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 A B S T R A C T

Storing ultra-large amounts of unstructured data (often called objects or blobs) is a fundamental task for 
several object-based storage engines, data warehouses, data-lake systems, and key–value stores. These systems 
cannot currently leverage similarities between objects, which could be vital in improving their space and time 
performance. An important use case in which we can expect the objects to be highly similar is the storage of 
large-scale versioned source code datasets, such as the Software Heritage Archive (Di Cosmo and Zacchiroli, 
2017). This use case is particularly interesting given the extraordinary size (1.5 PiB), the variegated nature, 
and the high repetitiveness of the at-issue corpus.

In this paper we discuss and experiment with content- and context-based compression techniques for 
source-code collections that tailor known and novel tools to this setting in combination with state-of-the-art 
general-purpose compressors and the information coming from the Software Heritage Graph.

We experiment with our compressors over a random sample of the entire corpus, and four large samples 
of source code files written in different popular languages: C/C++, Java, JavaScript, and Python. We also 
consider two scenarios of usage for our compressors, called Backup and File-Access scenario, where the latter 
adds to the former the support for single file retrieval. As a net result, our experiments show (i) how much 
‘‘compressible’’ each language is, (ii) which content- or context-based techniques compress better and are 
faster to (de)compress by possibly supporting individual file access, and (iii) the ultimate compressed size 
that, according to our estimate, our best solution could achieve in storing all the source code written in these 
languages and available in the Software Heritage Archive: namely, in 3TiB (down from their original 78TiB 
total size, with an average compression ratio of 4%).
1. Introduction

More and more organizations store and analyze growing amounts 
of data in cloud computing platforms. An important trend in this 
context is the separation of storage and computing, whereby data 
are stored in distributed cloud storage systems, whereas computing 
resources are spawned elastically on demand. This separation poses 
an amazing challenge as the surge in ultra-large unstructured data 
repositories—commonly referred to as object or blob storage—places 
unprecedented pressure on existing infrastructures in terms of storage 
and network capacity, energy consumption, and application require-
ments. This phenomenon is particularly evident across diverse storage 
engines (Pan et al., 2021), data warehouses (Armenatzoglou et al., 
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2022), data-lake systems (Zaharia et al., 2021; Armbrust et al., 2020), 
and key–value stores (Idreos and Callaghan, 2020), posing the need for 
solutions that address their evolving and diverse demands. Moreover, 
the relentless growth of vast volumes of data managed by these sys-
tems further exacerbates the strain on their capacities, efficiency, and 
scalability.

A pivotal tool for mitigating the challenges posed by such a growth 
in data volume is data compression. In fact, data compression not only 
optimizes storage utilization, but it also enhances data transfer speeds 
(as nodes exchange smaller amounts of data) and the effective use of 
computing resources (as more data can fit in main memory for efficient 
analysis), thereby improving the overall system performance.
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Research papers about storage engines (Beaver et al., 2010; Pan 
et al., 2021; Muralidhar et al., 2014) mainly focus on managing large-
scale data efficiently, emphasizing aspects like scalability, reliability, 
and metadata reduction, while exploiting the skew in access frequency 
of the stored objects. However, none of these papers explicitly discusses 
how to leverage similarities among objects to improve compression ef-
fectiveness and, as a consequence, system performance. These benefits 
are especially prominent when considering the storage of source code 
datasets, which are highly repetitive, large, and ever-growing by nature. 
The significance of source code datasets is also witnessed by their 
increasingly pivotal role in AI (Gao et al., 2021), because of the growing 
interest in pre-trained models for code generation and summarization 
(e.g., GitHub Copilot2 or Code Llama3) or for their surprising role in 
improving classic large language models (Madaan et al., 2022). Not 
to mention the flourishing industrial collaborations for building more 
effective AI-based solutions that deal with source code datasets,4 which 
pose new challenges to these systems in terms of storage capacity, 
efficiency, and scalability.5

This motivates the study presented in this paper, which presents 
an ongoing effort at compressing the largest public archive of source 
code, known as the Software Heritage Archive (Abramatic et al., 2018). 
In the remainder of this section, we discuss the Software Heritage 
Archive (Section 1.1), formalize the objectives of our study (Sec-
tion 1.2), and summarize our contributions (Section 1.3).

1.1. The software heritage archive

Software Heritage (SWH)6 is an ambitious initiative launched in 
2016 at Inria (France) aimed to collect, preserve, and share all the 
software available in source code form (Abramatic et al., 2018; Di 
Cosmo and Zacchiroli, 2017).

At the time of this writing, the SWH Archive contains about 20 
billion unique source code files gathered from more than 300 million 
projects, together with their full development history consisting of more 
than 4 billion unique commits created over 70 million authors. It is the 
largest existing collection of software source code, totaling 1.5 PiB of 
data, crawled over the years from several code hosting platforms such 
as GitHub, GitLab, Bitbucket, npm, and the (now-defunct) Gitorious and 
Google Code.

This enormous amount of information is logically structured as a 
direct acyclic graph (DAG), as depicted in Fig.  1, whose nodes are 
software artefacts such as (i) file contents (aka ‘‘blobs’’); (ii) directories, 
which enclose files and other directories; (iii) revisions (aka ‘‘commits’’), 
which represent the state of a project’s root directory at a certain 
time; and (iv) releases (aka ‘‘tags’’), which denote revisions that are 
also project milestones. Then, there are some additional nodes offering 
provenance information such as (v) snapshots, which capture the full 
state of a project at a certain time; and (vi) origins, which are the 
URLs at which a snapshot has been observed. Any software artifact gets 
added to the archive only if it does not already exist, thus files and 
directories get deduplicated even if they come from entirely different 
projects.

Unsurprisingly, the actual file contents require the most storage 
space, namely 99% of the whole 1.5 PiB size, despite being dedu-
plicated and individually compressed with gzip (using -9 flag, so 

2 https://github.com/features/copilot
3 https://ai.meta.com/blog/code-llama-large-language-model-coding/
4 See https://www.mongodb.com/press/mongodb-aws-collaborate-to-optim

ize-amazon-codewhisperer and https://www.softwareheritage.org/2023/12/0
4/hugging-face/.

5 We mention in this context the surge of the demand for high-capacity 
HDDs to support AI training, see https://www.theregister.com/2024/04/23/
seagate_hdd_prices/.

6 See https://www.softwareheritage.org.
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with maximum compression). Each file content is associated with the 
corresponding node identifier in the DAG and accessed via a key–
value object store (Di Cosmo and Zacchiroli, 2017). The remaining 
storage space (about 30 TiB) is taken by the DAG, which is kept both 
in a relational database with roughly one table per node type (Di 
Cosmo and Zacchiroli, 2017) and in a derived compressed in-memory 
representation (Boldi et al., 2020).

This sheer and ever-growing size of the available source code de-
mands many storage devices and operational costs.7 This poses a seri-
ous obstacle to the SWH missions, as it significantly impacts the tasks 
of source code collection (e.g., from new and ever-changing projects 
due to increasing storage requirements), preservation (e.g., replication 
becomes more and more costly, also in terms of transmission time) 
and sharing (e.g., impacting researchers that wish to download a local 
copy for data/code analysis under limited storage and networking 
resources).

1.2. Objective

The objective of this study is to investigate how to achieve effi-
cient and effective lossless compressed storage of the largest part of the 
SWH Archive— i.e., the file contents—while still supporting streaming 
decompression and random access to the compressed files.

This is an ambitious goal not only due to the scale of SWH but 
also because of its variegated nature, as it comprises source code files 
(along with their development history) written in hundreds of different 
programming languages by many authors and for diverse purposes. 
Moreover, the archive includes other artifacts that can be found in 
software projects, such as documentation, datasets, images, compiled 
programs, trained ML models, etc.

Currently, files in the SWH Archive are compressed individually 
with gzip. This saves approximately half of the space on average (Di 
Cosmo and Zacchiroli, 2017) but fails to leverage both the history 
of these files, which are often originated by commits that add and 
modify just a few lines of code and the fact that some code blocks are 
commonly recurring among different files, e.g., they are programming 
idioms or snippets that are copy-pasted from other projects and Q&A 
coding websites. Detecting and exploiting these inter-file redundancies 
is a huge compression opportunity that SWH is missing as of now.

In this paper, to get insights about intra- and inter-file similarities 
over the variegated composition of SWH, we consider five datasets of 
200 GiB each: a random sample of the entire corpus, and four samples 
of source code files written in four different popular languages, namely 
C/C++, Java, JavaScript, and Python. We also consider a smaller 50-
GiB dataset of files from the most-starred repositories for the C and 
Python languages. Upon these datasets, we investigate not only the 
(lossless) compression efficacy of the studied solutions, useful for the 
preservation issues mentioned in Section 1.1, but we also evaluate the 
decompression speed of individual files, useful for the fruition of the 
SWH archive.

1.3. Contributions

We design, implement, and experiment with a prototype com-
pressed storage subsystem for the Software Heritage Archive, which 
we make publicly available at https://github.com/acubeLab/PPC_uti
ls4BigData. Our prototype allows compressing collections of several 
billion files (not necessarily source-code files) by fully exploiting the 
power of the Permute-Partition-Compress (PPC) paradigm introduced 
in Buchsbaum et al. (2000, 2003) and Ferragina and Manzini (2010).

7 Add to this the environmental impact, both due to the energy consump-
tion and the failure-prone nature of these storage devices, which often become 
e-waste.
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Fig. 1. Data model of the Software Heritage Archive (Pietri, 2021).
The PPC paradigm consists of three main steps: (i) the input files 
are permuted to bring the similar ones close to each other; (ii) the 
permuted files are partitioned into blocks of proper size to facilitate 
efficient access; and (iii) the individual blocks are compressed by a 
general-purpose compressor.

