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Abstract
The problem of deploying a complex software application has been formally investigated in pre-
vious work by means of the abstract component model named Aeolus. As the problem turned
out to be undecidable, simplified versions of the model were investigated in which decidability
was restored by introducing limitations on the ways components are described.

In this paper, we take an opposite approach, and investigate the possibility to address a
relaxed version of the deployment problem without limiting the expressiveness of the component
model. We identify three problems to be solved in sequence: (i) the verification of the existence of
a final configuration in which all the constraints imposed by the single components are satisfied,
(ii) the generation of a concrete configuration satisfying such constraints, and (iii) the synthesis
of a plan to reach such a configuration possibly going through intermediary configurations that
violate the non-functional constraints.
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1 Introduction

Modern software systems are based on a large number of interconnected software components
(e.g., packages or services) that must be deployed on (possibly virtual) machines that can
be created and connected on-the-fly by exploiting currently available cloud computing tech-
nologies. The configuration and management of such applications is a challenging task, and
several tools and technologies are under development to support application architects and
managers in this complex activity. The mainstream approach is to exploit pre-configured vir-
tual machines images, which contain all the needed software packages and services, and that
just need to be run on the target cloud system (e.g., Bento Boxes [10], Cloud Blueprints [2],
or AWS CloudFormation [1], to name just a few options). The main drawback of this ap-
proach is that pre-configured images do not support customization and often force users
to run their applications on specific cloud providers, inducing an undesirable vendor lock-
in effect. More advanced techniques, on the contrary, would allow application architects
to design their own software architectures by using high level description languages, like
the graphical drag-and-drop approach of Juju [12] or the declarative deployment languages
ConfSolve [11] and Engage [9].
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In previous work [7, 6, 5] we have investigated this deployment problem from a foun-
dational point of view, trying to capture its most relevant aspects, and identifying among
them those that contribute to the difficulty of the problem. We have defined a formal model
called Aeolus, in which the classical notion of component, seen as a black-box that exposes
provide and require-ports, is extended with a finite state automaton describing the compo-
nent life-cycle. The automaton states correspond to different configuration modalities, like
uninstalled, installed, running, stopped, etc, and the transitions represent configuration ac-
tions like install, run, stop, etc. Depending on the internal state, the ports on the interface
can be either active or inactive. For instance, an uninstalled component usually does not
activate any require-port, while it can activate require-ports when it is in the installed state,
and finally activate some provide-port when it actually enters the running state. Another
specific feature of the Aeolus model is that capacity constraints can be associated to the
ports: a provide-port could have a maximal number of connected require-ports, a require-
port can ask for multiple providers offering a given functionality (used to model replication
requirements) or even impose that no other component can provide a given functionality
(used to model the notion of conflict among components).

The deployment problem is then formalized as the problem of verifying the possibility
to configure at least one component of a given type in a given target state, by performing
a sequence of actions like component creation/deletion, component binding/unbinding, and
component internal state change.

In [7] we have proved that the deployment problem is, in general, undecidable. To
overcome this negative result, we have considered in [6, 5] various simplifications of the
Aeolus model for which deployment turns out to be decidable. In particular, we have proved
that deployment is polynomial when capacity constraints and conflicts are not considered,
while it is Ackermann-hard for the fragment without capacity constraints but with conflicts.

In this paper we take a different and more pragmatic approach by relaxing the deployment
problem. Conceptually, we break the deployment problem in two independent subtasks to
be executed one after the other. The first subtask abstracts away from component states,
and considers the problem of computing a final correct configuration in which the target
component is present and all the capacity and conflict constraints are satisfied. The second
subtask abstracts away from the capacity constraints and the conflicts, and verifies the
possibility to reach in this simplified scenario that desired target configuration.

We formalize these subtasks and discuss their complexity. In particular, for the first
subtask, we consider two subproblems: the Configuration problem, consisting of checking
whether it is possible to satisfy all the constraints directly or indirectly imposed by the target
component on the final configuration, and the Generation problem addressing the concrete
production of a configuration that actually satisfies these constraints. The Configuration
problem is proved to be NP-complete, while the Generation problem is EXP-time. It is
important to highlight that from a pragmatic point of view, the Configuration problem is
much more challenging because the Generation problem has a more standard solution and
has a higher theoretical complexity simply because there could be cases (that we consider
rare in practice) in which the configuration to be generated is of exponential size. Finally, in
a third phase called Planning we synthesize, if there exists, a sequence of deployment action
to reach the desired final configuration. This problem is poly-time but, but as explained
above the intermediary configurations traversed during the execution of the plan could not
satisfy capacity constraints or conflicts because we have decided to loose correctness to favor
tractability.

The split of the deployment problem in two subtasks is reflected also by two tools that
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we have implemented. On the one hand, Zephyrus [4] addresses the problem of generating
a final configuration that besides satisfying all the constraints that can be expressed in the
Aeolus model, also considers the problem of the optimal distribution of the components
to be deployed on available virtual machines. The second tool is called Metis [13] and it
solves the deployment problem, but only for the simplified Aeolus model without capacity
constraints and conflicts.

