
A historical analysis of Debian package conflicts
Sébastien Drobisz∗, Tom Mens∗ and Roberto Di Cosmo†

∗ Software Engineering Lab, COMPLEXYS Research Institute, University of Mons, Belgium
firstname.lastname@umons.ac.be

† Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126 CNRS and INRIA, F-75205 Paris, France
roberto@dicosmo.org

Abstract—Users and developers of software distributions are
often confronted with installation problems due to conflicting
packages. A prototypical example of this are the GNU Linux dis-
tributions such as Debian. While the problem of co-installability
of Debian packages has been studied in the past, little is known
about how this problem evolves over time. In this article,
we present preliminary results of an empirical analysis of co-
installability problems of individual packages throughout seven
years of history of the Debian distribution.

I. INTRODUCTION

Package-based software distributions (such as the Debian
Linux distribution) and other large component-based software
repositories have been shown to suffer from maintainability
and scalability problems due to the so-called “co-installability
problem” [1]. Desired software packages or components may
not be installable together due to conflicting dependencies, and
detecting such conflicts is algorithmically hard.

While efficient algorithms and tools have been proposed
for detecting co-installation conflicts and supporting their
resolution [2], [3], [4], [5], little is known about how this
problem evolves throughout the history of the considered
software repository.

Therefore, the goal of our research is to empirically analyse
the evolution history of package-based software repositories, in
order to assess the extent of the “co-installability problem” and
how this problem evolves over a longer time period, involving
many different versions of the software package repository.
This is different in scope from the research presented in [6],
where the evolution of the co-installability problem is studied
between pairs of successive versions of a package repository,
in order to identify the so-called “broken sets”.

The case study that we have used for our empirical analysis
is the Debian Linux testing distribution for the i386 architec-
ture, over a 7-year time period. In this paper, we present some
research results obtained while studying the evolution of this
distribution.

II. CONTEXT

A. About Debian

The Debian GNU/Linux distribution is a free distribution of
the Linux operating system, initially released in 1993. While
t is available for a multitude of architectures, in this article
we will focus on the i386 architecture that can be considered
historically as the first one for which Debian was available.
To facilitate maintenance and facilitate collaborative work,

TABLE I
MAJOR PRODUCTION RELEASES OF DEBIAN

Version Code name Release date Number of packages
4.0 etch 2007-04-08 about 18K
5.0 lenny 2009-02-15 about 23K
6.0 squeeze 2013-02-06 about 29K
7.0 wheezy 2013-03-04 about 37K

Debian is composed of tens of thousands of different packages,
developed by thousands of developers.

There are essentially three types of Debian distributions.
The stable distribution is the latest official release, and only
contains stable, well-tested packages. The testing distribu-
tion contains package versions that should be considered for
inclusion of the next stable Debian release. The unstable
distribution contains packages that are not thoroughly tested
and that may still suffer from stability and security problems.

Because we are interested in studying the evolution of
Debian development activity, our empirical study will be
restricted to the testing distribution, as it is what we consider
to correspond most closely to a development version: package
versions in the testing distribution are likely to become part
of the next public release.

For this distribution, we have extracted daily snapshots, dur-
ing the 7-year period from 1 January 2007 (>18K packages)
to 31 December 2013 (>38K packages). Table I lists the
major production release versions of Debian created during
this timeframe.

B. Mining package co-installability data

A major problem when analysing co-installability of pack-
ages is the sheer size of the package dependency graph: there
are typically thousands of different packages with implicit or
explicit dependencies to many other packages. Vouillon et al.
[5] addressed this problem by proposing an algorithm and
theoretical framework to compress such a dependency graph
to a much smaller one with a simpler structure, but with
equivalent co-installability properties. The idea is that sets
of packages are bundled together into an equivalence class if
these packages are co-installable together, while they are not
co-installable with the same other packages. As an example,
the full graph for the Debian testing distribution on 22 August
2010 contained 28,919 packages, 124,246 dependencies and
1,146 co-installability conflicts. After simplification, the result-
ing graph contained only 1,038 packages, 619 dependencies

and 985 conflicts.
The COINST tool (http://coinst.irill.org)) was developed

specifically for extracting and visualizing coinstallability ker-
nels for GNU/Linux distributions. We used the output of this
tool as the basis of our analysis. For each daily snapshot,
we used a shell script to browse and extract all names of
packages contained in the distribution1. To retrieve the infor-
mation about the co-installation conflicts of these packages
we used the JSON output files generated by the COINST tool
with the command coinst -conflicts conflicts
-stats -o graph.dot Packages.bz2 >& log.

