
Learning from the Future of Component RepositoriesI

Pietro Abatea, Roberto Di Cosmoa, Ralf Treinena, Stefano Zacchirolia

aUniv Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205 Paris, France
{abate,treinen,zack}@pps.univ-paris-diderot.fr, roberto@dicosmo.org

Abstract

An important aspect of the quality assurance of large component repositories is to en-
sure the logical coherence of component metadata, and to this end one needs to identify
incoherences as early as possible. Some relevant classes of problems can be formulated
in term of properties of the future repositories into which the current repository may
evolve. However, checking such properties on all possible future repositories requires
a way to construct a finite representation of the infinite set of all potential futures. A
class of properties for which this can be done is presented in this work.

We illustrate the practical usefulness of the approach with two quality assurance
applications: (i) establishing the amount of “forced upgrades” induced by introducing
new versions of existing components in a repository, and (ii) identifying outdated com-
ponents that are currently not installable and need to be upgraded in order to become
installable again. For both applications we provide experience reports obtained on the
Debian free software distribution.

1. Introduction

As a consequence of the fact that software systems must undergo continuing evo-
lution [2], any software has its own evolution history, made of changes, revisions, and
releases. By mining those histories—which are often conveniently stored in software
repositories—one may find interesting facts and properties of software systems [3].
The advent of component-based software systems [4] has not diminished the relevance
of this approach. We now have component repositories, where new releases of individ-
ual components get pushed to.

Free and Open Source Software (FOSS) distributions are particularly interesting
data sources for mining component repositories [5]. This is so partly because their
components—called packages in this context—are freely available to study; and partly
because some of them, such as the Debian distribution,1 are among the largest coordi-
nated software collections in history [6].

IThis paper is an extended version of [1], appeared in proceedings of CBSE 2012, the 15th International
ACM SIGSOFT Symposium on Component Based Software Engineering.
Work performed at IRILL http://www.irill.org, center for Free Software Research and Innovation in
Paris, France.

1http://www.debian.org

Preprint submitted to Elsevier June 14, 2013

http://www.irill.org
http://www.debian.org

Package : libacl1 -dev

Source : acl

V e r s i o n : 2.2.51 -5

A r c h i t e c t u r e : amd64

P r o v i d e s : acl -dev

Depends: libc6 -dev | libc -dev , libacl1 (= 2.2.51 -5) ,

libattr1 -dev (>= 1:2.4.46)

C o n f l i c t s : acl (<< 2.0.0) , acl -dev ,

kerberos4kth -dev (<< 1.2.2 -4)

Figure 1: Example of Debian meta-data (excerpt)

Software packages share important features with software component models [7],
but exhibit also some important differences. On one side, packages are, like compo-
nents, reusable software units which can be combined freely by a system administrator;
they are also independent units that follow their own development time-line and ver-
sioning scheme. On the other side, packages, unlike what happens in many software
component models, cannot be composed together to build a larger component. In fact,
packages are intended to be installed in the shared space of an operating system, and
they have to share the resources provided by the system. This has important conse-
quences on the inter-package relationships expressed using fairly expressive package
metadata.

Figure 1 shows an example of the metadata of a package in the popular Debian
distribution. (We will focus on Debian for the purpose of this paper, however our find-
ings apply equally to all other popular package models [8].) As the example shows,
inter-package relationships can get pretty complex. In general, packages have both
dependencies, expressing what must be satisfied in order to allow for installation of
the package, and conflicts that state which other packages must not be installed at the
same time. While conflicts are simply given by a list of offending packages, dependen-
cies may be expressed using logical conjunction (written ‘,’) and disjunctions (‘|’).
Furthermore, packages mentioned in inter-package relations may be qualified by con-
straints on the version of the package. There are also some further types of metadata,
like virtual packages [9], but we may ignore them for the purpose of this paper, as
we ignore many types of metadata that are not expressing mandatory inter-package
relationships.

An important feature of component architectures is that individual components may
be upgraded independently of other components. In the case of package repositories,
such upgrades may happen on two different levels: (a) system administrators upgrading
the package installation on their machines, and (b) the maintenance team of a package
distribution accepting upgrades of existing packages, or new packages, into the pack-
age repository. It is the latter that interests us for the present work since it leads to
interesting quality assurance issues. Due to the frenetic pace of change in package
repositories these can be properly dealt with only by using automated tool support.
For instance, the development archive of the Debian distribution (the so called “unsta-
ble” package repository), with its more than 38.000 packages as of November 2012,

2

Package : foo

V e r s i o n : 1.0

Depends: bar (<= 3.0) | bar (>= 5.0)

Package : bar

V e r s i o n : 1.0

Package : baz

V e r s i o n : 1.0

Depends: foo (>= 1.0)

Figure 2: Package bar challenges package foo

receives each single day about 150 upgrades.
Previous work [10] has focused on analyzing the metadata contained in a snapshot

of a package repository. For instance, chasing not installable packages is a common
quality assurance activity for distributions [11]. Efficient tools to attend it exist, despite
the NP-completeness of the underlying algorithmic problem. In this paper we argue
that not only the past and present of component repositories are worth studying. The
future of component repositories, largely unexplored up to now, is equally interesting
since it allows us to establish important facts and properties, especially in the area of
component quality assurance.

We have investigated two practically relevant scenarios where the analysis of the
possible future evolutions of a repository (or futures for short) provides precious infor-
mation.

Challenging upgrades. When a repository is fine according to some quality measure
(e.g. all packages contained therein are installable), but a specific class of its futures
is problematic (e.g. they are affected by metadata incoherences that will make some
packages not installable), we might want to prevent or delay such evolutions.

We use future analysis to develop algorithm and tools that identify the most “chal-
lenging” upgrades. In a given repository, we say that a version v of a package p chal-
lenges another package q when in all futures where p is upgraded to version v (while all
other packages are kept unchanged) the package q becomes not installable, no matter
how p’s metadata might have changed. The number of packages that are challenged by
an upgrade to version v of p tells us how disruptive for the repository the transition to
the new v version of p is.

For example consider the repository in Figure 2. All packages are currently instal-
lable, but it is easy to check that upgrading package bar to any future version greater
than 3.0 and smaller than 5.0 will render the current packages foo and baz not instal-
lable. We say that all upgrades of bar to versions in the range 3.0 < ·< 5.0 challenge
foo and baz as in any future evolution of this repository containing bar with any
version between 3.0 and 5.0, packages foo and baz will be not installable.

This notion can therefore help the quality assurance team in charge of guaranteeing
the installability of the components in the repository. By knowing in advance that a
given new version of a given component will challenge, i.e. make not installable, many

3

Package : bar

V e r s i o n : 2.3

Package : baz

V e r s i o n : 2.5

C o n f l i c t s : bar (> 2.4)

Package : foo

V e r s i o n : 1

Depends: (baz (=2.5) | bar (=2.3)) , (baz (<2.3) | bar (>2.6))

Figure 3: Package foo is outdated

components, they can either delay the arrival of the new version to the point when all
other challenged components have been changed to avoid non-installability issues, or
else coordinate component upgrades so that the time window in which those issues are
present is minimized.

Outdated packages. If a quality problem is observed in the current repository (e.g. a
package is not installable due to an unsatisfiable dependency), and if we can show that
the problem will be present in all futures of some kind, then we know that we have to
move out of that class of futures in order to solve the problem. We use future analysis
to develop tools that identify all the “outdated” packages. A package p contained in a
repository is said to be outdated when it is not installable and remains so in all futures
of the repository where p is unchanged. This means that the only way to make p
installable is to upload a fixed version of the package. This information is useful for
quality assurance since it pinpoints packages where action is required.

This definition of outdated packages grew out of a concrete problem with a previous
quality analysis of package repositories. Following the earlier work of some of the
authors of this paper [10], we implemented a daily automated check for not installable
packages in the Debian repository 2. This analysis displays on a typical day hundreds
of packages that are not installable. One of the reasons for this amount of data is that a
package may be not installable because one of its dependencies is not installable, that is
the not installability might not be the “fault” of the package found to be not installable.
While it seems impossible to define a formal criterion that decides in any single case
who is to blame for a problem, we tried to find a criterion where the fault is definitely
with the very package that is found to be not installable. This lead us to the definition
of outdated packages — packages that are not installable, and that can only be fixed by
the package itself (and not by one of its dependencies).

Consider, for instance, the repository in Figure 3. foo is not installable since its
second dependency clause cannot be satisfied, as we have neither baz in a version
smaller than 2.3, nor bar in a version greater than 2.6. Is it possible to make foo in
version 1 installable by upgrading one or both of baz and bar? If we advance both of

2http://edos.debian.net/edos-debcheck/unstable.php

4

http://edos.debian.net/edos-debcheck/unstable.php

these packages then foo will not be installable since its first dependency clause will not
be satisfied. Upgrading baz alone will not work, because baz can only be upgraded to
versions greater than the current version 2.5, hence baz (<2.3) can never be satisfied.
Upgrading bar alone will not work either since when we upgrade it to a version greater
than 2.6 then we will get a conflict with baz in its current version. Hence, by investigat-
ing all possible cases we find that foo in version 1 is indeed outdated. The algorithms
and tools we are going to describe are capable of doing this analysis automatically.

The general problem in answering all sorts of questions about the future of a com-
ponent repository is that there are infinitely many possible futures. The typical con-
straints on repository evolutions are indeed pretty liberal: (i) both additions and re-
movals of packages are allowed; (ii) package upgrades must increase version numbers;
and (iii) packages can be organized into clusters that must be synchronized, i.e. all
packages in the cluster shall carry the same version. Common use cases of the latter
requirement are packages that stem from a single source (and hence follow the same
versioning scheme), or synchronization requirements on component versions that are
known to work well together.

