
Adoption of academic tools in open source
communities: the Debian case study?

Pietro Abate1, Roberto Di Cosmo2,

1 IRILL and INRIA,pietro.abate@inria.fr
2 INRIA and University Paris Diderot, roberto@dicosmo.org

Abstract. Component repositories play a key role in the open software
ecosystem. Managing the evolvution of these repositories is a challenging
task, and maintainers are confronted with a number of complex issues
that need automatic tools to be adressed properly.
In this paper, we present an overview of 10 years of research in this field
and the process leading to the adoption of our tools in a FOSS com-
munity. We focus on the Debian distribution and in particular we look
at the issues arising during the distribution lifecycle: ensuring buildabil-
ity of source packages, detecting packages that cannot be installed and
bootstrapping the distribution on a new architecture. We present three
tools, distcheck, buildcheck and botch, that we believe of general interest
for other open source component repositories.
The lesson we have learned during this journey may provide useful guid-
ance for researchers willing to see their tools broadly adopted by the
community.

1 Introduction

In the last two decades, component repositories have played an important role in
many areas, from software distributions to application development. All major
Free and Open Source Software (FOSS) distributions are organized around large
repositories of software components. Debian, one of the largest coordinated soft-
ware collections in history [12], contains in its development branch more than
44’000 binary packages3 generated from over 21’000 source packages; the Cen-
tral Maven repository has a collection of 100’000 Java libraries; the Drupal web
framework counts over 16’000 modules.

In Debian, components are developed independently by different communi-
ties and assembled in the main repository, giving raise to a small world depen-
dency graph [15]. Apart from intrinsic coordination problems associated to this
distributed development model, the number of dependencies in Debian distri-
butions poses new challenges for automation and quality assurance. During the
last 10 years we have participated in the development and adoption of automatic
tools for testing, integration and tracking of all components and aspects of a
repository, in particular in the framework of the European project Mancoosi [1].

? Work partially performed at, and supported by IRILL http://www.irill.org.
3 Debian software components are called packages

It is well known that achieving real world adoption of tools developed in
academia and proposed by researchers is a painful and difficult process that
only rarely succeeds [19]. After years of work, we managed to get almost all of
our tools adopted in the Debian project.

We participated in extensive work performed by a team that spent 10 years
of research in quality assurance, and package management, an area for which a
comprehensive short survey is available elsewhere [8]. During this time, we had
different collaborations with many other communities such as the Eclipse [16,
17] and the OCaml [2] with different degrees of success.

In this article, we sum up and share the lessons we have learned in collabora-
tion specifically with the Debian community, because of the direct involvement
of a few members of our team, and because of the open and community driven
bazaar-style development model. We truly believe that FOSS distribution and
software collections alike can benefit from our experience and researcher should
invest time and energy to work with developers in a proactive way and foster
integration of modern and automatic QA (quality assurance) tools.

The rest of the paper is organised as follows: After a brief introduction, we
present distcheck and buildcheck , the main tools developed by our team. Then
we will discuss two examples in which our tools play an important role. The first
one related to the distribution life cycle (from development to testing, to the
stable release). The second is a tool (botch) that is used to bootstrap Debian
for new hardware platforms. In the last part of the paper we summarize the
lessons we have learned in the last 10 years and provide insights for researches
and developer communities interested in embarking into a similar journey.

1.1 Packages in the Debian Distribution

Despite different terminologies, and a wide variety of concrete formats, software
repositories use similar metadata to identify the components, their versions and
their interdependencies. In general, packages have both dependencies, expressing
what must be satisfied in order to allow for installation of the package, and con-
flicts that state which other packages must not be installed at the same time. As

Package: ant

Version: 1.9.7-2~bpo8+1

Installed-Size: 2197

Architecture: all

Depends: default-jre-headless | java5-runtime-headless | java6-runtime-headless

Recommends: ant-optional

Suggests: ant-doc, ant-gcj, default-jdk | java-compiler | java-sdk

Conflicts: libant1.6-java

Breaks: ant-doc (<= 1.6.5-1)

Description: Java based build tool like make

Fig. 1. Excerpt of Debian package metadata

shown in Figure 1, while conflicts are simply given by a list of offending packages,
dependencies may be expressed using logical conjunction (written ‘,’) and dis-
junctions (‘|’). Furthermore, packages mentioned in inter-package relations may
be qualified by constraints on package versions. Debian packages and come in
two flavours: binary packages contain the files to be installed on the end user ma-
chine, and source packages that contain all of files needed to build these binary
packages. Debian package meta-data describe a broad set of inter-package re-
lationships: virtual-packages, dependencies, multi-architecture annotations, and
many more, allow the Debian project to automatize tasks such as binary pack-
age recompilations, package life cycle management among different releases, or
bootstrapping the distribution on new architectures.