C. Research Methodology

Di Cosmo et al. have previously used co-installation conflict
graphs to determine appropriate solutions to co-installability
problems. These solutions, however, did not take into account
the “package conflict history”, i.e., the evolution over time of
package co-installation conflicts. It is our goal to determine
to which extent this historical information provides additional
information to understand and predict how co-installation con-
flicts evolve over time, and to improve support for addressing
co-installability problems.

To work towards this goal, section III starts by performing
a high-level analysis of the Debian package conflict history.
Subsection III-A provides some visualisations and descriptive
statistics of how the co-installability problem evolves over time
for the Debian testing distribution as a whole. Subsection III-B
focuses on specific observed trend breaks and identifies prob-
lematic packages in Debian based on this. Section IV carries
out a statistical analysis based on the individual conflict
evolution histories of all packages contained in the Debian
testing distribution.

III. QUALITATIVE ANALYSIS

A. Descriptive statistics

In the remainder of this article we will use the term
conflicting package to denote a package that has at least one
co-installability conflict with at least one other package at a
specific point in time.

Let us start by presenting some plots showing the evolution
of (conflicting) packages belonging to the Debian testing
distribution. Fig. 1 (top) compares the daily evolution of the
total number of packages against the number of conflicting
packages. They both show a linearly increasing trend. Fig. 1
(bottom) displays the percentage of conflicting packages over
time. We see that (with some exceptions in 2009), the ratio of
conflicting packages remains more or less constant (between
15% and 20%) over time, despite the fact that the number of
Debian packages continues to increase.

Fig. 2 displays, per snapshot, the absolute (top figure) and
relative (bottom figure) number of co-installation conflicts
per package. Most of the time there are between 2,000 and

1The information for a given snapshot date <DATE>
(using the format YYYYMMDD) is available on
http://snapshot.debian.org/archive/debian/<DATE>T060000Z/dists/testing/
main/binary-i386/Packages.bz2.

0

10000

20000

30000

40000

0
1

-0
7

0
4

-0
7

0
7

-0
7

1
0

-0
7

0
1

-0
8

0
4

-0
8

0
7

-0
8

1
0

-0
8

0
1

-0
9

0
4

-0
9

0
7

-0
9

1
0

-0
9

0
1

-1
0

0
4

-1
0

0
7

-1
0

1
0

-1
0

0
1

-1
1

0
4

-1
1

0
7

-1
1

1
0

-1
1

0
1

-1
2

0
4

-1
2

0
7

-1
2

1
0

-1
2

0
1

-1
3

0
4

-1
3

0
7

-1
3

1
0

-1
3

number of packages

number of conflicting packages

0%

5%

10%

15%

20%

25%

30%

0
1

-0
7

0
7

-0
7

0
1

-0
8

0
7

-0
8

0
1

-0
9

0
7

-0
9

0
1

-1
0

0
7

-1
0

0
1

-1
1

0
7

-1
1

0
1

-1
2

0
7

-1
2

0
1

-1
3

0
7

-1
3

ratio of conflicting packages

Fig. 1. Daily evolution of the number of packages and conflicting packages
in the Debian testing distribution.