Paper structure. The main contribution of this paper is a formal framework to reason
about future properties of a component repository, by only looking at a finite number
of repositories. We start in Section 2 by giving an informal overview of the proposed
approach. We formalize the notion of repositories in Section 3. In Section 4 we use
the formalization to capture the set of properties about futures that can be established
by considering a finite set of repositories. The set of futures is infinite, but we show
in Section 5 that a general class of straight properties can be checked by exploring a
finite and manageable set of futures. Section 6 discusses two quality assurance appli-
cations of the proposed formal framework: finding challenging upgrades and outdated
packages. Experiences with the two applications obtained on the Opam and Debian
distributions are presented in Section 7. Related work is discussed in Section 8.

2. Overview of our Approach

Checking properties of a repository that is defined in terms of all its possible futures
may seem an impossible task, as there are infinitely many future evolutions to consider.
Fortunately, for an interesting class of properties, it is possible to reduce the search
space to a manageable finite subset of all the futures, enabling the design of efficient
analysis algorithms.

In this section we illustrate the key ideas of our approach for the problem of check-
ing whether a package in a specific version is outated with respect to the current repos-
itory.

A central notion in the analysis of metadata is the one of an installation: an instal-
lation is a subset of a repository such that all package interrelationships are satisfied
inside that set. In particular, a package is installable if it is contained in some installa-
tion. This notion will be made precise in Section 3. Another central notion is the one
of a future of some initial repository, which is a repository with the only restriction that

5

any package in the initial repository must not be downgraded to a lower version in the
future.

We call a package p outdated if it is not installable in any future where we have
“frozen” p to its initial version. Section 4 will make this more formal, and will also
define a general class of properties to which our approach applies. One of the defining
characteristics of the properties in this class will be that they are universal quantifica-
tions over all futures of a repository. The property of package p in version v being
outdated is indeed of this form since it can be rephrased as: for any future, if it contains
p in version v than this p is not installable in this future.

Our approach consists of two main steps:

1. First we show that we may restrict the analysis to a finite, albeit still very large,
set of futures that is representative of all possible futures.

2. Then we show that this large finite set of representative futures can be folded into
only one repository, which then can be efficiently checked by an automatic tool.

Optimistic futures. The first insight is that when we upgrade packages in a repository,
that is replace them by newer versions, then we may assume for the purpose of our
analysis that these new versions behave as nicely as possible, that is they do not depend
on any other packages and do not conflict with any packages. We call such a future
optimistic. The restriction to optimistic futures is justified by the fact that if a package
is installable in some future then it is also installable in some optimistic future (since
dropping dependencies and conflicts just make installation easier); hence the package
is not installable in any future iff it is not installable in any optimistic future. This
argument will be made formal in Section 5.1.

Conservative futures. Next, we cope with the fact that when moving to a future of a
repository we may arbitrarily remove packages or introduce new packages.

Removals of packages are not relevant for us since removals can never make a
package installable: if a package is installable in some future from which we have
removed some packages then it is also installable in the same future into which we put
back the removed packages - the chosen installation just will not contain the packages
that were removed in the first place.

Addition of new packages, however, may make a package installable. This may be
the case when a package expresses a dependency on a package that is missing from the
repository. In that case, adding the missing package may solve the issue. We will show
that this is indeed the only case where adding new packages may solve an installability
issue. As a consequence, it is sufficient to look at futures where new packages are only
introduced when they are mentioned in the dependencies of some package already
present in the current repository.

This leads us to the following notion: a future F of R is conservative iff F con-
tains all packages of R, possibly in a newer version, and if F contains only packages
whose names occur in R, either as names of existing packages or in dependencies. The
restriction to conservative futures will be formally justified in Section 5.2.

6

Observational equivalence. So far we have seen that we may restrict our analysis to
futures that are both optimistic and conservative. Unfortunately there are still infinitely
many such futures since each single package may assume infinitely many different
versions in the future. However, if two different future version numbers of a package q
behave exactly the same with respect to all version constraints in dependencies and
conflicts of other packages (these exist only in the versions of packages in R since we
have already restricted ourselves to optimistic futures), then these two versions of q
are equivalent in what concerns relations to other packages. We call two such versions
of q observationally equivalent. Since R contains only finitely many packages R, and
hence only finitely many constraints of versions of q, there may exist only finitely many
different equivalence classes of versions of q. We will explain in Section 5.3 how a set
of representatives of these equivalence classes can be efficiently computed.

Folding many futures into one. By considering optimistic and conservative futures,
and only one representative per equivalence class of future versions of packages, we
get a finite set of possible futures. If we are interested in exploring only futures that
modify a single package, or a small set of packages that must evolve in lockstep, as
is the case for computing challenging packages, this reduction is enough to design an
efficient algorithm.

Computing outdated packages still requires to explore all the futures in the set, and
this poses a significant challenge: we have reduced the infinite number of futures to a
finite set, but the size of this set is astronomical. If we assume that different packages
may advance independently, and even if we have only c possible (current or future)
versions per package to consider, then we get cn many future repositories where n is
the number of packages, which in case of Debian is around 38.000.

To overcome this difficulty, we can again exploit the fact that our property is ex-
pressed as a quantification over all installations in all possible futures: we build one
big repository U that contains all representatives of future versions of packages in op-
timistic and conservative futures of R, and remark that the set of installations allowed
by U is exactly the same as the set of installations allowed by any future of R, because
installations may never contain two different versions of a same package. Hence, p in
version n is outdated if p in version n is not installable in the repository U , which con-
tains “only” c∗n many packages, so that the analysis can be performed quite efficiently
(less than a minute on a standard desktop computer—see Section 7).

Synchronized upgrades. There is one last point to consider: in reality, packages do
not evolve in isolation in package repositories since large applications are usually split
into several “synchronized” packages. For instance, LibreOffice is released as a single
software by its developers, but it gets split into about a hundred different packages (one
for each of its main applications, one for each localized version, etc.) by distribution
editors. All those packages carry the same version and the upload of new LibreOffice
releases to the repository will advance the versions of all involved packages at once.
Let us call a cluster a set of packages stemming from the same source.

The problem now, when investigating installations w.r.t. the repository U , is to weed
out installations containing packages that are in the same cluster but do not have syn-
chronized versions. This can be achieved by having each package p of future version

7

n in a cluster conflict with versions of other packages in the same cluster that are not
synchronized with n. In this way we can again fold back a constraint on the structure
of future repositories into the packages that occur in the repository U .

We will discuss some of the issues related to clustering in Section 6.

3. Packages and repositories

Several analysis proposed in previous work use a simplified model of packages and
repositories originally introduced in [10], where version constraints are expanded out.

In our work, we need to take version constraints explicitly into account, so we
introduce here a model of packages and repositories that is more refined. We will build
on it in Section 4 to capture the notion of a future of a repository.

3.1. Packages
Let N be a set of names and V be an ordered set of version numbers. We assume

that the order ≤ on the set V:

• is total, i.e. for all versions v1,v2 one has either v1 < v2 or v1 = v2 or v1 > v2;

• is dense, i.e. for any two versions v1 < v3 there exists v2 such that v1 < v2 < v3;

• and has no upper endpoint, i.e. for every v1 there exists v2 with v2 > v1.

The precise definition of package names is not important for the purpose of this work.
All packaging systems allow to decide which of any two given versions is more recent,
which translates in our setting to V being totally ordered. All packaging systems that
the authors know of allow a package maintainer to produce versions that are lexico-
graphic combinations of elements, like 27.14.1.2. In the case of Debian or Red Hat
GNU/Linux, for instance, a package maintainer might package a software that was re-
leased by its author under version 1.2, as 1.2-1 and possibly later as 1.2-2, 1.2-3 and
so on, being sure that these package versions will be smaller than anything that starts
on 1.3. The abstract property behind this is the density property required above. The
absence of upper endpoints is of course necessary to ensure that a package maintainer
will never run out of versions for new packages when he needs them.
A version constraint is a unary predicate on versions: for any v ∈ V we may write
constraints = v, 6= v, < v, > v, ≤ v, ≥ v, or no constraint at all. The set of constraints
is denoted by CON; this set also contains a special element > indicating the absence
of a version constraint. Package constraints may be used in order to refine package
dependencies like dependencies and conflicts.

We define for any constraint c ∈ CON its denotation [[c]]:

[[= v]] = {v}
[[6= v]] = {w ∈ V | w 6= v}
[[< v]] = {w ∈ V | w < v}
[[≥ v]] = {w ∈ V | w≥ v}
[[> v]] = {w ∈ V | w > v}
[[≤ v]] = {w ∈ V | w≤ v}
[[>]] = V

8

The denotation [[c]] of a constraint c is simply the set of versions that satisfy the con-
straint c. In particular, any version satisfies the empty constraint >.

Definition 1. A package p is a tuple (n,v,D,C) consisting of:

• a package name n ∈ N,

• a version v ∈ V,

• a set of dependencies D ∈P(P(N×CON)),

• a set of conflicts C ∈P(N×CON).

where we use P(X) for the set of all subsets of X . We also use the infix notation (.) to
access individual components (e.g. p.n stands for the name of package p). This notion
extends to sets of packages, e.g. R.n is the set of names of packages in the repository R.

Example 1. Figure 4 shows a set of packages in a textual representation inspired by
Debian GNU/Linux. The first package in this figure, denoted by the first three lines in
the left column, would be written in the abstract syntax of Definition 1 as

(a,1,{{(b,(≥ 2)),(d,>)}},{})

If we call this first package p and the complete set R then we have that p.n = a, and
R.v = {1,2,3,5}

The dependencies of a package indicate which packages must be installed together
with it, the conflicts which packages must not. Dependencies are represented as con-
junctive normal form (CNF) propositional logic formulae over constraints: the outer set
is interpreted as a conjunction, the elements of which are interpreted as disjunctions.
Conflicts are represented as flat lists of constraints.

Example 2. A dependency

{{(a,(> 2)),(b,(< 5))},{(c,(6= 4)),(d,(= 42))}}

is to be read as “at least one of a in a version greater than 2 or b in a version smaller
than 5, and also at least one of c in a version different from 4 or d in version 42.” A
conflict

{(e,(≤ 7)),(d,>)}

means “you must not install e in a version smaller or equal 7, and you must not install
d in any version whatsoever.” However, installing e in some version greater than 7 is
permitted.