2 The Aeolus model

In this section we give a recap of the Aeolus component model following [14]. This formaliza-
tion differs from other definitions of the Aeolus model reported in [7, 5] due to the absence
of the so-called multiple state change actions. These actions are of interest when compo-
nents are used to represent mutually dependent packages that must be contemporaneously
installed, but are less relevant when components are used to model service deployment and
configuration. We have opted for the formalization without multiple state changes as our
focus in this paper is mainly on services and not on packages.

In the Aeolus model, components are represented as grey boxes offering services via
provide-ports and requiring service through require-ports. They are grey boxes because the
component configuration life-cycle is exposed in terms of a finite state automata indicat-
ing the different internal configuration states, and the corresponding configuration actions
changing such states. When a component changes state, the sets of ports it requires or
provides might also change; in other words, the component interface depends on its internal
configuration state.

As an example, let us consider Figure 1 depicting the installation of a WordPress blog
service according to the Aeolus model. Three services are modeled, viz. wordpress, mysql,
and the HTTP daemon service apache2. Each service can be in the uninstalled, installed,
or running state. Depending on the current state, the require and provide-ports could be
active or inactive. For instance, the wordpress component in the installed state activates
the require-port httpd, but does not activate the require-port mysql_up and the provide-
port wordpress. The httpd require-ports activated by wordpress can be connected to the
provide-port offered by apache2 when it is installed or running. Similarly, to be running,
it also requires an active mysql service. This is represented by the requirement of the port
mysql_up provided by mysql in its running state. The wordpress component in its running
state is finally able to provide the wordpress functionality.

We now move to the formal definition of the Aeolus component model. Let us assume
given the following disjoint sets: I for interfaces and Z for components. We use N to denote
natural numbers and N+

∞ for N \ {0} ∪ {∞}.

I Definition 1 (Component type). The set Γ of component types of the Aeolus model, ranged
over by T1, T2, . . . contains 5-ple 〈Q, q0, T, P,D〉 where:

Q is a finite set of states;
q0 ∈ Q is the initial state and T ⊆ Q×Q is the set of transitions;
P = 〈P,R〉, with P,R ⊆ I, is a pair composed of the set of provide and the set of
require-ports, respectively;
D is a function from Q to 2-ple in (P 7→ N+

∞)× (R 7→ N).

Given a state q ∈ Q, D(q) returns two partial functions (P 7→ N+
∞) and (R 7→ N) that

indicate respectively the provide and require-ports that q activates. The functions associate
to the activate ports a numerical constraint indicating:
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Figure 1 WordPress installation in Aeolus.

Figure 2 Redundancy and capacity constraints for a complex WordPress installation (internal
sate machines are omitted for simplicity).

for provide-ports, the maximum number of bindings the port can satisfy,
for require-ports, the minimum number of required bindings to distinct components,

as a special case: if the number is 0 this indicates a conflict, meaning that there should
be no other active port, in any other component, with the same name.

When the numerical constraint is not explicitly indicated, we assume as default value ∞ for
provide-ports (i.e., they can satisfy an unlimited amount of requires) and 1 for require (i.e.,
one provide is enough to satisfy the requirement). We also assume that the initial state q0
makes no demands (i.e., the second function of D(q0) has an empty domain).

As an example of the use of numerical constraints, Figure 2 shows the modeling of a
WordPress hosting scenario where we want to offer high availability by putting the Varnish
reverse proxy/load balancer in front of several WordPress instances, all connected to a cluster
of MySQL databases.1 For a configuration to be correct, the model requires that Varnish is
connected to at least 3 (active and distinct) WordPress back-ends, and that each MySQL
instance does not serve more than 2 clients.

We now define configurations that describe systems composed by component instances
and bindings that interconnect them. A configuration, ranged over by C1, C2, . . ., is given

1 All WordPress instances run within distinct Apache instances, which have been omitted for simplicity.
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by a set of component types, a set of deployed components with a type and an actual state,
and a set of bindings. Formally:

I Definition 2 (Configuration). A configuration C is a quadruple 〈U,Z, S,B〉 where:
U ⊆ Γ is the finite universe of all available component types;
Z ⊆ Z is the set of the currently deployed components;
S is the component state description, i.e., a function that associates to components in Z
a pair 〈T , q〉 where T ∈ U is a component type 〈Q, q0, T, P,D〉, and q ∈ Q is the current
component state;
B ⊆ I × Z × Z is the set of bindings, namely 3-ples composed by an interface, the
component that requires that interface, and the component that provides it; we assume
that the two components are distinct.

In the following we will use a notion of configuration equivalence that relate configurations
having the same instances up to renaming. This is used to abstract away from component
identifiers and bindings.

IDefinition 3 (Configuration equivalence). Two configurations 〈U,Z, S,B〉 and 〈U,Z ′, S′, B′〉
are equivalent, noted 〈U,Z, S,B〉 ≡ 〈U,Z ′, S′, B′〉, iff there exists a bijective function ρ from
Z to Z ′ s.t.:
1. S(z) = S′(ρ(z)) for every z ∈ Z; and
2. 〈r, z1, z2〉 ∈ B iff 〈r, ρ(z1), ρ(z2)〉 ∈ B′.

