
The Journal of Systems and Software 227 (2025) 112429

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

In Practice

On the compressibility of large-scale source code datasetsI

Antonio Boffa a ,∗,1, Roberto Di Cosmo b , Paolo Ferragina c,d , Andrea Guerra d ,
Giovanni Manzini d , Giorgio Vinciguerra d , Stefano Zacchiroli e
a École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
b Inria and University Paris Cité, Paris, France
c Department L’EMbeDS, Sant’Anna School of Advanced Studies, Pisa, Italy
d Department of Computer Science, University of Pisa, Pisa, Italy
e LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France

A R T I C L E I N F O

Dataset link: https://archive.softwareheritage.o
rg/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d0
8b6e197df587

Keywords:
Data compression
Source code
Storage systems
Locality-sensitive hashing
Software Heritage
Version control systems

 A B S T R A C T

Storing ultra-large amounts of unstructured data (often called objects or blobs) is a fundamental task for
several object-based storage engines, data warehouses, data-lake systems, and key–value stores. These systems
cannot currently leverage similarities between objects, which could be vital in improving their space and time
performance. An important use case in which we can expect the objects to be highly similar is the storage of
large-scale versioned source code datasets, such as the Software Heritage Archive (Di Cosmo and Zacchiroli,
2017). This use case is particularly interesting given the extraordinary size (1.5 PiB), the variegated nature,
and the high repetitiveness of the at-issue corpus.

In this paper we discuss and experiment with content- and context-based compression techniques for
source-code collections that tailor known and novel tools to this setting in combination with state-of-the-art
general-purpose compressors and the information coming from the Software Heritage Graph.

We experiment with our compressors over a random sample of the entire corpus, and four large samples
of source code files written in different popular languages: C/C++, Java, JavaScript, and Python. We also
consider two scenarios of usage for our compressors, called Backup and File-Access scenario, where the latter
adds to the former the support for single file retrieval. As a net result, our experiments show (i) how much
‘‘compressible’’ each language is, (ii) which content- or context-based techniques compress better and are
faster to (de)compress by possibly supporting individual file access, and (iii) the ultimate compressed size
that, according to our estimate, our best solution could achieve in storing all the source code written in these
languages and available in the Software Heritage Archive: namely, in 3TiB (down from their original 78TiB
total size, with an average compression ratio of 4%).
1. Introduction

More and more organizations store and analyze growing amounts
of data in cloud computing platforms. An important trend in this
context is the separation of storage and computing, whereby data
are stored in distributed cloud storage systems, whereas computing
resources are spawned elastically on demand. This separation poses
an amazing challenge as the surge in ultra-large unstructured data
repositories—commonly referred to as object or blob storage—places
unprecedented pressure on existing infrastructures in terms of storage
and network capacity, energy consumption, and application require-
ments. This phenomenon is particularly evident across diverse storage
engines (Pan et al., 2021), data warehouses (Armenatzoglou et al.,

I Editor: Daniel Mendez.
∗ Corresponding author.
E-mail address: antonio.boffa@epfl.ch (A. Boffa).

1 Work done while the author was at the Department of Computer Science of the University of Pisa.

2022), data-lake systems (Zaharia et al., 2021; Armbrust et al., 2020),
and key–value stores (Idreos and Callaghan, 2020), posing the need for
solutions that address their evolving and diverse demands. Moreover,
the relentless growth of vast volumes of data managed by these sys-
tems further exacerbates the strain on their capacities, efficiency, and
scalability.

A pivotal tool for mitigating the challenges posed by such a growth
in data volume is data compression. In fact, data compression not only
optimizes storage utilization, but it also enhances data transfer speeds
(as nodes exchange smaller amounts of data) and the effective use of
computing resources (as more data can fit in main memory for efficient
analysis), thereby improving the overall system performance.
https://doi.org/10.1016/j.jss.2025.112429
Received 21 November 2024; Received in revised form 4 March 2025; Accepted 10
vailable online 4 April 2025
164-1212/© 2025 The Authors. Published by Elsevier Inc. This is an open access ar
 March 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0002-8178-135X
https://orcid.org/0000-0002-7493-5349
https://orcid.org/0000-0003-1353-360X
https://orcid.org/0009-0005-2236-3763
https://orcid.org/0000-0002-5047-0196
https://orcid.org/0000-0003-0328-7791
https://orcid.org/0000-0002-4576-136X
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
mailto:antonio.boffa@epfl.ch
https://doi.org/10.1016/j.jss.2025.112429
https://doi.org/10.1016/j.jss.2025.112429
http://creativecommons.org/licenses/by/4.0/

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
Research papers about storage engines (Beaver et al., 2010; Pan
et al., 2021; Muralidhar et al., 2014) mainly focus on managing large-
scale data efficiently, emphasizing aspects like scalability, reliability,
and metadata reduction, while exploiting the skew in access frequency
of the stored objects. However, none of these papers explicitly discusses
how to leverage similarities among objects to improve compression ef-
fectiveness and, as a consequence, system performance. These benefits
are especially prominent when considering the storage of source code
datasets, which are highly repetitive, large, and ever-growing by nature.
The significance of source code datasets is also witnessed by their
increasingly pivotal role in AI (Gao et al., 2021), because of the growing
interest in pre-trained models for code generation and summarization
(e.g., GitHub Copilot2 or Code Llama3) or for their surprising role in
improving classic large language models (Madaan et al., 2022). Not
to mention the flourishing industrial collaborations for building more
effective AI-based solutions that deal with source code datasets,4 which
pose new challenges to these systems in terms of storage capacity,
efficiency, and scalability.5

This motivates the study presented in this paper, which presents
an ongoing effort at compressing the largest public archive of source
code, known as the Software Heritage Archive (Abramatic et al., 2018).
In the remainder of this section, we discuss the Software Heritage
Archive (Section 1.1), formalize the objectives of our study (Sec-
tion 1.2), and summarize our contributions (Section 1.3).

1.1. The software heritage archive

Software Heritage (SWH)6 is an ambitious initiative launched in
2016 at Inria (France) aimed to collect, preserve, and share all the
software available in source code form (Abramatic et al., 2018; Di
Cosmo and Zacchiroli, 2017).

At the time of this writing, the SWH Archive contains about 20
billion unique source code files gathered from more than 300 million
projects, together with their full development history consisting of more
than 4 billion unique commits created over 70 million authors. It is the
largest existing collection of software source code, totaling 1.5 PiB of
data, crawled over the years from several code hosting platforms such
as GitHub, GitLab, Bitbucket, npm, and the (now-defunct) Gitorious and
Google Code.

This enormous amount of information is logically structured as a
direct acyclic graph (DAG), as depicted in Fig. 1, whose nodes are
software artefacts such as (i) file contents (aka ‘‘blobs’’); (ii) directories,
which enclose files and other directories; (iii) revisions (aka ‘‘commits’’),
which represent the state of a project’s root directory at a certain
time; and (iv) releases (aka ‘‘tags’’), which denote revisions that are
also project milestones. Then, there are some additional nodes offering
provenance information such as (v) snapshots, which capture the full
state of a project at a certain time; and (vi) origins, which are the
URLs at which a snapshot has been observed. Any software artifact gets
added to the archive only if it does not already exist, thus files and
directories get deduplicated even if they come from entirely different
projects.

Unsurprisingly, the actual file contents require the most storage
space, namely 99% of the whole 1.5 PiB size, despite being dedu-
plicated and individually compressed with gzip (using -9 flag, so

2 https://github.com/features/copilot
3 https://ai.meta.com/blog/code-llama-large-language-model-coding/
4 See https://www.mongodb.com/press/mongodb-aws-collaborate-to-optim

ize-amazon-codewhisperer and https://www.softwareheritage.org/2023/12/0
4/hugging-face/.

5 We mention in this context the surge of the demand for high-capacity
HDDs to support AI training, see https://www.theregister.com/2024/04/23/
seagate_hdd_prices/.

6 See https://www.softwareheritage.org.
2
with maximum compression). Each file content is associated with the
corresponding node identifier in the DAG and accessed via a key–
value object store (Di Cosmo and Zacchiroli, 2017). The remaining
storage space (about 30 TiB) is taken by the DAG, which is kept both
in a relational database with roughly one table per node type (Di
Cosmo and Zacchiroli, 2017) and in a derived compressed in-memory
representation (Boldi et al., 2020).

This sheer and ever-growing size of the available source code de-
mands many storage devices and operational costs.7 This poses a seri-
ous obstacle to the SWH missions, as it significantly impacts the tasks
of source code collection (e.g., from new and ever-changing projects
due to increasing storage requirements), preservation (e.g., replication
becomes more and more costly, also in terms of transmission time)
and sharing (e.g., impacting researchers that wish to download a local
copy for data/code analysis under limited storage and networking
resources).

1.2. Objective

The objective of this study is to investigate how to achieve effi-
cient and effective lossless compressed storage of the largest part of the
SWH Archive— i.e., the file contents—while still supporting streaming
decompression and random access to the compressed files.

This is an ambitious goal not only due to the scale of SWH but
also because of its variegated nature, as it comprises source code files
(along with their development history) written in hundreds of different
programming languages by many authors and for diverse purposes.
Moreover, the archive includes other artifacts that can be found in
software projects, such as documentation, datasets, images, compiled
programs, trained ML models, etc.

Currently, files in the SWH Archive are compressed individually
with gzip. This saves approximately half of the space on average (Di
Cosmo and Zacchiroli, 2017) but fails to leverage both the history
of these files, which are often originated by commits that add and
modify just a few lines of code and the fact that some code blocks are
commonly recurring among different files, e.g., they are programming
idioms or snippets that are copy-pasted from other projects and Q&A
coding websites. Detecting and exploiting these inter-file redundancies
is a huge compression opportunity that SWH is missing as of now.

In this paper, to get insights about intra- and inter-file similarities
over the variegated composition of SWH, we consider five datasets of
200 GiB each: a random sample of the entire corpus, and four samples
of source code files written in four different popular languages, namely
C/C++, Java, JavaScript, and Python. We also consider a smaller 50-
GiB dataset of files from the most-starred repositories for the C and
Python languages. Upon these datasets, we investigate not only the
(lossless) compression efficacy of the studied solutions, useful for the
preservation issues mentioned in Section 1.1, but we also evaluate the
decompression speed of individual files, useful for the fruition of the
SWH archive.

1.3. Contributions

We design, implement, and experiment with a prototype com-
pressed storage subsystem for the Software Heritage Archive, which
we make publicly available at https://github.com/acubeLab/PPC_uti
ls4BigData. Our prototype allows compressing collections of several
billion files (not necessarily source-code files) by fully exploiting the
power of the Permute-Partition-Compress (PPC) paradigm introduced
in Buchsbaum et al. (2000, 2003) and Ferragina and Manzini (2010).

7 Add to this the environmental impact, both due to the energy consump-
tion and the failure-prone nature of these storage devices, which often become
e-waste.

https://github.com/features/copilot
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.mongodb.com/press/mongodb-aws-collaborate-to-optimize-amazon-codewhisperer
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.softwareheritage.org/2023/12/04/hugging-face/
https://www.theregister.com/2024/04/23/seagate_hdd_prices/
https://www.theregister.com/2024/04/23/seagate_hdd_prices/
https://www.softwareheritage.org
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData
https://github.com/acubeLab/PPC_utils4BigData

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
Fig. 1. Data model of the Software Heritage Archive (Pietri, 2021).
The PPC paradigm consists of three main steps: (i) the input files
are permuted to bring the similar ones close to each other; (ii) the
permuted files are partitioned into blocks of proper size to facilitate
efficient access; and (iii) the individual blocks are compressed by a
general-purpose compressor.

The most crucial and intriguing step is undoubtedly the permuting
one. For it, we can follow two main approaches: context-based and
content-based. The context-based approaches take advantage of the con-
text of the files as available in the SWH graph such as provenance
information, commit history, filename, and authors. They are inher-
ently powerful because they can allow identifying files that belong
to the same software development history and group them together
to achieve very effective compression. The content-based approaches,
instead, are designed to be agnostic to the context of the file and
detect similarities among them by using Machine Learning and Locality
Sensitive Hashing (Indyk and Motwani, 1998) techniques applied to
their content, i.e., raw bytes. As such, they can be applied to file
collections in which context information is not available, or it is costly
to be derived.

