
Noname manuscript No.
(will be inserted by the editor)

Software Provenance Tracking at the Scale of Public
Source Code

Guillaume Rousseau · Roberto
Di Cosmo · Stefano Zacchiroli

the date of receipt and acceptance should be inserted later

Abstract We study the possibilities to track provenance of software source
code artifacts within the largest publicly accessible corpus of publicly available
source code, the Software Heritage archive, with over 4 billions unique source
code files and 1 billion commits capturing their development histories across
50 million software projects.

We perform a systematic and generic estimate of the replication factor
across the different layers of this corpus, analysing how much the same ar-
tifacts (e.g., SLOC, files or commits) appear in different contexts (e.g., files,
commits or source code repositories). We observe a combinatorial explosion in
the number of identical source code files across different commits.

To discuss the implication of these findings, we benchmark different data
models for capturing software provenance information at this scale, and we
identify a viable solution, based on the properties of isochrone subgraphs,
that is deployable on commodity hardware, is incremental and appears to be
maintainable for the foreseeable future. Using these properties, we quantify,
at a scale never achieved previously, the growth rate of original, i.e. never-
seen-before, source code files and commits, and find it to be exponential over
a period of more than 40 years.

Keywords software evolution, open source, clone detection, source code
tracking, mining software repositories, provenance tracking

G. Rousseau
Université de Paris, France, E-mail: guillaume.rousseau@univ-paris-diderot.fr

R. Di Cosmo
Inria and Université de Paris, France, E-mail: roberto@dicosmo.org

S. Zacchiroli
Université de Paris and Inria, France, E-mail: zack@irif.fr

2 Guillaume Rousseau et al.

1 Introduction

Over the last three decades, software development has been revolutionized un-
der the combined effect of the massive adoption of free and open source soft-
ware (FOSS), and the popularization of collaborative development platforms
like GitHub, Bitbucket, and SourceForge [48], which have sensibly reduced the
cost of collaborative software development and offered a place where historical
software can be stored [47]. One important consequence of this revolution is
that the source code and development history of tens of millions of software
projects are nowadays public, making an unprecedented corpus available to
software evolution scholars. We will refer to the full extent of this corpus as
public source code in this paper.

Many research studies have been conducted on subsets of public source
code, looking for patterns of interest for software engineering, ranging from
the study of code clones [46, 51, 52] to automated vulnerability detection and
repair [23, 32, 36], from code recommenders and reuse [27, 60, 61] to software
licence analysis and compliance [17,56,58].

An important building block for several of these studies is the ability to
identify the occurrences of a given file content, or a subpart of it, in the ref-
erence corpus, also known as provenance tracking [20]. For example, when a
vulnerability is identified in a source code file [18] it is important to find other
occurrences of the exact same file content, both in other versions of the same
project and in different projects; similarly, when analyzing code clones or soft-
ware licenses, it is important to find the first occurrence of a given exact source
file, or a subpart of it.

Scaling up similar studies to the entire body of public source code, and
making them reproducible, is a significant challenge. In the absence until re-
cently of common infrastructures like Software Heritage [1, 14] and World of
Code [34] that provide reference archives of public source code development,
scholars have used popular development platforms like GitHub as a refer-
ence corpus. But development platforms are not archives: projects on GitHub
come and go,1 making reproducibility a moving target. And while GitHub
is the most popular development platform today, millions of projects are de-
veloped elsewhere, including very high-profile ones like GNOME.2 Software
Heritage [1, 14] —with its mission to collect, preserve, and make all public
source code accessible together with its development history—offers an op-
portunity to change this state of affairs. The project has amassed the largest
public source code corpus to date, with more than 80 million software projects
archived from GitHub, GitLab, PyPI, and Debian, growing by the day.

In this paper we leverage Software Heritage to perform a study addressing
source code provenance tracking at this unprecedented scale. This work is part
of a larger program whose objective is to build in the medium term a generic

1 For example, hundreds of thousands of projects migrated from GitHub to GitLab.com
in the days following the acquisition of GitHub by Microsoft in Summer 2018, see https:

//about.gitlab.com/2018/06/03/movingtogitlab/.
2 See https://www.gnome.org/news/2018/05/gnome-moves-to-gitlab-2/

https://about.gitlab.com/2018/06/03/movingtogitlab/
https://about.gitlab.com/2018/06/03/movingtogitlab/
https://www.gnome.org/news/2018/05/gnome-moves-to-gitlab-2/

Software Provenance Tracking at the Scale of Public Source Code 3

and easily deployable infrastructure to allow research teams from different
communities to conduct a broad spectrum of analysis on top of the Software
Heritage archive.

The Software Heritage corpus is stored in a Merkle Direct Acyclic Graph
(DAG) [37], which offers several key advantages for large-scale provenance
tracking: it reduces storage requirements by natively deduplicating exact file
clones, that are quite numerous [33, 38]; it provides a means of checking in-
tegrity of the archive contents; and offers a uniform representation of both
source code and its development history, independently of the development
platform and version control system from which they were collected.

Research questions. In the first part of the article we focus on the various layers
contained in the Software Heritage corpus, and study the number of different
contexts in which original code artifacts re-appear over and over again, e.g.,
the same unmodified source code file found in different commits, or the same
commit present in different repositories, leading to our first research question:

RQ1 To what extent are the same source code artifacts, and in particular
lines of code, files, and commits, replicated in different contexts (files, com-
mits, and repositories, respectively) in public source code?

By quantifying the replication factor of public source code artifacts, we
find evidence of a combinatorial explosion in the number of contexts in which
original source code artifacts appear, which is particularly significant in the
replication of identical source code files across different commits.

In order to better characterize this phenomenon and its practical implica-
tions, we also address the following two sub-questions of RQ1:

RQ1.1 What is the impact of file size on the file replication factor?
RQ1.2 How does the replication factor of commits relate to forks and repos-

itory size?

We show that excluding small files reduces the amplitude of the observed
combinatorial explosion, but does not remove it, showing that this phenomenon
is not only related to the large dispersion of small generic files across reposi-
tories.

In the second part of this work we explore the implications of such a huge
replication factor on the problem of software provenance tracking [19,20] at the
massive scale of public source code, addressing our second research question:

RQ2 Is there an efficient and scalable data model to track software source
code provenance at the level of individual files at the scale of public source
code?

To address this practical question we evaluate three different data models
for storing provenance information, which offer different space/time trade-offs.
We evaluate these three data models on more than 40 years of public source
code development history and find that one of them—which we call the com-
pact model—allows to concisely track provenance across the entire Software

4 Guillaume Rousseau et al.

Heritage archive, both today and in the foreseeable future. The compact model
achieves its performance by exploiting the creation time of software artifacts in
the Software Heritage graph, and more precisely the properties of the bound-
ary of subgraphs called isochrone subgraphs, which we introduce later in this
paper.

In the last part of the paper, leveraging the fast scanning of the isochrone
subgraph boundaries, we perform a large scale analysis of the evolution of
public source code. We look into the production of original source code ar-
tifacts over time, that is, the amount of source code files and commits that
have never been observed before (e.g., in other version control system (VCS)
repositories or published tarballs and distribution packages) across the entire
Software Heritage corpus, addressing our third research question:

RQ3 How does the public production of original—i.e., never seen before at
any given point in time in Software Heritage—source code artifacts, and in
particular files and commits, evolve over time? What are their respective
growth rates?

To answer this question we perform an extensive study of the Software
Heritage archive, continuing a long tradition of software evolution studies [10,
12,25,26,35], which we extend here by several orders of magnitude and perform
over a period of more than 40 years. We show evidence of a remarkably stable
exponential growth rate of original commits and files over time.

Paper structure. We review related work in Section 2 and make a short presen-
tation of the Software Heritage dataset in Section 3. Section 4 explores RQ1,
studying the replication factor of original source code artifacts across different
contexts; Section 5 is dedicated to RQ2, studying data models for tracking
provenance of artefacts and leading to the compact model, which is experi-
mentally validated in Section 6. We address RQ3 in Section 7 by computing
the growth factor of public source code. Threats to validity are discussed in
Section 8.2 before concluding with Section 9.

Replication package. Given the sheer size of the Software Heritage archive
(≈200 TB and a ≈100 B edges graph), the most practical way to reproduce
the findings of this paper is to first obtain a copy of the official Software
Heritage Graph Dataset [41] and then focus on the source code revisions that
we have analyzed for this paper. The full list of their identifiers is available
on Zenodo (DOI 10.5281/zenodo.2543373) (20 GB); the selection criteria are
described in Section 7.

2 Related Work

In this section we compare the present work with relevant literature in the
field, starting with a discussion on the approaches to provenance tracking and
considering then each of the stated research questions.

https://dx.doi.org/10.5281/zenodo.2543373

Software Provenance Tracking at the Scale of Public Source Code 5

2.1 Software Provenance Tracking

The term provenance is generally used to denote the lineage of an artefact,
which includes identifying its origin, what happens to it, and where it moves
to over time.