1.2 The installability problem

Finding a way to satisfy all the dependencies of a given package only using the
components available in a repository, also known as the installability problem, is
the key task for all component based repositories: all package managers need to
tackle it, be it for Eclipse plugins, Drupal modules, or Debian packages.

And yet, it was not until 2006 that it was shown that this problem is NP-
complete for the Debian distribution [7], and later on for a broad range of com-
ponent repositories [4]. This result came as a kind of a surprise in the different
engineering communities, that were using on a daily basis ad-hoc tools which
were fast, but under closer scrutiny turned out to be incomplete [7].

Luckily, real world instances proved to be tractable, and it was possible to
design and implement dependency solvers based on sound scientific basis, that
could significantly outperform all the pre-existing tools: Jerôme Vouillon’s early
prototypes, debcheck and rpmcheck, originally developed in 2006, paved the
way to modern dependency checking, and are nowadays at the core of the tools
we describe in the rest of this paper.

1.3 The Edos and Mancoosi research projects

Edos and Mancoosi [1] are two research projects funded by the European Com-
mission, that run respectively from 2004 to 2007 and from 2008 to 2011. They
focused on the new research problems posed by the maintenance of free software
distributions, and brought together industries and top research laboratories from
over 10 countries. Besides publishing research articles, these projects produced
several tools that significantly improved the state of the art, and that are now
part of the Dose3 library, which has outlived the research projects and became
over time a collection of all the algorithms and tools developed over more than
a decade. Unlike what seems to often happen in these research areas [19], most
of the tools that were developed have now been adopted, in particular in the
Debian distribution, even if with varying degrees of delay and effort.

2 Our Tools

The first two tools produced by this research effort that were adopted in the
Debian community are distcheck and buildcheck , which scan all the packages in
a Debian distribution to identify installability issues. Both tools were developed
to provide proof of concept prototypes to support our experiments but evolved,
with the help of the Debian community, to production ready tools.

Fig. 2. distcheck architecture

2.1 Distcheck and Buildcheck

The distcheck tool is a command line tool, capable of verifying the installability
of all (or a selection of) components contained in a given repository. Internally,
distcheck is designed as a pipeline, as shown in Figure 2. The front-end on the left
is a multiplexer parser that supports several formats for component metadata
(Debian Packages files, RPM’s synthesis or hdlist files, Eclipse OSGI metadata,
etc). After metadata parsing, component inter-relationships are converted in a
data representation called CUDF (Common Upgradability Description Format),
an extensible format, with rigorous semantics [22], designed to describe instal-
lability scenarios coming from diverse environments without making assump-
tions on specific component models, version schemas, or dependency formalisms.
CUDF can be serialized as a compact plain text format, which makes it easy
for humans to read component metadata, and which facilitates interoperability
with other component managers that are not yet supported by distcheck .

The actual installability check work is performed by a specialized solver, that
uses the SAT encoding [18] and employs an ad hoc customized Davis-Putnam
SAT solver [9] by default instead of the many other standalone solvers now
available for dependency solving like [6, 10, 13, 20, 14]. Since all computations
are performed in-memory and some of the encoding work is shared between all
packages, this solver performs significantly faster than a naive approach that
would construct a separate SAT encoding for the installability of each package,
and then run an off-the-shelf SAT solver on it. For instance, checking installabil-
ity of all packages of the Debian main repository of the unstable suite (for 53696
packages4) takes just 30 seconds on a commodity 64 bit CPU laptop.

4 Snapshot of the Debian distribution 27/02/2017.

The final component of the pipeline takes the result from the solver and
presents it in a variety of human and machine readable formats to the final user.
An important feature of distcheck is its ability, in case a package is found not
installable, to produce a concise human-readable explanation that points to the
reasons of the issue in a machine-readable format.

The buildcheck tool follows the same pipeline philosophy of distcheck but it
is aimed at source packages. It takes a list of source and binary packages and
checks if the build dependencies of each source package can be satisfied with the
given binary list. buildcheck is based on the same algorithm of distcheck , but
because of different formats and metadata, packages are mangled behind the
scenes in an ad-hoc CUDF that can be feed to the solver. The output, as for
distcheck , is in YAML format and provides a human-readable explanation of the
issue.