Alongside these approaches, we experiment with known compres-
sors such as the Burrows–Wheeler Transform (Burrows and Wheeler,
1994; Manzini, 2001), compressed full-text indexes (Navarro and Mäki-
nen, 2007; Navarro, 2021; Grossi and Vitter, 2005; Ferragina and
Manzini, 2005), and the git-pack compressor from the Git revision
control system.

Our experiments will consider five datasets of 200 GiB each: a
random sample of the entire corpus, and four samples of source code
files written in four different popular languages, namely C/C++, Java,
JavaScript, and Python. We also experiment on a smaller 50-GiB dataset
of files from the most-starred repositories for the C and Python lan-
guages. Our experiments show that:

• Compressing files individually (e.g., with gzip and zstd), as cur-
rently done in the SWH Archive, achieves an unsatisfactory com-
pression ratio of around 30%.

• The git-pack approach achieves a compression ratio of around
20%.

• Compressed full-text indexes and the Burrows–Wheeler Transform
can achieve on par or better compression ratios (i.e., up to 23%
the former and 12% the latter), but they seem impractical for this
scale of data due to their slow compression and decompression
speeds (both no faster than 4 MiB/s).

• Our proposed PPC framework achieves with the context-based
permuters, simultaneously, the most effective compression ratio
3
(on average 8%, if file access needs to be supported and 4%
if not), and good compression speeds (up to about 54 MiB/s
when using zstd-22 as final-stage compressor), decompression
speeds (up to about 470 MiB/s with zstd-22) and file access
speed (up to about 100 MiB/s with zstd-12). The content-based
permuters are much slower in compression speed and slightly
worse in compression ratio, which suggests that they might be
more appropriate in scenarios where the context information is
not available, such as in classic storage systems, or it is costly to
be derived.

• Interestingly, the most compressible source code files are those
written in Python (2.2%), followed by JavaScript (3.6%), C/C++
(3.7%), and Java (7.8%). As expected, the compression ratios
slightly increase when enabling random access to individual files
(because of compression in small blocks), but interestingly, the
relative compressibility of the different languages changes. This
behavior can be partly explained by the repetitiveness introduced
by code-generation tools, different developer habits, and intrinsic
properties of each language/framework, but further research is
needed to untangle these findings.

• When compressing a random sample of files from the SWH
Archive, the PPC framework achieves a worse compression ratio
due to the presence of many incompressible files (e.g., multimedia
files, or zip files), but it is still around 10% thanks to an effective
grouping based either on context information or by file type
inferred from the file content.

In conclusion, since source code files in C/C++, Python, Java and
JavaScript collected by SWH as of 2024 amount to 78TiB of data,
and given the 4% of average compression ratio we achieved, we can
extrapolate that our ongoing effort to scale our techniques to all open-
source code ever written in these languages and available in the SWH
archive could be compressed in about 3TiB, hence just within the
storage capacity of a modern laptop.
Paper outline. Section 2 provides some background on techniques we
use in this paper and discusses relevant literature. Section 3 introduces
our datasets, compression techniques, and the hardware/software envi-
ronment. Section 4 presents the results of our experimental evaluation.
Section 5 includes a discussion on the limitations of the proposed
techniques, a comparison of the compressibility of different program-
ming languages, and its implications for SWH. Section 6 concludes the
paper by summarizing the key takeaways and outlining future research
directions.

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
2. Background and related work

In this section, we describe the main known approaches for com-
pressing a collection of files (Section 2.1). We also review the main
techniques for detecting similar files (Section 2.2) since they play an
important role within the PPC framework.

2.1. Compressing a collection of files

The problem of compressing a collection of files has been addressed
in the literature with reference to web pages (Ferragina and Manzini,
2010), genome repositories (Fritz et al., 2011; Wandelt et al., 2014;
Hosseini et al., 2016), file and storage systems (Hu et al., 2019), and
(single) source code repositories (Tichy, 1985; Molfetas et al., 2014;
Hunt et al., 1998; Xia et al., 2015; Bhattacherjee et al., 2015). We now
review the main techniques underlying these diverse applications and
refer the interested reader to Ferragina and Manzini (2010) and Suel
(2019) for further information.

A folklore approach to exploit inter-file redundancies is to concate-
nate the files in the collection and then run a general-purpose compres-
sor (e.g., gzip). Most general-purpose compressors work by succinctly
encoding repeated data fragments that occur within a fixed-size win-
dow sliding through the file to be compressed. While classic compres-
sors like gzip and bzip have been designed to have a small memory
footprint (less than 1MB) and thus detect only relatively close data rep-
etitions, more recent and sophisticated compressors— like Brotli,8 by
Google, LZMA9 LZFSE10 by Apple, and zstd11 by Facebook—can detect
repetitions at much longer distances, up to hundreds or thousands of
MiB. However, it is clear that even these tools cannot detect and exploit
all the redundancy present in a very large document collection, such as
the Software Heritage Archive, where repetitions can be much farther
apart because of the collection size. As a consequence, three main ad-
hoc approaches have been proposed so far in the literature to tackle
this issue.

The first approach is to use a more powerful compressor that is not
limited by a fixed window or block size. For example, using a disk-
based construction of the Burrows–Wheeler Transform (shortly bwt,
see Ferragina et al. 2012) is possible to detect repetitions at unlimited
distances using a limited internal memory footprint. This approach is
very time-consuming both in the compression and the decompression
stages, but its compression effectiveness can be quite significant, as
demonstrated on collections of web pages in Ferragina and Manzini
(2010) and in our following experimental results.

The second approach is based on the idea of delta-compression in
which a file is encoded by copying portions of a given reference
file. Intuitively, the more similar are the two files, the more compact
their delta-encoding. In the context of large document collections,
this technique leads to the problem of finding an appropriate cycle-
free assignment of the files to be compressed with respect to one
or more reference files. This can be modeled as the search for an
optimum branching in a complete directed graph in which the nodes
are the files to be compressed and the edge-weights are the benefit
of compressing the target file (destination node of the edge) with
respect to the source file (Suel and Memon, 2002) (source node of
the edge). The time complexity of this solution grows quadratically in
the number of files because of the number of edges in the graph. To
alleviate this computational limitation and thus scale that approach to
larger collections, several authors (see e.g., Douglis and Iyengar 2003,
Ouyang et al. 2002) proposed sophisticated graph-pruning heuristics.
The most interesting one was introduced in Ouyang et al. (2002) by

8 https://github.com/google/brotli
9 https://www.7-zip.org/
10 https://github.com/lzfse/lzfse
11 http://facebook.github.io/zstd/
4
proposing two distinct clusterings of the input files that are syntactically
similar and thus good candidates for delta-compression. One is based
on shingles and MinHash (see Section 2.2) to speed up edge-weight
computations, but still takes quadratic time overall; the other exploits
Locality-Sensitive Hashing (LSH) to detect more efficiently subsets of
similar files, which are however not necessarily the ‘‘best’’ ones.

The third approach to the compression of a collection of files
is Permute-Partition-Compress (Buchsbaum et al., 2000, 2003) (shortly
PPC), already mentioned in the previous pages. Instead of trying to
capture repetitions that are far away in the file collection, PPC tries
to preliminarily recognize and group together similar files so that a
compressor with a small memory footprint can be applied to squeeze
them. More specifically, this is done in three phases: (i) the input files
are permuted in a way that the similar ones end up close in the new
ordering; (ii) the permuted collection is then partitioned into blocks
of proper size, (iii) the individual blocks are compressed via a known
tool with a reasonably-sized memory footprint (such as zstd, Brotli,
LZMA, etc.). This approach is designed to boost the ability of general-
purpose compressors to find repetitions that are far away in the original
(non permuted) collection, and thanks to the use of blocks, to allow
reasonably fast random access to the original files. The key step among
the three above is undoubtedly the first one. For document collections
consisting of web pages, there are well-known re-ordering heuristics
based on their URLs which are simple, time efficient, and achieve
impressive compression ratios (up to 4%) for some well-known Web
collections (Ferragina and Manzini, 2010). As far as we know, no study
has investigated the application of the PPC paradigm to source code
files, that is what we do in this paper by proposing permuting strategies
specifically designed to identify near-duplicate source-code files (see
Section 2.2).

A representative approach for compressing source code files is
the one implemented in Git,12 the distributed version control system
originally authored by Linus Torvalds in 2005 for the development of
the Linux kernel. Git stores the tracked file contents and other ‘‘objects
types’’ (such as the commits or the state of a directory tree13) using
three main ingredients.14 The first ingredient is deduplication: when
creating a new commit, Git computes the SHA-1 hash of the contents
of each tracked file, compares it to the hashes of all the objects it
already has and, if there is a match, no new content is stored for that
file. The second ingredient is a general-purpose compressor, namely
gzip, to squeeze the individual files. The third and most sophisticated
ingredient, used when the repository grows large or is pushed to a re-
mote repository, is git-pack. The inner working of git-pack, according
to an informal description by Linus Torvalds15 and our inspection of
the Git v2.44 implementation (see also Appendix A in Bhattacherjee
et al. 2015), is similar to PPC because it starts by permuting the files
to be compressed by sorting them by object type, and then by sorting
the concatenation of path and filename reversed (so all files with the
same extension will sort together). If there is still a tie between two or
more files, they are sorted by size in decreasing order. Next, git-pack
scans the reordered files using a sliding window and searching for
pairs inside the window that achieve a good delta compression. This
gradually builds a chain of files that are delta-compressed in sequence.
git-pack behavior is controlled by the parameter window representing
the window size, expressed in number of files (by default 10, higher
values give better but slower compression), and depth representing
the maximum length of the chains, again expressed in number of
files (by default 50, higher values give better compression but slower
decompression since to reconstruct the content of a single file we need
to look at the content of up to depth previous files).

12 https://git-scm.com
13 https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
14 https://github.blog/2022-08-29-gits-database-internals-i-packed-object-
store/
15 https://git-scm.com/docs/pack-heuristics

https://github.com/google/brotli
https://www.7-zip.org/
https://github.com/lzfse/lzfse
http://facebook.github.io/zstd/
https://git-scm.com
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://github.blog/2022-08-29-gits-database-internals-i-packed-object-store/
https://github.blog/2022-08-29-gits-database-internals-i-packed-object-store/
https://git-scm.com/docs/pack-heuristics

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
We point out that git-pack was designed to run on a single Git
repository and there is no easy way to run it on other collection of files
or the SWH Archive, which combines files from millions of repositories
possibly coming also from other version control systems, like Mercurial
and Subversion.

2.2. Fingerprinting to detect similar files

To detect which files have similar content, and therefore can be ef-
fectively compressed together, we use techniques from the field of near-
duplicate document detection. This problem first arose in Web search
applications where near-duplicate web pages cause an increase in the
index space usage, in the latency of serving query results, and possi-
bly impact the user experience with repeated results. Manber (1994)
and Heintze (1996) were among the first to propose algorithms for
detecting near-duplicate documents based on the concept of fingerprint,
i.e., a compact representation of a document such that similar docu-
ments have a similar compact representation. The successive ground-
breaking results by Broder (Broder, 1997) and Charikar (Charikar,
2002) provided a solid theoretical foundation for the fingerprint tech-
nique. The concept of fingerprint is related to ‘‘locality-sensitive hash-
ing’’ (LSH), which is a technique introduced in 1998 (Indyk and Mot-
wani, 1998) and used today in a growing number of applications (Jafari
et al., 2021; Wang et al., 2014).