Depending on the intended application and field of use, provenance can
be looked at various granularities [4, 13]. On the finest granularity end of the
spectrum, tracking the origin of programming building blocks like functions,
methods or classes, code snippets, or even individual lines of code (SLOC) and
abstract syntax trees (AST) [4], is useful when studying coding patterns across
repositories [5, 17]. On the opposite end, at the coarsest granularity, tracking
the origin of whole repositories is useful when looking at the evolution of
forks [7, 28,42,53] or project popularity [8].

In between, tracking file-level provenance has been for more than a decade
(and still is) the state-of-the-art in industrial tools and services to monitor
compliance with open source license terms and detect presence of security vul-
nerabilities known in public vulnerability databases that need to be addressed.
Companies like BlackDuck, Palamida, Antelink, nexB, TripleCheck, or FossID
are actors and have developed patent portfolios in that domain [31, 44, 57].
Tools like FOSSology [55] and ScanCode are their open source counterparts.
With few notable exceptions [3,20,33], file-level provenance has received little
attention in the research community.

2.2 Public Source Code Replication (RQ1)

A few studies consider the amount of code duplication induced by the now
popular pull-request development model [22] and more generally by the ease
with which one can create copies of software components, even without forking
them explicitly on collaborative development platforms.

The amount of exogenous code in a project can be extremely important, as
shown in [33], which analyzed over 4 million non-fork projects from GitHub,
selected by filtering on a handful of programming languages (Java, C++,
Python, and JavaScript), and showed that almost 70% of the code consists
of exact file-level clones. This remarkable work provides a very interesting pic-
ture of code cloning in a subset of GitHub at the precise moment in time it
was performed, but did not study how cloning evolves over time, nor how it
impacts the growth of the public source code corpus.

The approach proposed in this paper, which covers both the full granularity
spectrum and does so at the scale of Software Heritage is, to the best of our
knowledge, novel. It provides a clear overview of the combinatorial challenge
that arises in tracking software source code provenance in the real world of
public source code.

6 Guillaume Rousseau et al.

2.3 Large-scale Provenance Tracking (RQ2)

Until very recently most of the efforts to build very large source code corpuses—
i.e., comparable in size to the full extent of public source code—and associ-
ated analysis infrastructures were maintained by private companies provid-
ing licence compliance solutions.3 With the exception of the seminal work by
Mockus [39], very limited information on data models and infrastructure to
maintain such corpuses is available. Only recently academic work [1,14,34,41]
has highlighted the importance of building such large corpuses, making them
more accessible, and aiming at being as exhaustive as possible both in terms
of software distribution technologies (e.g., different VCS) and code hosting
platforms (e.g., different forges).

Different approaches are possible to track provenance at such a scale. Due
to the sheer size of the dataset, it is natural to look for a preprocessing phase
that precomputes provenance information for the whole dataset. Ideally, pre-
processing should be incremental, precomputed information should be com-
plete, space occupation should be linear w.r.t. the original corpus, and access
to this information should happen in constant time. We are not aware of any
approach that satisfies all these properties. The main design challenge for such
systems is to determine, for a given set of use cases, the best compromise be-
tween preprocessing time and storage cost, and the gain obtained over different
design choices.

The simplest approach, which enjoys the smallest storage fingerprint, rep-
resented by the recursive model in this article, is to not do any preprocessing
at all, and just traverse the original dataset for every provenance query. As we
will see, this may lead to prohibitive execution time.

Another approach, corresponding to the flat model in this article, consists
in building a complete index associating each artefact to (all) its origins: this
index can be maintained incrementally, provides constant access time, and
works well on smaller corpuses [4], but we will see that it leads to prohibitive
space occupation for the index, unless one decides to give up on completeness,
and drop contents that appear too frequently, as is done in [34].

The new approach that we describe in this article, that we call the compact
model, offers an interesting trade-off: it can be built and maintained incremen-
tally and allows to keep complete provenance information. It provides an access
time that is not constant, but is still way faster than the recursive model. Its
storage fingerprint is not linear, but is way smaller than the flat model. It can
be compared to what has been developed in other communities, such as those
studying the properties of complex networks [30,40].

The Software Heritage dataset [41], as the first publicly accessible dataset
containing several billions of fingerprints of source code artifacts, allows to
benchmark these different approaches on a reference real-world dataset, which

3 Each claiming to have the largest knowledge base of software artifacts, see
for example https://en.wikipedia.org/wiki/Open_Hub, https://www.theserverside.com/
discussions/thread/62521.html

https://en.wikipedia.org/wiki/Open_Hub
https://www.theserverside.com/discussions/thread/62521.html
https://www.theserverside.com/discussions/thread/62521.html

Software Provenance Tracking at the Scale of Public Source Code 7

can be considered to be a good proxy of public source code in the context of
the present work.

2.4 Growth of Public Source Code (RQ3)

The study of software evolution has been at the heart of software engineering
since the seminal “Mythical Man Month” [9] and Lehman’s laws [29]. The
tidal wave of FOSS, making a growing corpus of publicly available software
available, has spawned an impressive literature of evolution studies. Some 10
years ago a comprehensive survey [12] showed predominance of studies on the
evolution of individual projects. Since then large-scale studies have become
frequent and the question of how Lehman’s laws need to be adapted to account
for modern software development has attracted renewed attention, as shown in
a recent survey [26] that advocates for more empirical studies to corroborate
findings in the literature.

While Mining Software Repositories (MSR) research [24] is thriving, real-
izing large-scale empirical studies on software growth remains a challenging
undertaking depending on complex tasks such as collecting massive amounts
of source code [38] and building suitable platforms for analyzing them [16,54].
Hence, up to now, most studies have resorted to selecting relatively small sub-
sets4 of the full corpus, using different criteria, and introducing biases that
are difficult to estimate. For instance, an analysis of the growth of the Debian
distribution spanning two decades has been performed in [10], observing initial
superlinear growth of both the number of packages and their size. But Debian
is a collection maintained by humans, so the number of packages in it depends
on the effort that the Debian community can consent.

A recent empirical study [25] has calculated the compound annual growth
rate of over 4000 software projects, including popular FOSS products as well
as closed source ones. This rate is sensibly in the range of 1.20–1.22, corre-
sponding to a doubling in size every 42 months. In this study, though, the size
of software projects was measured using lines of code, without discriminating
between original contents and refactored or exogenous code reused as-is from
other projects.

The results we present here are to the best of our knowledge the first to
explore the evolution of growth of publicly available software at very large
scale over four decades.

3 Data Model and Dataset

In this section we present the data model and reference dataset used for the
experiments discussed in the rest of the paper.

4 Some studies have analyzed up to a few million projects, but this is still a tiny fraction
of all public source code.

8 Guillaume Rousseau et al.

3.1 Data Model

Our reference dataset is extracted from Software Heritage. A toy yet detailed
example of the corresponding data model is depicted in Fig. 1. The key princi-
ple is to deal with source code artifacts—collected from public version control
systems (VCS), package manager repositories, and as many source code dis-
tribution places as possible—by storing them in a single, global (and huge)
Merkle direct acyclic graph (DAG) [37], where all nodes are thoroughly dedu-
plicated. The graph is typed in the sense that it contains different types of
nodes. We recall in the following the main Software Heritage node types and
their properties, referring the reader to [1, 14] for more details.

Terminological note. Software Heritage adopts a technology-neutral terminol-
ogy which is now uncommon in the literature; in particular they use “revisions”
for what is more commonly referred to as “commits” and use “contents” for
file contents (with no attached metadata, including filenames) that are more
commonly referred to as “blobs”. In this article we adopt the more common
terminology, i.e., blobs and commits, but below we also mention the Software
Heritage terminology for ease of cross-referencing with existing bibliography
on the archive data model.

The following node types can be found in the Software Heritage Merkle DAG:

Blobs (or contents, in Software Heritage terminology) raw file contents as
byte sequences. Blobs are anonymous; “file names” are given to them by
directories and are hence context dependent.

Directories lists of named directory entries. Each entry can point to blobs
(“file entries”), recursively to other directories (“directory entries”), or even
commits (“commit entries”), capturing links to external components like
those supported by Git submodules and Subversion externals. Each entry
is associated to a name (i.e., a relative path) as well as permission metadata
and timestamps.

Commits (or revisions, in Software Heritage terminology) point-in-time states
in the development history of a software project. Each commit points to
the root directory of the software source code at commit time, and includes
additional metadata such as timestamp, author, and a human-readable de-
scription of the change.

Releases (also known as tags in some VCS) particular commits marked as
noteworthy by developers and associated to specific, usually mnemonic,
names (e.g., version numbers or release codenames). Releases point to com-
mits and might include additional descriptive metadata, e.g., release mes-
sage, cryptographic signature by the release manager, etc.