The most crucial and intriguing step is undoubtedly the permuting 
one. For it, we can follow two main approaches: context-based and
content-based. The context-based approaches take advantage of the con-
text of the files as available in the SWH graph such as provenance 
information, commit history, filename, and authors. They are inher-
ently powerful because they can allow identifying files that belong 
to the same software development history and group them together 
to achieve very effective compression. The content-based approaches, 
instead, are designed to be agnostic to the context of the file and 
detect similarities among them by using Machine Learning and Locality 
Sensitive Hashing (Indyk and Motwani, 1998) techniques applied to 
their content, i.e., raw bytes. As such, they can be applied to file 
collections in which context information is not available, or it is costly 
to be derived.

Alongside these approaches, we experiment with known compres-
sors such as the Burrows–Wheeler Transform (Burrows and Wheeler, 
1994; Manzini, 2001), compressed full-text indexes (Navarro and Mäki-
nen, 2007; Navarro, 2021; Grossi and Vitter, 2005; Ferragina and 
Manzini, 2005), and the git-pack compressor from the Git revision 
control system.

Our experiments will consider five datasets of 200 GiB each: a 
random sample of the entire corpus, and four samples of source code 
files written in four different popular languages, namely C/C++, Java, 
JavaScript, and Python. We also experiment on a smaller 50-GiB dataset 
of files from the most-starred repositories for the C and Python lan-
guages. Our experiments show that:

• Compressing files individually (e.g., with gzip and zstd), as cur-
rently done in the SWH Archive, achieves an unsatisfactory com-
pression ratio of around 30%.

• The git-pack approach achieves a compression ratio of around
20%.

• Compressed full-text indexes and the Burrows–Wheeler Transform 
can achieve on par or better compression ratios (i.e., up to 23% 
the former and 12% the latter), but they seem impractical for this 
scale of data due to their slow compression and decompression 
speeds (both no faster than 4 MiB/s).

• Our proposed PPC framework achieves with the context-based 
permuters, simultaneously, the most effective compression ratio 
3 
(on average 8%, if file access needs to be supported and 4% 
if not), and good compression speeds (up to about 54 MiB/s 
when using zstd-22 as final-stage compressor), decompression 
speeds (up to about 470 MiB/s with zstd-22) and file access 
speed (up to about 100 MiB/s with zstd-12). The content-based 
permuters are much slower in compression speed and slightly 
worse in compression ratio, which suggests that they might be 
more appropriate in scenarios where the context information is 
not available, such as in classic storage systems, or it is costly to 
be derived.

• Interestingly, the most compressible source code files are those 
written in Python (2.2%), followed by JavaScript (3.6%), C/C++ 
(3.7%), and Java (7.8%). As expected, the compression ratios 
slightly increase when enabling random access to individual files 
(because of compression in small blocks), but interestingly, the 
relative compressibility of the different languages changes. This 
behavior can be partly explained by the repetitiveness introduced 
by code-generation tools, different developer habits, and intrinsic 
properties of each language/framework, but further research is 
needed to untangle these findings.

• When compressing a random sample of files from the SWH 
Archive, the PPC framework achieves a worse compression ratio 
due to the presence of many incompressible files (e.g., multimedia 
files, or zip files), but it is still around 10% thanks to an effective 
grouping based either on context information or by file type 
inferred from the file content.

In conclusion, since source code files in C/C++, Python, Java and 
JavaScript collected by SWH as of 2024 amount to 78TiB of data, 
and given the 4% of average compression ratio we achieved, we can 
extrapolate that our ongoing effort to scale our techniques to all open-
source code ever written in these languages and available in the SWH 
archive could be compressed in about 3TiB, hence just within the 
storage capacity of a modern laptop.
Paper outline. Section 2 provides some background on techniques we 
use in this paper and discusses relevant literature. Section 3 introduces 
our datasets, compression techniques, and the hardware/software envi-
ronment. Section 4 presents the results of our experimental evaluation. 
Section 5 includes a discussion on the limitations of the proposed 
techniques, a comparison of the compressibility of different program-
ming languages, and its implications for SWH. Section 6 concludes the 
paper by summarizing the key takeaways and outlining future research 
directions.
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2. Background and related work

In this section, we describe the main known approaches for com-
pressing a collection of files (Section 2.1). We also review the main 
techniques for detecting similar files (Section 2.2) since they play an 
important role within the PPC framework.

2.1. Compressing a collection of files

The problem of compressing a collection of files has been addressed 
in the literature with reference to web pages (Ferragina and Manzini, 
2010), genome repositories (Fritz et al., 2011; Wandelt et al., 2014; 
Hosseini et al., 2016), file and storage systems (Hu et al., 2019), and 
(single) source code repositories (Tichy, 1985; Molfetas et al., 2014; 
Hunt et al., 1998; Xia et al., 2015; Bhattacherjee et al., 2015). We now 
review the main techniques underlying these diverse applications and 
refer the interested reader to Ferragina and Manzini (2010) and Suel 
(2019) for further information.

A folklore approach to exploit inter-file redundancies is to concate-
nate the files in the collection and then run a general-purpose compres-
sor (e.g., gzip). Most general-purpose compressors work by succinctly 
encoding repeated data fragments that occur within a fixed-size win-
dow sliding through the file to be compressed. While classic compres-
sors like gzip and bzip have been designed to have a small memory 
footprint (less than 1MB) and thus detect only relatively close data rep-
etitions, more recent and sophisticated compressors— like Brotli,8 by 
Google, LZMA9 LZFSE10 by Apple, and zstd11 by Facebook—can detect 
repetitions at much longer distances, up to hundreds or thousands of 
MiB. However, it is clear that even these tools cannot detect and exploit 
all the redundancy present in a very large document collection, such as 
the Software Heritage Archive, where repetitions can be much farther 
apart because of the collection size. As a consequence, three main ad-
hoc approaches have been proposed so far in the literature to tackle 
this issue.

The first approach is to use a more powerful compressor that is not 
limited by a fixed window or block size. For example, using a disk-
based construction of the Burrows–Wheeler Transform (shortly bwt, 
see Ferragina et al. 2012) is possible to detect repetitions at unlimited
distances using a limited internal memory footprint. This approach is 
very time-consuming both in the compression and the decompression 
stages, but its compression effectiveness can be quite significant, as 
demonstrated on collections of web pages in Ferragina and Manzini 
(2010) and in our following experimental results.

The second approach is based on the idea of delta-compression in 
which a file is encoded by copying portions of a given reference 
file. Intuitively, the more similar are the two files, the more compact 
their delta-encoding. In the context of large document collections, 
this technique leads to the problem of finding an appropriate cycle-
free assignment of the files to be compressed with respect to one 
or more reference files. This can be modeled as the search for an 
optimum branching in a complete directed graph in which the nodes 
are the files to be compressed and the edge-weights are the benefit 
of compressing the target file (destination node of the edge) with 
respect to the source file (Suel and Memon, 2002) (source node of 
the edge). The time complexity of this solution grows quadratically in 
the number of files because of the number of edges in the graph. To 
alleviate this computational limitation and thus scale that approach to 
larger collections, several authors (see e.g., Douglis and Iyengar 2003, 
Ouyang et al. 2002) proposed sophisticated graph-pruning heuristics. 
The most interesting one was introduced in Ouyang et al. (2002) by 

8 https://github.com/google/brotli
9 https://www.7-zip.org/
10 https://github.com/lzfse/lzfse
11 http://facebook.github.io/zstd/
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proposing two distinct clusterings of the input files that are syntactically 
similar and thus good candidates for delta-compression. One is based 
on shingles and MinHash (see Section 2.2) to speed up edge-weight 
computations, but still takes quadratic time overall; the other exploits 
Locality-Sensitive Hashing (LSH) to detect more efficiently subsets of 
similar files, which are however not necessarily the ‘‘best’’ ones.

The third approach to the compression of a collection of files 
is Permute-Partition-Compress (Buchsbaum et al., 2000, 2003) (shortly
PPC), already mentioned in the previous pages. Instead of trying to 
capture repetitions that are far away in the file collection, PPC tries 
to preliminarily recognize and group together similar files so that a 
compressor with a small memory footprint can be applied to squeeze 
them. More specifically, this is done in three phases: (i) the input files 
are permuted in a way that the similar ones end up close in the new 
ordering; (ii) the permuted collection is then partitioned into blocks 
of proper size, (iii) the individual blocks are compressed via a known 
tool with a reasonably-sized memory footprint (such as zstd, Brotli, 
LZMA, etc.). This approach is designed to boost the ability of general-
purpose compressors to find repetitions that are far away in the original 
(non permuted) collection, and thanks to the use of blocks, to allow 
reasonably fast random access to the original files. The key step among 
the three above is undoubtedly the first one. For document collections 
consisting of web pages, there are well-known re-ordering heuristics 
based on their URLs which are simple, time efficient, and achieve 
impressive compression ratios (up to 4%) for some well-known Web 
collections (Ferragina and Manzini, 2010). As far as we know, no study 
has investigated the application of the PPC paradigm to source code 
files, that is what we do in this paper by proposing permuting strategies 
specifically designed to identify near-duplicate source-code files (see 
Section 2.2).