Notation: we write C[z] as a lookup operation that retrieves the pair 〈T , q〉 = S(z), where
C = 〈U,Z, S,B〉. On such a pair we then use the postfix projection operators .type and .state

to retrieve T and q, respectively. Similarly, given a component type 〈Q, q0, T, 〈P,R〉, D〉,
we use projections to (recursively) decompose it: .states, .init, and .trans return the first
three elements; .prov, .req return P and R; .P(q) and .R(q) return the two elements of the
D(q) tuple. When there is no ambiguity we take the liberty to apply the component type
projections to 〈T , q〉 pairs. For example, C[z].R(q) stands for the partial function indicating
the active require-ports (and their arities) of component z in configuration C when it is in
state q.

We are now ready to formalize the notion of configuration correctness:

IDefinition 4 (Configuration correctness). Let us consider the configuration C = 〈U,Z, S,B〉.
We write C |=req (z, r, n) to indicate that the require-port of component z, with interface

r, and associated number n is satisfied. Formally, if n = 0 all components other than z

cannot have an active provide-port with interface r, namely for each z′ ∈ Z \ {z} such that
C[z′] = 〈T ′, q′〉 we have that r is not in the domain of T ′.P(q′). If n > 0 then the port is
bound to at least n active ports, i.e., there exist n distinct components z1, . . . , zn ∈ Z \ {z}
such that for every 1 ≤ i ≤ n we have that 〈r, z, zi〉 ∈ B, C[zi] = 〈T i, qi〉 and r is in the
domain of T i.P(qi).

Similarly for provides, we write C |=prov (z, p, n) to indicate that the provide-port of
component z, with interface p, and associated number n is not bound to more than n active
ports. Formally, there exist no m distinct components z1, . . . , zm ∈ Z \ {z}, with m > n,
such that for every 1 ≤ i ≤ m we have that 〈p, zi, z〉 ∈ B, S(zi) = 〈T i, qi〉 and p is in the
domain of T i.R(qi).

The configuration C is correct if for each component z ∈ Z, given S(z) = 〈T , q〉 with T =
〈Q, q0, T, P,D〉 and D(q) = 〈P,R〉, we have that (p 7→ np) ∈ P implies C |=prov (z, p, np),
and (r 7→ nr) ∈ R implies C |=req (z, r, nr).
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We now formalize how configurations evolve from one state to another, by means of
atomic actions:

I Definition 5 (Actions). The set A contains the following actions:
stateChange(z, q1, q2) where z ∈ Z: change the state of the component z from q1 to q2;
bind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I: add a binding between z1 and z2 on port r;
unbind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I: remove the specified binding;
new(z : T ) where z ∈ Z and T is a component type: add a new component z of type T ;
del(z) where z ∈ Z: remove the component z from the configuration.

The execution of actions can now be formalized using a labeled transition systems on
configurations, which uses actions as labels.

I Definition 6 (Reconfigurations). Reconfigurations are denoted by transitions C α−→ C′
meaning that the execution of α ∈ A on the configuration C produces a new configuration
C′. The transitions from a configuration C = 〈U,Z, S,B〉 are defined as follows:

C stateChange(z,q1,q2)−−−−−−−−−−−−−→ 〈U,Z, S′, B〉
if C[z].state = q1
and (q1, q2) ∈ C[z].trans

and S′(z′) =
{
〈C[z].type, q2〉 if z′ = z

C[z′] otherwise

C bind(r,z1,z2)−−−−−−−−→ 〈U,Z, S,B ∪ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 6∈ B
and r ∈ C[z1].req ∩ C[z2].prov

C unbind(r,z1,z2)−−−−−−−−−−→ 〈U,Z, S,B \ 〈r, z1, z2〉〉 if 〈r, z1, z2〉 ∈ B

C new(z:T )−−−−−−→ 〈U,Z ∪ {z}, S′, B〉
if z 6∈ Z, T ∈ U

and S′(z′) =
{
〈T , T .init〉 if z′ = z

C[z′] otherwise

C del(z)−−−−→ 〈U,Z \ {z}, S′, B′〉

if S′(z′) =
{
⊥ if z′ = z

C[z′] otherwise
and B′ = {〈r, z1, z2〉 ∈ B | z 6∈ {z1, z2}}

We can now define a deployment run, which is a sequence of actions that transform an
initial configuration into a final correct one without violating correctness along the way. A
deployment run is the output we expect from a planner, when it is asked how to reach a
desired target configuration.

I Definition 7 (Deployment run). A deployment run is a sequence α1 . . . αm of actions
such that there exist Ci correct configurations such that C = C0, Cj−1

αj−→ Cj for every
j ∈ {1, . . . ,m}.
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As an example, the following is a deployment run allowing to reach the configuration
depicted in Figure 1 starting from an empty configuration (we use z1, z2, and z3 to identify
the wordpress, apache2 and mysql components, respectively):

new(z1 : wordpress),new(z2 : apache2), stateChange(z2, uninstalled, installed),
bind(httpd, z1, z2), stateChange(z1, uninstalled, installed),
new(z3 : mysql), stateChange(z3, uninstalled, installed), stateChange(z3, installed, running),
bind(mysql_up, z1, z3)

We now have all the ingredients to define the notion of achievability, that is our main
concern: given a universe of component types, we want to know whether it is possible to
deploy at least one component of a given component type T in a given state q.