Snapshots lists of pairs mapping development branch names (e.g., “master”,
“bug1234”, “feature/foo”) to commits or release nodes. Intuitively each
snapshot captures the full state of a development repository, allowing to
recursively reconstruct it if the original repository gets lost or tampered
with.

Software Provenance Tracking at the Scale of Public Source Code 9

Fig. 1 Software Heritage data model: a Merkle direct acyclic graph (DAG) of public source
code artifacts—file blobs, directories, commits, releases, project snapshots—equipped with
crawling information of where (repositories, distribution packages, etc.) they have been
observed.

10 Guillaume Rousseau et al.

Deduplication. In this data model, identical artefacts are coalesced in a single
node, for all supported source code artifacts. Each blob is stored exactly once,
no matter how many directories point to it, and referred to via cryptographic
checksum key from multiple directories; each commit is stored once, no matter
how many repositories include it; up to each snapshot, which is stored once
no matter how many identical copies of repositories in exactly the same state
(e.g., pristine forks on GitHub) exist.

This arrangement allows to store in a uniform data model both specific
versions of archived software (pointed by release nodes), their full development
histories (following the chain of commit nodes), and development states at
specific points in time (pointed by snapshot nodes).

In addition to the Merkle DAG, Software Heritage stores crawling infor-
mation, as shown in the top left of Fig. 1. Each time a source code origin
is visited, its full state is captured by a snapshot node (possibly reusing a
previous snapshot node, if an identical repository state has been observed in
the past) plus a 3-way mapping between the origin (as an URL), the visit
timestamp, and the snapshot object, which is then added to an append-only
journal of crawling activities.

3.2 Dataset

For this paper we used the state (called reference dataset in the following) of
the full Software Heritage archive as it was on February 13th, 2018. In terms
of raw storage size, the dataset amounts to about 200 TB, dominated by the
size of blobs. As a graph, the DAG consists of ≈9 B nodes and ≈100 B edges,
distributed as shown in Table 1.

Table 1 Descriptive graph size statistics about the reference dataset used in this paper: a
Software Heritage archive copy as of February 13th, 2018.

(a) archive coverage

46.4 M software origins

(b) nodes

node type quantity
blobs 3.98 B
commits 943 M
releases 6.98 M
directories 3.63 B
snapshots 49.9 M
total 8.61 B

(c) edges

edge type quantity
commit → directory 943 M
release → commit 6.98 M
snapshot → release 200 M
snapshot → commit 635 M
snapshot → directory 4.54 K
directory → directory 37.3 B
directory → commit 259 M
directory → blob 64.1 B
total 103 B

Software Provenance Tracking at the Scale of Public Source Code 11

At the time we used it for this paper, the Software Heritage archive was
the largest available corpus of public source code [1, 14], encompassing:

– a full mirror of public repositories on GitHub, constantly updated
– a full mirror of Debian packages, constantly updated
– a full import of the Git and Subversion repositories from Google Code at

shutdown time
– a full import of Gitorious at shutdown time
– a one-shot import of all GNU packages (circa 2016)

This corpus is orders of magnitudes larger than previous work on prove-
nance tracking [10,33,35].

4 Public Source Code Replication

We now look into public source code replication, i.e., how often the same ar-
tifacts (re-)occur in different contexts. Fig. 2 depicts the three layers of this
phenomenon: a given line of code (SLOC) may be found in different source
code file blobs; a given file blob may appear in different commits (in the same
or different repositories); and a given commit may be found at multiple ori-
gins (e.g., the same commit distributed by multiple repositories and source
packages).

To study this phenomenon and answer RQ1 we perform in the following
a focused analysis on the Software Heritage Merkle DAG. This will lead to
quantitatively evaluate the replication factor of source code artifacts at each
replication layer of Fig. 2.

Fig. 2 The three layers of replication in public source code: SLOC occurring in source code
files (blobs), blobs occurring in commits, commits found at different distribution places
(origins).

12 Guillaume Rousseau et al.

4.1 Blob Replication Factor

In order to assess the blob replication factor, i.e., how often the same file
content appears in different commits, we took a random sample of about 1
million unique blobs. Since the cryptographic hash used in the Software Her-
itage Merkle DAG is uniformly distributed, this can be done easily by selecting
all blobs whose hash has a given initial prefix: our random sample is made up
of all blobs whose hash identifiers start with aaa. For each blob in that sample
we counted how many commits contain it in the reference dataset. The result-
ing distribution of the replication factor is shown in the upper part of Fig. 3,
together with the corresponding cumulative distribution.

Looking at the cumulative distribution it jumps out that the average repli-
cation factor is very high. It exhibits a characteristic decreasing power law
(α ' −1.5), only limited by an exponential cut-off. There are hence over a
hundred of thousand blobs that are duplicated more than one hundred times;
tens of thousand blobs duplicated more than a thousand times; and there
are still thousands of blobs duplicated more than a hundred thousands times!
Space-wise, keeping track of all the occurrences of the blob→commit layer of
Fig. 2 is a highly nontrivial task.

We address RQ1.1 by investigating the impact of file size on blob replica-
tion factor. We took two random samples of about 1 million blobs each, one
with blob sizes up to 100 bytes and one with sizes between 105 and 106 bytes,
and performed again the previous analysis.

The resulting normalized cumulative replication factors are shown on the
bottom of Fig. 3. We can see that the replication factor of small blobs is much
higher than that of average-sized and large blobs.

Hence, keeping track of the blob→commit occurrences only for files larger
than, say, 100 bytes, would significantly simplify the problem with respect
to the general case, as the total number of blob occurrences across different
commits would be significantly lower. Omitting small files is indeed a tech-
nique often used by state-of-the-art industry solutions for software provenance
tracking: Fig. 3 provides evidence on why it is effective (at the expense of
completeness).

Software Provenance Tracking at the Scale of Public Source Code 13

Fig. 3 Top: cumulative (upper curve) and simple (lower curve) replication factor of unique
file blobs across unique commits. Bottom: normalized cumulative blob replication factor for
the same sample (solid line) and two random samples of about 1 M blobs each, with blob
sizes up to 100 bytes (dashed line) and between 105 and 106 bytes (dotted line).

14 Guillaume Rousseau et al.

Fig. 4 Distribution of the length of normalized SLOC in a sample of 2.5 M blobs that
appear at least once with .c extension.

4.2 SLOC Replication Factor

We now turn our attention to the bottom layer of Fig. 2: SLOC→blob. Since
lines of code are hardly comparable across languages, we focused on the C
language, which is well-represented in the corpus.

We took a random sample of ≈11.4 M unique blobs occurring in commits
between 1980 and 2001, and selected from it blobs that appear at least once
with .c extension and with sizes between 102 and 106 bytes, obtaining ≈2.5 M
blobs. These thresholds have been determined experimentally with the goal of
obtaining a temporally consistent subset of the reference dataset, containing
more than 1 million file contents with the desired extension.

Individual SLOC have been extracted by first splitting blobs into physical
lines at usual line separators (linefeed and/or carriage return) and then nor-
malizing lines by removing blanks (spaces and tabs) and trailing semicolons
(after removing blanks). The obtained normalized lines have been compared
using byte equality. At the end of this process we obtained ≈64 M normalized
SLOC.

Software Provenance Tracking at the Scale of Public Source Code 15

Fig. 5 Replication factor of normalized SLOC as the number of unique blobs they appear
in. Dataset: same of Fig. 4.

The replication factor of SLOC across unique blobs is shown in Fig. 5. We
observe a much faster decrease w.r.t. the replication factor of blobs in commits
(α ' −2.2), providing evidence that keeping track of SLOC→blob occurrences
would be less problematic than blob→commit.

We also computed the distribution of normalized SLOC lengths between
4 and 1000, which is shown in Fig. 4. We observe that lines with length 15
to 60 normalized characters are the most represented, with a fairly stable
presence within that range, and a steep decrease for longer lines, confirming
previous observations in the field. Hence, for SLOC→blob occurrences there
is no obvious length-based threshold that would offer a significant gain.

4.3 Commit Replication Factor

Finally we look into the commit→origin layer of Fig. 2. To that end we took
a random sample of ≈6% of all commits) and performed again the previous
study of blob replication across commits, this time considering commit repli-
cation across origins. Results are shown in Fig. 6.

Commits replication across origins shows larger fluctuations near the end of
the range, but decreases steadily before that, and way more steeply (α ' −1.5)

16 Guillaume Rousseau et al.

Fig. 6 Replication of commits across origins.

than it was the case for blob→commit replication (see Fig. 3 for comparison):
the replication factor of commits across origins is way smaller than that of
blobs in commits.

While this result is sufficient to assess the respective impact on public
source code replication of the considered layers, we dug further into origin
sizes to better understand which origins participate into commit→origin repli-
cation, and address RQ1.2.

We have considered two different measures of origin size. One that simply
counts the number of commits found at each origin. Another that associates
commits found at multiple origins only to the origin that contains the largest
number of commits, and then counted them as before. When a project is forked,
the second measure would always report a commit as belonging to the fork
with the most active development, which is an approximation of the “most fit
fork”, while stale forks would decay.