A representative approach for compressing source code files is 
the one implemented in Git,12 the distributed version control system 
originally authored by Linus Torvalds in 2005 for the development of 
the Linux kernel. Git stores the tracked file contents and other ‘‘objects 
types’’ (such as the commits or the state of a directory tree13) using 
three main ingredients.14 The first ingredient is deduplication: when 
creating a new commit, Git computes the SHA-1 hash of the contents 
of each tracked file, compares it to the hashes of all the objects it 
already has and, if there is a match, no new content is stored for that 
file. The second ingredient is a general-purpose compressor, namely 
gzip, to squeeze the individual files. The third and most sophisticated 
ingredient, used when the repository grows large or is pushed to a re-
mote repository, is git-pack. The inner working of git-pack, according 
to an informal description by Linus Torvalds15 and our inspection of 
the Git v2.44 implementation (see also Appendix A in Bhattacherjee 
et al. 2015), is similar to PPC because it starts by permuting the files 
to be compressed by sorting them by object type, and then by sorting 
the concatenation of path and filename reversed (so all files with the 
same extension will sort together). If there is still a tie between two or 
more files, they are sorted by size in decreasing order. Next, git-pack 
scans the reordered files using a sliding window and searching for 
pairs inside the window that achieve a good delta compression. This 
gradually builds a chain of files that are delta-compressed in sequence. 
git-pack behavior is controlled by the parameter window representing 
the window size, expressed in number of files (by default 10, higher 
values give better but slower compression), and depth representing 
the maximum length of the chains, again expressed in number of 
files (by default 50, higher values give better compression but slower 
decompression since to reconstruct the content of a single file we need 
to look at the content of up to depth previous files).

12 https://git-scm.com
13 https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
14 https://github.blog/2022-08-29-gits-database-internals-i-packed-object-
store/
15 https://git-scm.com/docs/pack-heuristics
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We point out that git-pack was designed to run on a single Git 
repository and there is no easy way to run it on other collection of files 
or the SWH Archive, which combines files from millions of repositories 
possibly coming also from other version control systems, like Mercurial 
and Subversion.

2.2. Fingerprinting to detect similar files

To detect which files have similar content, and therefore can be ef-
fectively compressed together, we use techniques from the field of near-
duplicate document detection. This problem first arose in Web search 
applications where near-duplicate web pages cause an increase in the 
index space usage, in the latency of serving query results, and possi-
bly impact the user experience with repeated results. Manber (1994) 
and Heintze (1996) were among the first to propose algorithms for 
detecting near-duplicate documents based on the concept of fingerprint, 
i.e., a compact representation of a document such that similar docu-
ments have a similar compact representation. The successive ground-
breaking results by Broder (Broder, 1997) and Charikar (Charikar, 
2002) provided a solid theoretical foundation for the fingerprint tech-
nique. The concept of fingerprint is related to ‘‘locality-sensitive hash-
ing’’ (LSH), which is a technique introduced in 1998 (Indyk and Mot-
wani, 1998) and used today in a growing number of applications (Jafari 
et al., 2021; Wang et al., 2014).

Within the PPC paradigm, we tested the following four fingerprint-
ing techniques that, we believe, are representative of the different 
approaches proposed in the literature. The first two fingerprinting tech-
niques (ssdeep, TLSH) work directly on the raw input files by means 
of a sliding window, and thus they are called ‘‘bytewise’’ (Breitinger 
et al., 2014; Hugo G. Moia and Amaral Henriques, 2017). The other 
two techniques (MinHash, SimHash) can take into account the internal 
structure of the input files using the concept of ‘‘token’’, and thus we 
will specialize them to source codes. More details follow.
ssdeep. Kornblum (2006) deploys a sliding window of 7 bytes that 
moves byte-by-byte through the input and computes a rolling hash for 
each window position. Whenever the rolling hash produces a specific 
output, ssdeep identifies a ‘‘trigger point’’ that indicates the ending 
of a block and the beginning of the next one. All blocks are hashed 
using a cryptographic hash function, and the 6 least significant bits of 
each hash are encoded using a Base64 character. The final digest is 
the concatenation of all characters generated through the blocks. The 
trigger point above is selected in such a way that the final fingerprint 
is up to 80 bytes long. We test this fingerprinting technique (see 
Section 3.2.4) because it is one of the first context-triggered fingerprints 
ever introduced.
TLSH. Oliver et al. (2013) deploys a sliding window of 5 bytes, from 
which it selects six trigrams (triplets of window characters). Each 
trigram is converted using a Pearson hash to a 7-bit integer, which is 
used to update a vector of 128 counters. When the scanning is complete, 
a 256-bit fingerprint is obtained by encoding each counter with two 
bits, based on its quartile (the 25% smaller counters are encoded with 
00, those in the 25% to 50% quartile with 01, and so on). The original 
TLSH scheme also defines a 24 bit header, but we do not use it since it 
is not related to file similarity. We test the TLSH fingerprint because 
experiments showed that it is more robust to random changes and 
adversarial manipulations than ssdeep and its variants (Oliver et al., 
2014).

SimHash. Charikar (2002) estimates the similarity of two documents 
in two main steps. First, it identifies a set of ‘‘tokens’’ in the input 
documents, and maps each of them into a random vector drawn from 
{−1, 1}𝑏, where 𝑏 is a properly chosen constant. This token-based 
mapping is the same for all documents. Then, it obtains a 𝑏-dimensional 
vector for each document by adding the 𝑏-dimensional vectors of all of 
its tokens, possibly weighting each of them with a proper score (e.g., the 
5 
TF-IDF in case of words Manning et al., 2008). The final fingerprint 
is created by setting every positive entry to 1 and every non-positive 
entry to 0, thus resulting in a random mapping of each document into 
the space {0, 1}𝑏. Charikar (2002) proved that the cosine similarity 
of two documents, in the classic IR-sense (Manning et al., 2008), is 
proportional to the number of bits in which the two fingerprints agree. 
In our experiments we did not use any weighting and set 𝑏 = 256 so the 
final SimHash fingerprint is 256-bit long.

MinHash. Broder (1997) (see also the variant of Fetterly et al. 2003) 
computes the fingerprint of an input document 𝑑 consisting of 𝑛 tokens 
as follows. It slides a window of 𝑘 tokens over 𝑑 and, for each of them 
computes a 64-bit Karp-Rabin’s rolling hash. This generates a set 𝑆(𝑑)
of 𝑛−𝑘+1 integers called shingles. The similarity (a.k.a. resemblance) of 
two documents 𝑑 and 𝑑′ can be evaluated by the Jaccard’s coefficient 
between the sets 𝑆(𝑑) and 𝑆(𝑑′) defined as 𝐽 (𝑑, 𝑑′) = |𝑆(𝑑)∩𝑆(𝑑′)|

|𝑆(𝑑)∪𝑆(𝑑′)| . To 
speed up the computation of 𝐽 (𝑑, 𝑑′), Broder (1997) suggested to use 
𝑚 different fingerprinting functions 𝑓𝑖 and proposed to compute, for 
each 𝑖, the minimum of each set of shingle fingerprints 𝑆𝑖(𝑑) according 
to 𝑓𝑖. These 𝑚 minima form an 𝑚-dimensional vector that represents 
the final fingerprint of 𝑑, therefore called MinHash. Note that multiple 
occurrences of the same shingle will have the same effect on the min-
values as a single occurrence, i.e., the multiplicity of shingles is ignored. 
Broder showed that the number of element-wise equal entries in the 
MinHash vectors of two documents 𝑑 and 𝑑′, divided by 𝑚, is an 
unbiased estimator of 𝐽 (𝑑, 𝑑′), and that 𝑚 controls the robustness of 
the estimate. In our experiments, we set 𝑚 = 256 so the final MinHash 
fingerprint is a 256-dimensional vector of 64-bit minima.

As a final note we observe that, although fingerprint techniques 
have some mathematical guarantees on their average performance, all 
of them may incur false positives (dissimilar document pairs returned 
as near-duplicates) as well as false negatives (near-duplicate document 
pairs not returned as near-duplicates). In addition, because of the size 
of our collections, computing the similarity between all pairs of files 
would be too expensive; for this reason our use of the fingerprints in 
the PPC framework will be different from their proposed use in the 
above-mentioned literature.

2.3. Large-scale analysis of software development artefacts

Various platforms and approaches deal with large-scale storage and 
analysis of software development artifacts, for software engineering 
research purposes. In support of their goals, they use compression 
and/or deduplication techniques. We briefly recall the most relevant 
work in this space, below.

LISA. Alexandru et al. (2019) is a framework designed to minimize 
artifact redundancy in the analysis of source code stored in version 
control systems (VCS). Unlike our use case, LISA operates at a finer 
level of detail, down to the abstract syntax tree (AST) nodes. This 
allows for fine-grained deduplication, but it comes with the drawback 
of needing a proper parser. This parser is not always available and may 
fail on syntactically incorrect files, which might still be of interest for 
analysis—and need to be efficiently stored anyway.

Boa. Dyer et al. (2015) pioneered the idea of a shared infrastructure 
that hosts both data and compute resources for large-scale analyses of 
source code artifacts. Our measure of ‘‘large-scale’’ differs significantly, 
as the scale of the Software Heritage Archive is hundreds of times larger 
than the largest GitHub hosted on Boa, by several metrics, including 
projects, files, and commits. Similarly to LISA, Boa also parses source 
code files to AST but does not apply any compression technique.
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Table 1
Characteristics of our datasets.
 Datasets Size (GiB) Num. files File size (KiB)
 Mean Median 
 Popular GitHub repos(C and Python) 50.4 1 858 580 28.4 5.9  
 Python code 200.0 9 640 731 21.7 7.2  
 C/C++ code 200.0 6 437 613 32.5 9.0  
 JavaScript code 200.0 3 464 374 60.5 4.6  
 Java code 200.0 26 373 974 7.9 2.4  
 Random content 200.0 2 335 158 89.8 4.5  

World of code (WoC). Ma et al. (2021) has also created a mutualized 
infrastructure for large-scale VCS analyses. Unlike the Software Her-
itage case study, which spans GitLab and major package repositories, 
WoC is limited to GitHub. However, the overall size of the data stored 
by WoC for analysis purposes is in the same ballpark of the size of the 
SWH Archive. In terms of storage, WoC deduplicates all retrieved blobs, 
but does not apply any compression technique. It can benefit from the 
compression approaches that we develop in this work, specifically the 
ones designed for the File-Access scenario.

