activity grows exponentially for most lan-
guages, as can be more easily seen in the logarith-
mic scale graph in Figure 8.
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Fig. 7. Evolution of the quantity of files for programming,
markup, and data languages (excluding plain text and
binary formats) from 2000 to 2021.

Fig. 8. Evolution of the quantity of files for programming,
markup, and data languages from 2000 to 2021, on a
logarithmic scale.

Finally, Figure 9 shows the cumulative amount
of modified files over time since 2000, which
corresponds to the number of new or modified
files for a language in the archive from 2000 up
to a given date. For example, in 2020, there were
approximately 800 million JSON files posted since
2000 in the archive and about 400 million Java
files.

Fig. 9. Evolution of the cumulative quantity of files for
programming, markup, and data languages (excluding
plain text and binary formats) from 2000 to 2021.

The cumulative growth follows an exponential
curve too, as can be seen in the lin log scale on
Figure 10.

Fig. 10. Evolution of the cumulative quantity of files for
programming, markup, and data languages (excluding
plain text and binary formats) from 2000 to 2021, log
scale.

V. COMPARISON WITH OTHER LANGUAGE
RANKING INDEXES

The data presented above allows to compare
our ranking of programming languages with four
popular established indexes: Tiobe [4], PYPL [17],
RedMonk [5] and Open Hub [6].

Tiobe’s strategy for assigning a popularity score
to a language involves counting the number of
results across a selection of search engines from
internet searches like “[language name] program-
ming.”

PYPL’s strategy is similar, as it involves count-
ing the number of results from search on Google
Trends of the kind: “[language name] tutorial.”

RedMonk’s strategy uses two metrics: a score
assigned to each language based on the number
of projects on GitHub written primarily in that
language, and the number of questions tagged with
that language on StackOverflow.

Finally, OpenHub is the one which is somewhat
closer to ours, as it counts the number of commits
over time per project in a given programming
language.

A. Comparison Methodology of Indexes

Longitudinal data is not available at reasonable
conditions for all the indexes, so we could not
produce a longitudinal comparison, and we resorted
instead to a recent year, 2019, for which we could
obtain all the data, partially by manually compiling
it from the indexes websites. To compare our rank-
ings for 2019, we created a heatmap comparing our
language ranking by file quantity with each of the
ranking indexes. The ascending ranking order of
the x-axis is read from left to right, and the y-axis
is read from top to bottom. Each cell is colored if
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(a) Comparison of language rankings between Tiobe and
SWH in 2019.

(b) Comparison of language rankings between PYPL and
SWH in 2019.

(c) Comparison of language rankings between RedMonk
and SWH in 2019.

(d) Comparison of language rankings between OpenHub
and SWH.

the languages in the two rankings are identical for
that row and column. For example, if the top-left
cell is colored, it means that both rankings placed
the same language in first place.

B. Comparison Results of Indexes

There is significant disparity between the Tiobe
ranking and ours (Figure 11a). is partly due to
the difference in methodology, but also to the
difference in language selection. The number of
languages displayed in the Tiobe ranking is limited
by the cost of access to the full ranking, and on
the SWH side, it is deliberately limited to make
the heatmap easier to read.

The correspondence between the RedMonk
ranking and ours (Figure 11c) is striking: the
top 4 languages are identical, and there are few
outliers in the rest of the heatmap. Firstly, the
set of languages used by RedMonk is the same
as ours, GitHub Linguist. Secondly, and most im-
portantly, their heuristic involving the languages
of GitHub projects is more similar to ours, which
involves counting files on version control systems
like GitHub, compared to the approaches of Tiobe
and PYPL.

For OpenHub, we were confronted with the fact
that temporal data is not available for download,
and we could only get the cumulative number of