Within the PPC paradigm, we tested the following four fingerprint-
ing techniques that, we believe, are representative of the different
approaches proposed in the literature. The first two fingerprinting tech-
niques (ssdeep, TLSH) work directly on the raw input files by means
of a sliding window, and thus they are called ‘‘bytewise’’ (Breitinger
et al., 2014; Hugo G. Moia and Amaral Henriques, 2017). The other
two techniques (MinHash, SimHash) can take into account the internal
structure of the input files using the concept of ‘‘token’’, and thus we
will specialize them to source codes. More details follow.
ssdeep. Kornblum (2006) deploys a sliding window of 7 bytes that
moves byte-by-byte through the input and computes a rolling hash for
each window position. Whenever the rolling hash produces a specific
output, ssdeep identifies a ‘‘trigger point’’ that indicates the ending
of a block and the beginning of the next one. All blocks are hashed
using a cryptographic hash function, and the 6 least significant bits of
each hash are encoded using a Base64 character. The final digest is
the concatenation of all characters generated through the blocks. The
trigger point above is selected in such a way that the final fingerprint
is up to 80 bytes long. We test this fingerprinting technique (see
Section 3.2.4) because it is one of the first context-triggered fingerprints
ever introduced.
TLSH. Oliver et al. (2013) deploys a sliding window of 5 bytes, from
which it selects six trigrams (triplets of window characters). Each
trigram is converted using a Pearson hash to a 7-bit integer, which is
used to update a vector of 128 counters. When the scanning is complete,
a 256-bit fingerprint is obtained by encoding each counter with two
bits, based on its quartile (the 25% smaller counters are encoded with
00, those in the 25% to 50% quartile with 01, and so on). The original
TLSH scheme also defines a 24 bit header, but we do not use it since it
is not related to file similarity. We test the TLSH fingerprint because
experiments showed that it is more robust to random changes and
adversarial manipulations than ssdeep and its variants (Oliver et al.,
2014).

SimHash. Charikar (2002) estimates the similarity of two documents
in two main steps. First, it identifies a set of ‘‘tokens’’ in the input
documents, and maps each of them into a random vector drawn from
{−1, 1}𝑏, where 𝑏 is a properly chosen constant. This token-based
mapping is the same for all documents. Then, it obtains a 𝑏-dimensional
vector for each document by adding the 𝑏-dimensional vectors of all of
its tokens, possibly weighting each of them with a proper score (e.g., the
5
TF-IDF in case of words Manning et al., 2008). The final fingerprint
is created by setting every positive entry to 1 and every non-positive
entry to 0, thus resulting in a random mapping of each document into
the space {0, 1}𝑏. Charikar (2002) proved that the cosine similarity
of two documents, in the classic IR-sense (Manning et al., 2008), is
proportional to the number of bits in which the two fingerprints agree.
In our experiments we did not use any weighting and set 𝑏 = 256 so the
final SimHash fingerprint is 256-bit long.

MinHash. Broder (1997) (see also the variant of Fetterly et al. 2003)
computes the fingerprint of an input document 𝑑 consisting of 𝑛 tokens
as follows. It slides a window of 𝑘 tokens over 𝑑 and, for each of them
computes a 64-bit Karp-Rabin’s rolling hash. This generates a set 𝑆(𝑑)
of 𝑛−𝑘+1 integers called shingles. The similarity (a.k.a. resemblance) of
two documents 𝑑 and 𝑑′ can be evaluated by the Jaccard’s coefficient
between the sets 𝑆(𝑑) and 𝑆(𝑑′) defined as 𝐽 (𝑑, 𝑑′) = |𝑆(𝑑)∩𝑆(𝑑′)|

|𝑆(𝑑)∪𝑆(𝑑′)| . To
speed up the computation of 𝐽 (𝑑, 𝑑′), Broder (1997) suggested to use
𝑚 different fingerprinting functions 𝑓𝑖 and proposed to compute, for
each 𝑖, the minimum of each set of shingle fingerprints 𝑆𝑖(𝑑) according
to 𝑓𝑖. These 𝑚 minima form an 𝑚-dimensional vector that represents
the final fingerprint of 𝑑, therefore called MinHash. Note that multiple
occurrences of the same shingle will have the same effect on the min-
values as a single occurrence, i.e., the multiplicity of shingles is ignored.
Broder showed that the number of element-wise equal entries in the
MinHash vectors of two documents 𝑑 and 𝑑′, divided by 𝑚, is an
unbiased estimator of 𝐽 (𝑑, 𝑑′), and that 𝑚 controls the robustness of
the estimate. In our experiments, we set 𝑚 = 256 so the final MinHash
fingerprint is a 256-dimensional vector of 64-bit minima.

As a final note we observe that, although fingerprint techniques
have some mathematical guarantees on their average performance, all
of them may incur false positives (dissimilar document pairs returned
as near-duplicates) as well as false negatives (near-duplicate document
pairs not returned as near-duplicates). In addition, because of the size
of our collections, computing the similarity between all pairs of files
would be too expensive; for this reason our use of the fingerprints in
the PPC framework will be different from their proposed use in the
above-mentioned literature.

2.3. Large-scale analysis of software development artefacts

Various platforms and approaches deal with large-scale storage and
analysis of software development artifacts, for software engineering
research purposes. In support of their goals, they use compression
and/or deduplication techniques. We briefly recall the most relevant
work in this space, below.

LISA. Alexandru et al. (2019) is a framework designed to minimize
artifact redundancy in the analysis of source code stored in version
control systems (VCS). Unlike our use case, LISA operates at a finer
level of detail, down to the abstract syntax tree (AST) nodes. This
allows for fine-grained deduplication, but it comes with the drawback
of needing a proper parser. This parser is not always available and may
fail on syntactically incorrect files, which might still be of interest for
analysis—and need to be efficiently stored anyway.

Boa. Dyer et al. (2015) pioneered the idea of a shared infrastructure
that hosts both data and compute resources for large-scale analyses of
source code artifacts. Our measure of ‘‘large-scale’’ differs significantly,
as the scale of the Software Heritage Archive is hundreds of times larger
than the largest GitHub hosted on Boa, by several metrics, including
projects, files, and commits. Similarly to LISA, Boa also parses source
code files to AST but does not apply any compression technique.

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
Table 1
Characteristics of our datasets.
 Datasets Size (GiB) Num. files File size (KiB)
 Mean Median
 Popular GitHub repos(C and Python) 50.4 1 858 580 28.4 5.9
 Python code 200.0 9 640 731 21.7 7.2
 C/C++ code 200.0 6 437 613 32.5 9.0
 JavaScript code 200.0 3 464 374 60.5 4.6
 Java code 200.0 26 373 974 7.9 2.4
 Random content 200.0 2 335 158 89.8 4.5

World of code (WoC). Ma et al. (2021) has also created a mutualized
infrastructure for large-scale VCS analyses. Unlike the Software Her-
itage case study, which spans GitLab and major package repositories,
WoC is limited to GitHub. However, the overall size of the data stored
by WoC for analysis purposes is in the same ballpark of the size of the
SWH Archive. In terms of storage, WoC deduplicates all retrieved blobs,
but does not apply any compression technique. It can benefit from the
compression approaches that we develop in this work, specifically the
ones designed for the File-Access scenario.

SWH-graph. Boldi et al. (2020) is a technical framework that builds
upon WebGraph (Boldi and Vigna, 2004; Fontana et al., 2024) to
compress the SWH graph in order to host and process it in main
memory on a single server. swh-graph only compressed the graph
structure of the SWH graph, leaving out of scope the compression of
all other information stored in the SWH Archive, including metadata
(e.g., filenames) and crucially file contents—we deal only with the
latter in the present work.

3. Experimental setup

In this section, we detail our datasets (Section 3.1), compression
techniques (Section 3.2), and the hardware/software environment used
to run our experiments (Section 3.3).

3.1. Datasets

We prepared datasets of different sizes consisting mainly of source
code files written in different programming languages but also some
non-code files that are commonly found in software repositories. All
datasets are extracted from the actual Software Heritage Archive and
are available at the GitHub repository of our software library.16

A dataset in our context consists of a set of deduplicated files
(i.e., raw byte sequences that are different from each other in at least
one byte) plus some metadata for each file consisting of an identifier
derived from hashing its content, the file size, and a path that includes
the filename. The distinction between actual file content and metadata
will be useful in our experiments to distinguish compression methods
that exploit just the first information (called content-based methods) or
both of them (called context-based methods). In the case that the same
file content appears under different paths, we use as its metadata the
most popular path, as in Lorentz et al. (2023).

Table 1 summarizes the characteristics of our datasets, which are
commented on in the text below.17

16 https://github.com/acubeLab/PPC_utils4BigData
17 To measure file sizes we use kibibytes (KiB), mebibytes (MiB),
gibibytes (GiB), and tebibytes (TiB), which represent 210, 220, 230, and 240 bytes,
respectively.
6
Popular GitHub repos. We generated a 50-GiB dataset containing dif-
ferent versions of files present in the 143 most-starred repositories on
GitHub for the C and Python languages as of October 2022. This in-
cludes popular repositories like redis, ngnix, zstd, scikit-learn, bert, and
keras.18 Roughly half of the dataset is taken by files from repositories
written in C and the other half in Python. As shown in Table 1, the
average and median file sizes are 28.4 KiB and 5.9 KiB, respectively.

The purpose of this dataset is to fairly compare git-pack against
the other compression techniques. Indeed, git-pack can only be run on
individual Git repositories, and thus it cannot be applied to datasets
of files gathered from the whole SWH Archive (such as the ones
described in the next paragraphs) since these cannot be recombined
into Git repositories due to the nature of SWH (Abramatic et al., 2018).
More precisely, SWH does not exclusively store Git repositories, but
rather a diverse range of software origins, as described in Section 1.1.
These origins represent different sources where software artifacts can
be found, including repositories of various version control systems
(e.g., Git, Mercurial, SVN, Bazaar), as well as source packages for
various package managers and standalone tarball archives. As a result,
the concept of a ‘‘repository’’ in SWH is broader and more abstract than
that of Git-centric platforms, like GitHub. Furthermore, while one can
reconstruct repositories from SWH starting from any given origin, this
process is costly due to thorough deduplication (e.g., reconstructing the
Git repository of the Linux kernel requires collecting tens of millions
of objects). SWH deduplicates files across all archived origins, as the
same files can be shared by multiple origins. This raises the question of
which origin should take precedence when reassembling repositories.
Reconstructing repositories by assigning files to them would require
a high number of random accesses, significantly increasing costs and
making the process inefficient at scale. The experimental results on
this dataset are in Section 4.1.1.

Datasets from the SWH archive. We generated the following five
datasets by randomly sampling files with specific extensions from the
whole SWH Archive:19

• Python code, consisting of files with extension .py and .pyi.
• JavaScript code, consisting of files with extension .js.
• C/C++ code, consisting of files with extensions .c, .C, .cc,
.cpp, .CPP, .c++, .cp, .cxx, .h, .hpp, .hpp, and .HPP.

• Java code, consisting of files with extension .java.
• Random content, consisting of files with any extension and thus
may include images, videos, binary files, and PDF documents.

The purpose of the Random content dataset is to evaluate the
experimented techniques in the presence of non-source-code files. We
anticipate that the results on this dataset, provided in Section 4.1.3,
suggest that grouping files of the same type together is crucial to
achieving effective compression.

As shown in Table 1, the average file size of the experimented
datasets ranges from 7.9 KiB for Java code to 60.5 KiB for JavaScript
code. The median file size ranges from 2.4 KiB for Java to 9.0 KiB for
C/C++ code.