SWH-graph. Boldi et al. (2020) is a technical framework that builds 
upon WebGraph (Boldi and Vigna, 2004; Fontana et al., 2024) to 
compress the SWH graph in order to host and process it in main 
memory on a single server. swh-graph only compressed the graph 
structure of the SWH graph, leaving out of scope the compression of 
all other information stored in the SWH Archive, including metadata 
(e.g., filenames) and crucially file contents—we deal only with the 
latter in the present work.

3. Experimental setup

In this section, we detail our datasets (Section 3.1), compression 
techniques (Section 3.2), and the hardware/software environment used 
to run our experiments (Section 3.3).

3.1. Datasets

We prepared datasets of different sizes consisting mainly of source 
code files written in different programming languages but also some 
non-code files that are commonly found in software repositories. All 
datasets are extracted from the actual Software Heritage Archive and 
are available at the GitHub repository of our software library.16

A dataset in our context consists of a set of deduplicated files 
(i.e., raw byte sequences that are different from each other in at least 
one byte) plus some metadata for each file consisting of an identifier 
derived from hashing its content, the file size, and a path that includes 
the filename. The distinction between actual file content and metadata 
will be useful in our experiments to distinguish compression methods 
that exploit just the first information (called content-based methods) or 
both of them (called context-based methods). In the case that the same 
file content appears under different paths, we use as its metadata the 
most popular path, as in Lorentz et al. (2023).

Table  1 summarizes the characteristics of our datasets, which are 
commented on in the text below.17

16 https://github.com/acubeLab/PPC_utils4BigData
17 To measure file sizes we use kibibytes (KiB), mebibytes (MiB), 
gibibytes (GiB), and tebibytes (TiB), which represent 210, 220, 230, and 240 bytes, 
respectively.
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Popular GitHub repos. We generated a 50-GiB dataset containing dif-
ferent versions of files present in the 143 most-starred repositories on 
GitHub for the C and Python languages as of October 2022. This in-
cludes popular repositories like redis, ngnix, zstd, scikit-learn, bert, and 
keras.18 Roughly half of the dataset is taken by files from repositories 
written in C and the other half in Python. As shown in Table  1, the 
average and median file sizes are 28.4 KiB and 5.9 KiB, respectively.

The purpose of this dataset is to fairly compare git-pack against 
the other compression techniques. Indeed, git-pack can only be run on 
individual Git repositories, and thus it cannot be applied to datasets 
of files gathered from the whole SWH Archive (such as the ones 
described in the next paragraphs) since these cannot be recombined 
into Git repositories due to the nature of SWH (Abramatic et al., 2018). 
More precisely, SWH does not exclusively store Git repositories, but 
rather a diverse range of software origins, as described in Section 1.1. 
These origins represent different sources where software artifacts can 
be found, including repositories of various version control systems 
(e.g., Git, Mercurial, SVN, Bazaar), as well as source packages for 
various package managers and standalone tarball archives. As a result, 
the concept of a ‘‘repository’’ in SWH is broader and more abstract than 
that of Git-centric platforms, like GitHub. Furthermore, while one can 
reconstruct repositories from SWH starting from any given origin, this 
process is costly due to thorough deduplication (e.g., reconstructing the 
Git repository of the Linux kernel requires collecting tens of millions 
of objects). SWH deduplicates files across all archived origins, as the 
same files can be shared by multiple origins. This raises the question of 
which origin should take precedence when reassembling repositories. 
Reconstructing repositories by assigning files to them would require 
a high number of random accesses, significantly increasing costs and 
making the process inefficient at scale.  The experimental results on 
this dataset are in Section 4.1.1.

Datasets from the SWH archive. We generated the following five
datasets by randomly sampling files with specific extensions from the 
whole SWH Archive:19

• Python code, consisting of files with extension .py and .pyi.
• JavaScript code, consisting of files with extension .js.
• C/C++ code, consisting of files with extensions .c, .C, .cc, 
.cpp, .CPP, .c++, .cp, .cxx, .h, .hpp, .hpp, and .HPP.

• Java code, consisting of files with extension .java.
• Random content, consisting of files with any extension and thus 
may include images, videos, binary files, and PDF documents.

The purpose of the Random content dataset is to evaluate the 
experimented techniques in the presence of non-source-code files. We 
anticipate that the results on this dataset, provided in Section 4.1.3, 
suggest that grouping files of the same type together is crucial to 
achieving effective compression.

As shown in Table  1, the average file size of the experimented 
datasets ranges from 7.9 KiB for Java code to 60.5 KiB for JavaScript 
code. The median file size ranges from 2.4 KiB for Java to 9.0 KiB for 
C/C++ code.

18 See https://github.com/{redis/redis, nginx/nginx, facebook/zstd, scikit-
learn/scikit-learn, google-research/bert, keras-team/keras}. To avoid skewing 
this bounded-size dataset towards a single, disproportionately large repository, 
we excluded just the Linux kernel repository from the popular repositories list, 
since it takes more than 70 GiB alone, and the other repositories are just a few 
GiB each.
19 The full list of files and their metadata in the snapshot of the SWH Archive 
we used is a massive 750-GiB csv file. To deal with it, sample files, and 
compute statistics, we leveraged the Postgres DBMS. Then, the contents of 
the sampled files have been downloaded from AWS S3.

https://github.com/acubeLab/PPC_utils4BigData
https://github.com/
https://github.com/redis/redis
https://github.com/nginx/nginx
https://github.com/facebook/zstd
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/google-research/bert
https://github.com/keras-team/keras
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Table 2
Compression techniques experimented in this paper; the symbol ‘‘+ *’’ denotes the 
additional use of a general-purpose compression algorithm such as gzip or zstd at the 
end of the PPC pipeline. The first group is formed by baseline techniques, the second 
group includes the current theoretical state of the art for compressing file collections, 
and the last group is a set of PPC-based techniques we specifically designed for the 
SWH archive.
 Technique SWH-applicable File-Access Context-based Section  
 single_compress + * 3 3 7 Section 3.2.1  random_order + * 3 3 7  
 bwt_rle 3 7 7  
 csa_sada 3 3 7 Section 3.2.2 
 csa_wt 3 3 7  
 git-pack 7 3 3 Section 3.2.3 
 tlsh + * 3 3 7

Section 3.2.4

 
 ssdeep + * 3 3 7  
 simhash + * 3 3 7  
 minhash_graph + * 3 3 7  
 type_minhash_graph + * 3 3 7  
 filename + * 3 3 3  
 path + * 3 3 3  

3.2. Compression techniques

We apply different compression techniques on the datasets of Sec-
tion 3.1 and evaluate them in terms of compression and decompression 
speed, expressed in mebibytes per second (MiB/s), and in terms of 
compression ratio, i.e., the ratio between the size of the compressed 
dataset and the size of the original uncompressed dataset, expressed as 
a percentage.

As anticipated in the introduction, we distinguish between a Backup 
scenario and a File-Access scenario. In the former, a dataset is stored in 
compressed form, and we only need to support streaming access to the 
whole compressed collection. This is relevant, e.g., for backup purposes 
or to offer fast downloads of the dataset. In the latter, in addition to 
providing space-efficient storage, we also need to support fast access 
to individual files. This is relevant, e.g., for browsing the contents of 
the SWH Archive through its web interface or API,20 or to perform 
data/code analyses locally on a researcher’s computer.

Given our literature review of Section 2, we chose to experiment 
with the compression techniques shown in Table  2. All of them except 
git-pack apply to the SWH Archive, most of them are appropriate also 
for the File-Access scenario, and only some of them are context-based 
in that they use not only the file content but also the metadata offered 
by the SWH Archive.

3.2.1. Baselines
The first two techniques we consider will be our baselines. The 

algorithm single_compress compresses the files individually with a 
general-purpose compressor, such as gzip or zstd. This is the solution 
SWH currently employs. The algorithm random_order instead con-
catenates all the files from a dataset in random order and applies a 
general-purpose compressor, such as gzip or zstd. This solution can 
exploit some inter-file redundancies, as long as these redundancies are 
within the fixed-size window of the general-purpose compressor.

3.2.2. Techniques based on the burrows–wheeler transform
As we pointed out in Section 2.1, by applying the Burrows–Wheeler 

Transform (bwt) to the concatenation of the input files, we can take 
advantage of repetitions in the input no matter how far they are 
in the collection. We have tested this approach using the bwtdisk
library,21 which computes the bwt of large files in external memory 

20 See https://archive.softwareheritage.org and https://archive.softwareheri
tage.org/api/, respectively.
21 https://github.com/acubeLab/bwtdisk_2010
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and subsequently compresses it using run-length encoding followed 
by arithmetic coding (Ferragina et al., 2012). We call this technique 
bwt_rle. As already observed in Section 2.1, this solution can achieve 
quite significant compression ratios at the cost of very slow compres-
sion and decompression speeds. Furthermore, it does not support the 
File-Access scenario as it requires decompressing the full dataset to 
access a single file.

The bwt however is also at the core of the implementation of 
compressed full-text indexes (Navarro and Mäkinen, 2007; Navarro, 
2021; Grossi and Vitter, 2005; Ferragina and Manzini, 2005), which 
keep data in a compressed form that also supports pattern-matching 
queries and efficient extraction of arbitrary subsequences. This last 
feature makes them suitable for the File-Access scenario. We tested the 
following two full-text indexes offered by the sdsl library (Gog et al., 
2014)22 applying them on the concatenation of all files from a dataset:
csa_wt and csa_sada. The former represents the bwt with a Huffman-
shaped wavelet tree with RRR-encoded bitvectors (Raman et al., 2007) 
with block size 𝑏. The larger 𝑏, the better the compression ratio because 
the RRR-encoding must keep track of longer blocks. At the same time 
the larger 𝑏, the worse the compression and decompression speeds 
because operations inside longer blocks are more expensive. We set and 
tested 𝑏 = 63 and 𝑏 = 127 bits because they provided the best Pareto 
performance in our experiments. csa_sada does not explicitly represent 
the bwt but is based on compressing the 𝛹 array using Elias 𝛿-codes 
with sample rate 𝑠. The larger 𝑠 is, the better the compression ratio 
because fewer samples are stored but, on the other hand, the slower 
are the compression and decompression speeds because fewer samples 
means more integers must be decoded. We set and tested 𝑠 = 128 and 
𝑠 = 256 bits because they provided the best Pareto performance in our 
experiments.