https://archive.softwareheritage.org/swh:1:cnt:1f1bc1c0b0dc8c093ca0afe9000f33d96044dff7;origin=https://gitlab.softwareheritage.org/teams/interns/evolution-prog-langs;visit=swh:1:snp:441aa9606a8134cc0f681f902aeebecde28773fd;anchor=swh:1:rev:2440ab6c6afca0bae37f0db9701790dafed51552;path=/graphs/clean/index_comparison/swh_tiobe_2019/heatmap.png
https://archive.softwareheritage.org/swh:1:cnt:1f1bc1c0b0dc8c093ca0afe9000f33d96044dff7;origin=https://gitlab.softwareheritage.org/teams/interns/evolution-prog-langs;visit=swh:1:snp:441aa9606a8134cc0f681f902aeebecde28773fd;anchor=swh:1:rev:2440ab6c6afca0bae37f0db9701790dafed51552;path=/graphs/clean/index_comparison/swh_tiobe_2019/heatmap.png
https://archive.softwareheritage.org/swh:1:cnt:f2ecaf973c17435d510fef9aae2059079c8ebbee;origin=https://gitlab.softwareheritage.org/teams/interns/evolution-prog-langs;visit=swh:1:snp:441aa9606a8134cc0f681f902aeebecde28773fd;anchor=swh:1:rev:2440ab6c6afca0bae37f0db9701790dafed51552;path=/graphs/clean/index_comparison/swh_pypl_2019/heatmap.png
https://archive.softwareheritage.org/swh:1:cnt:f2ecaf973c17435d510fef9aae2059079c8ebbee;origin=https://gitlab.softwareheritage.org/teams/interns/evolution-prog-langs;visit=swh:1:snp:441aa9606a8134cc0f681f902aeebecde28773fd;anchor=swh:1:rev:2440ab6c6afca0bae37f0db9701790dafed51552;path=/graphs/clean/index_comparison/swh_pypl_2019/heatmap.png
https://archive.softwareheritage.org/swh:1:cnt:1854128c6bc2b9f1e7491a1277dc26f793877ac0;origin=https://gitlab.softwareheritage.org/teams/interns/evolution-prog-langs;visit=swh:1:snp:441aa9606a8134cc0f681f902aeebecde28773fd;anchor=swh:1:rev:2440ab6c6afca0bae37f0db9701790dafed51552;path=/graphs/clean/index_comparison/swh_redmonk_2019/heatmap_redmonk.png
https://archive.softwareheritage.org/swh:1:cnt:1854128c6bc2b9f1e7491a1277dc26f793877ac0;origin=https://gitlab.softwareheritage.org/teams/interns/evolution-prog-langs;visit=swh:1:snp:441aa9606a8134cc0f681f902aeebecde28773fd;anchor=swh:1:rev:2440ab6c6afca0bae37f0db9701790dafed51552;path=/graphs/clean/index_comparison/swh_redmonk_2019/heatmap_redmonk.png
https://archive.softwareheritage.org/swh:1:cnt:89d0a1760ae5b864bfe3e49a42dc8bb7f27fc028;origin=https://gitlab.softwareheritage.org/teams/interns/evolution-prog-langs;visit=swh:1:snp:441aa9606a8134cc0f681f902aeebecde28773fd;anchor=swh:1:rev:2440ab6c6afca0bae37f0db9701790dafed51552;path=/graphs/clean/index_comparison/swh_openhub_2024/heatmap.png
https://archive.softwareheritage.org/swh:1:cnt:89d0a1760ae5b864bfe3e49a42dc8bb7f27fc028;origin=https://gitlab.softwareheritage.org/teams/interns/evolution-prog-langs;visit=swh:1:snp:441aa9606a8134cc0f681f902aeebecde28773fd;anchor=swh:1:rev:2440ab6c6afca0bae37f0db9701790dafed51552;path=/graphs/clean/index_comparison/swh_openhub_2024/heatmap.png


commits for the topmost 20 languages since 2000
by parsing their webpage. To produce some sort
of meaningful comparison with this kind of data,
we summed up the activity information on our side
too, which leads to Figure 11d. There is clearly a
misalignment, but it’s difficult to draw conclusions.

VI. ANSWERING THE RESEARCH QUESTIONS

We are now in a position to answer the research
questions that we set out to investigate.

A. RQ1: Use of the Software Heritage archive

We have shown that it is now possible to
leverage the Software Heritage archive to perform
large scale longitudinal estimation of the evolution
of programming language adoption. The Merkle
structure of the graph allows to precisely track the
first occurrence of each new original content, which
represents creation or modification of files. The
“Popular Content Filenames Dataset” provides
for each such content the reference filename, from
which one can extract the extension, which is a
proxy for the programming language.

B. RQ2: Evolution of Programming Languages

The analysis reveals that languages like C dom-
inated between 1980 and 2000, while newer lan-
guages like JavaScript and Python surged in popu-
larity post-2000. The share of C and C++ files grad-
ually declined, while the share of web-based lan-
guages (.js, .html) and data-related formats (.json)
increased, particularly in the last decade.

The data indicates clear inflection points corre-
sponding to key technological advances. For exam-
ple, the rise of Java and JavaScript coincided with
the advent of web-based applications in the late
1990s, and the increased usage of Python aligns
with the growth of data science in the 2010s.
These shifts reflect broader changes in software
development practices and platform preferences.