Adoption. distcheck has been adopted in the Debian project thanks to sig-
nificant commitment on the side of the researchers. In particular, Ralf Treinen
and Fabio Mancinelli, on occasion of the 2006 edition of DebConf (the annual
meeting of the Debian project), worked on setting up a dedicated web page
for use by the Debian Quality Assurance team. That quality dashboard was
originally hosted on http://edos.debian.net and evolved over time, incorporat-
ing more tools developed later to detect outdated packages [3], and migrated
in 2014 to the official Debian Quality Assurance infrastructure, that is now at
qa.debian.org/dose/. Our tools are also part of ther projects like rebootstrap and
bootstrap.debian.net.

3 Enhancing the Debian distribution build process

The Debian life cycle and evolution process is organised around three reposito-
ries: stable, which contains the latest official release and does not evolve any more
(apart for security and critical updates); testing, a constantly evolving repository
to which packages are added under stringent qualification conditions, and that
will eventually be released as the new stable; and unstable, a repository in which
additions, removals and modifications are allowed under very liberal conditions.
A stringent set of requirements, which are formally defined, must be satisfied by
packages coming from unstable to be accepted in testing (also known as pack-
age migration), and the repository maintainers have responsibility for enforcing
them with the help of ad-hoc tools.

From their first release into the Debian repository, packages evolve over time
following a well defined process. When a new version of a source package S is
available, it is fist introduced in unstable (the only point of entry into the dis-
tribution), where the corresponding binary packages are gradually built. When
a binary package is rebuilt, it replaces the previous version (if any), and when
all binary packages associated to S are rebuilt, the old version of S is dropped.
Building binary packages can be a long process because of compilation errors and
broken dependencies. Moreover, because of the iterative nature of this process,

it is sometimes possible to find in unstable several versions of the same source
package, and a mixture of binary packages coming from these different versions
of the same source.

In order to allow a smooth monitoring of the build process, to keep track of
old and new packages in unstable and to handle the transition of packages from
unstable to testing, Debian built a powerful internal infrastructure to automat-
ically build and migrate packages from one repository to another.

3.1 Buildd, sbuildd, dose-tools

The Debian autobuilder network is a management system that allows Debian
developers to easily add new source packages to the repository and compile all
associated binary package for all architectures currently supported by Debian.
This network is made up of several machines and uses a specific software package
called buildd whose main function is to automatically build all binary packages,
according to its metadata and multi-architecture annotations.

The build daemon, consists of a set of scripts (written in Perl and Python)
that have evolved to help porters with various tasks. Over time, these scripts
have become an integrated system that is able to keep Debian distributions
up-to-date nearly automatically. The build infrastructure is composed of three
main components, first wanna-build is a tool to collect and keep track of all
package metadata. The buildd is the multiplexer that selects which builder for
each architecture must be invoked for each package, and finally sbuild is the
actual builder to automatically recompile the package. buildcheck and distcheck
are integrated in different components of the Debian build daemon.

buildcheck is used in the wanna-build daemon to check if a all the build de-
pendencies of a given source package are available. This step allows one to catch
dependency problems before even allowing the package to enter the build queue,
hence saving considerable resources and space. buildcheck is fed with the meta-
data of the current source package, and the metadata of all available packages
in the archive at one moment in time. By using different options, buildcheck is
able to check, for each architecture, if the all dependencies are available and if
this is not the case, to provide a human readable explanation for the package
maintainer. This tool is also available to the package maintainer and it can be
run independently on a personal machine.

distcheck is used in sbuildd to provide better explanations to the package
maintainer in case of failure. Depending on the solver (by default aspcud [11]),
the dose3 explainer might report a dependency situation as satisfiable even if
the apt-get found it to be unsatisfiable. This is a consequence of the fact that
the default Debian resolver (apt-get) employs an algorithm that is, albeit very
fast, incomplete. Having a sound and complete dependency solver for Debian
helped developers in many occasions. The same solver is also available to the
final user via apt-get, where the user can choose to select an external solver
while installing a binary package on their machine. Before the introduction of
distcheck packages where tested for broken dependencies using apt, that because
of its nature, it was less adapted to this task.