I Definition 8 (Achievability problem). The achievability problem has as input a universe U
of component types, a component type T ∈ U , and a target state q. It returns as output
true if there exists a deployment run α1 . . . αm such that 〈U, ∅, ∅, ∅〉 α1−→ C1

α2−→ · · · αm−−→ Cm
and Cm[z] = 〈T , q〉, for some component z in Cm. Otherwise, it returns false.

In our running example, if we consider the wordpress component in the active state as
target, we have that such target is achievable by the deployment run obtained by adding
the action stateChange(z1, installed, running) to the deployment run described above.

Notice that the restriction in this decision problem to one target component in a given
state is not limiting. One can easily encode any given final configuration by adding a
dummy provide-port enabled only by the required final states and a dummy component
with requirements on all such provides.

In [5] we have proved that the achievability problem is undecidable. In this paper we
present a way to relax the achievability problem in order to restore decidability. In particu-
lar, we require correctness only for the final configuration, while numerical constraints and
conflicts are ignored for the intermediary states traversed during the deployment run. In
many cases dealing with service deployment, violating capacity constraints during installa-
tion and configuration is not problematic because the services become publicly available only
at the end. More precisely, we split the achievability problem in three separate phases: the
verification of the existence of a final correct configuration that includes the target compo-
nent (Configuration problem), the synthesis of such a configuration (Generation problem),
and the computation of a deployment run reaching such a configuration (Planning problem).
In this last phase, we exploit the efficient poly-time algorithm developed for the simplified
Aeolus model without numerical constraints and conflicts. For this reason, it could indeed
happen that such constraints are violated during the execution of the deployment run.

3 Configuration problem

In this section we deal with the Configuration problem, consisting in checking the existence
of a correct component configuration including at least one instance of the target component.

The Configuration problem can be viewed as a Constraint Satisfaction Problem (CSP).
A CSP consists of a finite set of variables, each of which associated with a domain of possible
values that it could take, and a set of constraints that defines all the admissible assignments
of values to the variables [15]. Given a CSP the goal is normally to find a solution—that
is an assignment to the variables that satisfies all the constraints of the problem—through
one suitable constraint solver.
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For the encoding of the Configuration problem into a CSP, we can focus on an abstract
representation of a configuration where components of the same type and state are grouped
together. Also the specific port bindings are abstracted away: we only capture how many
bindings connect the provide-ports with interface p of the components of type T in state q
to require-ports of components of type T ′ in state q′. Formally:

I Definition 9 (Abstract Configuration). An abstract configuration B is a pair of mappings
〈comp, bind〉 such that:

comp : (Γ ×Q) → N associates to every component type T and one state in T .states a
natural number;
bind : I × (Γ × Q) × (Γ × Q) → N that associates to every port p and couple of
component-state pairs a natural number.

I Definition 10 (Concretization). Given an abstract configuration B = 〈comp, bind〉 we say
that a correct configuration C = 〈U,Z, S,B〉 is one concretization of B if

the number of components of type T in state q in the configuration C is equal to
comp(〈T , q〉) for every type-state pair 〈T , q〉
the number of bindings between the port p provided by components of type T in state
q and required by components of type T ′ in state q′ is bind(p, 〈T , q〉, 〈T ′, q′〉).

We write γ(B) for the set of concretizations of B.

An abstract configuration B is correct if it has at least one concretization (formally
γ(B) 6= ∅).

Not all possible abstract configurations have concretizations since the number of bind-
ings may violate the capacity constraints and the number of components may violate the
conflicts. It is however possible to characterize abstract configurations that always admit a
concretization. This can be done by means of the following set of constraints.∧

p∈I

∧
〈T ,q〉

T .R(q)(p)× comp(〈T , q〉) ≤
∑

〈T ′,q′〉

bind(p, 〈T ′, q′〉, 〈T , q〉) (1a)

∧
p∈I

∧
〈T ,q〉 . T .P(q)(p)<∞

T .P(q)(p)× comp(〈T , q〉) ≥
∑

〈T ′,q′〉

bind(p, 〈T , q〉, 〈T ′, q′〉) (1b)

∧
p∈I

∧
〈T ,q〉 . T .P(q)(p)=∞

comp(〈T , q〉) = 0 ⇒
∑

〈T ′,q′〉

bind(p, 〈T , q〉, 〈T ′, q′〉) = 0 (1c)

∧
p∈I

∧
〈T ,q〉 . T .R(q)(p)=0 ∧

T .P(q)(p)>0)

comp(〈T , q〉) ≤ 1 (1d)

∧
p∈I

∧
〈T ,q〉.

T .R(q)(p)=0

∧
〈T ′,q′〉6=〈T ,q〉 .