C. RQ3: Comparison with Existing Indexes

Data from existing indexes is not easily accessi-
ble on a year per year basis, so we could not per-
form a longitudinal comparison, but we did com-
pare manually the results for specific years. We find
that Tiobe and PYPL show language popularity
trends that are not too different from ours, but there
are some notable differences. For instance, while
Python’s popularity has risen sharply in Software
Heritage data, its relative ranking is lower in Tiobe.

The most congruent results are observed with the
RedMonk index, which relies on GitHub data and
selection of programming languages. We expected
to find a similar alignment with Open Hub, but
the lack of available longitudinal data prevents a
meaningful comparison. Overall, the longitudinal
data provided openly by this study is much broader
than any other existing data, and we could not find
indexes covering all the 50 years covered in this
study.

VII. THREATS TO VALIDITY

To the best of our knowledge, this is the first
large scale longitudinal study on language pop-
ularity spanning decades, and it is important to
highlight here the hypothesis and limitations of the
approach, that are of different nature.

a) Identification of the file names: The
heuristic used by the Popular Filename Dataset is
to associate to each file content the filename that
is most frequent in the directories that contain it.
While this is a very reasonable approach, it may
not be 100% accurate.

b) Identification of Programming Languages:
The best way to identify the programming language
used in a file is to run a programming language
detector on its contents, but such a processing is
prohibitively expensive when handling tens of bil-
lions of file contents. Hence we resorted to use the
file extension as a proxy for the real programming
language, but this comes with several limitations:

• The file content may not match the extension.
• Several languages use the same extension

(e.g., Prolog and Perl both use “.pl”).
• Sometimes the last extension is not enough.

For example, “file.antlers.html” will be clas-
sified as an HTML file because we extract
only the last “.html” extension, instead of
classifying it as an Antlers file.

c) Measuring the Relative Importance of Lan-
guages: Some languages encourage the use of
many files, while others use fewer, which can bias
measures of the relative importance of languages.
For example, a Java project contains one file per
class and often several classes, while an equivalent
project in Python may be written in a single script
file. This results in an overrepresentation of Java
compared to Python in this case.

d) Exhaustiveness of Software Heritage:
Software Heritage archives a broad range of code
but is not exhaustive. It includes only publicly



Fig. 12. Data pipeline and location of project files.

available projects (often open-source), leading to
an overrepresentation of programming languages
used in public projects and an underrepresentation
of those used in proprietary software. For instance,
languages used for UNIX system development
(e.g., Rust) may be more represented than those
for Windows development (e.g., C++).

Additionally, Software Heritage archives certain
package repositories, which may bias file counts
toward their languages, if the source package dis-
tribution make changes to the upstream code. For
example, the PyPI repository contains over 500,000
Python projects, which may increase Python’s
prevalence in our analysis.

VIII. REPRODUCIBILITY PACKAGE

The data pipeline is shown in Figure 12, and
processed data and images are available alongside
the source code [18], distributed under GPL3+
licence from its repository on Software Heritage’s
Gitlab. It is archived for the long term in the
Software Heritage archive1.

The Popular Content Dataset has been enriched
for analysis, with the version used available at: s3://
softwareheritage/derived datasets/2024-08-23/cont
ents/. Updated versions are provided alongside new

1swh:1:dir:7347b84a900f6f07457f22be1cbb4c9b5ca9e9dc

Software Heritage Graph Dataset releases, usually
every six months.

To ensure reproducibility of the results, all
graphs can be regenerated by downloading the
project code and following the README.md in-
structions. Command lines are customizable for
data processing and display based on dates, exten-
sions, language grouping, and types.

IX. CONCLUSION AND FUTURE WORK

We built an open dataset and pipeline to track
programming language activity over more than
50 years, leveraging the structure of the Software
Heritage archive.

One can easily verify in this data some folklore
knowledge, like the fact that C dominated pro-
gramming languages in popularity from the 1970s
to 2000, and was then progressively replaced by
other languages such as Java, PHP, JavaScript, and
Python. One can also easily monitor the emer-
gence and rapid adoption of markup languages like
HTML, and data languages like JSON and XML.

When Software Heritage will provide informa-
tion on the programming language for each of its
file contents, it would be interesting to rebuild the
dataset, which will be more precise. It will also be
interesting to look at other measures, like number
of projects or number of lines of code, over the
same period of time.

https://gitlab.softwareheritage.org/teams/interns/evolution-prog-langs.git
https://gitlab.softwareheritage.org/teams/interns/evolution-prog-langs.git
s3://softwareheritage/derived_datasets/2024-08-23/contents/
s3://softwareheritage/derived_datasets/2024-08-23/contents/
s3://softwareheritage/derived_datasets/2024-08-23/contents/
http://archive.softwareheritage.org/swh:1:dir:7347b84a900f6f07457f22be1cbb4c9b5ca9e9dc;origin=https://gitlab.softwareheritage.org/teams/interns/evolution-prog-langs;visit=swh:1:snp:441aa9606a8134cc0f681f902aeebecde28773fd;anchor=swh:1:rev:2440ab6c6afca0bae37f0db9701790dafed51552
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Tab. II. Number of occurrences for the 50 topmost files extensions of type program, data and markup, years 2000
to 2021 (excerpt from the open dataset). MVSS is the acronym of Microsoft Visual Studio Solution.