Adoption. buildcheck and distcheck have also been adopted in the Debian
project thanks to significant commitment on the side of the researchers: in par-
ticular, after a common presentation with Ralf Treinen in DebConf 2008 [21],
Stefano Zacchiroli gave another presentation in DebConf 2009 that motivated
the swift integration of the Dose tools in wanna-build. This was highly facili-
tated by the fact that the Dose tools were already properly packaged for Debian,
after the work done by Ralf Treinen, and that they had started to be known in
the Debian community thanks to the regular participation of the researchers to
these events.

4 Bootstrapping Debian on a New Architecture

With new hardware architectures and custom co-processor extensions being in-
troduced to the market on a regular basis, porting Debian to a new architecture
not only involves adapting the low-level software layer for a different hardware,
but also considering the inter-dependencies among different components and how
these can affect the compilation and packaging process. Binary packages and
source packages use meta-data to describe their relationships to other compo-
nents. Bootstrapping a distribution to a new architecture deals with the problem
of customizing the software (source packages) for a specific architecture and to
instantiate a new set of binary packages that is consistent with the constraints
imposed by the new hardware.

Bootstrapping a distribution is the process by which software is compiled,
assembled into packages and installed on a new device/architecture without the
aid of any other pre-installed software.

The method routinely used in Debian consists in first, the creation (by cross
compilation) of a minimal build system, and later the creation of the final set
of binary packages on the new device (by native compilation). Cross compiling
a small subset of source packages is necessary because an initial minimal set of
binary packages must exist in order to compile a larger set of source packages
natively. Once a sufficient number of source packages is cross compiled (we call
the set of binary packages produced by them a minimal system) new source
packages can be compiled natively on the target system. The minimal system
is composed of a coherent set of binary packages that is able to boot on the
new hardware and to provide a minimal working OS. This minimal set of binary
packages contains at the very least an operating system, a user shell and a
compiler. This initial selection is generally provided by distribution architects.

4.1 Botch

Botch is a set of tools designed to help porters to refine and complete this
selection in a semi-automatic way and to build the rest of the distribution on top
of it [5]. Botch is based on the Dose3 library and re-uses many of its components.
The main contribution of botch is the ability of providing a compilation order
of source packages to gradually rebuild the entire archive. The goal is to break

compilation loops by pruning build dependencies according to special metadata
describing compilation stages. At each iteration/stage, new binary packages are
added to the repository that in turn will allow new source packages to be build.

The development of botch started with an academic collaboration with Jo-
hannes Schauer, a student that participated in a Google Summer of Code co-
organised with Debian in 2012 [23]. Slowly, from prototype and thanks for the
personal investment of the main developer of botch, it evolved from an academic
project into an industry-strength tool.

Adoption. Before botch, porting Debian to a new architecture was a long
manual process based on the intuition and personal experience. Because of the
complex dependency network and inherent recursive nature of the problem (in
order to compile a package we need to compile first all the source packages that
will generate its build dependencies), it was also particularly error prone.

Hence it came as no surprise to see that it was adopted pretty swiftly: it was
not just a matter of improving quality of a distribution, but of saving weeks of
hard work. Botch is now referenced in the Debian official page on bootstrapping
https://wiki.debian.org/DebianBootstrap and is used regularly.

5 The Technology Transfer Problem

The adoption path of the tools we have surveyed required significant effort and
lasted several years. To understand why this was the case, it is important to take
a step back and look at the basic principles governing both the FOSS community
and the research community.

5.1 Community vs. Academia

The evolution of Debian has imposed the adoption of many different automated
tools to handle the continually growing number of packages, developers and
users. Historically, all tools belonging today to the Debian infrastructure have
evolved independently, often in competition to each other. Because of the De-
bian governance model, where no central authority takes technical decisions, the
adoption of a specific tool has always been left to the so called do-ocracy : if you
want a particular tool to be used, you need to show its usefulness, integrate it
in the infrastructure yourself, and convince others to use it.

As a consequence, the development and acceptance of these tools has always
been quite slow because of the human factor and often not because of technical
objections: once a developer has spent significant time and energy getting his
own tool adopted, it is quite natural that they expect high returns in term of
their own image in the project. Hence he will not be particularly open to admit
that there is an interest in adopting new, more advanced technologies, and one
can observe in the debate surprising arguments, like “that’s surely a great tool,
but you need to rewrite it using programming language A for it to be accepted”,
where A is a programming language different from the one used in the new tool.

This attitude has often been one of the first reaction we encountered and often
the most difficult to overcome.