3.2.3. The git-pack technique
As the representative compression method for (individual) source 

code repositories, we selected the git-pack tool discussed in Section 2.1 
because of its widespread use. Unfortunately, git-pack must be run on 
individual Git repositories, so we have applied it only to the ‘‘Popular 
GitHub repos’’ dataset.

To test this technique, we run git pack-objects,23 on each 
repository obtaining a single .pack file containing all the repository’s 
files starting from a fixed commit. We measure the compression speed 
by taking the time to build such .pack file. To measure the decom-
pression speed, we extract back all the individual files by passing the 
.pack file to git unpack-objects.24 Note that git unpack-
objects extracts the objects from the .pack file creating the so-
called ‘‘loose objects’’, i.e., one gzip-compressed file per object. To 
get back the uncompressed content, a final decompression phase is 
performed by the zlib25 library on each file. The tool git cat-file
can be used for this last phase, but we experimentally found out it can 
be up to twice as slow as simply decompressing the loose objects with 
zlib library. Finally, to measure the compression ratio, we divide the 
sum of the sizes of the per-repository pack files by the size of the whole 
uncompressed dataset.

3.2.4. PPC -based techniques
In this section, we describe a set of techniques that belong to the 

Permute-Partition-Compress (PPC) paradigm, described in Section 2.1. 
They permute the input files according to one of the strategies detailed 
below. Then, they use the tar tool26 to concatenate the permuted input 
files into a single tar file (Backup scenario) or into multiple tar files of 
size 𝐵 called ‘‘blocks’’ (File-Access scenario).

22 https://github.com/simongog/sdsl-lite/
23 https://www.git-scm.com/docs/git-pack-objects version 2.43.0
24 https://git-scm.com/docs/git-unpack-objects
25 https://www.zlib.net/
26 https://www.gnu.org/software/tar/
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The choice of using tar archives for concatenating files is motivated 
by their widespread adoption and robust performance. For example, 
the tar format is the foundation of the WebDataset format,27 which is 
designed for efficient handling of large-scale datasets in deep learning 
applications. WebDataset is supported by the Huggingface ecosystem,28 
making it an ideal choice for distributing and processing datasets in 
modern machine learning workflows. Leveraging tar archives ensures 
that our method benefits from a well-established, efficient, and versatile 
file aggregation approach.

To avoid splitting files larger than 𝐵 bytes across blocks, we allow 
the last file in a block to exceed 𝐵. The mapping from the file identifier 
to the block containing it is implemented via a key–value store using 
RocksDB (Dong et al., 2021). In the File-Access scenario, we experiment 
with different values of 𝐵: a higher value leads to better compression 
because more inter-file redundancies can be exploited, but also slower 
access to a single file because the full block containing the file must be 
decompressed.

The individual tar files (one in the Backup scenario or several 
in the File-Access scenario) are finally compressed with a general-
purpose compression tool. We tested several compressors including
lzma, gzip, brotli, zstd, xz, and lz4. We report only the results for 
zstd because of its generally good performance and its many options 
to trade off compression ratio with (de)compression time. On our 
datasets, by setting the highest compression level and memory usage, 
zstd achieves a compression ratio similar to (and even better than) 
the most effective compressors like xz and brotli. At the same time, 
decreasing the compression level and memory usage, zstd can be 
extremely fast in decompression speed (more than 400 MiB/s, similar 
to lz4). Precisely, we report the results for three compression levels:
-3 (very fast compression speed, the default one), -12 (an effective 
compromise between compression ratio and compression speed), -22 
--ultra -M1024MB --long=30 (the best compression ratio, but very slow 
in compression speed). For brevity, we call these configuration settings 
zstd-3, zstd-12, and zstd-22, respectively.

To compute the compression speed, we consider the whole pipeline 
of permuting the input files and creating the compressed tar file(s). For 
the decompression speed, in the Backup scenario we measure the time 
to decompress the whole compressed tar file, while in the File-Access 
scenario we measure the time to decompress a random subset of files 
(10% of the total number of files in a dataset), which includes the time 
to query RocksDB for finding the block containing the desired input 
file, and decompressing it until the file is found.
Permutation algorithms. These following permutation algorithms ex-
ploit the fingerprinting techniques described in Section 2.2 to place 
similar files close to each other:

• tlsh: permute files according to the lexicographic order of their 
TLSH fingerprints (Oliver et al., 2013), each of size 256 bits.

• ssdeep: permute files according to the lexicographic order of their 
ssdeep fingerprints (Kornblum, 2006), each of size up to 80 bytes.

• simhash: permute files according to the lexicographic order of 
their 256-bit SimHash fingerprints (Charikar, 2002), each one 
computed by tokenising the file into lines (i.e., splitting it accord-
ing to the \n character) and filtering out the lines with fewer 
than 10 characters. The rationale is that short lines of code often 
represent trivial or insignificant segments that may not contribute 
significantly to the overall structure of the code.

• minhash_graph: tokenize the input file into lines as in SimHash 
(above) and for each file 𝑖 compute the MinHash fingerprint 𝑓𝑖
consisting of 256 64-bit minima. Split each 𝑓𝑖 into four 4096-bit 
chunks 𝑓 (𝑐)

𝑖  for 𝑐 = 1,… , 4 and create a graph whose vertices 
corresponds to the files and there is an edge between files 𝑖 and 𝑗

27 https://github.com/webdataset/webdataset
28 https://huggingface.co/docs/hub/datasets-webdataset
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iff 𝑓 (𝑐)
𝑖 = 𝑓 (𝑐)

𝑗  for some 𝑐 = 1,… , 4. Finally, find the connected 
components in this graph and, for each connected component, 
permute the corresponding files according to their sizes in de-
scending order.29 We tested different fingerprint/chunk lengths 
and the above scheme was the one giving the better compression. 
Since some connected components might be too large, and thus 
similar files would end up far away from each other, we permute 
the ones with overall size greater than 32 MiB and more than 3 
files via the tlsh technique described above.

We also test a permutation algorithm designed for collections con-
taining different file types (e.g., written in different programming 
languages):

• type_minhash_graph: group files according to a type inferred 
from their contents via Google’s Magika deep learning model,30 
and then apply the minhash_graph approach over each group if 
this consists of more than 3 files whose total size is larger than 
32 MiB; if not, the files in a group are sorted just by their size in 
descending order.

All the above algorithms are content-based in that the final per-
mutation is based only on the actual content of the input files. We 
also consider a class of algorithms that are context-based in that they 
compute a permutation without looking at the file content, but only 
at the metadata, such as filename, path, size, etc. Assuming the appro-
priate metadata is available, context-based methods are usually faster 
since they do not have to scan the file contents. However, it is not 
a priori obvious which of the two approaches is superior in terms 
of compression when used in combination with the PPC paradigm. 
To investigate this issue, we consider the following two context-based 
techniques, inspired by the git-pack algorithm described in Section 2.1:

• filename: permute files according to the lexicographic order of 
their reversed filenames, and if there is a tie, put the largest file 
first;

• path: as before but, instead of using only the filename, also use 
the name of the directory containing it.

We test both filename and path because we wish to evaluate how 
much adding one directory level impacts the compression perfor-
mance.31 The rationale is that we expect two files with the same 
name (e.g., parser.c) to be more similar if they belong to the same 
directory (say src/ rather than test/).

3.3. Hardware setup

We test the techniques of Section 3.2 on a machine equipped with 
a 2.30 GHz Intel Xeon Platinum 8260M CPU and 384 GiB of RAM, 
running Ubuntu 20.04.3. The files are stored in an XFS filesystem 
mounted on SSD SAS disks RAID0. The compressed archives are stored 
an XFS filesystem mounted on traditional rotating disks RAID0. All the 
disks are attached to the same PERC H740P Adapter.

3.4. Software setup: the compression library

All our compression techniques are part of a software library we 
publicly release at https://github.com/acubeLab/PPC_utils4BigData. 
The library is written mostly in Python and includes the list of the 

29 The same technique has been used by Hugging Face to deduplicate, but 
not compress, source code datasets. See https://huggingface.co/blog/dedup.
30 https://google.github.io/magika/
31 We only consider the parent directory because on SWH using full paths 
is very time-consuming (Lorentz et al., 2023) and does not seem to improve 
the clustering process.

https://github.com/webdataset/webdataset
https://huggingface.co/docs/hub/datasets-webdataset
https://github.com/acubeLab/PPC_utils4BigData
https://huggingface.co/blog/dedup
https://google.github.io/magika/
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Table 3
The table reports the output of the bench_PPC.py script (part of the software library we publicly release with this paper). It shows the 
performance of the PPC framework on a 200GiB dataset made of source code files written in C/C++, permuting the files with random_order, 
simhash, and filename using as final compressor zstd.
 Dataset Permuter Comp. 

ratio (%)
Comp. 
speed (MiB/s)

Decomp. 
speed (MiB/s)

 

 C_files_metadata random_order+zstd 21.41 209.32 300.05  
 C_files_metadata simhash+zstd 13.57 16.42 361.74  
 C_files_metadata filename+zstd 7.14 493.46 455.57  
files composing our datasets, which can be downloaded from the SWH 
Archive. Although the library is specialized to the task of compressing 
a collection of source code files, it can be easily customized to other 
kinds of collections (e.g., by using a custom tokeniser) or adapted to 
use other general-purpose compressors.