T ′.P(q′)(p)>0

comp(〈T , q〉) > 0 ⇒ comp(〈T ′, q′〉) = 0 (1e)

∧
p∈I

∧
〈T ,q〉

∧
〈T ′,q′〉6=〈T ,q〉

bind(p, 〈T , q〉, 〈T ′, q′〉) ≤ comp(〈T , q〉)× comp(〈T ′, q′〉) (1f)

∧
p∈I

∧
〈T ,q〉

bind(p, 〈T , q〉, 〈T , q〉) ≤ comp(〈T , q〉)× (comp(〈T , q〉)− 1) (1g)

Constraint 1a enforces the fact that the number of bindings connected to the require-ports p
of components of type-state pair 〈T , q〉 cannot be smaller than the total requirements com-
puted as the sum of the single requirements of each instance of type-state 〈T , q〉. Symmetri-
cally, constraint 1b guarantees that the number of bindings connected to the provide-ports
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p of components of type-state pair 〈T , q〉 cannot be greater than the total available capacity
computed as the sum of the single capacities of each instance of type-state 〈T , q〉. In case
the port capacity is unbounded (i.e., ∞), it is sufficient to have at least one instance that
activates such port to support any possible requirement (see constraint 1c). Constraints 1d
and 1e deal with conflicts. In particular the constraint 1d limits to at most one the instances
of component type-state pairs that can simultaneously provide and being in conflict with a
given port. Constraint 1e enforces instead that when a conflict is active, then no other in-
stance providing the same port exists. Finally, the constraints 1f and 1g guarantee that there
are enough pairs of distinct instances to establish all the necessary bindings. Two distinct
constraints are used: the first one deals with bindings between components of two different
type-state pair, the second one considers those bindings that are established between two
components of the same type-state pair.

I Lemma 11. An abstract configuration B satisfies the constraints 1 iff it is correct.

Proof. Suppose that C is a concretization of the abstract configuration B. Now suppose
that one among constraints 1 is violated.

If 1a is violated, in C there exists a component of type T in state q requiring port p and
having less than T .R(q)(p) bindings. By the correctness of C this is impossible.
If 1b is violated, in C there exists a component of type T in state q that has more than
T .P(q)(p) bindings to port p. This is impossible since by definition C is correct.
If 1c is violated, in C there should be bindings connected to components of type-state
pairs that do not appear in the configuration. By the correctness of C this is impossible.
If 1d is violated, then there are two instances of a component of type T in state q that
simultaneously provide and are in conflict with the port p. By the correctness of C this
is impossible.
If 1e is violated, then there is an instance of a component that is in conflict with a port
p and a different instance that provides p. By the correctness of C this is impossible.
If 1f is violated, then there exist a port p and two components of different type-state
pair such that there exists two bindings connecting the port p between them. By the
correctness of C this is impossible.
If 1g is violated, then there exist a port p and either a component activating a provide
and a require-port p which are connected, or two components of the same type-state pair
with two bindings connecting the port p between them. By the correctness of C this is
impossible.

Therefore, if B is correct then all of constraints 1 are satisfied.
Now let us suppose that there exists an abstract configuration B〈comp, bind〉 that satisfies

the constraints 1. We show the existence of a concretization C, such that for every component
type-state pair 〈T , q〉 it has comp(〈T , q〉) different instances of type T in state q. Conflicts
cannot happen between the components, otherwise constraints 1d or 1e would be violated.
We now discuss the bindings in C. From constraint 1f we have that it is possible to have a
number of bindings bind(p, 〈T , q〉, 〈T ′, q′〉) between distinct pairs of instances of type-state
〈T , q〉 and 〈T ′, q′〉 respectively providing and requiring port p; moreover, from constraint
1g we have that it is possible to have a number of bindings bind(p, 〈T , q〉, 〈T , q〉) between
distinct instances of type-state 〈T , q〉 providing and requiring port p. It remains to show that
there exists at least one distribution of these bindings that satisfies the capacity constraints
on all the provide and require-ports.

Assume, by contraposition, that there exists no distribution of bindings that satisfies
the capacity constraints. This means that for every possible distribution there are always
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(b) Clause encoding.

Figure 3 3-SAT encoding into Aeolus.

provide-ports with a number of bindings greater than the capacity, or require-ports with a
number of bindings smaller than those that are required. We call discrepancy the overall
number of excessive bindings connected to provide-ports plus the number of missing bindings
in require-ports. We consider one of the binding distributions with minimal discrepancy. It
is not restrictive to assume that there is a component r1 of type-state 〈T , q〉 with a provide-
port p having an excessive number of bindings. This assumption is not restrictive because if
this is not the case, there is at least one require-port with an insufficient number of bindings,
and the following reasoning can be symmetrically applied. By constraint 1b there is another
instance r2 of type-state 〈T , q〉 that can host at least one additional binding on its provide-
port p without exceeding its capacity. The idea is to rebind one of the bindings on the
provide-port p of r1 to the provide-port p of r2. This can be done because there exist at
least two components connected to the port p of r1 which are not already connected to r2
(the port of r1 strictly exceeds its capacity while that of r2 can host at least one additional
binding). Among these two components, at least one component (let us call it r) is different
from r2. It is safe to rebind the require-port p of r from r1 to r2 because r 6= r2 and r is not
already connected to r2. Upon rebinding, in the new configuration, discrepancy is strictly
reduced thus contradicting minimality. J

In the light of Lemma 11, in order to check if there is a correct configuration containing
the target component type-state pair 〈Tt, qt〉, we can simply check if there is a correct
abstract configuration where comp(〈Tt, qt〉) > 0. This can be done by solving a CSP problem
where the functions comp and bind are defined by means of a set of variables having as
domain N and by enforcing the constraints 1 (besides the constraint comp(〈Tt, qt〉) > 0).

Thanks to this encoding it is possible to prove that the Configuration problem is NP -
complete.

I Theorem 12. The Configuration problem is NP -complete.