18 See https://github.com/{redis/redis, nginx/nginx, facebook/zstd, scikit-
learn/scikit-learn, google-research/bert, keras-team/keras}. To avoid skewing
this bounded-size dataset towards a single, disproportionately large repository,
we excluded just the Linux kernel repository from the popular repositories list,
since it takes more than 70 GiB alone, and the other repositories are just a few
GiB each.
19 The full list of files and their metadata in the snapshot of the SWH Archive
we used is a massive 750-GiB csv file. To deal with it, sample files, and
compute statistics, we leveraged the Postgres DBMS. Then, the contents of
the sampled files have been downloaded from AWS S3.

https://github.com/acubeLab/PPC_utils4BigData
https://github.com/
https://github.com/redis/redis
https://github.com/nginx/nginx
https://github.com/facebook/zstd
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/google-research/bert
https://github.com/keras-team/keras

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
Table 2
Compression techniques experimented in this paper; the symbol ‘‘+ *’’ denotes the
additional use of a general-purpose compression algorithm such as gzip or zstd at the
end of the PPC pipeline. The first group is formed by baseline techniques, the second
group includes the current theoretical state of the art for compressing file collections,
and the last group is a set of PPC-based techniques we specifically designed for the
SWH archive.
 Technique SWH-applicable File-Access Context-based Section
 single_compress + * 3 3 7 Section 3.2.1 random_order + * 3 3 7
 bwt_rle 3 7 7
 csa_sada 3 3 7 Section 3.2.2
 csa_wt 3 3 7
 git-pack 7 3 3 Section 3.2.3
 tlsh + * 3 3 7

Section 3.2.4

 ssdeep + * 3 3 7
 simhash + * 3 3 7
 minhash_graph + * 3 3 7
 type_minhash_graph + * 3 3 7
 filename + * 3 3 3
 path + * 3 3 3

3.2. Compression techniques

We apply different compression techniques on the datasets of Sec-
tion 3.1 and evaluate them in terms of compression and decompression
speed, expressed in mebibytes per second (MiB/s), and in terms of
compression ratio, i.e., the ratio between the size of the compressed
dataset and the size of the original uncompressed dataset, expressed as
a percentage.

As anticipated in the introduction, we distinguish between a Backup
scenario and a File-Access scenario. In the former, a dataset is stored in
compressed form, and we only need to support streaming access to the
whole compressed collection. This is relevant, e.g., for backup purposes
or to offer fast downloads of the dataset. In the latter, in addition to
providing space-efficient storage, we also need to support fast access
to individual files. This is relevant, e.g., for browsing the contents of
the SWH Archive through its web interface or API,20 or to perform
data/code analyses locally on a researcher’s computer.

Given our literature review of Section 2, we chose to experiment
with the compression techniques shown in Table 2. All of them except
git-pack apply to the SWH Archive, most of them are appropriate also
for the File-Access scenario, and only some of them are context-based
in that they use not only the file content but also the metadata offered
by the SWH Archive.

3.2.1. Baselines
The first two techniques we consider will be our baselines. The

algorithm single_compress compresses the files individually with a
general-purpose compressor, such as gzip or zstd. This is the solution
SWH currently employs. The algorithm random_order instead con-
catenates all the files from a dataset in random order and applies a
general-purpose compressor, such as gzip or zstd. This solution can
exploit some inter-file redundancies, as long as these redundancies are
within the fixed-size window of the general-purpose compressor.

3.2.2. Techniques based on the burrows–wheeler transform
As we pointed out in Section 2.1, by applying the Burrows–Wheeler

Transform (bwt) to the concatenation of the input files, we can take
advantage of repetitions in the input no matter how far they are
in the collection. We have tested this approach using the bwtdisk
library,21 which computes the bwt of large files in external memory

20 See https://archive.softwareheritage.org and https://archive.softwareheri
tage.org/api/, respectively.
21 https://github.com/acubeLab/bwtdisk_2010
7
and subsequently compresses it using run-length encoding followed
by arithmetic coding (Ferragina et al., 2012). We call this technique
bwt_rle. As already observed in Section 2.1, this solution can achieve
quite significant compression ratios at the cost of very slow compres-
sion and decompression speeds. Furthermore, it does not support the
File-Access scenario as it requires decompressing the full dataset to
access a single file.

The bwt however is also at the core of the implementation of
compressed full-text indexes (Navarro and Mäkinen, 2007; Navarro,
2021; Grossi and Vitter, 2005; Ferragina and Manzini, 2005), which
keep data in a compressed form that also supports pattern-matching
queries and efficient extraction of arbitrary subsequences. This last
feature makes them suitable for the File-Access scenario. We tested the
following two full-text indexes offered by the sdsl library (Gog et al.,
2014)22 applying them on the concatenation of all files from a dataset:
csa_wt and csa_sada. The former represents the bwt with a Huffman-
shaped wavelet tree with RRR-encoded bitvectors (Raman et al., 2007)
with block size 𝑏. The larger 𝑏, the better the compression ratio because
the RRR-encoding must keep track of longer blocks. At the same time
the larger 𝑏, the worse the compression and decompression speeds
because operations inside longer blocks are more expensive. We set and
tested 𝑏 = 63 and 𝑏 = 127 bits because they provided the best Pareto
performance in our experiments. csa_sada does not explicitly represent
the bwt but is based on compressing the 𝛹 array using Elias 𝛿-codes
with sample rate 𝑠. The larger 𝑠 is, the better the compression ratio
because fewer samples are stored but, on the other hand, the slower
are the compression and decompression speeds because fewer samples
means more integers must be decoded. We set and tested 𝑠 = 128 and
𝑠 = 256 bits because they provided the best Pareto performance in our
experiments.

3.2.3. The git-pack technique
As the representative compression method for (individual) source

code repositories, we selected the git-pack tool discussed in Section 2.1
because of its widespread use. Unfortunately, git-pack must be run on
individual Git repositories, so we have applied it only to the ‘‘Popular
GitHub repos’’ dataset.

To test this technique, we run git pack-objects,23 on each
repository obtaining a single .pack file containing all the repository’s
files starting from a fixed commit. We measure the compression speed
by taking the time to build such .pack file. To measure the decom-
pression speed, we extract back all the individual files by passing the
.pack file to git unpack-objects.24 Note that git unpack-
objects extracts the objects from the .pack file creating the so-
called ‘‘loose objects’’, i.e., one gzip-compressed file per object. To
get back the uncompressed content, a final decompression phase is
performed by the zlib25 library on each file. The tool git cat-file
can be used for this last phase, but we experimentally found out it can
be up to twice as slow as simply decompressing the loose objects with
zlib library. Finally, to measure the compression ratio, we divide the
sum of the sizes of the per-repository pack files by the size of the whole
uncompressed dataset.

3.2.4. PPC -based techniques
In this section, we describe a set of techniques that belong to the

Permute-Partition-Compress (PPC) paradigm, described in Section 2.1.
They permute the input files according to one of the strategies detailed
below. Then, they use the tar tool26 to concatenate the permuted input
files into a single tar file (Backup scenario) or into multiple tar files of
size 𝐵 called ‘‘blocks’’ (File-Access scenario).

22 https://github.com/simongog/sdsl-lite/
23 https://www.git-scm.com/docs/git-pack-objects version 2.43.0
24 https://git-scm.com/docs/git-unpack-objects
25 https://www.zlib.net/
26 https://www.gnu.org/software/tar/

https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://github.com/acubeLab/bwtdisk_2010
https://github.com/simongog/sdsl-lite/
https://www.git-scm.com/docs/git-pack-objects
https://git-scm.com/docs/git-unpack-objects
https://www.zlib.net/
https://www.gnu.org/software/tar/

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
The choice of using tar archives for concatenating files is motivated
by their widespread adoption and robust performance. For example,
the tar format is the foundation of the WebDataset format,27 which is
designed for efficient handling of large-scale datasets in deep learning
applications. WebDataset is supported by the Huggingface ecosystem,28
making it an ideal choice for distributing and processing datasets in
modern machine learning workflows. Leveraging tar archives ensures
that our method benefits from a well-established, efficient, and versatile
file aggregation approach.

To avoid splitting files larger than 𝐵 bytes across blocks, we allow
the last file in a block to exceed 𝐵. The mapping from the file identifier
to the block containing it is implemented via a key–value store using
RocksDB (Dong et al., 2021). In the File-Access scenario, we experiment
with different values of 𝐵: a higher value leads to better compression
because more inter-file redundancies can be exploited, but also slower
access to a single file because the full block containing the file must be
decompressed.

The individual tar files (one in the Backup scenario or several
in the File-Access scenario) are finally compressed with a general-
purpose compression tool. We tested several compressors including
lzma, gzip, brotli, zstd, xz, and lz4. We report only the results for
zstd because of its generally good performance and its many options
to trade off compression ratio with (de)compression time. On our
datasets, by setting the highest compression level and memory usage,
zstd achieves a compression ratio similar to (and even better than)
the most effective compressors like xz and brotli. At the same time,
decreasing the compression level and memory usage, zstd can be
extremely fast in decompression speed (more than 400 MiB/s, similar
to lz4). Precisely, we report the results for three compression levels:
-3 (very fast compression speed, the default one), -12 (an effective
compromise between compression ratio and compression speed), -22
--ultra -M1024MB --long=30 (the best compression ratio, but very slow
in compression speed). For brevity, we call these configuration settings
zstd-3, zstd-12, and zstd-22, respectively.

To compute the compression speed, we consider the whole pipeline
of permuting the input files and creating the compressed tar file(s). For
the decompression speed, in the Backup scenario we measure the time
to decompress the whole compressed tar file, while in the File-Access
scenario we measure the time to decompress a random subset of files
(10% of the total number of files in a dataset), which includes the time
to query RocksDB for finding the block containing the desired input
file, and decompressing it until the file is found.
Permutation algorithms. These following permutation algorithms ex-
ploit the fingerprinting techniques described in Section 2.2 to place
similar files close to each other:

• tlsh: permute files according to the lexicographic order of their
TLSH fingerprints (Oliver et al., 2013), each of size 256 bits.

• ssdeep: permute files according to the lexicographic order of their
ssdeep fingerprints (Kornblum, 2006), each of size up to 80 bytes.

• simhash: permute files according to the lexicographic order of
their 256-bit SimHash fingerprints (Charikar, 2002), each one
computed by tokenising the file into lines (i.e., splitting it accord-
ing to the \n character) and filtering out the lines with fewer
than 10 characters. The rationale is that short lines of code often
represent trivial or insignificant segments that may not contribute
significantly to the overall structure of the code.

• minhash_graph: tokenize the input file into lines as in SimHash
(above) and for each file 𝑖 compute the MinHash fingerprint 𝑓𝑖
consisting of 256 64-bit minima. Split each 𝑓𝑖 into four 4096-bit
chunks 𝑓 (𝑐)

𝑖 for 𝑐 = 1,… , 4 and create a graph whose vertices
corresponds to the files and there is an edge between files 𝑖 and 𝑗

27 https://github.com/webdataset/webdataset
28 https://huggingface.co/docs/hub/datasets-webdataset
8
iff 𝑓 (𝑐)
𝑖 = 𝑓 (𝑐)

𝑗 for some 𝑐 = 1,… , 4. Finally, find the connected
components in this graph and, for each connected component,
permute the corresponding files according to their sizes in de-
scending order.29 We tested different fingerprint/chunk lengths
and the above scheme was the one giving the better compression.
Since some connected components might be too large, and thus
similar files would end up far away from each other, we permute
the ones with overall size greater than 32 MiB and more than 3
files via the tlsh technique described above.

We also test a permutation algorithm designed for collections con-
taining different file types (e.g., written in different programming
languages):

• type_minhash_graph: group files according to a type inferred
from their contents via Google’s Magika deep learning model,30
and then apply the minhash_graph approach over each group if
this consists of more than 3 files whose total size is larger than
32 MiB; if not, the files in a group are sorted just by their size in
descending order.

All the above algorithms are content-based in that the final per-
mutation is based only on the actual content of the input files. We
also consider a class of algorithms that are context-based in that they
compute a permutation without looking at the file content, but only
at the metadata, such as filename, path, size, etc. Assuming the appro-
priate metadata is available, context-based methods are usually faster
since they do not have to scan the file contents. However, it is not
a priori obvious which of the two approaches is superior in terms
of compression when used in combination with the PPC paradigm.
To investigate this issue, we consider the following two context-based
techniques, inspired by the git-pack algorithm described in Section 2.1:

• filename: permute files according to the lexicographic order of
their reversed filenames, and if there is a tie, put the largest file
first;

• path: as before but, instead of using only the filename, also use
the name of the directory containing it.

We test both filename and path because we wish to evaluate how
much adding one directory level impacts the compression perfor-
mance.31 The rationale is that we expect two files with the same
name (e.g., parser.c) to be more similar if they belong to the same
directory (say src/ rather than test/).