0

500

1000

1500

2000

2500

3000

3500

4000

01
-0
7

04
-0
7

07
-0
7

10
-0
7

01
-0
8

04
-0
8

07
-0
8

10
-0
8

01
-0
9

04
-0
9

07
-0
9

10
-0
9

01
-1
0

04
-1
0

07
-1
0

10
-1
0

01
-1
1

04
-1
1

07
-1
1

10
-1
1

01
-1
2

04
-1
2

07
-1
2

10
-1
2

01
-1
3

04
-1
3

07
-1
3

10
-1
3

1
2
3
4
5
>5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

01
-0
7

04
-0
7

07
-0
7

10
-0
7

01
-0
8

04
-0
8

07
-0
8

10
-0
8

01
-0
9

04
-0
9

07
-0
9

10
-0
9

01
-1
0

04
-1
0

07
-1
0

10
-1
0

01
-1
1

04
-1
1

07
-1
1

10
-1
1

01
-1
2

04
-1
2

07
-1
2

10
-1
2

01
-1
3

04
-1
3

07
-1
3

10
-1
3

1
2
3
4
5
>5

Fig. 2. Daily evolution of the number of packages in the Debian testing
distribution having a co-installability conflict with 1, 2, 3, 4, 5 or more
packages.

0,996

0,998

1

01
-0
7

04
-0
7

07
-0
7

10
-0
7

01
-0
8

04
-0
8

07
-0
8

10
-0
8

01
-0
9

04
-0
9

07
-0
9

10
-0
9

01
-1
0

04
-1
0

07
-1
0

10
-1
0

01
-1
1

04
-1
1

07
-1
1

10
-1
1

01
-1
2

04
-1
2

07
-1
2

10
-1
2

01
-1
3

04
-1
3

07
-1
3

10
-1
3

Fig. 3. Evolution of the Gini index (aggregating the number of co-installability
conflicts per package) over time.

3,000 packages with exactly one co-installation conflict. This
corresponds to a ratio of about 50% of all conflicting packages.

http://coinst.irill.org

Histogram of packagesDuringPeriod$number_of_existing_days

lifetime (in days) of packages

Fr
eq

ue
nc

y

0 500 1000 1500 2000 2500

0
40

0
80

0

Fig. 4. Lifetime (in days) of packages that were both created and removed
during the considered period.

Fig. 2 (bottom) reveals that there are gradually less packages
that have more co-installation conflicts, indicating a skewed
distribution. We used the Gini index to measure inequality of
the distribution [7]. The evolution of this index is visualised
in Fig. 3. For all snapshots we found a very high inequality,
reflected by a Gini value that is very close to 1 (>0.997 in
all cases). Besides this, the evolution plot of the Gini index
reveals the same patterns as those observed in Fig. 1 (bottom)
and Fig. 2 (bottom).

Fig. 4 displays the lifetime (in days) of each considered De-
bian package. We have excluded from the figure all packages
that already existed at the first day of the considered period
and/or that still existed at the last day of the considered period.
This leaves us with 12,182 packages (out of a total of 58,478).
The reason for doing so is that we cannot be sure about the
lifetime of these packages: they may have existed already
before or continue to exist after the considered period. We
observe that the lifetime of packages is not uniformly spread,
and there appears to be a decreasing trend. The median value
is 546, implying that 50% of the packages survive less than
1,5 years.

Histogram of conflictingPackagesDuringPeriod$pct.conflicting_days.existing_days.

percentage of conflict days per conflicting package

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
80

0
14

00

Fig. 5. Percentage of days of their lifetime that conflicting packages were in
conflict.

Of the list of packages considered in the previous figure,
let us focus on only those 4,416 packages that had a conflict
at least once in their lifetime. The number of conflicting days
for these packages is visualised horizontally as a percentage of
their total lifetime in Fig. 5. We observe that 965 (i.e., 21,9%)
packages were almost never conflicting (<5% of the time).
Another peak is observed at the other side of the spectrum,
were we find 1,410 (i.e., 31,9%) packages that were conflicting
most of their lifetime (>95% of the time). More specifically,
1,181 of these packages (i.e., 26,7%) were conflicting during

their entire lifetime. Many of these packages can be considered
as having “stable” co-installability problems that do not cause
problems for their maintenance. We will study this in more
detail in the remainder of this article.

B. Identifying problematic packages

Figures 1 to 3 reveal, in the first half of 2009, a sudden
very important decrease in number and ratio of conflicting
packages. Pinpointing the source of the problem, we found
that on 12 May 2009 a lot of packages were no longer
conflicting compared to the previous day. This disappearance
of conflicts coincides with the removal of package ppmtofb
that appears to be the source of the problem. It had a very high
number of conflicts just before its removal (2,664 conflicts,
a value much higher than for all other identified packages).
Removing this package from the distribution removes conflicts
in many other packages (that were only co-uninstallable with
this problematic package).