This measure has many good properties: it will follow forks that resurrect
projects abandoned at their original development places, it does not rely on
platform metadata for recognizing forks, and is hence able to recognize exoge-
nous forks across unrelated development platforms (e.g., GitHub-hosted forks
of the Linux kernel which is not natively developed on GitHub).

Software Provenance Tracking at the Scale of Public Source Code 17

Fig. 7 shows the impact that the “most fit fork” measure has on the number
of commit→origin occurrences over the whole dataset. Starting with relatively
small repositories, (≈100 commits) the number of occurrences to track is lower
than for the simpler measure, with a difference growing up to a full order of
magnitude for repositories hosting 10 K commits.

Fig. 7 Distribution of origin size as the number of commits they host.

5 Compact Provenance Modeling

We now consider the problem of tracking software provenance across a corpus
as large and as fast growing as all public source code, addressing RQ2 in this
section. In short, the goal is to keep track of all the different places (blobs, com-
mits, origins) in which any given source code artifact (SLOC, blob, commit)
can be found—detailed requirements are given below, in Section 5.1.

What are the implications of our findings on public source code growth
and replication, on the feasibility of maintaining such a complete provenance
index? An important fact that emerges from the analyses is that, size-wise,
the most challenging part is the layer associating file blobs to all the commits
they appear in, because blobs are duplicated across commits much more than
commits across origins or SLOC across blobs.

Hence in the following we will focus on concisely representing blob→commit
provenance mappings. If we can effectively deal with that replication layer,

18 Guillaume Rousseau et al.

dealing also with the commit→origin and SLOC→blob ones will be compati-
ble and fully modular extensions of the proposed approach.

5.1 Requirements

Supported queries. At least two queries should be supported: first occurrence
and all occurrences. The first occurrence query shall return the earliest occur-
rence of a given source code artifact in any context, according to the commit
timestamp. The all occurrences query will return all occurrences. The two
queries answer different use cases: first occurrence is useful for prior art as-
sessment and similar intellectual property needs; all occurrences is useful for
impact/popularity analysis and might be used to verify first occurrence results
in case of dubious timestamps.

Granularity. It should be possible to track the provenance of source code ar-
tifacts at different granularities including at minimum file blobs and commits.

Scalability. It should be possible to track provenance at the scale of at least
Software Heritage and keep up with the growth rate of public source code.
Given that the initial process of populating provenance mappings might be
onerous, and that some use cases require fresh data (e.g., impact/popularity),
we also require incrementality as part of scalability: the provenance index
must support efficient updates of provenance mappings as soon as source code
artifacts (old or new) are observed in new contexts.

Compactness. While we put no hard boundaries on total required storage re-
sources, it should be possible to store and query provenance information using
state-of-the-art consumer hardware, without requiring dedicated hardware or
expensive cloud resources.

Streaming. For the all occurrences query a significant and incompressible per-
formance bottleneck is the transfer time required to return the potentially very
large result. A viable provenance solution should hence allow to return results
incrementally, piping up the rest for later.

5.2 Provenance Data Models

We study three different data models for provenance tracking, that we call
respectively flat, recursive, and compact. Their Entity-Relationship (E-R) rep-
resentations are shown in Fig. 8.

Software Provenance Tracking at the Scale of Public Source Code 19

(a) flat model

(b) recursive model

(c) compact model

Fig. 8 Provenance tracking models, entity-relationship (E-R) views

Flat model. This is our baseline for tracking provenance, shown in Fig. 8(a).
In this model provenance mappings are “flattened” using a single B(lob) oc-

cur in C(commit) relation, that also keeps track of file paths relatively to the
root directory of the associated commit. The cardinality of B occur in C is
n-m (rather than 1-n), because the same blob can appear multiple times in a
given commit at different paths. Each commit carries as attribute the commit
timestamp, in order to answer the question of when the occurrence happened.
Each blob carries as attribute the timestamp of its earliest occurrence, i.e., the
minimum timestamps among all associated commits.

Given suitable indexing on blob identifiers (e.g., using a B-tree), the flat
model adds no read overhead for the all occurrences query. The same is valid
for first occurrence, given suitable indexing on timestamp attributes, which is
required to retrieve path and commit.

20 Guillaume Rousseau et al.

Updating provenance mappings when a new commit comes in requires
traversing the associated directory in full, no matter how many sub-directories
or blobs in it have been encountered before, and adding a relationship entry
for each of its nodes.

Recursive model. While the flat model shines in access time at the expenses
of update time and compactness, the recursive model shown in Fig. 8(b) does
the opposite. It is intuitively a “reverse” Merkle DAG representation of the
Software Heritage data model (Fig. 1), which maps blobs to directories and
directories to commits.

Each entity has a timestamp attribute equal to the timestamp of the ear-
liest commit in which the entity has been observed thus far. When processing
an incoming commit rt2 (with timestamp t2) it is no longer necessary to tra-
verse in full the associated directory: if a node n is encountered that is already
present in the model with a timestamp t1 < t2, recursion can stop because the
subtree rooted at n, which is known to be already present due to the Merkle
DAG properties, has already been labeled with timestamps earlier than t2 and
needs not to be updated; we just need to add an entry in the corresponding
occurrence table for n with timestamp t2.

Thanks to the sharing offered by the directory level, the recursive model
is as compact as the original Merkle structure, with no flattening involved.
The all occurrences query is slow in this model though, as for each blob we
need to walk up directory paths before finding the corresponding commits.
Response time will hence depend on the average directory depth at which
queried blobs will be found. First occurrence is faster, but still incurs some
read overhead: given a blob we have to walk up all directories and then lookup
the corresponding commits whose timestamps equate the timestamp of the
blob being queried.

Compact model. Fig. 8(c) shows a compromise version between the flat and
recursive models, which is both storage-compact and capable of quickly an-
swering the required queries. The tables for blob, directory, and commit en-
tities are progressively populated as the structure is built, with a timestamp
attribute denoting the earliest known occurrence, as before.

To understand how the compact model is built and queried we introduce
the following notion:

Definition 1 (Isochrone subgraph) given a partial provenance mapping P
associating a timestamp of first occurrence to each node in a Merkle DAG, the
isochrone subgraph of a commit node R (with timestamp tR) is a subgraph
rooted at R’s directory that only contains directory nodes whose timestamps in
P are equal to tR.

Intuitively, when processing commits chronologically to update the entity
tables and the provenance mappings, the isochrone subgraph of a commit
starts with its root directory and extends through all directory nodes con-
taining never-seen-before source code artifacts. Due to Merkle properties each

Software Provenance Tracking at the Scale of Public Source Code 21

directory containing at least one novel element is itself novel and has a fresh
intrinsic identifier. Everything outside the isochrone subgraph on the other
hand has been observed before, in at least one previously processed commit.

Given this notion, the upper part of the compact model (B(lob) occur

early in C(ommit) in Fig. 8(c)) is filled with one entry for each blob attached
to any directory in the isochrone subgraph. As a consequence of this, the
first occurrence of any given blob will always be found in B occur early in

C although other occurrences—depending on the order in which commits are
processed to update provenance mappings—may also be found there.

The relation D(irectory) occur in C(commit) is filled with one entry, point-
ing to the commit being processed, for each directory outside the isochrone
subgraph that is referenced by directories inside it, i.e., D occur in C contains
one entry for each directory→directory edge crossing the isochrone frontier.
Finally, the relation B(lob) occur in D(irectory) is filled with one entry for
each blob (recursively) referenced by any directory added to the D occur in C

relation.
Filling the compact model is faster than the flat model: when we reach a

directory d at the frontier of an isochrone subgraph, we only need to visit it
in full the first time, to fill B occur in D, and we need not visit d again when
we see it at the frontier of another isochrone subgraph in the future.

The compact model is slower than the recursive model though, as we still
need to traverse the isochrone subgraph of each commit. Read overhead for
first occurrence is similar to the flat model: provided suitable indexing on
timestamps we can quickly find first occurrences in B occur early in C. Read
overhead for all occurrences is lower than the recursive model because all blob
occurrences will be found via B occur in D without needing to recursively walk
up directory trees, and from there directly linked to commits via D occur in C.

5.3 Design Rationale and Trade-off

Intuitively, the reason why the compact model is a good compromise is that
we have many commits and a very high number of file blobs that occur over
and over again in them, as shown in Section 4.1. Consider now two extreme
cases: (1) a set of commits all pointing to the same root directory but with
metadata differences (e.g., timestamp or author) that make all those commits
unique (due to Merkle intrinsic properties); (2) a set of commits all pointing to
different root directories that have no file blobs or (sub)directories in common.

In case (1) the flat model would explode in size due to maximal replication.
The recursive model will need just one entry in D occur in C for each commit.
The compact model remains small as the earliest commit will be flattened (via
B occur early in C) as in the flat model, while each additional commit will add
only one entry to D occur in C (as in the recursive model).