3.3. Hardware setup

We test the techniques of Section 3.2 on a machine equipped with
a 2.30 GHz Intel Xeon Platinum 8260M CPU and 384 GiB of RAM,
running Ubuntu 20.04.3. The files are stored in an XFS filesystem
mounted on SSD SAS disks RAID0. The compressed archives are stored
an XFS filesystem mounted on traditional rotating disks RAID0. All the
disks are attached to the same PERC H740P Adapter.

3.4. Software setup: the compression library

All our compression techniques are part of a software library we
publicly release at https://github.com/acubeLab/PPC_utils4BigData.
The library is written mostly in Python and includes the list of the

29 The same technique has been used by Hugging Face to deduplicate, but
not compress, source code datasets. See https://huggingface.co/blog/dedup.
30 https://google.github.io/magika/
31 We only consider the parent directory because on SWH using full paths
is very time-consuming (Lorentz et al., 2023) and does not seem to improve
the clustering process.

https://github.com/webdataset/webdataset
https://huggingface.co/docs/hub/datasets-webdataset
https://github.com/acubeLab/PPC_utils4BigData
https://huggingface.co/blog/dedup
https://google.github.io/magika/

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
Table 3
The table reports the output of the bench_PPC.py script (part of the software library we publicly release with this paper). It shows the
performance of the PPC framework on a 200GiB dataset made of source code files written in C/C++, permuting the files with random_order,
simhash, and filename using as final compressor zstd.
 Dataset Permuter Comp.

ratio (%)
Comp.
speed (MiB/s)

Decomp.
speed (MiB/s)

 C_files_metadata random_order+zstd 21.41 209.32 300.05
 C_files_metadata simhash+zstd 13.57 16.42 361.74
 C_files_metadata filename+zstd 7.14 493.46 455.57
files composing our datasets, which can be downloaded from the SWH
Archive. Although the library is specialized to the task of compressing
a collection of source code files, it can be easily customized to other
kinds of collections (e.g., by using a custom tokeniser) or adapted to
use other general-purpose compressors.

After downloading the datasets and setting up the environment with
the Python script available in the library, it is easy to benchmark the
various permuters using different compressors on a properly specified
list of files. More precisely, the script bench_PPC.py takes as input
a list of files (contained in a csv file), permutes them according to one
or more techniques (-p option), concatenates them, and compresses
the resulting file as a unique blob or splits it into blocks to compress
individually (-b option). This choice depends on the fact that one
wants to test the Backup scenario or the File-Access scenario. The
choice of the compressor(s) is delegated to option -c.

The script measures and displays several numbers: such as the
compression ratio, the compression speed, the decompression speed,
etc. For example, the command:

$./bench_PPC.py \
 C_files_metadata.csv -c zstd -p random \
 simhashsort filename

permutes the files according to the PPC pipeline random_order,
simhash, and filename; then concatenates and compresses them with
zstd, and outputs the results (in csv format) as shown in Table 3.

Our library is sufficiently flexible that one can customize also its
tokenizer to implement different locality-sensitive hashing (LSH) tech-
niques. In fact, LSH implementations (like Simhash, Minhash, etc. . .)
view each file as a sequence of tokens. A token can be a sequence of
bytes, words, lines, or arbitrarily long substrings. In this paper, we deal
with source code files and thus we decided to use as ‘‘tokens’’ the single
lines of the input files (i.e., delimited by the \n char). We also tested
tokens as groups of consecutive lines (obtained from a sliding window
of a certain width), but we experimentally evaluated that single lines
perform better. Since we wanted to be robust with respect to tiny and
irrelevant changes in the input files, we removed leading and trailing
tabs and white spaces and dropped too short lines (<10 chars). The
code we used to tokenize the files is the following:

def get_tokens(file_content, len_limit=10):
get a list of lines from the content of the file
 tokens = file_content.split(’\n’)
remove tokens with less than 10 chars
and delete leading and trailing tabs and whitespaces
 tokens = [x.strip() for x in tokens if len(x) > len_limit]
return tokens

As a technical note, our library uses just one thread on the rel-
atively small ‘‘Popular GitHub repos’’ dataset while it processes the
other (larger) datasets via more threads to speed up the computation.
In particular, it extracts the fingerprints using 16 threads and then
compresses 16 blocks in parallel in the File-Access scenario, while it
deploys the parallel compression capabilities of zstd, whose option -
T# spawns # compression threads, in the Backup scenario. While we
rely on parallelization to reduce execution times, a thorough analysis
of the scalability of our approach is beyond the scope of this paper.
9
4. Experimental results

We now describe the results of our experiments on compressing our
file collections in both the Backup scenario (Section 4.1), where we only
support full decompression of the whole compressed collection, and in
the File-Access scenario (Section 4.2), where we also support fast access
to the individually compressed files.

4.1. Results for the backup scenario

4.1.1. Results for the popular GitHub repositories
As a first experiment, we compare all compression techniques on

the 50-GiB ‘‘Popular GitHub repos’’ dataset, which is variegated and of
relatively small size, thus allowing us to investigate the performance of
all techniques in a reasonable time.

As the first two rows of Table 4 show, compressing the files indi-
vidually with gzip (default compression level) achieves a compression
ratio of 32.4% and a compression speed of 11.4 MiB/s, while the more
recent and faster zstd-3 achieves a compression ratio of 33.4% and a
compression speed of 79.5 MiB/s. The memory-hungry zstd-22 (third
row) achieves a slightly improved compression ratio of 29.9% and a
compression speed of 16.7 MiB/s. This means that we can cut the
storage space at more than one-third by just exploiting the redundancy
within each file.

These techniques, however, do not exploit the inter-file redundancy
among the source code files in the dataset. In fact, if we compress
the concatenation of the files with random_order + zstd-22, we im-
mediately obtain an improved compression ratio of 18.2% (i.e., –10%
in absolute terms) and a faster decompression speed, at the cost of
a significantly slower compression speed. This slowdown can be at-
tributed to the expensive processing required by zstd-22 to identify
and encode long repeated subsequences. On the other hand, com-
pared to single_compress + zstd-22, the decompression speed is 2.6×
faster due to the fact that the decompression does not need to restart
at each individually-compressed file and thus it can proceed in a
streaming-fashion.

Despite its 1024-MB window, zstd-22 cannot exploit redundan-
cies among files that are far apart in the random concatenation or-
der. git-pack tries to capture this redundancy by compressing to-
gether potentially-similar files inside the same repository. However,
it achieves a relatively modest compression ratio of 20.9% with an
improved (de)compression speed.32 Increasing the value of the param-
eters window (from 10 to 20) and depth (from 50 to 100) allows
git-pack to create longer and more compressed chains of deltified files
(see Section 2.1), but this improves the compression ratio by just a
relative 3.1% (going from 20.96% to 20.29%). Increasing the value
of the parameters even more (setting window to 40 and depth to
200), the compression ratio becomes 19.90%, but the compression
speed almost halves (it goes from 49.2 MiB/s to 28.3 MiB/s) and the
decompression speed slightly decreases. Overall, git-pack gets almost

32 We observe that git-pack cannot deduplicate files across the different
repositories in this dataset. However, since the non-deduplicated dataset takes
1.2 GiB more than the 50.4 GiB of the deduplicated one, the impact of the
duplicates on the compression ratio will be at most 2.4%, which does not
change our conclusions.

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
Table 4
The table reports the experimental results on the 50-GiB ‘‘Popular GitHub repos’’ dataset of all techniques investigated in this paper. We refer
the reader to Section 3.2 for the description and parameter settings of these techniques.
 Technique Compression

ratio (%)
Compression
speed (MiB/s)

Decompression
speed (MiB/s)

 single_compress + gzip 32.4 11.4 65.5
 single_compress + zstd-3 33.4 79.5 102.9
 single_compress + zstd-22 29.9 16.7 117.7
 random_order + zstd-22 18.2 2.4 304.6
 git-pack, 𝑤 = 10, 𝑑 = 50 20.9 49.2 54.4
 git-pack, 𝑤 = 20, 𝑑 = 100 20.2 36.7 56.9
 git-pack, 𝑤 = 40, 𝑑 = 200 19.9 28.3 66.9
 bwt_rle 12.0 <1 <1
 csa_sada, 𝑠 = 128 34.8 3.6 3.7
 csa_sada, 𝑠 = 256 31.3 2.6 2.9
 csa_wt, 𝑏 = 63 25.8 2.2 <1
 csa_wt, 𝑏 = 127 23.4 1.8 <1
 tlsh + zstd-22 10.5 12.4 329.6
 ssdeep + zstd-22 10.7 13.0 331.7
 simhash + zstd-22 10.8 11.0 330.7
 minhash_graph + zstd-22 10.3 3.3 332.1
 type_minhash_graph + zstd-22 9.5 1.7 327.4
 filename + zstd-22 10.1 32.9 379.7
 path + zstd-3 15.8 465.8 326.3
 path + zstd-22 10.1 32.7 381.0
the same compression ratio of random_order+zstd-22 with a 12×
faster compression speed but at the cost of a 4.5× slower decompression
speed. Summing up git-pack: (i) is not able to leverage similarities
between files from different repositories, and (ii) its combined use of
delta encoding and gzip is not as efficient as zstd-22.

The approaches we just discussed can exploit some inter-file redun-
dancy but they fail when the files are far apart (i.e., random_order)
or in distinct repositories (i.e., git-pack). Such distant redundancies
are the target of the techniques based on the bwt (see Section 3.2.2),
whose experimental results are shown in the third row-group of Table
4. We immediately notice that bwt_rle is very slow in compression and
decompression (less than 1 MiB/s) and thus unusable in practice. Com-
pared to bwt_rle, the performance of full-text indexes is worse in terms
of compression ratio (i.e., more than double in percentage), but it is
more than twice better in compression and decompression speed, even
if it is still unacceptably slow. In detail, the compression ratio goes from
34.8% of csa_sada with sample rate 𝑠 = 128 to 31.3% with sample rate
𝑠 = 256; instead, csa_wt achieves 25.8% compression ratio with block
size 𝑠 = 63, and 23.4% with block size 𝑏 = 127. The compression and de-
compression speeds are still on the order of a few MiB/s due to the ran-
dom accesses made during the construction of the bwt or its inversion.
We can thus conclude that, although bwt-based approaches are reason-
ably effective in compression ratio, their very-slow compression and de-
compression speeds makes them unsuitable to scale on bigger datasets.

We are now left with commenting on the PPC-based techniques
whose performance, detailed in the last row-group of Table 4, is
very promising in all three tested performance measures: compression
ratio, and (de)compression speeds. In particular, the content-based ap-
proaches based on the sorting of the fingerprints (namely, tlsh, ssdeep,
and simhash) reach the significant compression ratio of about 10%, a
moderately fast compression speed (between 11 and 13 MiB/s), and a
very fast decompression speed of more than 300 MiB/s. The approaches
based on graphs (such as minhash_graph and type_minhash_graph)
offer a slightly improved compression ratio and a comparable decom-
pression speed, but a very slow compression speed: hence resulting
not competitive. The reason resides in the fact that minhash_graph
requires reading all the files from the filesystem (randomly accessing
the disk), computing the MinHash fingerprint, constructing a graph,
computing its connected components, and finally further permuting the
bigger connected components with tlsh; while type_minhash_graph
also performs a grouping pre-step using the file type inferred with a
deep learning model.
10
The last group of PPC-based techniques are the context-based ap-
proaches filename and path that use the (reversed) file/path name as
the sorting key of the permuting step. Despite their simplicity, these
algorithms are better on all three performance measures (with the only
exception of type_minhash_graphin compression speed). Table 4 also
reports the performance of path + zstd-3: the reduced window size
worsens the compression ratio to 15.8% and the decompression speed
to 326 MiB/s (−55 MiB/s), but it significantly improves the compression
speed (from 32.7 MiB/s to 465.8 MiB/s). Not surprisingly, we see
that among the PPC-based techniques, the content-based algorithms
(tlsh, ssdeep, simhash, minhash_graph, and type_minhash_graph)
are about 4× slower in compression speed than the context-based
algorithms (filename and path), since the former need to scan the file
content and compute the fingerprints while the latter permute the files
by looking only at their filename/path. Overall, we can state that the
PPC-based approaches outperform all the other techniques in terms
of compression ratio (which turns out to be half of the others) and
decompression speed (which turns out to be up to 5× faster), thus
making them a promising solution for the compressed storage of the
SWH Archive.
Takehome message. Using a dataset of popular GitHub reposito-
ries, we found out that compressing the files individually achieves
an unsatisfactory compression ratio, that git-pack does not improve
much on this, and that bwt-based tools are impractical due to their
slow (de)compression speed. Instead, the PPC framework with the
context-based permuters combines the simplicity of its design with the
most effective compression ratio (≈10%) at interesting compression
(≈13 MiB/s) and decompression (≈330 MiB/s) speeds. If we adopt
the content-based permuters, we reduce the compression speed by 3×
without significantly changing the compression ratio and decompres-
sion speed, which seems to suggest they might be more appropriate in
scenarios where the context information is not available. As a final note,
we remark that changing the final-stage compressor (e.g., from zstd-22
to zstd-3) slightly reduces the compression ratio but significantly ben-
efits the compression speed, at comparable decompression speed.