After downloading the datasets and setting up the environment with 
the Python script available in the library, it is easy to benchmark the 
various permuters using different compressors on a properly specified 
list of files. More precisely, the script bench_PPC.py takes as input 
a list of files (contained in a csv file), permutes them according to one 
or more techniques (-p option), concatenates them, and compresses 
the resulting file as a unique blob or splits it into blocks to compress 
individually (-b option). This choice depends on the fact that one 
wants to test the Backup scenario or the File-Access scenario. The 
choice of the compressor(s) is delegated to option -c.

The script measures and displays several numbers: such as the 
compression ratio, the compression speed, the decompression speed, 
etc. For example, the command:

$./bench_PPC.py \
    C_files_metadata.csv -c zstd -p random \
    simhashsort filename

permutes the files according to the PPC pipeline random_order,
simhash, and filename; then concatenates and compresses them with
zstd, and outputs the results (in csv format) as shown in Table  3.

Our library is sufficiently flexible that one can customize also its 
tokenizer to implement different locality-sensitive hashing (LSH) tech-
niques. In fact, LSH implementations (like Simhash, Minhash, etc. . . ) 
view each file as a sequence of tokens. A token can be a sequence of 
bytes, words, lines, or arbitrarily long substrings. In this paper, we deal 
with source code files and thus we decided to use as ‘‘tokens’’ the single 
lines of the input files (i.e., delimited by the \n char). We also tested 
tokens as groups of consecutive lines (obtained from a sliding window 
of a certain width), but we experimentally evaluated that single lines 
perform better. Since we wanted to be robust with respect to tiny and 
irrelevant changes in the input files, we removed leading and trailing 
tabs and white spaces and dropped too short lines (<10 chars). The 
code we used to tokenize the files is the following:

def get_tokens(file_content, len_limit=10):
# get a list of lines from the content of the file
 tokens = file_content.split(’\n’)
# remove tokens with less than 10 chars
# and delete leading and trailing tabs and whitespaces
 tokens = [x.strip() for x in tokens if len(x) > len_limit]
return tokens

As a technical note, our library uses just one thread on the rel-
atively small ‘‘Popular GitHub repos’’ dataset while it processes the 
other (larger) datasets via more threads to speed up the computation. 
In particular, it extracts the fingerprints using 16 threads and then 
compresses 16 blocks in parallel in the File-Access scenario, while it 
deploys the parallel compression capabilities of zstd, whose option -
T# spawns # compression threads, in the Backup scenario.  While we 
rely on parallelization to reduce execution times, a thorough analysis 
of the scalability of our approach is beyond the scope of this paper. 
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4. Experimental results

We now describe the results of our experiments on compressing our 
file collections in both the Backup scenario (Section 4.1), where we only 
support full decompression of the whole compressed collection, and in 
the File-Access scenario (Section 4.2), where we also support fast access 
to the individually compressed files.

4.1. Results for the backup scenario

4.1.1. Results for the popular GitHub repositories
As a first experiment, we compare all compression techniques on 

the 50-GiB ‘‘Popular GitHub repos’’ dataset, which is variegated and of 
relatively small size, thus allowing us to investigate the performance of 
all techniques in a reasonable time.

As the first two rows of Table  4 show, compressing the files indi-
vidually with gzip (default compression level) achieves a compression 
ratio of 32.4% and a compression speed of 11.4 MiB/s, while the more 
recent and faster zstd-3 achieves a compression ratio of 33.4% and a 
compression speed of 79.5 MiB/s. The memory-hungry zstd-22 (third 
row) achieves a slightly improved compression ratio of 29.9% and a 
compression speed of 16.7 MiB/s. This means that we can cut the 
storage space at more than one-third by just exploiting the redundancy 
within each file.

These techniques, however, do not exploit the inter-file redundancy 
among the source code files in the dataset. In fact, if we compress 
the concatenation of the files with random_order + zstd-22, we im-
mediately obtain an improved compression ratio of 18.2% (i.e., –10% 
in absolute terms) and a faster decompression speed, at the cost of 
a significantly slower compression speed. This slowdown can be at-
tributed to the expensive processing required by zstd-22 to identify 
and encode long repeated subsequences. On the other hand, com-
pared to single_compress + zstd-22, the decompression speed is 2.6×
faster due to the fact that the decompression does not need to restart 
at each individually-compressed file and thus it can proceed in a 
streaming-fashion.

Despite its 1024-MB window, zstd-22 cannot exploit redundan-
cies among files that are far apart in the random concatenation or-
der. git-pack tries to capture this redundancy by compressing to-
gether potentially-similar files inside the same repository. However, 
it achieves a relatively modest compression ratio of 20.9% with an 
improved (de)compression speed.32 Increasing the value of the param-
eters window (from 10 to 20) and depth (from 50 to 100) allows 
git-pack to create longer and more compressed chains of deltified files 
(see Section 2.1), but this improves the compression ratio by just a 
relative 3.1% (going from 20.96% to 20.29%). Increasing the value 
of the parameters even more (setting window to 40 and depth to 
200), the compression ratio becomes 19.90%, but the compression 
speed almost halves (it goes from 49.2 MiB/s to 28.3 MiB/s) and the 
decompression speed slightly decreases. Overall, git-pack gets almost 

32  We observe that git-pack cannot deduplicate files across the different 
repositories in this dataset. However, since the non-deduplicated dataset takes 
1.2 GiB more than the 50.4 GiB of the deduplicated one, the impact of the 
duplicates on the compression ratio will be at most 2.4%, which does not 
change our conclusions.
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Table 4
The table reports the experimental results on the 50-GiB ‘‘Popular GitHub repos’’ dataset of all techniques investigated in this paper. We refer 
the reader to Section 3.2 for the description and parameter settings of these techniques.
 Technique Compression 

ratio (%)
Compression 
speed (MiB/s)

Decompression 
speed (MiB/s)

 

 single_compress + gzip 32.4 11.4 65.5  
 single_compress + zstd-3 33.4 79.5 102.9  
 single_compress + zstd-22 29.9 16.7 117.7  
 random_order + zstd-22 18.2 2.4 304.6  
 git-pack, 𝑤 = 10, 𝑑 = 50 20.9 49.2 54.4  
 git-pack, 𝑤 = 20, 𝑑 = 100 20.2 36.7 56.9  
 git-pack, 𝑤 = 40, 𝑑 = 200 19.9 28.3 66.9  
 bwt_rle 12.0 <1 <1  
 csa_sada, 𝑠 = 128 34.8 3.6 3.7  
 csa_sada, 𝑠 = 256 31.3 2.6 2.9  
 csa_wt, 𝑏 = 63 25.8 2.2 <1  
 csa_wt, 𝑏 = 127 23.4 1.8 <1  
 tlsh + zstd-22 10.5 12.4 329.6  
 ssdeep + zstd-22 10.7 13.0 331.7  
 simhash + zstd-22 10.8 11.0 330.7  
 minhash_graph + zstd-22 10.3 3.3 332.1  
 type_minhash_graph + zstd-22 9.5 1.7 327.4  
 filename + zstd-22 10.1 32.9 379.7  
 path + zstd-3 15.8 465.8 326.3  
 path + zstd-22 10.1 32.7 381.0  
the same compression ratio of random_order+zstd-22 with a 12×
faster compression speed but at the cost of a 4.5× slower decompression 
speed. Summing up git-pack: (i) is not able to leverage similarities 
between files from different repositories, and (ii) its combined use of 
delta encoding and gzip is not as efficient as zstd-22.

The approaches we just discussed can exploit some inter-file redun-
dancy but they fail when the files are far apart (i.e., random_order) 
or in distinct repositories (i.e., git-pack). Such distant redundancies 
are the target of the techniques based on the bwt (see Section 3.2.2), 
whose experimental results are shown in the third row-group of Table 
4. We immediately notice that bwt_rle is very slow in compression and 
decompression (less than 1 MiB/s) and thus unusable in practice. Com-
pared to bwt_rle, the performance of full-text indexes is worse in terms 
of compression ratio (i.e., more than double in percentage), but it is 
more than twice better in compression and decompression speed, even 
if it is still unacceptably slow. In detail, the compression ratio goes from 
34.8% of csa_sada with sample rate 𝑠 = 128 to 31.3% with sample rate 
𝑠 = 256; instead, csa_wt achieves 25.8% compression ratio with block 
size 𝑠 = 63, and 23.4% with block size 𝑏 = 127. The compression and de-
compression speeds are still on the order of a few MiB/s due to the ran-
dom accesses made during the construction of the bwt or its inversion. 
We can thus conclude that, although bwt-based approaches are reason-
ably effective in compression ratio, their very-slow compression and de-
compression speeds makes them unsuitable to scale on bigger datasets.