On the academic side, researchers face a publication pressure that seldom
allows them to invest the time required to gain enough traction within this
kind of communities. With these constraints, researchers often focus on one
community while simply do not have the time to engage others. On top of that,
to convince the infrastructure developers to see the ”greater good” associated to
adapt and use proved and stable solutions spin-off from research projects, one
needs to actually produce a tool that is going to work in real-world situations,
and not just in the small test cases often used as validation test-beds for academic
publication.

Our approach over the year has been to adapt our way of doing research
to match the real-world, following “ante litteram” the path highlighted in [19].
Therefore we invested a considerable amount of time to create tools that were
able to work with real data, and at the same time use these data as empirical
support in our publications. This approach kept us motivated and at the same
time proved to be a good return of investment in the long run.

5.2 The Communication Gap

While approaching the Debian community, we faced issues that were sometimes
technical in nature, sometimes political, and sometimes even personal. Moreover,
after realizing the communication gap between our academic approach and the
FOSS communities, we had to learn to speak a new language, and engage the
community on their own ground. Researchers often focus exclusively on the
effectiveness and correctness on their approach, while forgetting the cost in terms
of integration time and learning curve.

The FOSS community is large and diverse. And while everybody has some
technical knowledge, adopting a lingo that is too complex to understand can
be counter productive. Hackers are more concerned about the results than the
mathematics behind a tool, they are concerned about the ease of use, more than
the expressive power of a new language. Providing something the community
can readily understand, use and modify, in terms of programming language used,
development tools, following de-facto standards, can greatly speed up the time
of adoption of a new solution.

In our experience, bridging the academia-community gap has been possible
only by actively engaging with the community. This involved, on one side, a
significant effort to participate in online forums and live conferences: during the
years covered in this article, we presented our work in a major European De-
veloper conference (FOSDEM), and invited lead developers to work with us.
We greatly benefit from having few members of our research team personally
involved in the Community. While this is not always possible and largely depen-
dent on the personal motivation of each team member, having deep ties within
Debian helped us greatly to gain trust and respect. We also hosted hacking
sprints and provide support for several events. By meeting the community, we
tried to reduce this gap and to engage a fruitful and long-standing collaboration.

5.3 Community Driven Open Development

Our next step was to fully open up our development process and welcome dif-
ferent developers from different communities to contribute to our tools. We
started this by funding students interested in FOSS and interacting with other
researchers that are already active members of the community. The Dose3 li-
brary, which has consolidate most of our research work outcomes, has now an
active community of developers, it is packaged for all major FOSS distributions
and is currently maintained by the first author. To gain acceptance with the
community we followed the unix philosophy, providing a lean and powerful com-
mand line tool, and an easily parse-able output. We also provided documentation
and examples for other languages such as python or perl to foster interoperabil-
ity and simplify the integration into existing frameworks. During the years we
attracted several students interested to work on the project. Two of them devel-
oped important components of the library and one of the has now become one
of the main contributors.

Finally, we consider that our commitment to handle real-world case studies,
with direct applicability in the field, instead of the usual toy examples, proved
to be a real important element of success.

5.4 Lesson Learned

From our experience, we can draw the following recommendations for colleges
from academia that want to see their tools adopted.

Be proactive Do not wait for the community to reach out to you for help. It
is your task to engage developers and publicize your work.

Communication Attending conferences and learning how to frame our work
for a specific community is essential.

Engagement Seeking collaboration, hosting events and participating to the
development process of a distribution is essential to build trust and ease
acceptance.

The extra mile Provide tools and documentation accessible to a wide audi-
ence. Make it easy for your tools to be integrated in the existing framework,
do not expect others to do it in your place.

Hiring interns, PhD students or post-docs that are interested in free software is
a great way of creating connections between the two worlds, and establishing
trust.

6 Conclusion

The take-away from this paper is that developing amazing and efficient tools
behind the high walls of academia is only the starting point, and much more is
needed to achieve impact in the real world.

Acknowledgements. The work described in this article has been performed
over a very long span of time, in collaboration with many researchers, that con-
tributed in different periods, and to varying degrees, to some or all of the tools
that we mention. Roberto Di Cosmo, Fabio Mancinelli, Ralf Treinen and Jerôme
Vouillon were actively involved in the EDOS project, with Fabio Mancinelli leav-
ing after that period. In the MANCOOSI project, that was set up and coordi-
nated by Roberto Di Cosmo, Ralf Treinen and Jerôme Vouillon were joined by
Pietro Abate, Jaap Boender and Stefano Zacchiroli.