4.1.2. Results for the SWH source code datasets
The four SWH datasets we experiment with in this section consist

of 200 GiB of source code files in four languages: Python, JavaScript,
Java, and C/C++. We remind that git-pack cannot be applied here

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
because it is designed to work on a set of files organized as a sin-
gle repository. We also do not test gzip, whose compression ratio is
never smaller than 16%, and the bwt-based techniques, since their
compression speed makes them impractical. Moreover, we do not test
type_minhash_graph because its ML-based approach to detect the
file type is useless here since the datasets are homogeneous (as they
contain files in the same language). For uniformity, the last stage of
the compression in all of our PPC-based tools is always implemented
through zstd-22.

We show the results of this section in Fig. 2. Plots on the same row
refer to the same dataset. The first column shows the compression ratio
vs compression speed, while the second column shows the compression
ratio vs decompression speed. The plots in the same row share the
same vertical axis to better compare their (de)compression speeds. We
also highlight the best compression ratio achieved by our tools with a
vertical line, and with an arrow, we indicate the Pareto front of the best
approaches. We use random_order as our baseline plotting its results
in blue.

All the other algorithms shown in Fig. 2 follow the PPC-based ap-
proach. The context-based techniques filename and path are plotted in
red and achieve the best performance overall. Their compression ratio
is indeed a remarkable 2.21% on Python, 3.64% on JavaScript, 7.78%
on Java, and 3.73% on C/C++. They are also the best in (de)compres-
sion speeds (up to 500 MiB/s, with a potential writing speed of our
disk of 1 GiB/s, see Section 3.3). As expected, the additional usage
of the directory name by the path algorithm slightly improves the
compression ratio (up to 0.4% on average), so in the following we
experiment only with path.

The content-based techniques are plotted in green. The three al-
gorithms that permute the input files according to the lexicographic
order of the fingerprints (namely, simhash, ssdeep, and tlsh) almost
halve, on average, the compression ratio obtained by random_order.
Among these algorithms, tlsh consistently outperforms the others in
terms of compression ratio, particularly excelling on the JavaScript
dataset. However, sorting fingerprints has the disadvantage that similar
files are placed far apart in the sorted order if the corresponding
fingerprints differ only in the very first bits. minhash_graph avoids
this pitfall with a graph-based approach, and indeed it achieves the
third-best compression ratio after the context-based algorithms path
and filename in three out of four datasets, but at the cost of a much
slower compression speed.
Takehome message. Our experiments show that source code files
from the SWH Archive can be compressed significantly by PPC-based
techniques. The most compressible ones are those written in Python
(2.2%), followed by JavaScript (3.6%), C/C++ (3.7%), and Java
(7.8%). These different compression ratios are likely due to multi-
faceted reasons: such as the number of files (for example Java has
9× more files than JavaScript see Table 1), repetitiveness introduced
by automatic tools and developers, language history, and intrinsic
properties of each language/framework. We believe that a deeper
insight on the above differences necessitates a comprehensive analysis
involving also programming languages experts.

These compression ratios are achieved by the context-based per-
muter path (followed closely by filename), which is both simple and
fast in (de)compression speed: a few tens of MiB/s in compression and
a few hundreds of MiB/s in decompression. Among permuters that
do not use context information but look just at the file content, the
minhash_graph approach achieves the best compression ratio (close
to that of filename) at the cost of a slow compression speed, because of
the additional operations involving the fingerprint computations. Much
faster compression speeds, but slightly worse compression ratios, are
achieved by permuters that sort fingerprints of the file content, and
here the tlsh is the most promising approach. As a final remark, we
believe that the content-based permuters remain very relevant despite
not achieving the best results in our experiments, especially because
they can be applied in scenarios where context information is not
available (i.e., classic key–value stores), or it is costly to be derived
(i.e., SWH Archive).
11
4.1.3. Results for the SWH random dataset
Given the promising performance of the PPC-based compression

techniques on source-code datasets, we move our attention to the whole
SWH archive and consider a random sample of size 200 GiB (dataset
Random Content in Section 3.1). This is intended to provide a glimpse
of the performance of our techniques on the whole SWH archive, which
includes files of many different types. A preliminary observation is that,
with respect to the Popular GitHub repos dataset, the random sample
from SWH dataset contains a larger amount of data different than
source codes and texts (60% vs less than 50%). This is relevant for two
reasons: 1) non textual data is often uncompressible (e.g., zipped files,
multimedia files etc.), and 2) some of our fingerprinting techniques
(simhash and minhash_graph) are text based in that they parse the
input into text lines: they can be applied also to non-textual files but
we can expect worse performance.

Fig. 3 reports the compression performance of all tested PPC-
based techniques and the two baselines single_compress and
random_order. These experiments show a worse compression ratio,
due to the presence of non source-code files, but confirm the validity of
the PPC-based approach with a larger gap in compression ratio between
type_minhash_graph and the other LSH-based techniques. This shows
the effectiveness of the finer grouping by mime-types achieved by
the ML-based classifier. Again, filename sorting (filename) and path
sorting (path) achieve the best compression ratio of 9.99% and 9.98%,
respectively.

4.2. Results for the file-access scenario

In this section, we consider the File-Access scenario, where we
aim to design a compression scheme that is succinct in space and is
efficient in supporting access to the content of individual files. We
restrict our test to four techniques: the three best PPC-based techniques
tlsh, minhash_graph, and path, and random_order as a baseline. We
excluded apriori git-pack since it only works on individual Git reposito-
ries and the bwt-based techniques which are unpractically slow. Since
we experimented with the SWH source code datasets we also excluded
type_minhash_graph since it behaves as minhash_graph but at a
lower speed.

In the File-Access scenario, the partition phase of PPC-based ap-
proaches is crucial in that the larger the blocks to be compressed, the
slower the time to access the individual files contained in them (see
Section 3.2.4). The size 𝐵 of those blocks thus influences the trade-
off between compression ratio and file-access speed. We experimented
with 𝐵 = 256 KiB and 𝐵 = 2 MiB, and fix the block-compressor to
zstd-12 because, as argued in Section 3.2.4, it offers an effective com-
promise between zstd-22 (very low compression ratio) and zstd-3 (very
fast compression speed). As described in Section 3.2.4, we compute the
file access speed by decompressing a random subset of 10% files in a
dataset. Note that, given this random subset of files, the decompression
time includes both (i) the time required to locate the block containing
the target file (leveraging the mapping stored in RocksDB) and (ii)
the time to decompress the block until the desired file is retrieved.
Therefore, decompression speed is computed as the total number of
bytes of the decompressed files divided by total decompression time.

Fig. 4 shows the compression ratio, compression speed, and file
access speed on the 200 GiB source-code datasets. As in Section 4.1.2,
plots in the same row refer to the same dataset and share the vertical
axis that allows to better compare the compression speed against the
file access speed. Moreover, the plots show a vertical line that high-
lights the best compression ratio achieved by our tools. They also show
the baseline solutions in blue, the content-based techniques in green,
and the context-based ones in red. Notice that each PPC technique is
shown twice, once with the block size set to 𝐵 = 256 KiB (lighter color)
and once with 𝐵 = 2 MiB (darker color).

As expected, splitting and compressing the files block-wise impacts
negatively on the compression effectiveness: the most effective solution
in all datasets is still path+zstd-22 and achieves a compression ratio

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
Fig. 2. Compression and decompression speed vs compression ratio for the 200-GiB datasets in the Backup scenario, using zstd-22 as the final compressor.
between 2.09% and 8.51% that is worse than the most effective solution
in the Backup scenario. For example, compressing the Python code
takes about 5.8% (instead of 2.2%), whereas compressing the Java code
takes 9.9% (instead of 7.8%); hence, the more compressible the dataset,
the larger the worsening gap.

Naturally, the parameter 𝐵 induces some performance trade-off.
Looking at the compression speed/compression ratio plots (first column
in Fig. 4), we see that a larger 𝐵 is always better. This is because
with a larger 𝐵 we need to compress fewer blocks and zstd-12 can
exploit more redundancies thus improving the compression ratio, which
generates a win-win situation.33 A different trade-off is observable

33 Recall that a block may take more than 𝐵 bytes if the last file surpasses
that limit.
12
when considering the decompression speed (second column of Fig. 4).
Not surprisingly the solution with 𝐵 = 2 MiB is slower in file-access
speed with respect to the one adopting 𝐵 = 256 KiB because it needs
to decompress a much larger block. We observe that the difference in
access speed, for example between the JavaScript and Java datasets,
has to be mainly attributed to the disparity in the number of files
within each dataset (in fact, the Java dataset comprises approximately
26 million files, while the JavaScript dataset contains around 3 million
files, see Table 1), which impacts on the storage infrastructure used to
index and keep block-compressed these files.
Takehome message. Quite remarkably, the results on the File-Access
scenario show that we can provide very fast file access speeds (up
to 100 MiB/s), while achieving a significant compression ratio (with
𝐵 = 2 MiB) of 5.82% on Python, 11.29% on JavaScript, 9.87% on
Java, and 6.45% on C/C++. Using a smaller block size 𝐵 = 256 KiB, we

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
Fig. 3. Compression ratio for the 200-GiB radom dataset in the Backup scenario, using different permuters and zstd-22 as the final compressor.
improve the file access speed by a factor 1.8×, at the cost of worsening
the compression ratio by a factor 1.2× and the compression speed by a
factor 2×.

Compared to the Backup scenario, as expected, the compression
ratios deteriorate across all languages due to the files being compressed
in blocks. Unexpectedly, the compressibility of different languages
changes. In particular, JavaScript replaces Java as the least compress-
ible language, while Python remains the most compressible language,
and C/C++ the second best. This switch between Java and JavaScript is
due to their different average file sizes. For the JavaScript dataset, the
average file size is 60.5 KiB with a median of 4.6 KiB. In contrast, the
Java dataset has an average file size of 7.9 KiB with a median of 2.4 KiB,
see Table 1. Therefore, JavaScript files are, on average, more than 7
times longer than Java files. So, when using block-based compression
in the File-Access scenario, we can fit into one block fewer JavaScript
files than Java files. More precisely, the average number of JavaScript
files in a 2-MiB block is 48, while for Java it is 268. Therefore, the final
compression step based on zstd is penalized on JavaScript files because
it can exploit less inter-file similarity.

5. Discussions

Limitations. We performed our experiments on a traditional POSIX-
based filesystem. It is a simple, easily implementable, and extend-
able solution to evaluate the compression ratio of our compression
techniques. We are aware it is not the best solution for evaluating
compression and decompression speeds on massive amounts of small
files. This is mainly because metadata — such as path, permission,
creation/modification dates, and location — are on the disk. These
metadata must be read from disk into memory to find the file itself.
While insignificant on a small scale, accessing metadata of billions of
files and petabytes of data can be a bottleneck (Beaver et al., 2010).

Furthermore, while we achieved our goal of investigating how to
efficiently and effectively compress the contents of the SWH archive,
there are some other important aspects that should be addressed in
case of scaling up to its full size, such as parallel and distributed
computation, fault tolerance, concurrency, etc., that we leave for future
work.