Proof. To prove the NP -hardness we reduce the 3-SAT Problem into Configuration.
As depicted in Figure 3 a literal l of a 3-SAT formula ϕ is encoded into a component type

Tl having, beyond an initial state, a final state ql that provides a port l, is in conflict with the
same port l and with its negation ¬l. A clause ci = l1 ∨ l2 ∨ l3 is encoded into a component
type Tci

having, beyond an initial state, three states lj that require the corresponding port
lj , provide the port ci and are in conflict with it. The target component type Tt is a two
state component where the final state qt requires for every clause ci the port ci.

The conflict ports impose that every correct configuration has at most one instance of
type Tl or T¬l. Similarly, at most one instance of Tci

could be present. It is easy to see that
a formula ϕ is satisfiable iff there exists a configuration where an instance of Tt is present in
the state qt. Indeed, if ϕ is satisfiable then it is possible to consider a configuration having
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an instance of Tl for every literal l assigned to true. By validity of ϕ under the considered
literal assignments, it is also possible to bind all the clause components Tci

to at least one
corresponding literal, and then all the Tci

instances to the target component Tt in state qt.
Similarly, if there exists a configuration where Tt in state qt is present we can assign to true
every literal li such that an instance of Tl is present in the configuration and the remaining
literals to false. This assignment satisfies the formula ϕ.

We now have to prove that Configuration is in NP. To this aim we encode Configuration
into an Integer Linear Programming (ILP) problem, a well-known problem in NP [17].

The first problem to resort to ILP is that the constraints 1f and 1g are not linear since
there are multiplications between two variables: comp(〈T , q〉)× comp(〈T ′, q′〉) in constraint
1f and comp(〈T , q〉)× (comp(〈T , q〉)− 1) in constraint 1g. Luckily, these constraints can be
reformulated into a polynomial number of linear constraints. We descrive in details how to
reformulate constraint 1f; constraint 1g can be translated similarly.

The basic observation is that in a correct configuration there is no need to have more
bindings than those strictly needed to satisfy the require-ports. In the light of this ob-
servation, it is safe to assume that the number of bindings bind(p, 〈T , q〉, 〈T ′, q′〉) is less
than comp(〈T ′, q′〉) × T ′.R(q′)(p) which is the number of bindings required to satisfy the
require-ports p of the instances of type-state 〈T ′, q′〉. Hence we can consider the dise-
quation bind(p, 〈T , q〉, 〈T ′, q′〉) ≤ comp(〈T , q〉) × comp(〈T ′, q′〉) in 1f only in those cases
in which comp(〈T , q〉) < T ′.R(q′)(p), and for all the other cases consider the disequation
bind(p, 〈T , q〉, 〈T ′, q′〉) ≤ T ′.R(q′)(p)× comp(〈T ′, q′〉) without variable multiplication.

We now discuss how to transform bind(p, 〈T , q〉, 〈T ′, q′〉) ≤ comp(〈T , q〉)×comp(〈T ′, q′〉)
under the assumption that comp(〈T , q〉) < T ′.R(q′)(p). Assume that n = blog(T ′.R(q′)(p))c.
We can consider 2n variables: x1, · · · , xn which are the n digits of the binary representation
of comp(〈T , q〉), and y1, · · · , yn which coincides with 0 for those indexes i for which xi is 0,
and 2i × comp(〈T ′, q′〉) for those indexes i for which xi is 1. In this way, the sum of all the
variables y1, · · · , yn coincides with comp(〈T , q〉)× comp(〈T ′, q′〉), and this value is obtained
without exploiting variable multiplication, at the price of adding only a polynomial number
of variables.

Summarizing, the new constraints replacing the constraint 1f are as follows:
bind(p, 〈T , q〉, 〈T ′, q′〉) ≤ T ′.R(q′)(p)× comp(〈T ′, q′〉) (2a)
∀i ∈ [1, n] . 0 ≤ xi ≤ 1 ∀i ∈ [1, n] . 0 ≤ yi ≤ 1 (2b)

comp(〈T , q〉) < T ′.R(q′)(p)⇒
n∑

i=0

2ixi = comp(〈T , q〉) (2c)

∀i ∈ [1, n] . xi = 1⇒ yi = 2i × comp(〈T ′, q′〉) ∀i ∈ [1, n] . xi = 0⇒ yi = 0 (2d)

comp(〈T , q〉) < T ′.R(q′)(p)⇒ bind(p, 〈T , q〉, 〈T ′, q′〉) ≤
n∑

i=0

yi (2e)

The first constraint binds the number of bindings to satisfy all the require-ports as
explained before. The remaining constraints encode precisely the constraint 1f for the cases
when comp(〈T , q〉) is smaller than T ′.R(q′)(p). To do so, 5n+ 2 linear constraints are used
introducing 2n fresh variables (i.e., xi and yi) which are used to compute comp(〈T , q〉) ×
comp(〈T ′, q′〉) without variable multiplication as described above.