The figures also reveal the opposite behaviour (i.e., an
important sudden increase) a couple of months later due to
the introduction of package liboss-salsa-asound2. On
17 September 2009 it provoked by itself 1,758 new conflicts.
On 29 February 2012 this package was removed, resulting in
a decrease of the number of conflicts for many packages, as
can be observed in Fig. 2 (bottom).

Manual inspection of these packages and their related
entries in the Debian bug tracking system revealed that both
of these packages were highly problematic: ppmtofb was a
package no longer maintained, that depended on an obsolete
library, and liboss-salsa-asound2 was not intended to
be used on the i386 architecture. The obvious solution was
to remove them, which eventually happened, but the absence
of clear metrics to pinpoint these problems, together with the
marginal popularity of these packages on the i386 architecture
made this process extremely long.

In an attempt to automate the detection of this class of
problematic packages, we computed the following metrics for
each package: its minimum and maximum number of conflicts,
its spread (i.e., max − min), and the number of days with
more conflicts than max−min

2 . For packages with a high
value for most of these metrics we checked whether they
have been reported as problematic by the Debian community.
This allowed us to find back both aforementioned problematic
packages, and many more such as:

• fdpowermon-icons is incompatible with all of KDE
(it changes the icons used by KDE), and should therefore
be avoided by a normal user.

• libqt4-phonon is a package for temporary usage only
during the cross-port of a distribution. Its number of
conflicts is therefore not really problematic in the sense
that a “normal” user does not need it, and those that need
it only need it once.

• odbc-postgresql and some of its variants are known
to have had incompatibilities with the libiodbc2 pack-
age for a certain time. This problem is no longer present
today.

Using the same metrics, we also found quite a few
packages with a high maximum number of conflicts that
only lasted for relatively short periods. A typical example
is libgdk-pixbuf2.0-0, whose introduction with 4,100
conflicts causes a peak on 31 March 2011 that is clearly visible
at the bottom of Fig. 1 and disappears completely after 2 days.

Manual inspection revealed that these conflicts are caused
by the arrival in the testing distribution of new versions of
a package, that rely on a new version of another package
that has not yet been introduced: these transient episodes
are generally solved in a matter of days or weeks with the
arrival of the expected new version of the other packages,
and do not indicate any long lasting problem. The problem
can be avoided altogether by using more advanced tools for
maintaining Debian repositories, such as the comigrate tool
described in [8].

IV. STATISTICAL ANALYSIS

The reasons for particular trend breaks (sudden decreases
or jumps) in the evolution of conflicting packages can be
analysed according to specific classes of packages (as we have
illustrated in section III). We are, however, also interested
in understanding the package conflict history from the point
of view of individual packages. We also wish to study to
which extent the introduction and removal of packages affects
package conflicts in the distribution. To address these goals,
we will focus our statistical analysis on specific research
questions. Ultimately, answers to these questions will allow
us, at the longer term, to come up with prediction models
of how likely it is that package conflicts get introduced or
resolved over time.

RQ1 How long does it take before a conflict is introduced in
a package?

For this research question, we are interested in the first ap-
pearance of a conflict in a package. We hypothesise that newly
introduced packages have a high likelihood of introducing
conflicts. To analyse this, we first have to exclude all packages
that are present at the first day of the considered 7-year period,
since we cannot know when a conflict first appeared in them.

This leaves us with 40,332 packages that are introduced
somewhere during the considered timeframe. Of these, 26,397
(i.e., 65,4%) never encountered a conflict, and 7,541 of them
(i.e., 18,7%) were introduced with at least one conflict at
the moment of their introduction. For the remaining 6,394
packages (i.e., 15,9 %), the distribution of the number of days
before the first conflict is introduced has a median value of
slightly over one year (375 days to be precise) and follows
a decreasing trend (see Fig. 6). This means that the longer
a package exists without conflicts, the less likely it is that a
conflict will appear.