9

Package : a Package : b Package : d

V e r s i o n : 1 V e r s i o n : 2 V e r s i o n : 3

Depends: b (>= 2) | d C o n f l i c t s : d

Package : a Package : c Package : d

V e r s i o n : 2 V e r s i o n : 3 V e r s i o n : 5

Depends: c (> 1) Depends: d (> 3)

C o n f l i c t s : d (= 5)

Figure 4: Sample (abstract) repository R, containing 6 packages. Note that packages a and d appear in
multiple versions.

3.2. Repositories and installations
A repository is a set of packages that are uniquely identified by name and version:

Definition 2. A repository is a set R of packages such that for all p,q ∈ R: if p.n = q.n
and p.v = q.v then p = q. A repository R also comes with an equivalence relation ∼R
on the set R.n of package names, called its synchronization relation that tells which
packages shall carry the same version in the repository.

By abuse of notation we will write p∼R q when p.n∼R q.n. Common examples of the
synchronization relation are equality (i.e. no synchronization at all) and the relation that
has as equivalence classes the names of packages stemming from the same source. For
the sake of conciseness, we will also refer to packages using couples (name,version)
(instead of full tuples) when doing so does not lead to ambiguities. Note that it is
always safe to do so in the context of a single repository because name and version
together uniquely identify packages.

Example 3. Figure 4 shows a set of packages in a textual representation inspired by
Debian GNU/Linux. Note that there are two packages with name a; the set is indeed a
repository since these two packages are distinguished by different versions.

An installation is a consistent set of packages, that is a set of packages satisfying
abundance (every package in the installation has its dependencies satisfied) and peace
(no two packages in the installation are in conflict). Formally:

Definition 3. Let R be a repository. An R-installation I is a subset I ⊆ R such that for
every p ∈ I the following properties hold:

abundance For each element d ∈ p.D there exists (n,c) ∈ d and a package q ∈ I such
that q.n = n and q.v ∈ [[c]].

peace For each (n,c) ∈ p.C and package q ∈ I, if q.n = n then q.v 6∈ [[c]].

We write Inst(R) for the set of all R-installations. We say that a package p is installable
in a repository R if there exists an R-installation I such that p ∈ I.

Example 4 (R-installations). We illustrate this definition at hand of the repository R
of Figure 4:

10

• {(a,1),(c,3)} is not an R-installation due to the lack of abundance (the depen-
dencies of (a,1) is not satisfied, nor is the dependency of (c,3));

• {(a,2),(c,3),(d,5)} is not an R-installation either due to the lack of peace (there
is a conflict between (c,3) and (d,5);

• {(a,1),(b,2)} and {(a,1),(d,5)} are both R-installations;

• the package (a,1) is installable in R, because (a,1) ∈ {(a,1),(d,5)};

• the package (a,2) is not installable in R, because: (i) any R-installation contain-
ing (a,2) must also contain (c,3), (ii) any R-installation containing (c,3) must
also contain (d,5), and (iii) this destroys the peace as (c,3) and (d,5) are in
conflict. �

Some packaging systems (such as Debian’s) have an additional implicit flatness condi-
tion on installations: one cannot install at the same time two different versions of the
same package. In Example 4 above, the repository R in itself is not an R-installation
because, among other reasons, flatness is violated by the presence of a and d in multi-
ple versions. Although not explicitly supported, flatness can be easily encoded in our
model by adding conflicts between packages of same name and different version.

Checking package installability is an NP-Complete problem, although modern SAT-
Solvers can easily solve real instances of it [10].

Definition 4. Let P be a set of packages. We define dep(P) :=
⋃

p∈P
⋃

d∈p.D d, and
depnames(P) := {n|(n,c) ∈ dep(P)}.

That is, dep(P) is the set of all pairs of names and constraints occurring in dependencies
in P, and depnames(P) its projection to names. We abbreviate dep({p}) to dep(p).

Example 5. Continuing with the example repository R of Figure 4 we have that

dep(R) = {(b,(≥ 2)),(d,>),(c,(> 1)),(d,(> 3))}
depnames(R) = {b,c,d}

A repository is synchronized if packages that have to be synchronized (according to
∼R) share the same version number. Notice that a synchronized repository may contain
only one version for any package name since the synchronization relation ∼R , being
an equivalence relation, satisfies that p∼R p for every package p ∈ R.

Definition 5. A cluster of a repository R is an equivalence class w.r.t. the synchro-
nization relation ∼R. A repository R is synchronized if all packages belonging to
the same cluster have the same version. We write cluster(p) to denote the packages
{r ∈ R|r ∼R p} which are synchronized with p.

Example 6. The repository of Figure 4 is not synchronized for any choice of∼R since
any synchronized repository must be flat, as we have observed above, and R isn’t since
it contains two different packages with name a, and also two different packages with
name d. In case that a∼R b, the repository becomes synchronized when we drop (a,1)
and (d,5).

11

Package : a Package : c Package : d

V e r s i o n : 2 V e r s i o n : 3 V e r s i o n : 6

Depends: c (> 1) Depends: d (> 3)

C o n f l i c t s : d (= 5)

Figure 5: A future of the repository of Figure 4.

4. Repositories and Their Futures

4.1. Futures
We now formalize the notion of possible future states of a component repository,

or futures for short.
Real world component repositories evolve via modifications of the set of packages

they contain such as package additions, removals, and upgrades. All component mod-
els impose some restrictions on how repositories may evolve; we consider three very
common restrictions:

1. Name and version uniquely identify packages. It is not possible to have in a
future two packages with the same name and version, but otherwise different
metadata.

2. If a package with the same name of an existing package is introduced, then its
version must be greater than the one of the existing package. In this case we say
that the existing package is being upgraded.

3. Futures must be synchronized, that is, all packages belonging to a same cluster
must evolve together.

Note that the only way to change package metadata is via an upgrade to a newer ver-
sion. The above restrictions on repository evolution are captured by the following
definition:

Definition 6. A repository F is a future of a repository R, written F ∈ futures(R), if
the following properties hold:

uniqueness R∪F is a repository; this ensures that if F contains a package p with same
version and name as a package q already present in R, then p = q;

monotonicity For all p ∈ R and q ∈ F : if p.n = q.n then p.v≤ q.v;

synchronization F is synchronized (w.r.t. the synchronization relation ∼R).

Note that R ∈ futures(R), and that uniqueness implies that name and version to-
gether uniquely identify packages. We require the future to be synchronized w.r.t. the
original relation ∼R, that is, packages are not allowed to migrate from one cluster to
another.

Example 7. The repository F shown in Figure 5 is a future of the repository R of Fig-
ure 4 in case the synchronization relation ∼R is simply equality of names. Uniqueness
is satisfied since the two packages (a,2) and (c,3) are the same in R and in F , and the

12

Package : white Package : green

V e r s i o n : 2.1 V e r s i o n : 5.2

Source : nocolor Source : color

Depends: black

C o n f l i c t s : red (> 5.2)

Package : black Package : red

V e r s i o n : 2.1 V e r s i o n : 5.2

Source : nocolor Source : color

Depends: green (> 5.2), red

Figure 6: {white,black} and {green,red} are clusters

package (d,6) does not exist in R. Monotonicity is satisfied since the only package in
F that is not also in R is (d,6), and 6 is greater than the two versions of packages with
name d in R. Synchronization is trivial in our case. Note that F contains no package of
name c, contrary to the repository R, which is perfectly allowed.

4.2. Outdated and Challenging Packages

We now formally define the notions of outdated and challenging packages that are
the motivating examples of our work.

Definition 7. Let R be a repository. A package p ∈ R is outdated in R if p is not
installable in any future F of R.

In other words p is outdated in R if it is not installable (since R ∈ futures(R)) and
if it has to be upgraded to make it ever installable again. This means that p cannot be
made installable by “fixing” some of its dependencies — the only way of solving the
issue is upgrading p itself to a newer version.

Example 8. We have seen in Section 1 an example of a package being outdated,
namely package (foo,1) in the repository of Figure 3. In the example of the reposi-
tory in Figure 4, the package (a,2) is not installable as we have seen in Example 4, it is
however not outdated as it is installable in the future shown in Figure 5.

Example 9. Figure 6 shows an example involving non-trivial clustering. In this tex-
tual representation, clusters are formed by packages with the same value of the Source
field, that is white∼black and green∼red. First, package white is currently not
installable since any installation of it requires black, which in its current version re-
quires a version of green that does not yet exist. If we ignored clustering then upgrad-
ing black to a newer version without any dependencies would solve the issue, that is
white in version 2.1 would not be outdated. In the presence of clustering as shown,
however, we find that that black and white form one cluster, as do red and green.
Due to the Synchronization condition it becomes impossible to install at the same time
different versions of black and white, or different versions of red and green. Hence,

13

any installation of white in version 2.1 also requires black in version 2.1, which in
turn requires green in a future version, and also red a fortiori in a future version,
which conflicts with white. Hence, when taking clustering into account, we find that
white in version 2.1 is outdated.

Definition 8. Let R be a repository, p,q ∈ R, and q installable in R. The pair (p.n,v),
where v > p.v, challenges q if q is not installable in any future F which is obtained by
upgrading to version v all packages in cluster(p) in R.

Intuitively (p.n,v) challenges q, when upgrading p and its cluster to a new version
v without touching any other package makes q not installable. The interest of this prop-
erty is that it permits to pinpoint critical future upgrades that challenge many packages
and that might therefore need special attention before being pushed to the repository.

4.3. Abstract properties of repositories
The properties outdated and challenging have in common the fact that they are

defined in terms of installability w.r.t. some future of R. More generally, the two prop-
erties are instances of a more general class of straight properties of a repository. We
will obtain the definition of straight properties in three steps:

1. We first characterize a class of R-focused properties of package sets (e.g., instal-
lations) that can be established by only looking at the packages whose names
already exist in the original repository R (Definition 10).

2. We characterize a class of R-safe properties of futures of R that can be described
by saying that all installations allowed in the future have some R-focused prop-
erty (Definition 11).