As we leave to future work the fact that we restricted our analysis
to four (very well-known) programming languages, although the SWH
archive contains hundreds of different languages, each having its own
compression ratio and inter-file similarity. Scaling to the compressed
storage of the whole archive will require dealing with many other data
types and file formats, so our space estimates of Section 4 (especially
the ones for the Random dataset) have to be taken just as estimates,
good and promising but estimates.
13
On the repetitiveness of programming languages. It is well-known, and
often a topic of heated debates, that programs in some programming
languages are more concise than in others. Some papers presented
models for measuring the conciseness of programming languages in a
consistent and objective way, eventually adopting information theoreti-
cal principles (see, e.g., Bergmans et al. (2021) and references therein).
Although interesting, those papers consider very small datasets (of
about 13k files) and also clean the files by removing comments and
spaces, which instead must be preserved in our lossless compression
scenario. So they derive a different ordering of the most concise, and
thus less expressive, programming languages among the ones con-
sidered in this paper. Overall, our experiments consider much larger
datasets up to three to five orders of magnitude in number of com-
pressed files. This makes them undoubtedly the largest examined in
the literature, and our experiments show that the most compressible
programming languages are Python (2.2%), followed by JavaScript
(3.6%), C/C++ (3.7%), and Java (7.8%). These different compression
ratios are likely due to multifaceted reasons: such as the number of
files (for example Java has 9× more files than JavaScript see Table 1),
repetitiveness introduced by automatic tools and by code developers,
language history, and intrinsic properties of each language/framework.
Implications for the SWH archive. Considering the entire SWH Archive
as of now, the total size of source code written in C/C++ is 14.7 TiB,
in Python 5.4 TiB, 50.3 TiB in JavaScript, and in Java 7.3 TiB. The
experiments in Section 4.1 have shown that we can achieve a com-
pression ratio that is about 4% averaging over those four programming
languages. This is also confirmed by some preliminary experiments
we conducted on snapshots of about 1 TiB. Thus, we can argue that
we can compress all available public code in those four languages
into just 3TiB. In terms of (de)compression speed, the context-based
permuters allow achieving a few tens of MiB/s in compression and
a few hundreds of MiB/s in streaming-like decompression, and a few
tens of MiB/s in single-file access. This file access speed implies that
users can quickly retrieve and interact with even small portions of
the compressed archive without the need for its full decompression.
This capability is especially beneficial for tasks that require frequent
access to different parts of the codebase, such as code analysis, software
maintenance, and real-time collaboration in software development. The
combination of high compression rates and fast file access speed makes
our system not only space-efficient but also time-efficient, thus offering
a scalable solution for managing and accessing large-scale source code
repositories in various computing environments.

6. Conclusions

Our results have shown that, on the source codes of the SWH
Archive, it is possible to achieve remarkable compression ratios (4%

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
Fig. 4. Compression and decompression speed vs compression ratio for the 200-GiB datasets in the File-Access scenario, using zstd-12 as the final compressor.
on average, or even less on specific programming languages, such as
Python) by exploiting the inter-file redundancies that are naturally
present in such file collections. The PPC-based techniques appear to
be very effective for this task in that combined with standard compres-
sion tools outperform ad-hoc techniques, like git-pack, or compressors
designed to handle very-long inputs, like bwt_rle. Among the different
PPC variants, we obtained the best performance when contextual in-
formation, even only the file name, is available and exploited. When
we lack such information, or the file name is not a good proxy of file-
content similarity (e.g., blog or social-network posts, storage systems,
key–value stores, etc.), we can still achieve good performances with
the PPC-paradigm using proper fingerprints extracted from the file
contents. We are currently investigating an example of such alternative
PPC-use: for key–value stores we compute for each ⟨𝑘, 𝑣⟩-pair, a proper
fingerprint of the ‘‘value’’-component and use it as a new key to create a
14
different key–value store with pairs ⟨𝑓 (𝑣), 𝑣⟩, and a satellite associative
table ⟨𝑓 (𝑣), 𝑘⟩ to keep track of the implemented key-mapping. This
way, similar values would come close in the (new) key–value store
thus eventually leveraging its compressed plug-in functionalities. This
application shows the robustness of the PPC framework, making it a
versatile tool for compressing large file collections across a variety of
situations and datasets. Further algorithmic research is still needed to
make the content-based techniques faster and thus scalable to larger
and larger data collections.

Our algorithmic framework can be immediately applied to all con-
texts where storing large amounts of source code files is required. At
present, this is a concrete need for large archives like SWH (our main
experimental use case), research infrastructures for empirical software
engineering like WoC and Boa (see Section 2.3), as well as large source
code datasets that are growing in popularity driven by the needs of

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
large language models (LLMs). The state-of-the-art of practical storage
solutions in those contexts remains pretty naive, relying on ad-hoc
object storages and their built-in compression solutions that do not
take into account specific aspects of software source code. We have
shown how storage requirements for those use cases can be reduced
significantly, while retaining a very simple implementation, based on
state-of-the-art techniques and technologies.

Building on the promising outcomes of our research, the next cru-
cial step involves applying our techniques to compress the whole
collection of source files written in the most used programming lan-
guages, as well as the entire SWH Archive. This latter endeavor requires
a strategic approach to distinguish between compressible and non-
compressible objects within the archive to avoid spending computing
time on incompressible files. The mentioned solutions, in particular
type_minhash_graph, will arguably play a pivotal role in this regard.

CRediT authorship contribution statement

Antonio Boffa: Writing – review & editing, Writing – original
draft, Software, Investigation, Data curation, Conceptualization.
Roberto Di Cosmo: Project administration, Investigation, Funding
acquisition, Conceptualization. Paolo Ferragina: Writing – review
& editing, Resources, Project administration, Investigation, Funding
acquisition, Conceptualization. Andrea Guerra: Writing – review &
editing, Software, Investigation, Data curation. Giovanni Manzini:
Writing – review & editing, Project administration, Investigation,
Funding acquisition, Conceptualization. Giorgio Vinciguerra: Writ-
ing – review & editing, Software, Methodology, Investigation, Data
curation, Conceptualization. Stefano Zacchiroli: Writing – review
& editing, Supervision, Project administration, Investigation, Funding
acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We express our gratitude to the staff of the Green Data Centre at
the University of Pisa for generously providing us with the necessary
machines and technical support crucial for executing the numerous
experiments detailed in this paper.

This work was partially supported by the Alfred P. Sloan Foundation
with the grant #G-2025-2519334; by the European Union – Horizon
2020 Program under the scheme ‘‘INFRAIA-01-2018-2019 – Integrating
Activities for Advanced Communities’’, Grant Agreement n. 871042,
‘‘SoBigData++: European Integrated Infrastructure for Social Mining
and Big Data Analytics’’ (http://www.sobigdata.eu); by the NextGener-
ationEU – National Recovery and Resilience Plan (Piano Nazionale di
Ripresa e Resilienza, PNRR) – Project: ‘‘SoBigData.it - Strengthening the
Italian RI for Social Mining and Big Data Analytics’’ – Prot. IR0000013
– Avviso n. 3264 del 28/12/2021; by the spoke ‘‘FutureHPC & BigData’’
of the ICSC – Centro Nazionale di Ricerca in High-Performance Com-
puting, Big Data and Quantum Computing funded by European Union
– NextGenerationEU – PNRR; and by the Italian Ministry of Univer-
sity and Research ‘‘Progetti di Rilevante Interesse Nazionale’’ project:
‘‘Multicriteria data structures and algorithms’’ (grant n. 2017WR7SHH).

We thank Valentin Lorentz from the Software Heritage engineering
team for his help in obtaining relevant datasets from the Software
Heritage archive.

34 sloan.org.
15
Data availability

All data/code has a Software Heritage persistent Identifier (SWHIDs)
(https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebe
e8a39a9d08b6e197df587) and is available on GitHub.

References

Abramatic, Jean-François, Di Cosmo, Roberto, Zacchiroli, Stefano, 2018. Building the
universal archive of source code. Commun. ACM 61 (10), 29–31.

Alexandru, Carol V., Panichella, Sebastiano, Proksch, Sebastian, Gall, Harald C., 2019.
Redundancy-free analysis of multi-revision software artifacts. Empir. Softw. Eng.
24 (1), 332–380.

Armbrust, Michael, Das, Tathagata, Sun, Liwen, Yavuz, Burak, Zhu, Shixiong,
Murthy, Mukul, Torres, Joseph, van Hovell, Herman, Ionescu, Adrian, Łuszczak, Al-
icja, undefinedwitakowski, Michał, Szafrański, Michał, Li, Xiao, Ueshin, Takuya,
Mokhtar, Mostafa, Boncz, Peter, Ghodsi, Ali, Paranjpye, Sameer, Senster, Pieter,
Xin, Reynolds, Zaharia, Matei, 2020. Delta lake: High-performance ACID table
storage over cloud object stores. PVLDB 13 (12), 3411–3424.

Armenatzoglou, Nikos, Basu, Sanuj, Bhanoori, Naga, Cai, Mengchu, Chainani, Naresh,
Chinta, Kiran, Govindaraju, Venkatraman, Green, Todd J., Gupta, Monish,
Hillig, Sebastian, Hotinger, Eric, Leshinksy, Yan, Liang, Jintian, McCreedy, Michael,
Nagel, Fabian, Pandis, Ippokratis, Parchas, Panos, Pathak, Rahul, Polychro-
niou, Orestis, Rahman, Foyzur, Saxena, Gaurav, Soundararajan, Gokul, Sub-
ramanian, Sriram, Terry, Doug, 2022. Amazon redshift re-invented. In: Proc.
2022 International Conference on Management of Data. SIGMOD, Association for
Computing Machinery, New York, NY, USA, pp. 2205–2217.

Beaver, Doug, Kumar, Sanjeev, Li, Harry C., Sobel, Jason, Vajgel, Peter, 2010. Finding
a needle in haystack: Facebook’s photo storage. In: Proc. 9th USENIX Symposium
on Operating Systems Design and Implementation. OSDI, USENIX Association.

Bergmans, Lodewijk, Schrijen, Xander, Ouwehand, Edwin, Bruntink, Magiel, 2021.
Measuring source code conciseness across programming languages using compres-
sion. In: 21st IEEE International Working Conference on Source Code Analysis and
Manipulation. SCAM 2021, Luxembourg, September 27-28, 2021, IEEE, pp. 47–57.

Bhattacherjee, Souvik, Chavan, Amit, Huang, Silu, Deshpande, Amol,
Parameswaran, Aditya G., 2015. Principles of dataset versioning: Exploring
the recreation/storage tradeoff. Proc. VLDB Endow. 8 (12), 1346–1357, Version
with the appendix available at https://arxiv.org/pdf/1505.05211.

Boldi, Paolo, Pietri, Antoine, Vigna, Sebastiano, Zacchiroli, Stefano, 2020. Ultra-
large-scale repository analysis via graph compression. In: Proc. 27th International
IEEE Conference on Software Analysis, Evolution and Reengineering. SANER, pp.
184–194.

Boldi, Paolo, Vigna, Sebastiano, 2004. The webgraph framework I: compression
techniques. In: Feldman, Stuart I., Uretsky, Mike, Najork, Marc, Wills, Craig E.
(Eds.), Proceedings of the 13th International Conference on World Wide Web.
WWW 2004, New York, NY, USA, May 17-20, 2004, ACM, pp. 595–602.

Breitinger, Frank, Guttman, Barbara, McCarrin, Michael, Roussev, Vassil, White, Dou-
glas, 2014. Approximate matching : definition and terminology. NIST Spec. Publ.
(800–168).

Broder, Andrei Z., 1997. On the resemblance and containment of documents. In: Proc.
Compression and Complexity of SEQUENCES. pp. 21–29.

Buchsbaum, Adam L., Caldwell, Donald F., Church, Kenneth Ward, Fowler, Glenn S.,
Muthukrishnan, S., 2000. Engineering the compression of massive tables: an exper-
imental approach. In: Proc. 11th ACM-SIAM Symposium on Discrete Algorithms.
SODA, pp. 175–184.