We can conclude that our hypothesis is not correct. Most
new packages (>65%) never encounter a conflict. For those
packages that do encounter a conflict, however, in the majority
of the cases (54%) the conflict is already present at the moment
of introduction of the package.

Histogram of conflictsAfterIntroduction

conflictsAfterIntroduction

Fr
eq
ue
nc
y

0 500 1000 1500 2000

0
10
0

20
0

30
0

Fig. 6. Number of days before conflicts arise in newly introduced packages.
Packages without conflicts or containing conflicts at the day of their creation
are excluded.

RQ2 What is the effect of conflicts on the longevity of
packages?

For this research question we only consider those 12,182
packages that were both created and removed during the
considered period. We address the question in three steps. In
all these steps, we use a Wilcoxon rank sum test (a.k.a. Mann-
Whitney test) and a Kolmogorov-Smirnoff test to find statis-
tical evidence for a difference between two distributions. The
null hypothesis assumes that there is no significant difference.

First, we hypothesise that the absence of conflicts upon
introduction of a package has an effect on its longevity. To
this extent, we compare the lifetime of packages that are
introduced with conflicts and without conflicts. A two-sided
test rejects the null hypothesis with statistical significance
(p-value <<0.001). A similar one-sided test suggests that
packages with conflicts upon their introduction actually live
longer than packages that are introduced without conflicts.
This is visually confirmed by the histograms in Fig. 7.

Histogram of withoutConflict$number_of_existing_days

withoutConflict$number_of_existing_days

Fr
eq
ue
nc
y

0 500 1000 2000

0
10
0

30
0

Histogram of withConflict$number_of_existing_days

withConflict$number_of_existing_days

Fr
eq
ue
nc
y

0 500 1000 2000

0
20

40
60

80

Fig. 7. Longevity of packages with or without conflicts at the time of their
introduction.

Secondly, we hypothesise that the absence of conflicts
during the lifetime of a package has an effect on its longevity.
Again, a two-sided test observes a difference with statistical
significance (p-value <<0.001). A one-sided test reveals that
packages with conflicts during their lifetime tend to live longer
than packages without conflicts.

Thirdly, we compare the longevity of packages that were
conflicting during their entire lifetime (i.e., 100% of the time)
with packages that only had conflicts occasionally (<100% of
the time). Fig. 5 showed that 26,7% of all conflicting packages
are in conflict 100% of the time. A two-sided test reveals a

difference with statistical significance. A one-sided test reveals
that packages that were in conflict occasionally live longer than
packages that were in conflict during their entire lifetime.

V. THREATS TO VALIDITY

There are many potential threats to validity of our empirical
study. Some threats relate to the generalisability of the results.
We have restricted ourselves to Debian packages, so we cannot
make any generalisations to other package-based systems.
Even within Debian, we have only studied the Debian testing
distribution for the i386 architecture. Results for the stable or
unstable distribution are likely to be quite different. We have
limited our analysis to a 7-year period. Extending this to a
longer period before 2007 may change our obtained results.

For our analysis we based ourselves on the output produced
by the COINST tool. The risk that possible bugs in this tool
may affect the outcome of our results is limited because the
conflicts identified by COINST can be independently checked
using other existing tools, like dose-deb-coinstall. The
obtained results may also be biased by some simplifying
assumptions we have made during our analysis. First of all,
we have considered removed packages as packages that did
not exist any longer at the last day of the considered period.
This is an overapproximation, in the sense that packages may
sometimes disappear for a while from the Debian distribu-
tion, but get reintroduced again at a later time (beyond the
considered time period). Secondly, we have ignored the issue
of package renaming, assuming that a new package name
effectively corresponds to a new package (which is the case for
the majority of all considered packages). Sometimes, however,
the name of a package can change from one snapshot to
another. This is for example the case for some packages where
the version number is explicitly encoded as part of the package
name.

VI. FUTURE WORK

We plan to extend the research reported here in many
ways. We plan to automate the identification of problematic
packages into a metrics-based dashboard targeted to Debian
package maintainers and users. This could be augmented with
prediction models that analyse the package conflict history to
predict survivability or future problems for certain (groups of)
packages.