Applying this transformation, the Configuration problem can be checked solving a poly-
nomial number of linear constraints. However, some of these constraints are logical impli-
cation that have to be compiled into the linear (dis)equations of an ILP problem. This is
possible exploiting a result from disjunctive programming [18] that indicates how to encode
with the addition of a polynomial amount of variable and (dis)equations the requirement
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Figure 4 Example of max-flow graph.

that at least one in a set of (dis)equations holds. For instance, the logical implication in the
constraint 2c holds if at least one of comp(〈T , q〉) ≥ T ′.R(q′)(p) or

∑n
i=0 2ixi = comp(〈T , q〉)

holds. The Configuration problem can be therefore mapped into an ILP with a polynomial
number of constraints and variables. Since ILP is in NP [17] this also holds for Configura-
tion. J

4 Configuration generation

As previously shown, by using a constraint solver it is possible to compute an abstract con-
figuration such that its concretizations have an instance of the target component type in
the target state. Thanks to the fact that the Configuration problem is NP-complete, we
have that the size of a representation of the abstract configuration, if any, is polynomially
bounded. But, in the worst case, the generation of a concretization could require an expo-
nential amount of time since the number of the components could be exponential w.r.t. the
size of the abstract configuration representation. For instance, an abstract configuration of
O(log(n)) space could require the creation of n components but, to concretely represent the
n instances, O(n) space is needed.

In the proof of the following theorem we show how to generate, starting from the target
abstract configuration, a correct configuration which is equivalent to one of its concretization.
Hence, this configuration will contain the target component in the target state. If we denote
with Generation the problem of computing a configuration equivalent to a concretization of
the target abstract configuration, we have the following theorem.

I Theorem 13. The Generation problem is EXP-time.

Proof. The first step to solve the problem is to solve the Configuration problem to obtain
an abstract configuration and then to compute one configuration that is equivalent to one
of its concretizations. Solving a Configuration problem is NP-complete and therefore can
be done in EXP-time.

Starting from the abstract configuration B = 〈comp, bind〉 it is possible to generate for
every component-type/state pair 〈T , q〉 exactly comp(〈T , q〉) component of type T in state
q. This can take an exponential time w.r.t. the size of the input since comp(〈T , q〉) can be
stored in space O(log(comp(〈T , q〉)).

The binding generation can be done solving a maximal flow problem. Given a port p it is
possible to consider the graph where the nodes represent the component instances providing
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p (provider) and the component instances requiring p (requirer), and an edge with capacity
1 exists from every provider to every distinct requirer. Every provider node representing an
instance of type T in state q has an incoming edge from an auxiliary node with capacity
equal to its provide numerical constraint T .P(q)(p). This auxiliary node is connected to a
source node with an edge that has a capacity equal to the sum of the bindings connected to
the provide-port p on all the components of any type

∑
〈T ,q〉,〈T ′,q′〉 bind(p, 〈T , q〉, 〈T ′, q′〉)).

On the other hand, every requirer node is connected to a sink node with an edge having
capacity equal to its require numerical constraint T .R(q)(p).

As an example, Figure 4 shows the max-flow graph obtained when there are two kinds
of provider of type-state 〈Ta, qa〉 and 〈Tb, qb〉, and two kinds of requirer of type-state 〈Ta, qa〉
and 〈Tc, qc〉. Assuming that two instances of type-state 〈Ta, qa〉 are in the configuration, and
one instance for the other two type-states, three nodes a, a′ and b are considered as provider
and a, a′ and c as requirer. Components Ta in state qa provide the port p with a constraint
of 2, while components of type Tb in state qb provide p with a numerical constraint of 3.
Components Ta in state qa requires at least 2 bindings on its p port, while those of type Tc
in state qc requires 3 bindings. The solution depicted in the Figure shows the graph when
it is required that 7 bindings on ports p should be established.

The maximal flow of this graph is
∑
〈T ,q〉,〈T ′,q′〉 bind(p, 〈T ′, q′〉, 〈T , q〉) and the edges

between the provider and requirer selected by the maximal flow algorithm correspond to the
bindings to create in the configuration. The configuration that can be obtained in this way
is equivalent to any of the concretizations of the given abstract configuration.

Since the maximal flow can be computed by the Ford–Fulkerson algorithm [3] in O(Ef),
where E is the number of edges and f is the flow, and the number of components is exponen-
tial on the size of the input we have that the generation of the bindings is in EXP-time. J

5 Plan generation

In [14] we have presented an algorithm for solving the achievability problem under the
assumption that the numerical constraints associated to require-ports are always equal to 1,
and those associated to provide-ports are always ∞. This means that no conflicts can be
expressed, as well as redundancy requirements on require-ports or maximal capacities on
provide-ports. The algorithm runs in polynomial time, and is also capable of returning
a corresponding deployment run when it exists (or an empty sequence when it does not).
We have also realized a prototype called Metis [13] that implements this algorithm: in
the following we call Metis(U, 〈Tt, qt〉) the deployment run returned by our algorithm when
executed on the universe of components U and target component type-state 〈Tt, qt〉.

Given a target configuration C, we show how to exploit Metis in order to generate a
sequence of action that reaches the final configuration C. As Metis does not take into
account the numerical constraints on component ports, it could happen that the intermediary
configurations traversed during the execution of the returned sequence of action are not
correct. Nevertheless, we guarantee that the finally reached configuration C is correct. We
call Planning this specific problem of generating a sequence of actions that reaches the target
configuration C.