In case (2) the flat model is optimal in size for provenance tracking pur-
poses, as there is no sharing. The recursive model will have to store all decon-
structed paths in D occur in D. The compact model will be practically as small

22 Guillaume Rousseau et al.

as the flat model: all commits are entirely isochrones, so the B occur early in

C relation will be the same as the B occur in C relation of the flat model, and
the only extra item is the Directory table.

Reality will sit in between these two extreme cases, but as the compact
model behaves well in both, we expect it to perform well on the real corpus
too. The experimental evaluation reported in the next section validates this
intuition.

6 Experimental Evaluation

To compare the size requirements of the provenance data models described
in Section 5 and address efficiency and scalability criteria in RQ2, we have
monitored the growth of each model while processing incoming commits to
maintain provenance mappings up to date.

Specifically, we have processed in chronological order commits from the
reference dataset with timestamps strictly greater than the Unix epoch (to
avoid the initial peak of forged commits that will be shown later in Section 7)
and up to January 1st, 2005, for a total of ≈38.2 M commits. For each commit
we have measured the number of entities and relationship entries according to
the model definitions, that is:

Flat model: one entity for each blob and commit; plus one B occur in C entry
for each blob occurrence

Recursive model: as it is isomorphic to the Merkle DAG, we have counted: one
entity for each blob, directory, and commit; plus one relationship entry for
each commit→directory, directory→directory, and directory→blob edge

Compact model: after identifying the isochrone subgraph of each commit, we
counted: one entity for each blob and commit, plus one entity for each direc-
tory outside the isochrone graph referenced from within; as well as one re-
lationship entry for each blob attached to directories in the isochrone graph
(B occur early in C), one D occur in C entry for each directory→directory
edge crossing the isochrone frontier, and one B occur in D entry for each
blob present in directories appearing in D occur in C.

These measures are abstract, in the sense that they do not depend on any
specific technology used to store provenance information in an information
system. They show how much information, measured in terms of E-R elements
(entities and relationship entries, respectively) would need to be stored by any
information system in order to capture the same provenance information, in
the various models.

Processing has been done running a Python implementation of the above
measurements on a commodity workstation (Intel Xeon 2.10GHz, 16 cores,
32 GB RAM), parallelizing the load on all cores. Merkle DAG information
has been read from a local copy of the reference dataset, which had been
previously mirrored from Software Heritage. In total, commit processing took
about 4 months (or ≈0.3 seconds of per-commit processing time, on average),
largely dominated by the time needed to identify isochrone subgraphs.

Software Provenance Tracking at the Scale of Public Source Code 23

Table 2 Size comparison for provenance data models, in terms of entities (nodes), relation-
ship entries (edges), and ratios between the amount of relationship entries in the various
models. Same dataset of Fig. 9.

Flat Recursive Compact

entities 80 118 995 148 967 553 97 190 442
commits: 38.2 M commits: 38.2 M commits: 38.2 M

blobs: 41.9 M blobs: 41.9 M blobs: 41.9 M
directories: 68.8 M directories: 17.1 M

relationship 654 390 826 907 2 607 846 338 19 259 600 495
entries blob–directory: 1.29 B blob–directory: 13.8 B

directory–commit: 38.2 M directory–commit: 2.35 B
directory–directory: 1.28 B

blob–commit: 3.12 B

relationship flat
compact

= 34.0 flat
recursive

= 251 compact
recursive

= 7.39

ratios

Note that this approach is not globally optimal in terms of total processing
time, as the isochrone graph frontier is re-computed over and over again for
related commits. The total processing time would have been shorter if we only
calculated the isochrone boundary over the entire graph and then applied
updates. This chronological analysis of commit, while not globally fastest,
facilitates the monitoring of abstract size requirements for each model as a
function of the total size of the monitored corpus.

Measured sizes over time, measured in terms of entities and relationship
entries for each model, are given in Table 2. They show, first, that the amount
of relationship entries dominate that of entities in all models, from a factor 18
(recursive model) up to a factor 8000 (flat). Dealing with mappings between
source code artifacts remains the main volumetric challenge in provenance
tracking. As further evidence of this, and as a measure of the overall amplitude
of provenance tracking for all public source code, we have also computed the
number of relationship entries for the flat data model on the full reference
dataset, obtaining a whooping 8.5 · 1012 entries in B occur in C.

Second, sizes show that the Merkle DAG representation, isomorphic to the
recursive model, is indeed the most compact representation of provenance in-
formation, although not the most efficient one to query. The compact model is
the next best, 7.39 times larger than the recursive model in terms of relation-
ship entries. The flat model comes last, respectively 251 and 34 times larger
than recursive and compact.

Fig. 9 shows the evolution of model sizes over time, as a function of the
number of unique blobs processed thus far. After an initial transition period,
trends and ratios stabilize making the outlook of long-term viability of storage
resources for the compact model look sustainable.

Furthermore, the comparison between the compact (orange line) and flat
(blue line) model shows that, at the cost of a small increase in the number
of entities, the compact model performs much better in terms of relationship

24 Guillaume Rousseau et al.

Fig. 9 Evolution over time of the sizes of different provenance data models, in terms of
entities (top) and relationship entries (bottom). Data for Software Heritage commits up to
2005-01-01, excluding Unix epoch.

Software Provenance Tracking at the Scale of Public Source Code 25

entities. And even if in terms of entities a small divergence can be observed
over time (1

10 of an order of magnitude), the gain in terms of relationship
entries makes it worthwhile (1.5 orders of magnitude).

In order to relate these figures to real-world storage requirements, we have
also filled a MongoDB-based implementation of the compact model—including
all attributes of Fig. 8(c) and needed indexes—while processing commits to
perform the above measurements. Extrapolating the final MongoDB size to the
full reference dataset we obtain an on-disk size of 13 TB. While large, such
a database can be hosted on a consumer workstation equipped with ≈4000$
of SSD disks, without having to resort to dedicated hardware or substantial
investments in cloud resources. Using the compact model, universal source
code provenance tracking can lay at the fingertips of every researcher and
industrial user.

7 Public Source Code Growth

Current development practices rely heavily on duplicating and reusing code [22,
33], which makes it non trivial to estimate how much original software is be-
ing produced: summing up the usual metrics—such as number of source code
files or commits—across a wealth of software projects will inevitably end up
in counting the same original source code artifacts multiple times.

In this section we report on the first large scale analysis of the growth of
original software artifacts, in terms of revisions and contents, that we have per-
formed leveraging the fully-deduplicated data model that underlies Software
Heritage, and using fast scanning of the boundary of the isochrone subgraphs.

We have analyzed the entire reference dataset (see Table 1), processing
commits in increasing chronological order, and keeping track for each blob of
the timestamp of the earliest commit that contains it, according to commit
timestamp. This analysis is done by running on the reference dataset a parallel,
incremental version of isochrone subgraph detection (as per Section 5) opti-
mized to keep only the first occurrence of each blob from a set of time-sorted
commits.

A commit is considered to be original at time t if the combination of its
properties (or, equivalently, its identifier in the Merkle DAG) has never been
encountered before during processing—i.e, if no commits with a timestamp
earlier than t had the same commit identifier. Similarly, a file blob is considered
to be original if it has never been recursively referenced by the source code
directory of commits with a timestamp earlier than t.

Results are shown in Fig. 10. They provide very rich information, answering
RQ3 for both commits and blobs.

We discuss first a few outliers that jump out. Data points at the Unix epoch
(1/1/1970) account for 0.75% of the dataset and are clearly over-represented.
They are likely due to forged commit timestamps introduced when converting
across version control systems (VCS). This is probably also the main reason
behind commits with timestamps in the “future”, i.e., after the dataset times-

26 Guillaume Rousseau et al.

Fig. 10 Global production of original software artifacts over time, in terms of never-seen-
before revisions and file contents (lin-log scale). Major events in the history of version control
systems and development forges are materialised by vertical bars.

Software Provenance Tracking at the Scale of Public Source Code 27

tamp; these commits in the future account for 0.1% of the dataset. The sharp
drop before the dataset timestamp is a consequence of the lag of Software
Heritage crawlers w.r.t. its data sources.

Focusing on the core part of the figure we remark that in the early years,
before the introduction of forges and advanced VCS, the number of commits
is relatively small (tens to hundreds of thousands only), and their evolution is
rather irregular.

After the creation of the first popular forge, SourceForge (1999), we observe
on the other hand a remarkably regular exponential growth lasting twenty
years. For original commits, growth can be accurately approximated by the fit
line 60e0.27(t−1970); at this rate the amount of original comits in public
source code doubles every ≈30 months. For original blobs, growth is ac-
curately approximated by the fit line 2.5e0.37(t−1970); at this rate the amount
of original public source code blobs doubles every ≈22 months.

Finally, we remark that the difference in the growth rates of original com-
mits and original file blobs means that over the past twenty years the average
number of original file blobs per commit has been doubling every
≈7 years. Over time, developers are squeezing more file changes in what is
recognizable as commit in the use dataset.