Buchsbaum, Adam L., Fowler, Glenn S., Giancarlo, Raffaele, 2003. Improving table
compression with combinatorial optimization. J. ACM 50 (6), 825–851.

Burrows, Michael, Wheeler, David J., 1994. A Block-sorting Lossless Data Compression
Algorithm. Technical Report 124, Digital Equipment Corporation.

Charikar, Moses, 2002. Similarity estimation techniques from rounding algorithms. In:
Proc. 34th Annual ACM Symposium on Theory of Computing. STOC, pp. 380–388.

Di Cosmo, Roberto, Zacchiroli, Stefano, 2017. Software Heritage: why and how to
preserve software source code. In: Proc. 14th International Conference on Digital
Preservation. IPRES.

Dong, Siying, Kryczka, Andrew, Jin, Yanqin, Stumm, Michael, 2021. RocksDB: evolution
of development priorities in a key-value store serving large-scale applications. ACM
Trans. Storage 17 (4).

Douglis, Fred, Iyengar, Arun, 2003. Application-specific delta-encoding via resemblance
detection. In: Proc. General Track 2003 USENIX Annual Technical Conference. pp.
113–126.

Dyer, Robert, Nguyen, Hoan Anh, Rajan, Hridesh, Nguyen, Tien N., 2015. Boa: Ultra-
large-scale software repository and source-code mining. 25, (1), pp. 7:1–7:34,

Ferragina, Paolo, Gagie, Travis, Manzini, Giovanni, 2012. Lightweight data indexing
and compression in external memory. Algorithmica 63 (3), 707–730.

Ferragina, Paolo, Manzini, Giovanni, 2005. Indexing compressed text. J. ACM 52 (4),
552–581.

http://www.sobigdata.eu
http://www.sloan.org
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebee8a39a9d08b6e197df587
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb1
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb1
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb1
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb2
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb2
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb2
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb2
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb2
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb4
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb6
https://arxiv.org/pdf/1505.05211
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb11
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb11
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb11
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb17
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb17
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb17
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb17
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb17
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb19
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb21

A. Boffa et al. The Journal of Systems & Software 227 (2025) 112429
Ferragina, Paolo, Manzini, Giovanni, 2010. On compressing the textual web. In: Proc.
3rd ACM International Conference on Web Search and Data Mining. WSDM, pp.
391–400.

Fetterly, Dennis, Manasse, Mark S., Najork, Marc, 2003. On the evolution of clusters
of near-duplicate web pages. In: Proc. 1st Latin American Web Congress. la-WEB,
pp. 37–45.

Fontana, Tommaso, Vigna, Sebastiano, Zacchiroli, Stefano, 2024. WebGraph: The next
generation (is in rust). In: Chua, Tat-Seng, Ngo, Chong-Wah, Lee, Roy Ka-Wei,
Kumar, Ravi, Lauw, Hady W. (Eds.), Companion Proceedings of the ACM on Web
Conference 2024. WWW 2024, Singapore, Singapore, May 13-17, 2024, ACM, pp.
686–689.

Fritz, Markus Hsi-Yang, Leinonen, Rasko, Cochrane, Guy, Birney, Ewan, 2011. Ef-
ficient storage of high throughput DNA sequencing data using reference-based
compression. Genome Res. 21 (5), 734–740.

Gao, Leo, Biderman, Stella, Black, Sid, Golding, Laurence, Hoppe, Travis, Fos-
ter, Charles, Phang, Jason, He, Horace, Thite, Anish, Nabeshima, Noa,
Presser, Shawn, Leahy, Connor, 2021. The Pile: An 800GB dataset of diverse text
for language modeling. CoRR, abs/2101.00027.

Gog, Simon, Beller, Timo, Moffat, Alistair, Petri, Matthias, 2014. From theory to
practice: Plug and play with succinct data structures. In: Proc. 13th International
Symposium on Experimental Algorithms. SEA, pp. 326–337.

Grossi, Roberto, Vitter, Jeffrey Scott, 2005. Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. SIAM J. Comput. 35 (2),
378–407.

Heintze, Nevin, 1996. Scalable document fingerprinting. In: Proc. 2nd USENIX
Workshop on Electronic Commerce. EC.

Hosseini, Morteza, Pratas, Diogo, Pinho, Armando J., 2016. A survey on data
compression methods for biological sequences. Information 7 (4).

Hu, Xiaokang, Wang, Fuzong, Li, Weigang, Li, Jian, Guan, Haibing, 2019. QZFS: QAT
accelerated compression in file system for application agnostic and cost efficient
data storage. In: Proc. 2019 USENIX Annual Technical Conference. USENIX ATC,
pp. 163–176.

Hugo G. Moia, Vitor, Amaral Henriques, Marco Aurelio, 2017. Similarity digest search:
A survey and comparative analysis of strategies to perform known file filtering
using approximate matching. Secur. Commun. Netw. 2017, 1–17.

Hunt, James J., Vo, Kiem-Phong, Tichy, Walter F., 1998. Delta algorithms: an empirical
analysis. ACM Trans. Softw. Eng. Methodol. 7 (2), 192–214.

Idreos, Stratos, Callaghan, Mark, 2020. Key-value storage engines. In: Proc. 2020 ACM
International Conference on Management of Data. SIGMOD, pp. 2667–2672.

Indyk, Piotr, Motwani, Rajeev, 1998. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In: Proc. 30th Annual ACM Symposium on Theory of
Computing. STOC, pp. 604–613.

Jafari, Omid, Maurya, Preeti, Nagarkar, Parth, Islam, Khandker Mushfiqul, Cru-
shev, Chidambaram, 2021. A survey on locality sensitive hashing algorithms and
their applications. ArXiv, abs/2102.08942.

Kornblum, Jesse D., 2006. Identifying almost identical files using context triggered
piecewise hashing. Digit. Investig. 3 (Supplement), 91–97.

Lorentz, Valentin, Di Cosmo, Roberto, Zacchiroli, Stefano, 2023. The Popular Content
Filenames Dataset: Deriving most likely filenames from the Software Heritage
Archive. working paper or preprint.

Ma, Yuxing, Dey, Tapajit, Bogart, Chris, Amreen, Sadika, Valiev, Marat, Tutko, Adam,
Kennard, David, Zaretzki, Russell, Mockus, Audris, 2021. World of code: enabling
a research workflow for mining and analyzing the universe of open source VCS
data. Empir. Softw. Eng. 26 (2), 22.

Madaan, Aman, Zhou, Shuyan, Alon, Uri, Yang, Yiming, Neubig, Graham, 2022.
Language models of code are few-shot commonsense learners. In: Proc. 2022
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, pp. 1384–1403.
16
Manber, Udi, 1994. Finding similar files in a large file system. In: Proc. USENIX Winter
1994 Technical Conference. pp. 1–10.

Manning, Christopher D., Raghavan, Prabhakar, Schütze, Hinrich, 2008. Introduction
to Information Retrieval. Cambridge University Press.

Manzini, Giovanni, 2001. An analysis of the Burrows-Wheeler transform. J. ACM 48
(3), 407–430.

Molfetas, Angelos, Wirth, Anthony, Zobel, Justin, 2014. Using inter-file similarity to
improve intra-file compression. In: Proc. 2014 IEEE International Congress on Big
Data. pp. 192–199.

Muralidhar, Subramanian, Lloyd, Wyatt, Roy, Sabyasachi, Hill, Cory, Lin, Ernest,
Liu, Weiwen, Pan, Satadru, Shankar, Shiva, Sivakumar, Viswanath, Tang, Linpeng,
Kumar, Sanjeev, 2014. f4: Facebook’s warm BLOB storage system. In: Proc. 11th
USENIX Symposium on Operating Systems Design and Implementation. OSDI,
USENIX Association, pp. 383–398.

Navarro, Gonzalo, 2021. Indexing highly repetitive string collections, Part II:
Compressed indexes. ACM Comput. Surv. 54 (2).

Navarro, Gonzalo, Mäkinen, Veli, 2007. Compressed full-text indexes. ACM Comput.
Surv. 39 (1).

Oliver, Jonathan, Cheng, Chun, Chen, Yanggui, 2013. TLSH – A locality sensitive hash.
In: Proc. 4th Cybercrime and Trustworthy Computing Workshop. CTC, pp. 7–13.

Oliver, Jonathan, Forman, Scott, Cheng, Chun, 2014. Using randomization to attack
similarity digests. In: Applications and Techniques in Information Security. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 199–210.

Ouyang, Zan, Memon, Nasir D., Suel, Torsten, Trendafilov, Dimitre, 2002. Cluster-Based
Delta compression of a collection of files. In: Proc. 3rd International Conference
on Web Information Systems Engineering. WISE, pp. 257–268.

Pan, Satadru, Stavrinos, Theano, Zhang, Yunqiao, Sikaria, Atul, Zakharov, Pavel,
Sharma, Abhinav, P, Shiva Shankar, Shuey, Mike, Wareing, Richard, Gangapu-
ram, Monika, Cao, Guanglei, Preseau, Christian, Singh, Pratap, Patiejunas, Kestutis,
Tipton, JR, Katz-Bassett, Ethan, Lloyd, Wyatt, 2021. Facebook’s Tectonic filesystem:
Efficiency from exascale. In: Proc. 19th USENIX Conference on File and Storage
Technologies. FAST, pp. 217–231.

Pietri, Antoine, 2021. Organizing the Graph of Public Software Development for
Large-Scale Mining (Ph.D. thesis). (2021UNIP7183), Université Paris Cité.

Raman, Rajeev, Raman, Venkatesh, Satti, Srinivasa Rao, 2007. Succinct indexable
dictionaries with applications to encoding 𝑘-ary trees, prefix sums and multisets.
ACM Trans. Algorithms 3 (4), 43.

Suel, Torsten, 2019. Delta compression techniques. In: Sakr, Sherif, Zomaya, Albert Y.
(Eds.), Encyclopedia of Big Data Technologies. Springer.

Suel, Torsten, Memon, Nasir D., 2002. In: Sayood, Khalid (Ed.), Lossless Compression
Handbook. Academic Press.

Tichy, Walter F., 1985. Rcs — a system for version control. Software: Pr. Exp. 15 (7),
637–654.

Wandelt, Sebastian, Bux, Marc, Leser, Ulf, 2014. Trends in genome compression. Curr.
Bioinform. 9 (3), 315–326.

Wang, Jingdong, Shen, Heng Tao, Song, Jingkuan, Ji, Jianqiu, 2014. Hashing for
similarity search: A survey. CoRR, abs/1408.2927.

Xia, Wen, Li, Chunguang, Jiang, Hong, Feng, Dan, Hua, Yu, Qin, Leihua,
Zhang, Yucheng, 2015. Edelta: A word-enlarging based Fast Delta compression
approach. In: Proc. 7th USENIX Workshop on Hot Topics in Storage and File
Systems. HotStorage, USENIX Association.

Zaharia, Matei A., Ghodsi, Ali, Xin, Reynolds, Armbrust, Michael, 2021. Lakehouse:
A new generation of open platforms that unify data warehousing and advanced
analytics. In: Proc. 11th Conference on Innovative Data Systems Research. CIDR.

http://refhub.elsevier.com/S0164-1212(25)00097-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb25
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb25
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb25
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb25
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb25
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb31
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb33
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb33
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb33
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb34
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb34
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb34
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb47
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb47
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb47
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb50
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb50
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb50
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb50
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb50
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb52
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb53
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb53
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb53
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb53
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb53
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb54
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb55
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00097-4/sb60

	On the compressibility of large-scale source code datasets
	Introduction
	The Software Heritage Archive
	Objective
	Contributions

	Background and related work
	Compressing a collection of files
	Fingerprinting to detect similar files
	Large-scale analysis of software development artefacts

	Experimental setup
	Datasets
	Compression techniques
	Baselines
	Techniques based on the Burrows–Wheeler transform
	The git-pack technique
	PPC-based techniques

	Hardware setup
	Software setup: the compression library

	Experimental results
	Results for the Backup scenario
	Results for the Popular GitHub repositories
	Results for the SWH source code datasets
	Results for the SWH random dataset

	Results for the File-Access scenario

	Discussions
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