3. Finally, we arrive at the characterization of straight properties of repositories that
hold when all its futures satisfy some R-safe property (Definition 12).

Definition 9. Let R,P be two sets of packages. The R-focus of P is

πR(P) := {(p.n, p.v)) | p ∈ P, p.n ∈ R.n}

Informally, πR(P) consists of the pairs (n,v) of package name and version such that
a package p with that name and version appears in P, restricted to package names that
are defined in R. In particular, πR(R) is the set of all the pairs (n,v) of package name
and version that can be found in packages of R.

Example 10. Continuing Example 7, we see that πR(F) = {(a,2),(c,3),(d,6)}, that
is the focus contains indeed all the packages of F , since all names of packages in F
also occur in R.

Definition 10. A property φ of package sets is called R-focused if for all package sets
P1 and P2 (not necessarily subsets of R)

πR(P1) = πR(P2) implies φ(P1) = φ(P2)

A property φ of package sets is downward-closed if P1 ⊆ P2 and φ(P2) implies φ(P1).

14

Example 11. We take again the repository R from Figure 4, and consider different
properties of a package set P:

• “P contains (a,2)”: this property is R-focused (since it can be expressed as
(a,2) ∈ πR(P)) but is not downward closed as R itself satisfies this property,
but the empty set does not.

• “P does not contain (a,2)” is R-focused for the same reason as in the first exam-
ple, and is downward closed: if (a,2) 6∈ πR(P2) and P1 ⊆ P2 then (a,2) 6∈ πR(P1).

• “P does not contain a package with name xyz”: note that xyz is not the name of
a package in R, and as a consequence it can be easily seen that this property is
not R-focused. It, is, however, downward-closed.

• “P has an even number of elements” is neither R-focused, nor downward-closed.

It is easy to see that the set of R-focused properties is closed under boolean combi-
nation.

A property of futures of R is R-safe if it can be expressed in terms of an R-focused
property:

Definition 11. Let R be a repository. A property ψR of futures of R is called R-safe if
there is an R-focused property φ s.t. for all futures F of R:

ψR(F)⇔ for all F-installations I: φ(I)

Example 12. The property “p is not installable in F”, where p ∈ R, is R-safe , since
it is equivalent to the fact that any F-installation does not contain p, which is an R-
focused property as we have seen (since p ∈ R).

An interesting property of R-safe predicates is that they are closed under conjunctions.

Finally, a property of a repository R is called straight if it is the closure of an R-safe
property of futures of R.

Definition 12. Let R be a repository. A property Ψ of R is called straight if there is an
R-safe property ψR of futures of R such that

Ψ(R)⇔∀F ∈ futures(R).ψR(F)

Example 13. A property stating that a fixed package q is outdated in a repository R is
a straight property of repositories R since

Ψq outdated(R) = ∀F ∈ futures(R).∀I ∈ Inst(F).(q.n,q.v) 6∈ πR(I)

However, it is not so obvious that this holds also for challenged packages: indeed,
(p,v) challenges q in R can be naturally written as follows

∀F ∈ futures(R).(
(p.n,v) ∈ πR(F)∧ (∀n′ 6= p.n.(n′,v′) ∈ πR(F)→ (n′,v′) ∈ πR(R))

)
→ ∀I ∈ Inst(F).(q.n,q.v) 6∈ πR(I)

15

and this formula has the shape ∀F.φ1(F)→∀I.φ2(I), which is not the shape of a straight
property.

For downward closed properties, though, the following result holds:

Lemma 1. Let φ1,φ2 be properties of package sets, and φ1 be downward-closed. Then
the following two statements are equivalent:

1. ∀F ∈ futures(R) :
(
φ1(F)→∀I ∈ Inst(F) : φ2(I)

)
2. ∀F ∈ futures(R), ∀I ∈ Inst(F) : (φ1(I)→ φ2(I))

PROOF. Observe that futures are closed under subset, that is if I ⊆ F ∈ futures(R) then
I ∈ futures(R).

First we show that (1) implies (2). Let F ∈ futures(R), I ∈ Inst(F), and let φ1(I) be
true. As we have seen, I ∈ futures(R), so we may apply (1) by choosing I as the value
of F , and obtain that φ2(I) is true.

To show that (2) implies (1) let F ∈ futures(R), φ1(F) be true, and I ∈ Inst(F).
Since φ1 is downward closed we also have that φ1(I) is true, and we conclude by (2)
that φ2(I) holds. �

In other words, we can under certain circumstances fold restrictions on futures into
restrictions on installations, and in particular we can reformulate (p,v) challenges q in
R as ∀F ∈ futures(R).∀I ∈ Inst(F).φchalleng.(I) where

φchalleng.(I) =
(
(p.n,v) ∈ πR(I)
∧(∀n′ 6= p.n.(n′,v′) ∈ πR(I)→ (n′,v′) ∈ πR(R))

)
→ (q.n,q.v) 6∈ πR(I)

and hence challenged is a straight property, too.
As a consequence, both the property stating that a package p is outdated in R and

the property stating that a pair (p,v) challenges a package q in R are straight predicates,
and we will write them Ψoutdated , resp. Ψchalleng..

The interest of straight properties will become apparent in the next section, where
we show that to check straight properties of a repository R it is enough to consider
futures containing the same package names as R: the set of features in these futures
does not deviate from the one in R, only their version can, hence the name straight.

5. Controlling the future

In this section we show that we can compute a finite set of futures of a given repos-
itory, such that all straight properties can be verified by only looking at this set. We
proceed by iteratively narrowing down the set of futures to consider, following the
approach described in Section 2.

16

5.1. Optimistic futures
As a first step we show that it is sufficient to consider futures where all new versions

of packages have no dependencies and no conflicts.
We may make this assumption since the property we are interested in talks about all

possible installations that are allowed by all possible future repositories. For instance,
a package p in version n is outdated if for any installation set I that is allowed in any
possible future of R, the set I does not contain package p in version n. Our assumption
is hence justified by the fact that any installation allowed in any future F is also an
installation allowed in some optimistic future, namely the one obtained from F by
dropping all dependencies and conflicts from all new versions of packages in F .

Definition 13. Let p be a package. We define a blank package ω(p) that has the same
package name and version as p, but no dependencies and conflicts:

ω(p) = (p.n, p.v, /0, /0)

Note that a blank package is always installable by definition, since in any installa-
tion a blank package is always abundant and peaceful. Blank packages are an extreme
case the future where all constraints associated to a package disappear.

We can now build an optimistic vision of the future.

Definition 14. Let F be a future of R, and S⊆ F . The blanking of S is:

ωR(S) = (S∩R)∪{ω(p) | p ∈ S\R}

Blanking a set S corresponds to blanking out all packages in S that are not in R.
Obviously, when F ∈ futures(R) then also ωR(F) ∈ futures(R).

Definition 15. A repository F is an optimistic future of a repository R iff F is a future
of R, F = ωR(F), and if for every package p ∈ F with p.n 6∈ R.n the cluster of p is a
singleton set.

In an optimistic future of R all packages that are not in R are hassle-free: they have
no dependencies, no conflicts, and they do not impose any synchronization constraint.
A simple kind of optimistic future can be obtained by replacing a package by a blank
package with a newer version:

Definition 16. Given a repository R and a set P = {p1, ..., pn} ⊆ R, we write R[P 7→ v]
for the repository obtained from R by replacing each package pi ∈ P with a blank
package (pi.n,v, /0, /0). When v > pi.v for each i, this is called a blank upgrade.

Lemma 2. Let R be a repository, F ∈ futures(R), and I an F-installation. Then, ωR(I)
is an ωR(F)-installation, and the packages in I and ωR(I)∩R have the same name and
version.

PROOF. The blanking operation does not change version names, so the packages in
I and ωR(I)∩R have the same name and version. Furthermore ωR(I) is an ωR(F)-
installation since for every package p ∈ ωR(I) there exists a package q ∈ I with p.D⊆
q.D and p.C ⊆ q.C : Since peace and abundance are satisfied for q in I they are also
satisfied for p in ωR(I). �

17

5.2. Conservative futures

As a second step of our reduction we address the fact that when moving from a
repository to one of its futures we may drop packages, that is a future may not contain
a package with a certain that existed in the original repository, or we may add new
packages, that is a future may contain a package with a name that did not exist in the
original repository.

One sees easily that we may ignore package removals from R since every instal-
lation I w.r.t. a future F of R in which we removed a set of packages D is also an in-
stallation w.r.t. F ∪D: If I ⊆ F then, obviously, I ⊆ F ∪D. In other words, by looking
only at future repositories where we do not have removed packages we cover already
all possibles installations w.r.t. all possible futures. This is one part of the argument
behind Lemma 3

Restricting the introduction of new packages, however, is less immediate as intro-
duction of new packages into R may indeed make a package p installable that was
not installable before—for instance, if p depends on some package q that was missing
from R. The second part of the argument behind Lemma ?? below is that the only
new packages that are essential for checking straight properties are packages whose
name was mentioned in the dependencies of package p. Hence, it is sufficient to look
only at futures where we possibly introduce new packages that are mentioned in the
dependencies of p.

Definition 17. F ∈ futures(R) is a conservative future of R if F.n=R.n∪depnames(R).

Lemma 3. Let R be a repository, F ∈ futures(R), and I ∈ Inst(F). There exists an
optimistic and conservative future G of R and J ∈ Inst(G) such that φ(I) = φ(J) for
any R-focused property φ .

PROOF. It is enough to build a future G of R and an installation J of G that has the
same R-focus as I.
By Lemma 2, ωR(I) is an ωR(F)-installation with πR(I) = πR(ωR(I)), and ωR(F) is
optimistic. We can then construct a future G of R by blanking all packages of F , and
adding back all packages of R that may be missing in F ; formally

G = {p ∈ ωR(F) | p.n ∈ R.n∪depnames(R)}
∪ {p ∈ R | p.n 6∈ F.n}

By construction, G is an optimistic and conservative future of R. Let J = {p ∈ ωR(I) |
p.n ∈ R.n∪depnames(R)} Obviously, πR(I) = πR(J).