The current empirical analysis was only based on metrics
related to packages and their co-installation conflicts. We
plan to augment this analysis by taking the social aspects
into account. Among others, we would like to assess the
impact of package maintainer characteristics (such as number
of maintained packages and seniority) on the likelihood of
having package conflicts. We intend to take usage information
into account as well by studying correlations between package
conflicts and data collected by the Debian Popularity Contest.

Similar to the work in [9], we intend to study the evolution
of the package conflict dependency graph. By studying the
structure of this graph as well as specific nodes of this graph
(e.g., packages that are in conflict with many other packages)

we want to study how conflicts appear and disappear over time
when packages get introduced, updated or removed.

VII. CONCLUSION

Building further upon the work by Di Cosmo et al. [2], [3],
[5] we empirically analysed a 7-year history of the Debian
package-based software distribution for the i386 architecture.
We used data from the COINST tool to study how the problem
of non co-installabe packages evolves over time.

While the number of Debian packages increases linearly, the
ratio of conflicting packages stays more or less constant, with
occasionally important decreases or increases in the number of
conflicts, caused by the introduction, modification or removal
of particularly problematic packages. We identified different
type of problematic packages, whose presence coincides with
high values for some simple conflict-based metrics.

We observed that the majority of newly introduced packages
never encounters a conflict. If they do, in the majority of the
cases there is already a conflict at the time of introduction of
the package. About 1 out of 5 packages are in conflict less
than 5% of the time. Close to one third of the conflicting
packages are in conflict during their entire lifetime. As we
expected, these packages live shorter than packages that are
not in conflict all the time. Contrary to what we expected,
however, packages that had at least one conflict during their
lifetime tend to have a longer lifetime than packages without.

ACKNOWLEDGMENTS

This research was carried out in the context of ARC research
project AUWB-12/17-UMONS- 3.

REFERENCES

[1] R. Di Cosmo and J. Vouillon, “On software component co-installability,”
in SIGSOFT FSE. ACM , 2011, pp. 256–266. [Online]. Available:
http://dx.doi.org/10.1145/2025113.2025149

[2] C. Artho, K. Suzaki, R. Di Cosmo, R. Treinen, and S. Zacchiroli, “Why do
software packages conflict?” in Int’l Conf. Mining Software Repositories,
2012, pp. 141–150.

[3] R. Di Cosmo, D. Di Ruscio, P. Pelliccione, A. Pierantonio, and S. Zacchi-
roli, “Supporting software evolution in component-based FOSS systems,”
Sci. Comput. Program., vol. 76, no. 12, pp. 1144–1160, 2011.

[4] R. Di Cosmo and J. Boender, “Using strong conflicts to detect quality
issues in component-based complex systems,” in Indian Software Engi-
neering Conf., 2010, pp. 163–172.

[5] J. Vouillon and R. Di Cosmo, “On software component co-installability,”
ACM Trans. Softw. Eng. Methodol., vol. 22, no. 4, p. 34, 2013.

[6] J. Vouillon and R. Di Cosmo, “Broken sets in software repository
evolution,” in Int’l Conf. Software Engineering, 2013, pp. 412–421.

[7] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Comparative analysis
of evolving software systems using the Gini coefficient,” in Int’l Conf.
Software Maintenance, 2009, pp. 179–188.

[8] J. Vouillon, M. Dogguy, and R. D. Cosmo, “Easing software component
repository evolution,” in Int’l Conf. Software Engineering, P. Jalote, L. C.
Briand, and A. van der Hoek, Eds. ACM, 2014, pp. 756–766.

[9] M. Claes, T. Mens, and P. Grosjean, “On the maintainability of CRAN
packages,” in Int’l Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE). IEEE, 2014, pp. 308–312.

http://dx.doi.org/10.1145/2025113.2025149

	Introduction
	Context
	About Debian
	Mining package co-installability data
	Research Methodology

	Qualitative Analysis
	Descriptive statistics
	Identifying problematic packages

	Statistical Analysis
	Threats to Validity
	Future Work
	Conclusion
	References