We are now left with commenting on the PPC-based techniques 
whose performance, detailed in the last row-group of Table  4, is 
very promising in all three tested performance measures: compression 
ratio, and (de)compression speeds. In particular, the content-based ap-
proaches based on the sorting of the fingerprints (namely, tlsh, ssdeep, 
and simhash) reach the significant compression ratio of about 10%, a 
moderately fast compression speed (between 11 and 13 MiB/s), and a 
very fast decompression speed of more than 300 MiB/s. The approaches 
based on graphs (such as minhash_graph and type_minhash_graph) 
offer a slightly improved compression ratio and a comparable decom-
pression speed, but a very slow compression speed: hence resulting 
not competitive. The reason resides in the fact that minhash_graph 
requires reading all the files from the filesystem (randomly accessing 
the disk), computing the MinHash fingerprint, constructing a graph, 
computing its connected components, and finally further permuting the 
bigger connected components with tlsh; while type_minhash_graph 
also performs a grouping pre-step using the file type inferred with a 
deep learning model.
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The last group of PPC-based techniques are the context-based ap-
proaches filename and path that use the (reversed) file/path name as 
the sorting key of the permuting step. Despite their simplicity, these 
algorithms are better on all three performance measures (with the only 
exception of type_minhash_graphin compression speed). Table  4 also 
reports the performance of path + zstd-3: the reduced window size 
worsens the compression ratio to 15.8% and the decompression speed 
to 326 MiB/s (−55 MiB/s), but it significantly improves the compression 
speed (from 32.7 MiB/s to 465.8 MiB/s). Not surprisingly, we see 
that among the PPC-based techniques, the content-based algorithms 
(tlsh, ssdeep, simhash, minhash_graph, and type_minhash_graph) 
are about 4× slower in compression speed than the context-based 
algorithms (filename and path), since the former need to scan the file 
content and compute the fingerprints while the latter permute the files 
by looking only at their filename/path. Overall, we can state that the
PPC-based approaches outperform all the other techniques in terms 
of compression ratio (which turns out to be half of the others) and 
decompression speed (which turns out to be up to 5× faster), thus 
making them a promising solution for the compressed storage of the 
SWH Archive.
Takehome message. Using a dataset of popular GitHub reposito-
ries, we found out that compressing the files individually achieves 
an unsatisfactory compression ratio, that git-pack does not improve 
much on this, and that bwt-based tools are impractical due to their 
slow (de)compression speed. Instead, the PPC framework with the 
context-based permuters combines the simplicity of its design with the 
most effective compression ratio (≈10%) at interesting compression 
(≈13 MiB/s) and decompression (≈330 MiB/s) speeds. If we adopt 
the content-based permuters, we reduce the compression speed by 3×
without significantly changing the compression ratio and decompres-
sion speed, which seems to suggest they might be more appropriate in 
scenarios where the context information is not available. As a final note, 
we remark that changing the final-stage compressor (e.g., from zstd-22 
to zstd-3) slightly reduces the compression ratio but significantly ben-
efits the compression speed, at comparable decompression speed.

4.1.2. Results for the SWH source code datasets
The four SWH datasets we experiment with in this section consist 

of 200 GiB of source code files in four languages: Python, JavaScript, 
Java, and C/C++. We remind that git-pack cannot be applied here 
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because it is designed to work on a set of files organized as a sin-
gle repository. We also do not test gzip, whose compression ratio is 
never smaller than 16%, and the bwt-based techniques, since their 
compression speed makes them impractical. Moreover, we do not test 
type_minhash_graph because its ML-based approach to detect the 
file type is useless here since the datasets are homogeneous (as they 
contain files in the same language). For uniformity, the last stage of 
the compression in all of our PPC-based tools is always implemented 
through zstd-22.

We show the results of this section in Fig.  2. Plots on the same row 
refer to the same dataset. The first column shows the compression ratio 
vs compression speed, while the second column shows the compression 
ratio vs decompression speed. The plots in the same row share the 
same vertical axis to better compare their (de)compression speeds. We 
also highlight the best compression ratio achieved by our tools with a 
vertical line, and with an arrow, we indicate the Pareto front of the best 
approaches. We use random_order as our baseline plotting its results 
in blue.

All the other algorithms shown in Fig.  2 follow the PPC-based ap-
proach. The context-based techniques filename and path are plotted in 
red and achieve the best performance overall. Their compression ratio 
is indeed a remarkable 2.21% on Python, 3.64% on JavaScript, 7.78% 
on Java, and 3.73% on C/C++. They are also the best in (de)compres-
sion speeds (up to 500 MiB/s, with a potential writing speed of our 
disk of 1 GiB/s, see Section 3.3). As expected, the additional usage 
of the directory name by the path algorithm slightly improves the 
compression ratio (up to 0.4% on average), so in the following we 
experiment only with path.

The content-based techniques are plotted in green. The three al-
gorithms that permute the input files according to the lexicographic 
order of the fingerprints (namely, simhash, ssdeep, and tlsh) almost 
halve, on average, the compression ratio obtained by random_order. 
Among these algorithms, tlsh consistently outperforms the others in 
terms of compression ratio, particularly excelling on the JavaScript 
dataset. However, sorting fingerprints has the disadvantage that similar 
files are placed far apart in the sorted order if the corresponding 
fingerprints differ only in the very first bits. minhash_graph avoids 
this pitfall with a graph-based approach, and indeed it achieves the 
third-best compression ratio after the context-based algorithms path 
and filename in three out of four datasets, but at the cost of a much 
slower compression speed.
Takehome message. Our experiments show that source code files 
from the SWH Archive can be compressed significantly by PPC-based 
techniques. The most compressible ones are those written in Python 
(2.2%), followed by JavaScript (3.6%), C/C++ (3.7%), and Java
(7.8%). These different compression ratios are likely due to multi-
faceted reasons: such as the number of files (for example Java has 
9× more files than JavaScript see Table  1), repetitiveness introduced 
by automatic tools and developers, language history, and intrinsic 
properties of each language/framework. We believe that a deeper 
insight on the above differences necessitates a comprehensive analysis 
involving also programming languages experts.

These compression ratios are achieved by the context-based per-
muter path (followed closely by filename), which is both simple and 
fast in (de)compression speed: a few tens of MiB/s in compression and 
a few hundreds of MiB/s in decompression. Among permuters that 
do not use context information but look just at the file content, the 
minhash_graph approach achieves the best compression ratio (close 
to that of filename) at the cost of a slow compression speed, because of 
the additional operations involving the fingerprint computations. Much 
faster compression speeds, but slightly worse compression ratios, are 
achieved by permuters that sort fingerprints of the file content, and 
here the tlsh is the most promising approach. As a final remark, we 
believe that the content-based permuters remain very relevant despite 
not achieving the best results in our experiments, especially because 
they can be applied in scenarios where context information is not 
available (i.e., classic key–value stores), or it is costly to be derived 
(i.e., SWH Archive).
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4.1.3. Results for the SWH random dataset
Given the promising performance of the PPC-based compression 

techniques on source-code datasets, we move our attention to the whole 
SWH archive and consider a random sample of size 200 GiB (dataset 
Random Content in Section 3.1). This is intended to provide a glimpse 
of the performance of our techniques on the whole SWH archive, which 
includes files of many different types. A preliminary observation is that, 
with respect to the Popular GitHub repos dataset, the random sample 
from SWH dataset contains a larger amount of data different than 
source codes and texts (60% vs less than 50%). This is relevant for two 
reasons: 1) non textual data is often uncompressible (e.g., zipped files, 
multimedia files etc.), and 2) some of our fingerprinting techniques 
(simhash and minhash_graph) are text based in that they parse the 
input into text lines: they can be applied also to non-textual files but 
we can expect worse performance.

Fig.  3 reports the compression performance of all tested PPC-
based techniques and the two baselines single_compress and
random_order. These experiments show a worse compression ratio, 
due to the presence of non source-code files, but confirm the validity of 
the PPC-based approach with a larger gap in compression ratio between 
type_minhash_graph and the other LSH-based techniques. This shows 
the effectiveness of the finer grouping by mime-types achieved by 
the ML-based classifier. Again, filename sorting (filename) and path 
sorting (path) achieve the best compression ratio of 9.99% and 9.98%, 
respectively.

4.2. Results for the file-access scenario

In this section, we consider the File-Access scenario, where we 
aim to design a compression scheme that is succinct in space and is 
efficient in supporting access to the content of individual files. We 
restrict our test to four techniques: the three best PPC-based techniques 
tlsh, minhash_graph, and path, and random_order as a baseline. We 
excluded apriori git-pack since it only works on individual Git reposito-
ries and the bwt-based techniques which are unpractically slow. Since 
we experimented with the SWH source code datasets we also excluded 
type_minhash_graph since it behaves as minhash_graph but at a 
lower speed.

In the File-Access scenario, the partition phase of PPC-based ap-
proaches is crucial in that the larger the blocks to be compressed, the 
slower the time to access the individual files contained in them (see 
Section 3.2.4). The size 𝐵 of those blocks thus influences the trade-
off between compression ratio and file-access speed. We experimented 
with 𝐵 = 256 KiB and 𝐵 = 2 MiB, and fix the block-compressor to 
zstd-12 because, as argued in Section 3.2.4, it offers an effective com-
promise between zstd-22 (very low compression ratio) and zstd-3 (very 
fast compression speed). As described in Section 3.2.4, we compute the 
file access speed by decompressing a random subset of 10% files in a 
dataset.  Note that, given this random subset of files, the decompression 
time includes both (i) the time required to locate the block containing 
the target file (leveraging the mapping stored in RocksDB) and (ii) 
the time to decompress the block until the desired file is retrieved. 
Therefore, decompression speed is computed as the total number of 
bytes of the decompressed files divided by total decompression time. 

Fig.  4 shows the compression ratio, compression speed, and file 
access speed on the 200 GiB source-code datasets. As in Section 4.1.2, 
plots in the same row refer to the same dataset and share the vertical 
axis that allows to better compare the compression speed against the 
file access speed. Moreover, the plots show a vertical line that high-
lights the best compression ratio achieved by our tools. They also show 
the baseline solutions in blue, the content-based techniques in green, 
and the context-based ones in red. Notice that each PPC technique is 
shown twice, once with the block size set to 𝐵 = 256 KiB (lighter color) 
and once with 𝐵 = 2 MiB (darker color).