rank language 2000 2001 2002 2003 ... 2018 2019 2020 2021
1 JSON 1060 835 114 37 131709358 173215073 238284890 285249981
2 HTML 192451 92293 169910 175743 79635859 127463415 148120221 203364463
3 Java 44275 129465 260647 397908 64039989 63746438 67966967 64077725
4 JavaScript 6946 8682 6704 4848 53891803 67761796 79990257 96862528
5 XML 8543 32008 59688 88685 44836779 49356207 48713987 47878960
6 PHP 7742 21264 67711 72681 26436495 26297783 27468494 29432604
7 Python 20494 28970 38019 45894 22907202 26846018 35372913 39404127
8 C 520591 660636 797256 797897 19619801 20300120 21347995 20192306
9 C# 22271 2316 11627 26661 21866472 23287720 26804639 30369753
10 C++ 107379 145937 207661 260394 15053071 14908307 17210797 17323133
11 CSV 215 473 145 955 16724214 15979066 24129002 24683212
12 TypeScript 266 1138 485 3043 13104547 18719605 26188007 36141709
13 YAML 2586 295 260 2472 8827140 10504680 15316555 23237659
14 CSS 1902 3617 4067 5345 8968753 9971232 13369552 16621747
15 Ruby 292 2844 5565 5415 6856404 6656268 6378353 5490214
16 Unity3D Asset 20 65 30 136 7632857 8184324 11168025 13093450
17 Go 264 14 1 1 5459329 7267855 9676219 11577210
18 SVG 474 1416 930 2486 4900289 7445684 9436813 10522885
19 SCSS 141 37 41 11 4515693 5144852 5825765 6862150
20 INI 1698 4681 15728 15837 4191401 4109370 4619512 4410862
21 Kotlin 2 3 0 0 3200391 4812935 7084337 8592139
22 MATLAB 4475 6000 28292 13953 2953681 2438980 2311697 1780448
23 Shell 10250 8930 13228 15492 3403528 3436022 3874332 3829830
24 Vue 3 90 9 0 3316385 5054133 5946405 6340824
25 Swift 12 5 0 0 3270740 3542345 3980549 4185671
26 TSX 144 0 0 0 1126382 2705573 5574116 9841126
27 HTML+ERB 40 251 80 138 2033535 1849032 1660191 1614181
28 SQL 2453 2861 7400 8659 3591905 2576106 2706208 2717682
29 Scala 93 161 321 547 1863921 3048838 4816112 2469399
30 Java Server Pages 328 1407 6032 10367 2360832 2138504 1858304 1891463
31 Jupyter Notebook 22 7 75 0 1768107 2676168 4293264 4473764
32 R 5677 7282 7339 10986 1636908 1919109 2164659 2133413
33 Dart 0 0 1 1 450107 1617238 3862318 6111386
34 HTML+Razor 0 0 0 1 1889915 1969369 1953684 2216843
35 Gradle 7 9 11 0 1855756 2110910 2481872 2604283
36 Checksums 23 14 129 38 1579183 1449272 1941528 2229101
37 D 768 1760 2053 2087 1833539 1594886 1528147 1628156
38 RenderScript 11 25 0 33 1309661 2082934 2842431 3573786
39 Roff 31001 27605 43855 37483 1194557 1202387 1246823 1442475
40 Assembly 7024 8777 17765 15751 1428676 1038270 1216906 918041
41 Smali 0 0 0 0 1070236 1434705 1295712 1097705
42 TeX 4825 5906 12452 12411 1233801 1500283 1311354 1232805
43 Perl 31418 53652 82520 108439 712522 772995 751497 538140
44 Lua 136 150 370 715 997956 1053898 1342153 1602720
45 Wavefront Object 318 163 640 528 1030227 1099301 1551620 1676208
46 Makefile 5777 7495 8819 10252 1014984 1080002 1189728 1314293
47 MVSS 35 33 331 770 995249 1042807 1127279 1181571
48 Diff 3580 4659 10793 11113 734855 990512 699103 972737
49 Pickle 0 0 4 92 1289022 779832 1029589 2184203
50 OpenStep Property List 108 214 579 760 704706 716922 744749 685411