It remains to show that J is an installation.
Since J ⊆ ωR(I) and since ωR(I) is in peace, J is in peace, too. Let p ∈ J. If p ∈ R

then let d ∈ p.D, (n,c) ∈ d, and q ∈ ωR(I) such that q.n = n and q.v ∈ [[c]]. Hence,
we have that q.n ∈ depnames(R), and consequently that q ∈ J. This means that the
dependencies of p are also satisfied in J. If p 6∈ R then p is a blank package, and hence
has no dependencies. �

18

Proving straight properties. We can now prove the fundamental result that straight
properties can be verified by looking only at optimistic and conservative futures:

Theorem 4. Let R be a repository, and ψ a straight property of repositories. Then ψ

holds for all futures of R iff it holds for all optimistic and conservative futures of R.

PROOF. If ψ holds for all futures of R then it also holds in particular for all optimistic
and conservative futures. The inverse direction follows immediately from Lemma 3.
�

Note that the result would not hold without the restriction to R-focused properties.
For instance, if φ(I) is the property “I does not contain package foo,” where foo 6∈R.n,
then φ holds for all installations in conservative futures, but not in all futures. Also,
the property “each package not originally in R has no conflicts” holds in installations
of optimistic futures, but not in all futures.

5.3. Observational equivalence
We have shown that we can restrict our search, without loss of generality, to conser-

vative futures of a repository R: conservative and optimistic futures alone represent, for
our purpose, all possible futures. But there is still one important obstacle: the number
of possible future versions to examine is potentially infinite. The key observation to
solve this problem is that abundance and peace only depend on the satisfiability of ver-
sion constraints—a boolean judgement—and not on the particular versions that make
such valuations hold.

Definition 18. Let n∈N and v,w∈V. The pairs (n,v) and (n,w) are R-observationally
equivalent, noted (n,v)' (n,w), when for all packages p ∈ R and all (n,c) ∈ dep(p)∪
p.C we have that v ∈ [[c]] iff w ∈ [[c]].

Example 14. Going back to the repository R of Figure 4 we find that the pairs (d,6)
and (d,7) are observationally equivalent since both 6 and 7 satisfy the constraint > 3,
and both do not satisfy the constraint = 5. However, the pairs (c,1) and (c,2) are not
observationally equivalent since 1 does not satisfy the constraint > 1, while 2 does.

This definition can be used directly to check equivalence of two versions v and w
of a package p: just collect all constraints mentioning p in R, which form a finite set,
and evaluate them on v and w; the two versions are equivalent iff the valuations agree.
Since an equivalence class of versions of p is uniquely determined by the value of the
finite set of constraints mentioning p, it is easy to prove the following.

Lemma 5. For any repository R, and any package name n, there is a finite set of
equivalence classes of versions of n in R.

In our algorithms, we use representatives of these finite equivalence classes, that
we call discriminants of p.

Definition 19. For any package p such that p.n∈ depnames(R)∪R.n we call discrimi-
nants of p any set of representatives of the equivalence classes of the versions of p that
may appear in a future of R with respect to '.

19

Algorithm 1 Computing discriminants
function DISCRIMINANTS(S : package set,R : repository)

C←{all constraints in R mentioning a package name in S}
V ←{all versions appearing in C}
D←{}
E←{}
for all v ∈ interpolate(V) (in descending order) do

valuation← map(fun c→ v ∈ [[c]],C)
if valuation 6∈ E then

D← D∪{v}
E← E ∪{valuation}

end if
end for
return D

end function

Algorithm 1 describes the method used in our tools, and we show how it works on a
simple example. Notice though that there are many ways of picking one representative
out of each equivalence class, so our algorithm is not the only possible one.

Example 15 (discriminants). We start from the set of versions V of a package p with
name n mentioned in the repository R. For instance, suppose we have version 3.1 of
a package with name n, and there are dependencies on n with constraints = 5.0 and
≥ 9.1 in the repository. Then V = {3.1,5.0,9.1}.

As a first step, we add to V one intermediate version between any two successive
versions in V , plus one version bigger than all and one version smaller than all: since
the version space is dense, we can always do this, and the choice of the intermediate
version is arbitrary. On our example, we can get a sequence V ′= {2,3.1,4,5.0,7,9.1,10}.

Then we need to trim our sequence by removing versions that cannot appear in a
future: if the package p is not present in R, there is nothing to do, but if p is present
with a given version, as is our case, we need to remove all versions smaller or equal
than the current one, 3.1, as a future can only contain upgrades. On our example, this
leads to V ′′ = {4,5.0,7,9.1,10}. All these steps leading from V to V ′′ are performed
by the function interpolate(V) used in Algorithm 1.

Finally, we evaluate the constraints = 5.0 and≥ 9.1 on each version in interpolate(V),
and discover that (n,4) ' (n,7) as both 4 and 7 falsify = 5.0 and ≥ 9.1; we also find
(n,9.1) ' (n,10) as 9.1 and 10 both falsify = 5.0 and satisfy ≥ 9.1. This test is done
by mapping over all constraints c ∈C a function that checks whether v satisfies c (that
is v ∈ [[c]]). Hence, we end up with the discriminants {4,5.0,10} (see also Table 1).

When performing upgrades of clusters of packages, to upgrade them in a synchro-
nized way, we need to take discriminants not of a package, but of a set of packages S.
The notion of discriminant extends naturally to sets of packages, and Algorithm 1 com-
putes them by checking all possible valuations of the constraints mentioning a package
in the set S and picking a representative version for each of them.

Version equivalence can be extended to repositories.

20

4 5.0 7 9.1 10
= 5.0 f t f f f
≥ 9.1 f f f t t

Table 1: Evolution of constraints on version numbers in Example 15. The versions 4 and 7 are observation-
ally equivalent as their columns contain exactly the same truth values, as are 9.1 and 10.

Definition 20. Let F , G be optimistic and conservative futures of R. Then F and G are
R-observational equivalent, noted F ' G, when for all (n,v) ∈ F and (n,w) ∈ G one
has that (n,v)' (n,w).

The interest of this equivalence is that the properties we are interested in cannot dis-
tinguish equivalent repositories, so it is enough to check them only on a representative
of each equivalence class.

Theorem 6. Let F,G ∈ futures(R), and ψ an R-safe predicate. If F ' G then ψ(F) =
ψ(G).

The upshot of these theoretical considerations for the quality assurance applications
we are interested in is:

• Challenging upgrades. To find the packages challenged by future versions of a
package p, it is enough to examine the optimistic and conservative futures of the
repository obtained by replacing p with a blank package for p with one of the
versions in the discriminants of p.

• Outdated packages. To check for outdated packages in a repository R, it is
enough to examine for all packages p ∈ R all optimistic and conservative futures
of R, obtained by replacing some number of packages different from p by their
futures. Furthermore, it is enough to consider for these futures of packages p′

only versions that are discriminants of p′ in R.

6. Applications

The theoretical results we have obtained lead to efficient algorithms to compute
challenging upgrades and outdated packages, that we detail in this section.

6.1. Challenging upgrades

We can collect information about all the upgrades of a repository R in a single data
structure, called a prediction map. Intuitively that is a function that associates to each
cluster C of packages, and each relevant future version v of the packages it contains,
the set of packages that will surely become not installable by upgrading the cluster C
to version v, no matter the actual dependency and conflicts.

21

Algorithm 2 Computing prediction maps
PM← []
for all C ∈ Clusters(R), at version cv do

for all v ∈ Discriminants(C,R) with v > cv do
F = R[C 7→ v]
for all q ∈ R do

if ¬checkinstall(F,q) then
PM[(C,cv)]← PM[(C,cv)]∪{q}

end if
end for

end for
end for
return PM

Definition 21. The prediction map of a repository R is a function PM that maps every
cluster C⊆R of synchronized packages, at version cv, and each version v∈Discriminants(C,R)
with v > cv, to the set of all packages Q ⊆ R \C that are not installable in the future
F = R[C 7→ v].

The prediction map for a repository R can be computed using Algorithm 2, which
calls the function checkinstall(F,q) that uses a SAT solver to return true if the package
q is installable in the repository F or false otherwise.

Notice that the discriminants are computed taking into account all the packages in
the cluster C, and that the future F is the result of upgrading all packages in the cluster
C to the same discriminant version v.

The algorithm needs to check for all not installable packages in all futures F . That
can lead to a worst case scenario of nc ·nv ·np SAT solver calls, where nc is the number
of clusters in the repository, nv the maximum number of discriminants of a cluster,
and np the number of packages in the repository. Notice, however, that the size of the
discriminants of a cluster is usually smaller than the sum of the size of the discriminants
of the packages it contains, as many discriminants may be shared.

We have implemented the above algorithm to experiment on real world repositories
(see Section 7).

Optimizing for singleton clusters. In the tools that we have built to implement our
approach, there are several important optimizations that make their use feasible.

The first one uses the notions of strong dependency and impact set defined in [12]
that we recall here.

Definition 22 (Strong dependency). Given a repository R, we say that a package p in
R strongly depends on a package q, written p⇒ q, if p is installable in R and every
installation of R containing p also contains q.

Intuitively, p strongly depends on q with respect to R if it is not possible to install
p without also installing q. Strong dependencies have been used [12] to propose the

22

Algorithm 3 Computing the prediction map: case of singleton clusters.
PM← []
for all (p,v) ∈U do

for all vi ∈ Discriminants(p) do
for all q ∈ IS(p) do

U [p,v 7→ dummy(p,vi)]
if ¬check(U ′,q) then

PM[(p,vi)]← PM[(p,vi)]∪{q}
end if

end for
end for

end forreturn PM

impact set of p as a first approximation of the packages that may be affected by an
upgrade of a package p.

Definition 23 (Impact set of a component). Given a repository R and a package p in
R, the impact set of p in R is the set Is(p) = {q ∈ R | q⇒ p}.