References

1. The mancoosi project. http://www.mancoosi.org, 2011.

2. P. Abate, R. D. Cosmo, L. Gesbert, F. L. Fessant, R. Treinen, and S. Zacchiroli.
Mining component repositories for installability issues. In 12th IEEE/ACM Work-
ing Conference on Mining Software Repositories, MSR 2015, Florence, Italy, May
16-17, 2015, pages 24–33, 2015.

3. P. Abate, R. D. Cosmo, R. Treinen, and S. Zacchiroli. Learning from the future of
component repositories. Sci. Comput. Program., 90, 2014.

4. P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli. Dependency solving: a
separate concern in component evolution management. Journal of Systems and
Software, 85(10), October 2012.

5. P. Abate and J. Schauer. Bootstrapping software distributions. In Proceedings of
Itnl Symposium of Component Based Software Engineering CBSE, 2013.

6. J. Argelich, D. Le Berre, I. Lynce, J. Marques-Silva, and P. Rapicault. Solving
Linux upgradeability problems using boolean optimization. In LoCoCo: Logics for
Component Configuration, volume 29 of EPTCS, 2010.

7. R. Di Cosmo, F. Mancinelli, J. Boender, J. Vouillon, B. Durak, X. Leroy, D. Pin-
heiro, P. Trezentos, M. Morgado, T. Milo, T. Zur, R. Suarez, M. Lijour, and
R. Treinen. Report on formal mangement of software dependencies. Technical
report, EDOS, Apr. 2006.

8. R. Di Cosmo, R. Treinen, and S. Zacchiroli. Formal aspects of free and open source
software components - a short survey. In FMCO, pages 216–239, 2012.

9. N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tac-
chella, editors, 6th International Conference, SAT 2003, volume 2919 of Lecture
Notes in Computer Science, 2004.

10. J. A. Galindo, D. Benavides, and S. Segura. Debian packages repositories as soft-
ware product line models. Towards automated analysis. In Proceedings of the
1st International Workshop on Automated Configuration and Tailoring of Appli-
cations. CEUR-WS.org, 2010.

11. M. Gebser, R. Kaminski, and T. Schaub. aspcud: A Linux package configuration
tool based on answer set programming. In C. Drescher, I. Lynce, and R. Treinen,
editors, Proceedings Logics for Component Configuration, LoCoCo, 2011.

12. J. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. Amor, and D. German. Macro-
level software evolution: a case study of a large software compilation. Empirical
Software Engineering, 14(3), 2009.

13. M. Janota. Do sat solvers make good configurators? In SPLC: Software Product
Lines Conference, 2nd Volume, 2008.

14. G. Jenson, J. Dietrich, and H. Guesgen. An empirical study of the component
dependency resolution search space. In CBSE 2011: International ACM Sigsoft
Symposium on Component Based Software Engineering, volume 6092 of LNCS.
Springer, 2010.

15. N. LaBelle and E. Wallingford. Inter-package dependency networks in open-source
software. CoRR, cs.SE/0411096, 2004.

16. D. Le Berre and A. Parrain. On SAT technologies for dependency management and
beyond. In SPLC 2008: Software Product Lines Conference, 2nd Volume, 2008.

17. D. Le Berre and P. Rapicault. Dependency management for the Eclipse ecosystem.
In IWOCE 2009: International Workshop on Open Component Ecosystems. ACM,
2009.

18. F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, X. Leroy, and
R. Treinen. Managing the complexity of large free and open source package-based
software distributions. In ASE 2006: Automated Software Engineering. IEEE, 2006.

19. R. Marinescu. Confessions of a worldly software miner. In 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, May 2015.

20. C. Michel and M. Rueher. Handling software upgradeability problems with MILP
solvers. In LoCoCo 2010: Logics for Component Configuration, volume 29 of
EPTCS, 2010.

21. R. Treinen and S. Zacchiroli. Solving package dependencies: from EDOS to Man-
coosi. In DebConf 8: proceedings of the 9th conference of the Debian project, 2008.

22. R. Treinen and S. Zacchiroli. Common upgradeability description format (CUDF)
2.0. Technical Report 3, The Mancoosi Project, Nov. 2009.

23. Wookey and P. Abate. Google summer of code on debian bootstrap. 2012.