As expected, splitting and compressing the files block-wise impacts 
negatively on the compression effectiveness: the most effective solution 
in all datasets is still path+zstd-22 and achieves a compression ratio 
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Fig. 2. Compression and decompression speed vs compression ratio for the 200-GiB datasets in the Backup scenario, using zstd-22 as the final compressor.
between 2.09% and 8.51% that is worse than the most effective solution 
in the Backup scenario. For example, compressing the Python code 
takes about 5.8% (instead of 2.2%), whereas compressing the Java code 
takes 9.9% (instead of 7.8%); hence, the more compressible the dataset, 
the larger the worsening gap.

Naturally, the parameter 𝐵 induces some performance trade-off. 
Looking at the compression speed/compression ratio plots (first column 
in Fig.  4), we see that a larger 𝐵 is always better. This is because 
with a larger 𝐵 we need to compress fewer blocks and zstd-12 can 
exploit more redundancies thus improving the compression ratio, which 
generates a win-win situation.33 A different trade-off is observable 

33 Recall that a block may take more than 𝐵 bytes if the last file surpasses 
that limit.
12 
when considering the decompression speed (second column of Fig.  4). 
Not surprisingly the solution with 𝐵 = 2 MiB is slower in file-access 
speed with respect to the one adopting 𝐵 = 256 KiB because it needs 
to decompress a much larger block. We observe that the difference in 
access speed, for example between the JavaScript and Java datasets, 
has to be mainly attributed to the disparity in the number of files 
within each dataset (in fact, the Java dataset comprises approximately 
26 million files, while the JavaScript dataset contains around 3 million 
files, see Table  1), which impacts on the storage infrastructure used to 
index and keep block-compressed these files.
Takehome message. Quite remarkably, the results on the File-Access 
scenario show that we can provide very fast file access speeds (up 
to 100 MiB/s), while achieving a significant compression ratio (with 
𝐵 = 2 MiB) of 5.82% on Python, 11.29% on JavaScript, 9.87% on 
Java, and 6.45% on C/C++. Using a smaller block size 𝐵 = 256 KiB, we 
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Fig. 3. Compression ratio for the 200-GiB radom dataset in the Backup scenario, using different permuters and zstd-22 as the final compressor.
improve the file access speed by a factor 1.8×, at the cost of worsening 
the compression ratio by a factor 1.2× and the compression speed by a 
factor 2×.

Compared to the Backup scenario, as expected, the compression 
ratios deteriorate across all languages due to the files being compressed 
in blocks. Unexpectedly, the compressibility of different languages 
changes. In particular, JavaScript replaces Java as the least compress-
ible language, while Python remains the most compressible language, 
and C/C++ the second best. This switch between Java and JavaScript is 
due to their different average file sizes. For the JavaScript dataset, the 
average file size is 60.5 KiB with a median of 4.6 KiB. In contrast, the 
Java dataset has an average file size of 7.9 KiB with a median of 2.4 KiB, 
see Table  1. Therefore, JavaScript files are, on average, more than 7 
times longer than Java files. So, when using block-based compression 
in the File-Access scenario, we can fit into one block fewer JavaScript 
files than Java files. More precisely, the average number of JavaScript 
files in a 2-MiB block is 48, while for Java it is 268. Therefore, the final 
compression step based on zstd is penalized on JavaScript files because 
it can exploit less inter-file similarity.

5. Discussions

Limitations. We performed our experiments on a traditional POSIX-
based filesystem. It is a simple, easily implementable, and extend-
able solution to evaluate the compression ratio of our compression 
techniques. We are aware it is not the best solution for evaluating 
compression and decompression speeds on massive amounts of small 
files. This is mainly because metadata — such as path, permission, 
creation/modification dates, and location — are on the disk. These 
metadata must be read from disk into memory to find the file itself. 
While insignificant on a small scale, accessing metadata of billions of 
files and petabytes of data can be a bottleneck (Beaver et al., 2010).

Furthermore, while we achieved our goal of investigating how to 
efficiently and effectively compress the contents of the SWH archive, 
there are some other important aspects that should be addressed in 
case of scaling up to its full size, such as parallel and distributed 
computation, fault tolerance, concurrency, etc., that we leave for future 
work.

As we leave to future work the fact that we restricted our analysis 
to four (very well-known) programming languages, although the SWH 
archive contains hundreds of different languages, each having its own 
compression ratio and inter-file similarity. Scaling to the compressed 
storage of the whole archive will require dealing with many other data 
types and file formats, so our space estimates of Section 4 (especially 
the ones for the Random dataset) have to be taken just as estimates, 
good and promising but estimates.
13 
On the repetitiveness of programming languages. It is well-known, and 
often a topic of heated debates, that programs in some programming 
languages are more concise than in others. Some papers presented 
models for measuring the conciseness of programming languages in a 
consistent and objective way, eventually adopting information theoreti-
cal principles (see, e.g., Bergmans et al. (2021) and references therein). 
Although interesting, those papers consider very small datasets (of 
about 13k files) and also clean the files by removing comments and 
spaces, which instead must be preserved in our lossless compression 
scenario. So they derive a different ordering of the most concise, and 
thus less expressive, programming languages among the ones con-
sidered in this paper. Overall, our experiments consider much larger 
datasets up to three to five orders of magnitude in number of com-
pressed files. This makes them undoubtedly the largest examined in 
the literature, and our experiments show that the most compressible 
programming languages are Python (2.2%), followed by JavaScript 
(3.6%), C/C++ (3.7%), and Java (7.8%). These different compression 
ratios are likely due to multifaceted reasons: such as the number of 
files (for example Java has 9× more files than JavaScript see Table  1), 
repetitiveness introduced by automatic tools and by code developers, 
language history, and intrinsic properties of each language/framework.
Implications for the SWH archive. Considering the entire SWH Archive 
as of now, the total size of source code written in C/C++ is 14.7 TiB, 
in Python 5.4 TiB, 50.3 TiB in JavaScript, and in Java 7.3 TiB. The 
experiments in Section 4.1 have shown that we can achieve a com-
pression ratio that is about 4% averaging over those four programming 
languages. This is also confirmed by some preliminary experiments 
we conducted on snapshots of about 1 TiB. Thus, we can argue that 
we can compress all available public code in those four languages 
into just 3TiB. In terms of (de)compression speed, the context-based 
permuters allow achieving a few tens of MiB/s in compression and 
a few hundreds of MiB/s in streaming-like decompression, and a few 
tens of MiB/s in single-file access. This file access speed implies that 
users can quickly retrieve and interact with even small portions of 
the compressed archive without the need for its full decompression. 
This capability is especially beneficial for tasks that require frequent 
access to different parts of the codebase, such as code analysis, software 
maintenance, and real-time collaboration in software development. The 
combination of high compression rates and fast file access speed makes 
our system not only space-efficient but also time-efficient, thus offering 
a scalable solution for managing and accessing large-scale source code 
repositories in various computing environments.

6. Conclusions

Our results have shown that, on the source codes of the SWH 
Archive, it is possible to achieve remarkable compression ratios (4% 
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Fig. 4. Compression and decompression speed vs compression ratio for the 200-GiB datasets in the File-Access scenario, using zstd-12 as the final compressor.
on average, or even less on specific programming languages, such as 
Python) by exploiting the inter-file redundancies that are naturally 
present in such file collections. The PPC-based techniques appear to 
be very effective for this task in that combined with standard compres-
sion tools outperform ad-hoc techniques, like git-pack, or compressors 
designed to handle very-long inputs, like bwt_rle. Among the different
PPC variants, we obtained the best performance when contextual in-
formation, even only the file name, is available and exploited.  When 
we lack such information, or the file name is not a good proxy of file-
content similarity (e.g., blog or social-network posts, storage systems, 
key–value stores, etc.), we can still achieve good performances with 
the PPC-paradigm using proper fingerprints extracted from the file 
contents. We are currently investigating an example of such alternative
PPC-use: for key–value stores we compute for each ⟨𝑘, 𝑣⟩-pair, a proper 
fingerprint of the ‘‘value’’-component and use it as a new key to create a 
14 
different key–value store with pairs ⟨𝑓 (𝑣), 𝑣⟩, and a satellite associative 
table ⟨𝑓 (𝑣), 𝑘⟩ to keep track of the implemented key-mapping. This 
way, similar values would come close in the (new) key–value store 
thus eventually leveraging its compressed plug-in functionalities. This 
application shows the robustness of the PPC framework, making it a 
versatile tool for compressing large file collections across a variety of 
situations and datasets. Further algorithmic research is still needed to 
make the content-based techniques faster and thus scalable to larger 
and larger data collections. 

Our algorithmic framework can be immediately applied to all con-
texts where storing large amounts of source code files is required. At 
present, this is a concrete need for large archives like SWH (our main 
experimental use case), research infrastructures for empirical software 
engineering like WoC and Boa (see Section 2.3), as well as large source 
code datasets that are growing in popularity driven by the needs of 
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large language models (LLMs). The state-of-the-art of practical storage 
solutions in those contexts remains pretty naive, relying on ad-hoc 
object storages and their built-in compression solutions that do not 
take into account specific aspects of software source code. We have 
shown how storage requirements for those use cases can be reduced 
significantly, while retaining a very simple implementation, based on 
state-of-the-art techniques and technologies. 

Building on the promising outcomes of our research, the next cru-
cial step involves applying our techniques to compress the whole 
collection of source files written in the most used programming lan-
guages, as well as the entire SWH Archive. This latter endeavor requires 
a strategic approach to distinguish between compressible and non-
compressible objects within the archive to avoid spending computing 
time on incompressible files. The mentioned solutions, in particular 
type_minhash_graph, will arguably play a pivotal role in this regard.
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Data availability

All data/code has a Software Heritage persistent Identifier (SWHIDs)
(https://archive.softwareheritage.org/swh:1:dir:b428d05ec4bc45c9ebe
e8a39a9d08b6e197df587) and is available on GitHub.
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