The impact set of p with respect to R is the set of packages of R that it is not
possible to install without also installing p, so changing p may have an impact on all
the packages contained in its impact set.

Using the algorithms presented in [12], it is possible to pre-compute the impact sets
of a large distribution like Debian in just a few minutes on a standard laptop. This is
quite useful, because of the following

Proposition 1. Let q be a package in an R-installation for a repository R. Suppose
that for a version v ∈ V , (n ,= v) ∈ q.D. Let p ∈ R such that (p.n, p.v) = (n,v).
If p ∈ SD(q), then for any future F such that p /∈ F, we have that q /∈ I for any F-
installations.

PROOF. Assume that there exists an installation I for a future F of R such that q ∈ I
and p /∈ F . Since q ∈ I then the installation of q must be abundant. In particular since
p ∈ SD(q), then p must be in I. But this is impossible since I ⊆ F and p /∈ F . �

This means that if q is installable in R, but breaks in an updated repository R[P 7→ v],
then q really needs p with version p.v to be installed in R, so q strongly depends on p
and belongs to the impact set of p. So, for clusters containing only one package, we
can use the modified Algorithm 3.

In practice this optimization is extremely effective since impact sets are small, can
be computed in a few minutes, and many clusters contain only one package.

Further optimizations. In case that two versions v and w of a package p are present in
the universe U , we know that every transition from v to w of p breaks all the impact set
of (p,v), without computing anything.

23

Proposition 2. Let (p,v), (p,w) and (q,z) in U. If (q,z) implies (p,v) then (q,z) is
not installable when (p,w) replaces (p,v).

PROOF. Assume that (p,w) replaces (p,v) and (q,z) is installable. Then the installa-
tion of (q,z) is abundant. In particular, since (q,z) implies (p,v), the dependency on
(p,v) must be satisfied. This is impossible since (p,v) is no longer in U . �

We also remark that

Proposition 3. A blank package is always installable

PROOF. By construction a blank package has no dependencies nor conflicts. �

In particular, if a package in the impact set of p is a blank package, it is always
installable.

And finally, we can skip packages that are not mentioned in any version constraint.

Proposition 4. Given a package (p,vi) in U if the list of the constraints of p is empty,
the prediction map of (p,v j) is empty for any j.

On top of all these optimizations, we remark that the prediction algorithm is highly
parallelizable: each future can be checked independently of the others, and indeed our
implementation allows to take advantage of a multicore machine to significantly speed
up the overall computation.

6.2. Outdated packages
As discussed in Section 2, it is not feasible to find outdated packages by checking,

for every package p∈R, whether p is not installable in each conservative and optimistic
future of R where packages other than p have been upgraded to a blank package, even
when only considering the discriminant versions.

The key idea to an efficient algorithm is then that we can fold all the relevant futures
together in one large set U of packages. In case all clusters have size 1 this is trivial to
achieve:

U = {p}∪{(q.n,v, /0, /0 | q ∈ R,q 6= p,v ∈ Discriminants(q)}

The set of all U-installations is exactly the union of all F-installations over all conser-
vative and optimistic futures of R. Hence, package p is installable in some future of R
iff it is installable in U .

In case of non-trivial clusters this is not sufficient since the big universe U allows
for installations that are not synchronized. This can be avoided by adding additional
constraints to blank packages that forbid to install a package together with a package
from the same cluster but a different version. This is done by first constructing U as
above, and then applying the following synchronization:

synch(U) = {(cluster(p), p.v, /0,{(cluster(p), 6= p.v)} | p ∈U}
∪ {(p.n, p.v, p.D∪{cluster(p),= p.v}, p.C) | p ∈U}

24

Algorithm 4 Computing outdated packages
OutDatedPackages← []
U ← R
for all p ∈ R do

for all v ∈ Discriminants(q)\ p.v do
U ←U [p 7→ v]

end for
end for
for all p ∈ R do

if ¬checkinstall(synch(U), p) then
OutDatedPackages← OutDatedPackages∪{p}

end if
end for
return OutDatedPackages

Dummy packages for clusters are always installable since they have no dependen-
cies, however, at most one version of a cluster package can be installed at a time due
to its conflict with other versions. Furthermore, all packages p in R are amended by
adding to p an additional dependency on its cluster package, with a version that is equal
to the version of p. Since installation of any package with version v entails installation
of the cluster package with version v, and since it is not possible to install two clus-
ter packages with the same name and different version, a synch(U)-installation cannot
contain two packages that are in the same cluster but have different version. This leads
to our final Algorithm 4.

6.3. Implementing Clustering

Whether two packages stem from the same source can be easily detected since the
source package name is usually part of package metadata. However, even if packages
from the same source do advance together, we do not necessarily know what exactly
the version numbers of future versions of packages will be, as the version numbers of
packages may diverge from the version of the source package (e.g. due to distribution
specific changes).

We hence make two hypotheses here: packages do not change their adherence to a
source package (in reality, this is possible but very rare), and furthermore we assume
that if we can detect a similarity between the current version numbers of two packages
stemming from the same source, then the same similarity will hold for future updates.

7. Experimental evaluation

We have implemented the algorithms presented in the previous section in a suite
of tools that find challenging upgrades and outdated packages in component reposi-
tories. We have performed an extensive experimental evaluation of the tools on the
Debian distribution, one of the largest known software repositories, and on the Opam

25

repository, a component repository for the OCaml programming language. All our ex-
periments have been performed on a commodity 2.4GHz quad-core desktop computer
running Debian.

7.1. Debian
In Debian, packages built from the same source are upgraded together due to the

fact that the process of uploading new (versions of) packages to the repository is based
on uploading (or recompiling) source packages. Clusters stemming from source pack-
ages can be quite large: the cluster corresponding to gcc-4.3 contains 44 different
packages including libgcc1 and gcc-4.3-base.

Finding challenging upgrades on the entire development version of the Debian dis-
tribution takes about 20 minutes, with a parallel version of Algorithm 2 that uses the
Parmap library [13] to analyze different chunks of the repository independently. Find-
ing outdated packages on the same repository takes about 30 seconds, so we did not
feel the need to parallelize the algorithm in that case.

Since we aimed at seeing our tools incorporated in the routine quality assurance
processes of the Debian distribution, we had to make them robust by taking into account
practical details such as the fact that packages built from the same source may adopt
slightly different versioning schemes. In particular, we had to implement heuristics to
detect version synchronization in spite of versioning scheme differences. As opposed
to the rest of this work, these heuristics are quite specific to Debian, therefore we do
not discuss them here any further, but their implementation can be found in our tools.

7.1.1. Challenging upgrades
We run our algorithm to detect challenging upgrades on the 5.0 “Lenny” Debian

release that contains 22.314 packages. Table 2 shows the top 25 challenging cluster
upgrades sorted by the number of packages that would become not installable due to
the upgrade.

Discussion. These results reveal some interesting facts. Not all cluster upgrades break
the same number of components: for example, upgrading the cluster python-defaults
to a version strictly greater than 2.6 and strictly smaller than 3 will break 1.075 pack-
ages, moving to version 3 or later breaks 1.079 packages. There are cases where
problems will arise only after a while: for python-defaults upgrades are danger-
ous only starting with version 2.6, and ghc6 will be problematic only when upgrading
to versions higher than 6.8.2dfsg1-999. These critical version changes roughly cor-
respond to changes in the ABI of the Python interpreter.

It may seem surprising that complex cluster structures as gnome or kde do not
appear in the table. In practice these systems are often assembled from highly inter-
dependent components that evolve together and that are connected by a tight depen-
dency structure: upgrading all packages of these clusters together will not break the
in-cluster dependency structure and therefore will not cause problems.

The results of our analysis can be checked independently by changing in a Debian
Packages package archive index the version of all packages of a cluster to a version
in the target version column, and then running the dose-distcheck [14] tool on the
resulting repository to find the not installable packages.

26

Table 2: Top 25 challenging upgrades in Debian (clustered)
Source Version Target version Breaks
python-defaults 2.5.2-3 ≥ 3 1079
python-defaults 2.5.2-3 2.6 ≤ . < 3 1075
e2fsprogs 1.41.3-1 any 139
ghc6 6.8.2dfsg1-1 ≥ 6.8.2+ 136
libio-compress-base-perl 2.012-1 ≥ 2.012. 80
libcompress-raw-zlib-perl 2.012-1 ≥ 2.012. 80
libio-compress-zlib-perl 2.012-1 ≥ 2.012. 79
icedove 2.0.0.19-1 > 2.1-0 78
iceweasel 3.0.6-1 > 3.1 70
haskell-mtl 1.1.0.0-2 ≥ 1.1.0.0+ 48
sip4-qt3 4.7.6-1 > 4.8 47
ghc6 6.8.2dfsg1-1 6.8.2dfsg1+ ≤ . < 6.8.2+ 36
haskell-parsec 2.1.0.0-2 ≥ 2.1.0.0+ 29
haskell-parsec 2.1.0.0-2 2.1.0.0-2 < . < 2.1.0.0+ 26
sip4-qt3 4.7.6-1 4.8 25
haskell-network 2.1.0.0-2 ≥ 2.1.0.0+ 22
ghc6 6.8.2dfsg1-1 < 6.8.2dfsg1-1 22
pidgin 2.4.3-4 ≥ 3.0 20
ghc6 6.8.2dfsg1-1 6.8.2dfsg1-999 ≤ . < 6.8.2dfsg1+ 20
pcre3 7.6-2.1 ≥ 7.8 17
haskell-regex-base 0.93.1-3 ≥ 0.93.1+ 16
haskell-regex-posix 0.93.1-1 ≥ 0.93.1+ 14
haskell-time 1.1.2.0-2 ≥ 1.1.2.0+ 13
haskell-quickcheck 1.1.0.0-2 ≥ 1.1.0.0+ 13
haskell-hsql 1.7-2 ≥ 1.7+ 13

7.1.2. Outdated packages
Finding outdated packages requires both automated tools and critical review of their

results from distribution editors. We started by narrowing down a first list by applying
to the Debian archive our implementation of the outdated packages algorithm. On
October 6, 2011, the archive contained 34.444 packages in the unstable/main branch
for the i386 architecture. The dose-distcheck tool reported 386 of these as not
installable in the current repository, 110 of which our tool found to be outdated.