8 Discussion

8.1 Impact

On the granularity and scale of source code provenance tracking. We have
explored in this paper the feasibility of tracking software provenance—where
a software source code artifact comes from and, more generally, occurs—at
various granularities and at the scale that currently best approximates the full
body of publicly available source code.

Doing so requires first and foremost assessing the amplitude of the problem
(RQ1), i.e., how many occurrences one has to track to deal with the prob-
lem at the stated scale. To characterize that amplitude we have proposed a
layered approach consisting of three different layers: SLOC occurring in indi-
vidual blobs (i.e., unique source code file contents), blobs occurring in source
code trees pointed by commits, commits occurring in software repositories.
We have shown qualitatively and quantitatively using the Software Heritage
dataset that, although each of this layers contributes to the replication of
source code artifacts reoccurring in different places, the layer that contribute
the most to that replication is blob→commit. We argue that if one can—from
both a theoretical complexity and technological point of view—deal with that
replication layer, then the problem of source code provenance tracking can be
dealt with in its full generality and at all discussed granularities.

We do not argue for the superiority of any particular granularity in source
code provenance tracking, as what is “best” will heavily depends on the in-
tended application. The goal of the current work is to study the problem in

28 Guillaume Rousseau et al.

its more general formulation and at a scale that is as close as possible to the
current state of the world of public source code, which led us to focus on the
corpus made available by Software Heritage.

By proposing and experimentally validating the compact model for storing
provenance information (RQ2) we have shown that it is feasible to track prove-
nance information at the scale of Software Heritage, down to the granularity of
individual source files. The result is a remarkably efficient trade-off requiring
storage resources similar to those of the recursive model, but ensuring faster
answer to provenance queries. To the best of our knowledge this is a significant
improvement over the current industry state of the art of provenance track-
ing, where file-level provenance tracking relies on filtering out specific types
of blobs, commits or origins based on criteria like size, popularity or presence
of releases, and has to give up completeness. The approach we present in this
article is to the best of our knowledge the only one that is complete, and
amenable to implementation using accessible hardware resources.

The approach we propose is not intended to be compared with the state
of the art in academic works that require granularities finer than the file,
like function or method-level software clone detection [43, 45]. In order to
track the evolution and migration of very fine-grained source code parts, these
approaches use language-specific techniques, e.g., parsing, to split individual
source code blobs into meaningful and individually trackable snippets [46], and
as a consquence are tested at much smaller scale on language specific selections
of the global corpus.

When addressing public source code, or even “only” very large source code
archives [1,34], we are not yet in a position to properly parse source code writ-
ten in thousands of different programming languages [6]: language recognition
alone is a very challenging undertaking with such diversity.

If one wants to perform studies that are independent of the programming
language, a natural approach is to split files into SLOCs and track individ-
ual (or groups of) SLOCs. We have shown experimental evidence that the
replication factor of SLOCs across individual blobs poses a less challenging
problem than the one we have dealt with in this paper. Hence, we expect that
implementing tracking of SLOCs to be a manageable modular addition to the
provenance tracking approach proposed in this article, and we will try to do
so in future work.

Sustainable archival and provenance tracking at the scale of public source code.
Our study of the growth of original content (RQ3), both in terms of blobs
and commits, over four decades, shows a remarkably stable exponential growth.
This calls into question right away the sustainability of any effort to build and
archive that stores all public source code, like Software Heritage and, more
recently and with a narrower scope, World of Code [34]. Based on the findings
in this paper, and taking into account the long term evolution of storage costs5,
we see that storage cost is decreasing more rapidly—and has been so for a long

5 see, e.g., https://hblok.net/blog/storage/

https://hblok.net/blog/storage/

Software Provenance Tracking at the Scale of Public Source Code 29

time—than the growth rate of the original content that needs to be archived.
This provides evidence that full scale source archival is sustainable in the
foreseeable future, for archives that adopt a deduplication approach similar to
the one used in Software Heritage.

This exponential growth also calls into question the ability to handle prove-
nance tracking not only at the scale, but also at the speed of public source code
growth. Indeed, the fact that one can build the needed data structures once
at the scale of Software Heritage, does not guarantee per se that these can be
maintained at the needed speed.

For the recursive model, the answer is easy: since it is just a copy, with
arrows reversed, of the Merkle DAG used for the archive, maintaining it is no
more difficult than maintaining the archive itself. The downside is that query
costs might become even more prohibitive as time passes.

For the compact model, our experimental validation provides several ele-
ments to support its long-term sustainability. First, the model is incremental :
the process we have followed to populate it in Section 6 is the same that will
need to be followed to keep it up to date w.r.t. public source code growth.
In particular, there is no need to sort all commits by timestamp beforehand,
incoming ones can be processed on the fly. Second, the vast majority of incom-
ing commits that need to be added will tend to be naturally chronologically
sorted, which is the optimal scenario for the compact model. Indeed, since
we deduplicate before processing, old commits that are already archived will
not need to be considered, and our findings in the study of software growth
over time show that the amount of commits with timestamps incorrectly set
to the Unix epoch is marginal. In these condition, which are close to optimal,
the long-term storage requirements for provenance tracking using the compact
model will be marginal w.r.t. actual archival costs.

8.2 Threats to Validity

Analyzing the largest corpus of source code available today is a very challeng-
ing technical undertaking. We discuss here the main threats to the validity of
the findings obtained by doing so in this paper, starting from potential internal
validity threats and discussing external validity last.

Dataset selection. The main concern for internal validity is that, due to its
sheer size, we could not perform all estimates and experiments on the refer-
ence dataset, i.e., the full Software Heritage graph dataset. While the results
reported in Section 7 are obtained by exploring the full reference dataset, other
findings are obtained by analysing smaller subsets.

For some specific experiments, like the data model benchmark, using the
full dataset is simply not feasible: testing the flat data model in full would
require an inordinate amount of space, due to the replication factor identified
in Section 4, so we tested all three models on a subset.

30 Guillaume Rousseau et al.

For other experiments, like the estimation of the replication factor across
the layers of the Software Heritage archive, our approach to minimize potential
bias has been to use sizable subsets obtained by random sampling on the full
starting corpus,

Finally, when comparing provenance data models, we have quantitatively
estimated sizes, but only qualitatively estimated read overhead—rather than
benchmarking it in production—in order to remain technology-neutral. We
believe that making complete estimates on a subset and giving indications
based on large-scale extrapolations provides sufficient evidence to compare
the behaviour of the three different models.

Timestamps trustworthiness. In order to determine the first occurrence of soft-
ware artifacts, we have have trusted the timestamps provided by the commits
themselves, despite the fact that commit timestamps can be forged. On the
one hand, this approach is consistent with previous software evolution studies
that consider timestamp forging a marginal phenomenon. On the other hand,
the correctness of the timestamps is irrelevant for evaluating the performance
of the provenance model, as we only need to single out a first occurrence, no
matter how it is determined.

Deduplication granularity. The data model used by Software Heritage per-
forms deduplication globally across all repositories and stops at file level.

This has an impact on what can be easily traceable using the proposed
provenance model: while it is possible to determine the occurrences of a given
unmodified file content (blob) in the global corpus, it is not possible to identify
natively slightly modified variants of a file, like trivial changes such as blanks,
which are allowed by Type 1 software clones.

One can foresee various more refined data models and strategies to identify
non exact clones, like normalizing blob contents before hashing or, alterna-
tively, by increasing the granularity to SLOC level, but this will lead to an
even higher replication factor than what we have observed.

Another limitation of the data model is that it does not contain explicit
edges to link a particular file content to its predecessors or successors in a
given development history, which would be very useful to answer interesting
software phylogeny queries, certainly related to software provenance tracking,
but outside the scope of the present work. We remark that it is possible to
recover those ancestry relations: by following commit chains one can determine
when two different blobs (A and B) are pointed by the same path (a common
heuristic used in version control systems) in neighbor commits. When that is
the case one can establish an ancestry relation “blob A originates from blob B”.
In general this will be a many-to-many relationship, as the same blob pairs
might be related by different commit chains, possibly occurring in different
repositories.

Tracking content at the level of SLOC. The estimate of the replication factor
for SLOCs we performed relies on the selection of a specific, albeit very popu-

Software Provenance Tracking at the Scale of Public Source Code 31

lar, programming language (C), and on the application of a filter that is meant
to remove irrelevant formatting for that specific programming language.

In order to build a full provenance tracking model at the granularity of the
line of code, of snippers, or of programming language constructs like functions
or methods, more work will be needed, possibly involving the use of language
specific tools and heuristics.

External validity. The main question about external validity is to what extent
the findings we report from an analysis of the Software Heritage archive can
be generalised to the full corpus of public source code.

As a first remark, we notice that since Software Heritage does not cover
the full extent of public source code, it is quite possible that some given file
or commit has been previously accessible on a forge not crawled by Software
Heritage.