The idea is to start from the configuration C and generate a universe of component types
UC , that extends the original universe U with new component types Tz—one for each instance
z in C—plus a specific target type TC with a target state qC , such that the sequence of actions
computed by Metis(UC , 〈TC , qC〉) can be post-processed to obtain the desired solution to the
Planning problem.
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We start by presenting the generation of UC . For every component z of type T in state
q in the configuration C, a new type of component Tz is added to the original universe. The
new type Tz is equal to T with the following exceptions:

every port p provided by T in state q is replaced by pz;
every port r required by T in state q is replaced with ports {rz′ | 〈r, z′, z〉 ∈ B} where
B is the set of bindings of C (i.e., every require-port is replaced by ports depending on
the component that provides that port);
the state q provides the port z.

The universe will include also the new target component type TC : it has two states, the
initial one and a connected state qC that requires the port z for every component z in C.

Given these definitions, it is immediate to see that Metis(UC , 〈TC , qC〉) will return either
an empty sequence or a sequence of actions leading to a configuration that includes the
components and bindings in C plus other components, like the target dummy components
of type TC or other temporary components. By temporary components, we mean instances
of components necessary during the execution of the deployment actions (e.g., to satisfy
some requirements in intermediary states to be traversed to reach the final ones) but not
present in the desired configuration C. These temporary components are easily identifiable
in the configuration reached by the synthesized plan because are not connected to the target
component of type TC . These additional components can be removed by adding to the plan
the corresponding del actions.

We now discuss how to post-process the plan possibly generated by Metis. First of all,
it is necessary to replace the bind actions bind(rx, z1, z2) with bind(r, z1, z2) and deleting
all the actions involving components of type TC , to obtain a sequence of actions reaching a
configuration equivalent to C up-to the additional temporary components (the target TC is
not created). Then del actions are added to the plan for all the temporary components as
described above.

I Theorem 14. The Planning problem can be solved in polynomial time.

Proof. The polynomiality of the algorithm described above derives directly from the poly-
nomiality of Metis [14]. Indeed, the extended universe U ′ contains only ad additional linear
number of component types w.r.t. the size of the input, and the post-processing of the se-
quence of actions performs a scan of the plan generated by Metis and add some del action.
This scan as well as the addition of del actions can be done in polynomial time since the
polynomiality of Metis bounds the plan and the reached configuration to be polynomial. J

As a consequence of this result we have that the chain of algorithms solving in sequence
the Configuration, Generation, and Planning problems, compute a sequence of deployment
actions to reach the desired target configuration in EXP-Time. From the practical point
of view this complexity is however reached only when there are components that require
a large number of other components to satisfy their needs. Indeed, in this case the space
needed to store the port capacity may take O(n) space requiring O(2n) deployment action
to generate the providers.

6 Related work and Conclusion

With the current popularity of cloud computing, the problem of automating application
deployment has recently attracted a lot of attention. As of today most industrial products
offered by big companies, such as Amazon, HP and IBM, rely on holistic approaches where
a complete model for the entire application is defined and the deployment plan is derived
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in a top-down manner. In this context, one prominent work is represented by the TOSCA
(Topology and Orchestration Specification for Cloud Applications) standard [16], promoted
by the OASIS consortium for open standards. TOSCA proposes an XML-like (or YAML)
rich language to describe an application. Deployment plans are usually BPEL notations,
i.e., work-flow defined in the context of business process modeling.

Using these approaches the burden of specifying what components should be deployed
and how to interconnect them is left to system administrators or cloud engineers. On the
contrary, Zephyrus [4] and ConfSolve [11] automatize also this task starting from a high-level
declarative specification of the desired configuration. As previously mentioned, Zephyrus is
grounded on the Aeolus model and takes into account also packages, repositories, as well as
the optimality of the proposed solution. ConfSolve relies on constraint solving techniques to
propose an optimal allocation of virtual machines to servers, and of applications to virtual
machines. An object-oriented declarative language is used to describe the entities (e.g.,
machines and services), the constraints, and the optimization criteria. Similarly to Zephyrus,
but differently from Metis, ConfSolve does not consider the problem of synthesizing a low-
level plan to reach the final configuration.

Two recent efforts, Feinerer’s work on UML [8] and Engage [9], are more similar to our
approach as they both rely on a solver to plan deployments. Feinerer’s work is based on the
UML component model, which includes conflicts and dependencies, but lacks the aspects
concerning virtual machines and deployment. Engage, on the other hand, offers no support
for conflicts in the specification language. Neither Feinerer’s work nor Engage allows to find
a deployment that uses resources in an optimal way, minimizing the number and cost of
needed components as can be obtained by Zephyrus. Furthermore, no other tool that we
are aware of allows to declare capacity or replication constraints, which are essential non
functional constraints for any non-trivial, scalable application.

7 Conclusion

In this article we have studied the problem of reconfiguration using the abstract compo-
nent model named Aeolus, with all its expressive power. This model allows to describe
complex component systems with functional constraints, and non-functional constraints like
redundancy, capacity and conflicts.

We have carefully decomposed the reconfiguration problem into three steps, Configu-
ration, Generation and Planning, and we showed how to recover decidability by imposing
restrictions only on the transient states of the Planning phase.

This restriction corresponds to the realistic deployment conditions of many current dis-
tributed applications, thus paving the way to a new generation of smarters deployment tools
that will help automate a larger part of the work that is today requiring significant human
intervention. A research prototype, described in [4], has been developed to show the viability
of this approahc.
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