Discussion. It turns out that a Python transition was going on at the time, which means
that many packages were being upgraded from a dependency on Python version 2.6 to
Python version 2.73. Since transitions like this are closely monitored by the Debian
release team we choose to exclude these packages from our analysis. To do this, we
added to the repository a dummy python package with version 2.6 to make packages
depending on that version of Python installable. Our tool reported only 42 outdated
packages, 22 of which stem from the source package kdebindings. Contacting the

3http://release.debian.org/transitions/html/python2.7.html, retrieved November 2012

27

http://release.debian.org/transitions/html/python2.7.html

kdebindings package maintainer we discovered that the package was being reorga-
nized, and that many transient breakages were to be expected. We hence removed (by
hand) all reports about concerned packages.

Of the remaining 20 outdated packages, 17 were outdated due to a versioned de-
pendency on some package that had been upgraded, like this:

Package : nitpic

V e r s i o n : 0.1-12

Depends: binutils (< 2.21.53.20110923)

Package : binutils

V e r s i o n : 2.21.90.20111004 -1

This means that the nitpic package has to be migrated to the newer version of
binutils. We filed bugs against these packages, resp. asked for recompilation in case
the offending dependency was filled in during the package compilation process.

The remaining 3 reports of outdated packages were due to the same mistake in
the cyrus-imapd-2.4 source package. This source package generates, among others,
some transitional packages that only exist to facilitate the transition between different
packages. Transitional packages have to use the right combination of inter-package
relationships, which are quite easy to get wrong. This is what happened in this case:

Package : cyrus -common -2.2

V e r s i o n : 2.4.12 -1

Depends: cyrus -common -2.4

Package : cyrus -common -2.4

V e r s i o n : 2.4.12 -1

C o n f l i c t s : cyrus -common -2.2

Once reported by us, this bug was then promptly acknowledged and fixed4 by
changing the conflict to cyrus-common-2.2 (< 2.4). Bugs filed as consequence
of our analysis are available for public inspection5 and seem to have provided useful
feedback to the respective maintainers.

7.1.3. A release cycle perspective
We have argued that the theoretical framework to analyze repository future can

be used to verify quality assurance properties and proposed outdated packages as one
such property. In particular, outdated packages are a special subset of the not installable
packages present in a repository, because they require manual intervention to become

4http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=644503, retrieved November 2012
5http://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=edos-outdated;users=treinen@

debian.org, retrieved November 2012

28

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=644503
http://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=edos-outdated;users=treinen@debian.org
http://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=edos-outdated;users=treinen@debian.org

installable again. Given that computing outdated packages with our tools is quite inex-
pensive (∼30 seconds on a repository with more than 30.000 packages), we can track
the number of outdated packages of a specific repository over time. We have done
so for the complete duration of the development cycle of Debian “Wheezy,” which
started in February 2011 and continues to date (November 2012), aiming at releasing
in the first quarter of 2013. The working hypothesis is that, if the number of outdated
packages is a sensible quality metric for a package repository, then we should observe
some kind of correlation with the various phases and relevant events of the Wheezy
development cycle. We have proceeded as follows.

We have taken biweekly snapshots of the repositories used to develop Wheezy,
i.e. the Debian “unstable” repository where new uploads by developers arrive, and
the Wheezy repository itself (also known as “testing”) where packages migrate after
a qualification period of usually 10 days, as long as no serious bugs have been found
in them via user testing. Retrieving repository snapshots can be done retrospectively,
by downloading package metadata from http://snapshot.debian.org, using its
service API.6 For each sample we have noted down the total number of packages in the
repository, calculated the set of not installable packages using dose-distcheck, and
further extracted the set of outdated packages using the same tool of Section 7.1.2.

A sampling period of 15 days, we found, gives enough samples to visualize trends
but not too many to make outdated analysis unwieldy: we took a total of 80 repository
snapshots (2 sample per month over 20 months of 2 repositories), and analyzed them
all. The results are shown in Figure 7.

Discussion. At first glance one can observe that, at least in this release cycle, there
does not appear to be a significant correlation between the number of packages (which
is steadily growing over time) and the number of not installable or outdated packages.
Similarly, there does not seem to be correlation between the two quantities either: we
can observe that the evolution of outdated packages is much smoother than the evo-
lution of the non installable packages. This can be explained by the fact that, due to
nature of this property, once a package is outdated it remains outdated regardless of
how the other packages evolve, which make this property insensitive to day-to-day
fluctuations of the repository.

Looking at both measures, we see a common pattern of software life cycles. The be-
ginning of the cycle is pretty good, as it shows a low number of not installable, as well
as outdated packages. The central part of the development cycle is more hectic, with an
higher average number of not installable packages and several peaks of outdated pack-
ages like the one in October 2011 that we discussed in Section 7.1.2. On June 30th,
Wheezy has been declared frozen7, meaning that at that moment the automatic flow of
packages from unstable to testing has turned into a semi-automatic process, vetted by
explicit “freeze exceptions”. It also means that at that point the work on stabilizing the
repository for release, rather than including new software and features, has started. We

6http://anonscm.debian.org/gitweb/?p=mirror/snapshot.debian.org.git;a=blob;f=

API;hb=HEAD, retrieved November 2012
7https://lists.debian.org/debian-devel-announce/2012/06/msg00009.html

29

http://snapshot.debian.org
http://anonscm.debian.org/gitweb/?p=mirror/snapshot.debian.org.git;a=blob;f=API;hb=HEAD
http://anonscm.debian.org/gitweb/?p=mirror/snapshot.debian.org.git;a=blob;f=API;hb=HEAD
https://lists.debian.org/debian-devel-announce/2012/06/msg00009.html

Figure 7: Total (at the top), not installable (middle), and outdated (bottom) packages during the release cycle
of Debian “Wheezy”, up to date. For not installable and outdated packages, unstable and Wheezy are shown
using different scales on the y axis: scale for unstable is shown on the left of the graph, scale for Wheezy on
the right.

can observe significant trend changes in all plotted metrics. Finally, towards the end of
the cycle—which we are approaching, according to the average 2 years release cycle of
Debian over the past 7 years—the number of not installable packages approaches zero.

It is worth noting that the number of not installable packages in Wheezy is always
very low, and the number of outdated packages always zero. That seems to validate the
testing/unstable split as a good approach to shield testing users from transient phases
where a high number of packages are not installable.

Finally, it is interesting to look at the reasons behind the various peaks in the num-
ber of outdated packages present in the unstable repository. We have manually in-
spected the 4 highest peaks of Figure 7:

date outdated
October 10, 2011 106

November 10, 2011 108
January 25, 2012 88

March 25, 2012 105

The first snapshot is just a few days apart from the case we have discussed in Sec-
tion 7.1.2 and the reason for most outdated packages is the same: an ongoing transition

30

of the Python interpreter from version 2.6 to version 2.7. The subsequent snapshot
still shows a high number of Python packages (about 60) that are still outdated due
to unsatisfiable dependencies on a Python version strictly less than 2.7. This con-
firms well-known folklore in the Debian community that large transitions, such as the
Python 2.7 one that involved 160 packages, can take several weeks, sometime months,
to complete. The small fluctuations in outdated packages between October and Novem-
ber 2011 seem to be done by other, smaller, ongoing transitions such as the first part
of a large transition related to the Mono interpreter (completed shortly after the first
snapshot) and one related to the Samba platform (started shortly before the second
snapshot).

The last two snapshots confirm that the main contributions to the number of out-
dated packages stem from ongoing transitions from the testing to the unstable reposi-
tory. In the third snapshot (January 25, 2012) 47 outdated packages out of 88 are part
of a transition from version 2.10.5 to version 2.10.8 of the Mono bytecode interpreter.
In the fourth snapshot (March 25, 2012) 81 outdated packages out of 104 are involved
in a Iceowl/Icedove products of the Mozilla suite. The reader interested in inspecting
the actual metadata used by package maintainers to enforce transition constraints is
referred to our full data set (see Section 9 for data availability).

7.2. Opam

Opam8 is a source-based oriented package manager which aims to facilitate the
deployment and installation of software written in OCaml [15]. The main difference
between Opam and binary-based package manager, like those found in Debian and
other FOSS distributions, lays in the nature of the packages being installed. In Debian,
there is a clear distinction between source and binary packages, where binary packages
are built from source packages and only the latter are effectively distributed via repos-
itories and installed on the users’ machines. On the contrary, an Opam repository only
contains source packages. The task of the Opam package manager is to download and
compile the source package and subsequently install the binaries obtained, on the user
machine, at the end of the compilation process.

In this context, Opam dependencies and conflicts are effectively compile-time re-
lationships instead of run-time relationships. Nonetheless it is possible to use our tools
to identify outdated and challenging source packages.

Opam repositories are several orders of magnitude smaller then Debian reposito-
ries. As of May 2013, the official Opam repository contains 850 packages, but only 390
in their most up-to-date version, out of which 42 packages are not installable. In con-
trast to Debian repositories, Opam repositories contain all past versions of all packages
in one repository. Users can choose to install a specific version of a library with the
package manager taking care of re-compiling all related components. Table 3 shows
the top 25 challenging packages.