Nevertheless, we stress the fact that Software Heritage is the largest pub-
licly accessible source code archive in the world and spans the most popular
code hosting and development platforms. We therefore consider that this is
the best that can be done at present.

We also acknowledge the habit of using software development platforms
for collaboration tasks other than software development (e.g., collaborative
writing), particularly on GitHub, but we did not try to filter out non-software
projects. On the one hand we expect software development to remain the
dominant phenomenon on major forges, and on the other hand non-software
projects might still contain interesting code snippets that are worth tracking.
Also, as demonstrated in the paper, it is not necessary to filter out non-software
project in order to build a practical provenance tracking solution.

Finally, there is a time lag in the archival of public source code artifacts that
is clearly visible in Fig. 10. We consider it to be a delay induced by Software
Heritage crawling activities, and this bias may be corrected by excluding data
too close to the dataset dump date.

8.3 Future Work

To the best of our knowledge this work is the first establishing the feasibility of
source code provenance tracking at file granularity and at a scale comparable
to the full body of public source code. We point out here some new research
and practical questions that this result brings up.

Source code artifact multiplication. From the point of view of characterizing
the replication factor, we have scratched the surface addressing the need of
estimating the total number of occurrences that need to be tracked at the var-
ious replication layers—as that is the challenge that needs to be faced in order
to solve provenance tracking in its full generality. It would be very interest-
ing to refine the analysis we have done by adding control variables related to
different kinds of projects (e.g., small v. large, active v. inactive, mobile apps

32 Guillaume Rousseau et al.

v. server software v. desktop applications) and development models (e.g., pull-
request based v. direct push, truly distributed v. centralized), to determine
whether they contribute differently, and how, to the multiplication of source
code artifacts that need tracking. This may lead to insights that would help
in addressing provenance tracking at smaller scales that what we have studied
here, e.g., in large in-house collaborative development efforts as those being
proposed in the context of inner source [11,49].

Software provenance networks. To measure the replication factor in the various
layers we have de facto established new derived graphs on top of the starting
Merkle DAG data model; they map source code artifacts to where they can
be found in the wild. The growth rate of original blobs and commits suggests
that both the original Merkle DAG graph and these new derived graphs are
interesting evolving complex networks, naturally occurring as byproducts of
the human activity of developing and distributing software, like others that
have been studied in the past [2, 15].

The topology and nature of these networks (scale-free or not, small-world
or not, etc.) as well as the modeling of how they evolve over time, which we
have started to observe in this work, are important and actionable research
subjects. For instance, it would be interesting to know whether phenomena
like preferential attachment [2] (which has been observed in other technology
related network such as the Web), potentially leading to accelerating growth,
play a role also in these cases or not.

SLOC provenance tracking. While we have established the theoretically feasi-
bility of operating a global provenance database at file-level granularity, and
provided early evidence that SLOC-level tracking is also doable due to its
smaller replication footprint, we have not actually tried to operate a global
provenance tracking database at SLOC granularity at the proposed scale. We
intend to do so in future work and provide a return of experience on the
practical challenges that need to be faced.

Long-term growth. We have shown that it is possible to study the growth of
public source code over four decades at the scale of Software Heritage, staying
at the level of commits and file contents (blobs).

This naturally leads to the question of performing a similar study at finer
granularities, like that of lines of codes, and see how the growth rate at this
finer level compartes to the growth rates we have found for commits and blobs.

The discrepancies in the growth rate observed at the different layers of the
Software Heritage archive (commits v. blobs in our study, likely SLOC v. com-
mits v. blobs in the future) naturally lead to questions about the long-term
evolution of developer productivity and habits. Why do developers change
steadily varying number of files in their commits? Is it due to the qualities of
the tools (e.g., editors, VCS) that become available? Or are there other vari-
ables affecting this long-term observable change? Answering these research

Software Provenance Tracking at the Scale of Public Source Code 33

questions will allow to get a better understanding of the dynamics of the cre-
ation of new software artifacts.

9 Conclusion

We have considered the problem of tracking the provenance of source code, i.e.,
keeping track of where individual source code artifacts can be found within a
reference corpus. We have attacked that challenge at file-level granularity and
at global scale, using as reference corpus the best available approximation of
the entire body of publicly available source code, spanning major forges and
free/open source software distributions via the Software Heritage archive, for
a total of more than 40 million projects.

Our first contribution is a qualitative and quantitative assessment of the
amount of replication of original file contents (i.e., never observed before in the
reference corpus at any given point in time) across different commits and of
original commits across different software distribution places (e.g., VCS repos-
itories or distribution packages). The findings presented in this article offer in-
sights into the deep structure of public software development and distribution,
and allow to establish that the blob→commit layer is the one presenting the
most significant combinatorial explosion. Hence, in order to address the prove-
nance tracking problem at the scale of public source code in its full generality,
one can focus on finding and efficient data model for this layer.

The second contribution is the development and comparison of three data
models designed to answer the software provenance questions of “what are
the first/all occurrences of a given file blob/commit in the reference corpus?”.
We introduce a novel compact model for provenance tracking, based on the
notion of isochrone subgraphs, and establish experimentally that it offers a
time/space trade-off that allows to track software provenance at the scale of
Software Heritage on cheap, consumer-grade hardware.

The third and final contribution is a quantitative analysis of the growth
of public software development, factoring out exact code clones. Since the
advent of version control systems, the production of unique original commits
doubles every 30 months, and the production of unique original files is even
faster, doubling every 22 months. These findings provide solid evidence that
the proposed provenance tracking approach is viable not only today, but also
in the foreseeable future, based on the observed growth rates and long-term
storage cost trends.

Acknowledgements

The authors would like to thank the anonymous reviewers for precious feedback
that allowed us to significantly improve this article.

34 Guillaume Rousseau et al.

References

1. Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli. Building the
universal archive of source code. Communications of the ACM, 61(10):29–31, October
2018.

2. Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.
Reviews of modern physics, 74(1):47, 2002.

3. Carol V. Alexandru, Sebastiano Panichella, and Harald C. Gall. Reducing redundan-
cies in multi-revision code analysis. In Martin Pinzger, Gabriele Bavota, and Andrian
Marcus, editors, IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering, SANER 2017, Klagenfurt, Austria, February 20-24, 2017, pages
148–159. IEEE Computer Society, 2017.

4. Carol V. Alexandru, Sebastiano Panichella, Sebastian Proksch, and Harald C. Gall.
Redundancy-free analysis of multi-revision software artifacts. Empirical Software En-
gineering, 24(1):332–380, 2019.

5. Miltiadis Allamanis and Charles A. Sutton. Mining source code repositories at massive
scale using language modeling. In Thomas Zimmermann, Massimiliano Di Penta, and
Sunghun Kim, editors, Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013, pages 207–216.
IEEE Computer Society, 2013.

6. Thomas J. (Tim) Bergin. A history of the history of programming languages. Commun.
ACM, 50(5):69–74, May 2007.

7. Marco Biazzini and Benoit Baudry. May the fork be with you: novel metrics to analyze
collaboration on github. In Proceedings of the 5th International Workshop on Emerging
Trends in Software Metrics, pages 37–43. ACM, 2014.

8. H. Borges, A. Hora, and M. T. Valente. Understanding the factors that impact the
popularity of github repositories. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 334–344, October 2016.

9. Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1978.

10. Matthieu Caneill, Daniel M. Germán, and Stefano Zacchiroli. The Debsources dataset:
two decades of free and open source software. Empirical Software Engineering,
22(3):1405–1437, 2017.

11. Maximilian Capraro and Dirk Riehle. Inner source definition, benefits, and challenges.
ACM Computing Surveys (CSUR), 49(4):67, 2017.

12. Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. Free/libre open-
source software development: What we know and what we do not know. ACM Comput.
Surv., 44(2):7:1–7:35, March 2008.

13. Julius Davies, Daniel M. Germán, Michael W. Godfrey, and Abram Hindle. Software
bertillonage - determining the provenance of software development artifacts. Empirical
Software Engineering, 18(6):1195–1237, 2013.

14. Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why and how to preserve
software source code. In Proceedings of the 14th International Conference on Digital
Preservation, iPRES 2017, Kyoto, Japan, September 2017. Available from https:

//hal.archives-ouvertes.fr/hal-01590958.
15. Sergey N Dorogovtsev and Jose FF Mendes. Evolution of networks. Advances in physics,

51(4):1079–1187, 2002.
16. Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. Boa: A language

and infrastructure for analyzing ultra-large-scale software repositories. In Proceedings
of the 2013 International Conference on Software Engineering, pages 422–431. IEEE
Press, 2013.

17. Daniel M. Germán, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano Anto-
niol. Code siblings: Technical and legal implications of copying code between applica-
tions. In Godfrey and Whitehead [21], pages 81–90.

18. Antonios Gkortzis, Dimitris Mitropoulos, and Diomidis Spinellis. Vulinoss: a dataset of
security vulnerabilities in open-source systems. In Zaidman et al. [59], pages 18–21.