Basic libraries like ocamlnet or type conv break a large number of packages. In
particular, older versions of type conv which is part of a larger software collection, are

8http://opam.ocamlpro.com/, retrieved June 2013

31

http://opam.ocamlpro.com/

Table 3: Top 25 challenging upgrades in Opam
Source Version Target version Breaks
ocamlnet 3.6.0 3.6.0 < . 26
type conv 108.00.02 . 23
type conv 108.08.00 108.08.00 < . ≤ 109.20.00 20
type conv 108.07.00 108.08.00 ≤ . 14
type conv 108.07.01 108.08.00 ≤ . 14
bin prot 108.08.00 108.08.00 < . 12
comparelib 108.08.00 109.14.00 ≤ . 12
sexplib 108.08.00 109.14.00 ≤ . 12
pipebang 108.08.00 108.08.00 < . 12
variantslib 108.08.00 108.08.00 < . 12
pa ounit 108.08.00 109.14.00 < . 12
fieldslib 108.08.00 109.14.00 < . 12
ocamlgraph 1.8.2 1.8.2 < . 11
ospec 0.3.0 0.3.0 < . 9
core 108.08.00 108.08.00 < . 8
oasis 0.3.0 0.3.0 < . 8
pa ounit 108.07.00 . 6
comparelib 108.07.01 109.14.00 < . 6
comparelib 108.07.00 109.14.00 < . 6
fieldslib 108.07.00 109.14.00 < . 6
bin prot 108.07.00 108.08.00 < . 6
fieldslib 108.07.01 109.14.00 < . 6
sexplib 108.07.00 109.14.00 ≤ . < 109.15.00 6
variantslib 108.07.01 108.08.00 ≤ . 6
pipebang 108.07.01 108.08.00 < . 6
pipebang 108.07.00 108.08.00 < . 6
variantslib 108.07.00 108.08.00 ≤ . 6

not compatible any more with a large number of components and should be removed
from the repository.

For outdated packages the analysis shows only one outdated package (more pre-
cisely two versions of the same package), namely ocp-build which is made outdated
by a strict dependency on the package typerex. Since outdated packages are a subset
of the not installable packages, this information is still important to pin-point two pack-
ages (out of 42 not installable packages) that need manual intervention or that should
be removed from the archive.

Our analysis shows that despite the fact that the Opam repository contains only
a limited number of packages and that the dependency structure is slowly evolving,
we can already identify those problematic packages and allow package maintainers to
either fix the meta-data of their packages or remove older version from the repositories
tout-court.

32

8. Related work

Brun et al. [16] have proposed the idea of applying speculative analysis to software
artifacts in order to guide software engineering decisions. They try to predict changes to
the source code in integrated development environments to guide programmers towards
the most likely solution to compilation errors. The approach presented in this paper can
also be seen as a form of speculative analysis, with the remarkable difference that we
are able to consider all possible future repository states, rather than only some of them.

This work complements previous studies in the area of component quality assur-
ance. In [10], some of the authors have given a formalization of the installation prob-
lem, various complexity results, and an efficient algorithm to check for installability.
In [12], the notions of strong dependency and impact set have been proposed as a way
to measure the relevance of a package with respect to other components in the distri-
bution. The framework presented in this paper is based on a formal model similar to
those used in these studies. The main difference is in the explicit syntactic treatment of
constraints, which is needed to formalize futures.

Of the two applications of the framework we propose, the search for challenging
packages has been introduced before in [17]. It is here reinstated in the general formal
framework that allows to prove it correct.

In the area of quality assurance for large software projects, many authors have
correlated component dependencies with past failure rates, in order to predict future
failures [18, 19, 20]. The underlying hypothesis is that software “fault-proneness” of
a component is correlated to changes in components that are tightly related to it. In
particular, if a component A has many dependencies on a component B and the latter
changes a lot between versions, one would expect that errors propagate through the
“component network” reducing the reliability of A.

A related interesting statistical model to predict failures over time is the weighted
time damp model that correlates recent changes to software fault-proneness [21]. Social
network methods [22] have also been used to validate and predict the list of sensitive
components in the Windows platform [20].

It would be interesting to enrich our prediction model by correlating package de-
pendencies, which are formally declared and can be assumed trustworthy, with upgrade
failures, but this is not yet possible, as current FOSS distributions still lack the data to
correlate upgrade failures with dependencies.

9. Conclusions

Studying the future of component repositories can reveal important facts about their
present. In particular, it can be used as a technique to pinpoint installability problems—
such as outdated packages—that need to be manually addressed by component main-
tainers to watch out for challenging upgrade paths that, if followed, would break a
significant amount of existing components.

In order to be effective, though, analyses about component evolution need to take
into account all possible repository evolutions, which are infinite in all non-trivial
repository models. This work presents a formal model of component repositories and
identifies the class of future-looking properties that can be established by considering

33

only a finite number of repository evolutions. We have applied the formal framework to
two specific quality assurance applications: finding challenging upgrades and outdated
packages. We have validated the framework by implementing quality assurance tools
that have been run on the Debian distribution.

Our results show that investigating the future of component repositories is not only
feasible but may also be beneficial. It can be used as a sound formal basis for tools that
help repository maintainers spotting defects in their software assemblies, a welcome
help when the sizes of those assemblies ramp up to hundreds of thousands components.

As future work, our approximation of the possible future evolutions of a reposi-
tory could be improved, by identifying inter-package relationships that are likely to
persist across package upgrades. Such a refined model could yield to a more precise
approximation than blank packages, which are stripped of all inter-package relation-
ships. Also, we have for now only scratched the surface of the kind of analyses that
future-looking properties can be used for. We plan to extend our tooling to better sup-
port long-running analyses, such as the release cycle view we have presented of Debian
Wheezy, in an attempt to provide better guidance to QA teams, release teams, and more
generally decision makers in the area of software life cycle management.

Data availability. All experimental data discussed in this paper are available, in greater
detail, from http://data.mancoosi.org/papers/scp2012/. The tools used to
conduct the experiments are released under free software licenses and are available
from http://mancoosi.org/software/.

References

[1] P. Abate, R. Di Cosmo, R. Treinen, S. Zacchiroli, Learning from the future of
component repositories, in: CBSE 2012: 15th International ACM SIGSOFT
Symposium on Component Based Software Engineering, ACM, 2012, pp. 51–
60. doi:10.1145/2304736.2304747.

[2] M. M. Lehman, L. A. Belady (Eds.), Program evolution: processes of software
change, Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[3] H. H. Kagdi, M. L. Collard, J. I. Maletic, A survey and taxonomy of approaches
for mining software repositories in the context of software evolution, Journal of
Software Maintenance 19 (2) (2007) 77–131.

[4] C. Szyperski, Component Software: Beyond Object-Oriented Programming, Ad-
dison Wesley Professional, 1997.

[5] J. Whitehead, T. Zimmermann (Eds.), MSR 2010: 7th International Working
Conference on Mining Software Repositories, IEEE, 2010.

[6] J. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. Amor, D. German, Macro-
level software evolution: a case study of a large software compilation, Empirical
Software Engineering 14 (3) (2009) 262–285.

34

http://data.mancoosi.org/papers/scp2012/
http://mancoosi.org/software/
http://dx.doi.org/10.1145/2304736.2304747

[7] K.-K. Lau, Z. Wang, Software component models, IEEE Trans. Software Eng.
33 (10) (2007) 709–724.

[8] P. Abate, R. Di Cosmo, R. Treinen, S. Zacchiroli, Dependency solving: a separate
concern in component evolution management, Journal of Systems and Software
85 (2012) 2228–2240.

[9] I. Jackson, C. Schwarz, Debian policy manual, http://www.debian.org/doc/
debian-policy/, retrieved November 2012 (2012).

[10] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, X. Leroy,
R. Treinen, Managing the complexity of large free and open source package-
based software distributions., in: ASE 2006: 21st IEEE/ACM International Con-
ference on Automated Software Engineering, 2006, pp. 199–208.

[11] R. Treinen, S. Zacchiroli, Solving package dependencies: from EDOS to Man-
coosi, in: DebConf 8: proceedings of the 9th conference of the Debian project,
2008.

[12] P. Abate, J. Boender, R. Di Cosmo, S. Zacchiroli, Strong dependencies between
software components, in: International Symposium on Empirical Sofware Engi-
neering and Measurement, IEEE, 2009, pp. 89–99.

[13] M. Danelutto, R. Di Cosmo, A ”minimal disruption” skeleton experiment: Seam-
less map & reduce embedding in ocaml, Procedia CS 9 (2012) 1837–1846.

[14] P. Abate, R. Treinen, The dose-debcheck primer, https://gforge.inria.fr/
docman/view.php/4395/8241/debcheck-primer.html, retrieved Novem-
ber 2012 (October 2012).

[15] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, J. Vouillon, The OCaml
system release 4.00, Documentation and user’s manual, Projet Gallium, INRIA
(Jul. 2012).

[16] Y. Brun, R. Holmes, M. D. Ernst, D. Notkin, Speculative analysis: exploring fu-
ture development states of software, in: FoSER Workshop on Future of Software
Engineering Research at FSE 2010, ACM, 2010, pp. 59–64.

[17] P. Abate, R. Di Cosmo, Predicting upgrade failures using dependency analysis, in:
HotSWup’11: 3rd ACM Workshop on Hot Topics in Software Upgrades, 2011.

[18] N. Nagappan, T. Ball, Using software dependencies and churn metrics to predict
field failures: An empirical case study, in: ESEM 2007: International Symposium
on Empirical Sofware Engineering and Measurement, 2007, pp. 364–373.

[19] S. Neuhaus, T. Zimmermann, C. Holler, A. Zeller, Predicting vulnerable software
components, in: ACM Conference on Computer and Communications Security,
2007, pp. 529–540.

35

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
https://gforge.inria.fr/docman/view.php/4395/8241/debcheck-primer.html
https://gforge.inria.fr/docman/view.php/4395/8241/debcheck-primer.html

[20] T. Zimmermann, N. Nagappan, Predicting defects using network analysis on de-
pendency graphs, in: ICSE’08: 30th International Conference on Software Engi-
neering, ACM, 2008, pp. 531–540.

[21] T. L. Graves, A. F. Karr, J. S. Marron, H. Siy, Predicting fault incidence using
software change history, IEEE Trans. Softw. Eng. 26 (7) (2000) 653–661.

[22] R. A. Hanneman, M. Riddle, Introduction to social network methods, University
of California, Riverside, retrieved November 2012 (2005).
URL http://www.faculty.ucr.edu/~hanneman/nettext/

36

http://www.faculty.ucr.edu/~hanneman/nettext/
http://www.faculty.ucr.edu/~hanneman/nettext/