19. Michael W. Godfrey. Understanding software artifact provenance. Sci. Comput. Pro-
gram., 97:86–90, 2015.

https://hal.archives-ouvertes.fr/hal-01590958
https://hal.archives-ouvertes.fr/hal-01590958

Software Provenance Tracking at the Scale of Public Source Code 35

20. Michael W. Godfrey, Daniel M. German, Julius Davies, and Abram Hindle. Determining
the provenance of software artifacts. In Proceedings of the 5th International Workshop
on Software Clones, IWSC ’11, pages 65–66, New York, NY, USA, 2011. ACM.

21. Michael W. Godfrey and Jim Whitehead, editors. Proceedings of the 6th Interna-
tional Working Conference on Mining Software Repositories, MSR 2009 (Co-located
with ICSE), Vancouver, BC, Canada, May 16-17, 2009, Proceedings. IEEE Computer
Society, 2009.

22. Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of
the pull-based software development model. In Proceedings of the 36th International
Conference on Software Engineering, pages 345–355. ACM, 2014.

23. Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat, Josselin Feist, and
Laurent Mounier. Toward large-scale vulnerability discovery using machine learning.
In Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, CODASPY ’16, pages 85–96, New York, NY, USA, 2016. ACM.

24. Ahmed E Hassan. The road ahead for mining software repositories. In Frontiers of
Software Maintenance, 2008. FoSM 2008., pages 48–57. IEEE, 2008.

25. Les Hatton, Diomidis Spinellis, and Michiel van Genuchten. The long-term growth rate
of evolving software: Empirical results and implications. Journal of Software: Evolution
and Process, 29(5), 2017.

26. Israel Herraiz, Daniel Rodŕıguez, Gregorio Robles, and Jesús M. González-Barahona.
The evolution of the laws of software evolution: A discussion based on a systematic
literature review. ACM Comput. Surv., 46(2):28:1–28:28, 2013.

27. T. Ishio, R. G. Kula, T. Kanda, D. M. German, and K. Inoue. Software Ingredients: De-
tection of Third-Party Component Reuse in Java Software Release. In 2016 IEEE/ACM
13th Working Conference on Mining Software Repositories (MSR), pages 339–350, May
2016.

28. Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang. Why
and how developers fork what from whom in github. Empirical Software Engineering,
22(1):547–578, 2017.

29. Meir M. Lehman. On understanding laws, evolution, and conservation in the large-
program life cycle. Journal of Systems and Software, 1:213–221, 1980.

30. Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-
mining library. ACM Transactions on Intelligent Systems and Technology (TIST),
8(1):1, 2016.

31. Douglas Andrew Levin, Palle Martin Pedersen, and Ashesh C. Shah. Resolving license
dependencies for aggregations of legally protectable content, June 2009. CIB: H04K1/00;
G06Q10/00; G06Q50/00; H04L9/00.

32. Frank Li and Vern Paxson. A large-scale empirical study of security patches. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pages 2201–2215, New York, NY, USA, 2017. ACM.

33. Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. Déjàvu: a map of code duplicates on github. PACMPL,
1(OOPSLA):84:1–84:28, 2017.

34. Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus. World
of code: an infrastructure for mining the universe of open source VCS data. In Storey
et al. [50], pages 143–154.

35. Vadim Markovtsev and Waren Long. Public git archive: a big code dataset for all. In
Zaidman et al. [59], pages 34–37.

36. Matias Martinez and Martin Monperrus. Mining software repair models for reasoning
on the search space of automated program fixing. Empirical Software Engineering,
20(1):176–205, 2015.

37. Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Carl Pomerance, editor, Advances in Cryptology - CRYPTO ’87, A Conference on the
Theory and Applications of Cryptographic Techniques, volume 293 of Lecture Notes in
Computer Science, pages 369–378. Springer, 1987.

38. Audris Mockus. Amassing and indexing a large sample of version control systems:
Towards the census of public source code history. In Godfrey and Whitehead [21],
pages 11–20.

36 Guillaume Rousseau et al.

39. Audris Mockus. Amassing and indexing a large sample of version control systems:
Towards the census of public source code history. In Proceedings of the 2009 6th IEEE
International Working Conference on Mining Software Repositories, MSR ’09, pages
11–20, Washington, DC, USA, 2009. IEEE Computer Society.

40. Mark Newman, Albert-Laszlo Barabasi, and Duncan J. Watts. The Structure and
Dynamics of Networks: (Princeton Studies in Complexity). Princeton University Press,
Princeton, NJ, USA, 2006.

41. Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. The software heritage graph
dataset: public software development under one roof. In Storey et al. [50], pages 138–142.

42. Ayushi Rastogi and Nachiappan Nagappan. Forking and the sustainability of the de-
veloper community participation–an empirical investigation on outcomes and reasons.
In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), volume 1, pages 102–111. IEEE, 2016.

43. Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Software clone detection: A
systematic review. Information and Software Technology, 55(7):1165–1199, 2013.

44. Guillaume Rousseau and Maxime Biais. Computer Tool for Managing Digital Docu-
ments, February 2010. CIB: G06F17/30; G06F21/10; G06F21/64.

45. Chanchal Kumar Roy and James R Cordy. A survey on software clone detection re-
search. Technical Report 115, Queen’s School of Computing, 2007.

46. Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue. Ccfindersw: Clone
detection tool with flexible multilingual tokenization. In Jian Lv, He Jason Zhang, Mike
Hinchey, and Xiao Liu, editors, 24th Asia-Pacific Software Engineering Conference,
APSEC 2017, Nanjing, China, December 4-8, 2017, pages 654–659. IEEE Computer
Society, 2017.

47. Diomidis Spinellis. A repository of Unix history and evolution. Empirical Software
Engineering, 22(3):1372–1404, 2017.

48. Megan Squire. The lives and deaths of open source code forges. In Lorraine Mor-
gan, editor, Proceedings of the 13th International Symposium on Open Collaboration,
OpenSym 2017, Galway, Ireland, August 23-25, 2017, pages 15:1–15:8. ACM, 2017.

49. Klaas-Jan Stol and Brian Fitzgerald. Inner source–adopting open source development
practices in organizations: a tutorial. IEEE Software, 32(4):60–67, 2014.

50. Margaret-Anne D. Storey, Bram Adams, and Sonia Haiduc, editors. Proceedings of the
16th International Conference on Mining Software Repositories, MSR 2019, 26-27 May
2019, Montreal, Canada. IEEE / ACM, 2019.

51. Jeffrey Svajlenko and Chanchal Kumar Roy. Fast and flexible large-scale clone detection
with cloneworks. In Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard, edi-
tors, Proceedings of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume, pages 27–30.
IEEE Computer Society, 2017.

52. Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano Di Penta.
An empirical study on the maintenance of source code clones. Empirical Software
Engineering, 15(1):1–34, 2010.

53. Ferdian Thung, Tegawende F Bissyande, David Lo, and Lingxiao Jiang. Network struc-
ture of social coding in github. In 2013 17th European Conference on Software Main-
tenance and Reengineering, pages 323–326. IEEE, 2013.

54. Nitin M. Tiwari, Ganesha Upadhyaya, and Hridesh Rajan. Candoia: a platform and
ecosystem for mining software repositories tools. In Laura K. Dillon, Willem Visser, and
Laurie Williams, editors, Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, pages 759–764. ACM, 2016.

55. Timo Tuunanen, Jussi Koskinen, and Tommi Kärkkäinen. Automated software license
analysis. Automated Software Engineering, 16(3-4):455–490, 2009.

56. C. Vendome. A large scale study of license usage on github. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, volume 2, pages 772–774,
May 2015.

57. Ray Waldin and Jing Zhang. Determining a document similarity metric, July 2009.
CIB: G06F17/30.

58. Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M. Germán, and Katsuro Inoue.
Analysis of license inconsistency in large collections of open source projects. Empirical
Software Engineering, 22(3):1194–1222, 2017.

Software Provenance Tracking at the Scale of Public Source Code 37

59. Andy Zaidman, Yasutaka Kamei, and Emily Hill, editors. Proceedings of the 15th
International Conference on Mining Software Repositories, MSR 2018, Gothenburg,
Sweden, May 28-29, 2018. ACM, 2018.

60. T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for eclipse. In Pre-
dictor Models in Software Engineering, 2007. PROMISE’07: ICSE Workshops 2007.
International Workshop on, pages 9–9, May 2007.

61. Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes. In Anthony Finkelstein, Jacky Estublier,
and David S. Rosenblum, editors, 26th International Conference on Software Engineer-
ing (ICSE 2004), 23-28 May 2004, Edinburgh, United Kingdom, pages 563–572. IEEE
Computer Society, 2004.

	Introduction
	Related Work
	Data Model and Dataset
	Public Source Code Replication
	Compact Provenance Modeling
	Experimental Evaluation
	Public Source Code Growth
	Discussion
	Conclusion

