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Modern software systems are built by composing components drawn from large repositories, whose size

and complexity is increasing at a very fast pace. A fundamental challenge for the maintainability and

the scalability of such software systems is the ability to quickly identify the components that can or
cannot be installed together: this is the co-installability problem, which is related to boolean satisfiability

and is known to be algorithmically hard. This paper develops a novel theoretical framework, based on
formally certified semantic preserving graph-theoretic transformations, that allows us to associate to each

concrete component repository a much smaller one with a simpler structure, that we call strongly flat, with

equivalent co-installability properties. This flat repository can be displayed in a way that provides a concise
view of the co-installability issues in the original repository, or used as a basis for various algorithms

related to co-installability, like the efficient computation of strong conflicts between components. The

proofs contained in this work have been machine checked using the Coq proof assistant.
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1. INTRODUCTION
The mainstream adoption of free and open source software (FOSS) has widely popu-
larised component-based software architectures, maintained in a distributed fashion
and evolving at a very quick pace. Components are typically made available via a
repository, and each of these components is equipped with metadata, such as depen-
dencies and conflicts, used to specify concisely the contexts in which a component can
or cannot be installed.

Author’s addresses: Laboratoire PPS, Case 7014, 5, Rue Thomas Mann, F-75205 Paris, France.
Author’s e-mail addresses: jerome.vouillon@pps.jussieu.fr, roberto@dicosmo.org
Work partially supported by the European Community’s 7th Framework Programme (FP7/2007-2013), grant
agreement n◦214898, “Mancoosi” project, and performed at the IRILL center for Free Software Research and
Innovation in Paris, France.
This is a revised and extended version of the article [Di Cosmo and Vouillon 2011] presented at ESEC/FSE
2011 in Szeged, Hungary.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:2

A typical example of the metadata attached to a component, taken from the De-
bian GNU/Linux distribution, is shown in Example 1.1: the logical language used for
expressing dependencies and conflicts is quite powerful, as it allows conjunctions (sym-
bol ‘,’), disjunctions (symbol ‘|’) and version constraints (the symbols ‘>=’, ‘<=’, ‘>>’ and
‘<<’ stand for the usual ≥,≤, > and < operators).

Example 1.1. The inter-package relationships of postfix, an Internet mail trans-
port agent in the Debian GNU/Linux distribution (http://www.debian.org) currently
reads:

1 Package: postfix
2 Version: 2.5.5 -1.1
3 Depends: libc6 (>= 2.7), libdb4.6, ssl -cert ,
4 libsasl2 -2, libssl0 .9.8 (>= 0.9.8f-5),
5 debconf (>= 0.5) | debconf -2.0,
6 netbase , adduser (>= 3.48), dpkg (>= 1.8),
7 lsb -base (>= 3.0-6)
8 Conflicts : libnss -db (<< 2.2-3), smail ,
9 mail -transport -agent , postfix -tls

10 Provides: mail -transport -agent , postfix -tls

In most frameworks, determining whether a single component can be installed
at all is already an NP-Complete problem, albeit the concrete instances arising in
real-world systems, like GNU/Linux distributions, Eclipse plugins or OSGI com-
ponent repositories, turn out to be tractable [Mancinelli et al. 2006; Tucker et al.
2007; Le Berre and Parrain 2008]. For the maintenance of component repositories,
though, more sophisticated analyses are required. This includes identifying for each
component the other components in the repository that it absolutely needs [Abate
et al. 2009], and those that it can never be installed with [Di Cosmo and Boender 2010].

More generally, a fundamental challenge for component based software maintain-
ability is the study of the problem of co-installability of components, that involves
identifying and visualising the relevant sets of components that can or cannot be in-
stalled together.

Indeed, from a maintenance point of view, one needs to identify which components
cannot be installed together, in order to check whether these incompatibilities are jus-
tified or due to erroneous dependencies. The dependency graph is also too rich for end
users, which are interested in having a given set of functionalities provided by some
components (for instance, they want a word processor and a Web browser) but do not
care about the additional components also installed. This is illustrated by the fact that
some package managers keep track of these additional components and automatically
remove them when they are no longer needed.

The sheer size of current mainstream repositories, with tens of thousands of
components and hundreds of thousands of relations, makes it completely unfeasible
to study such properties of a repository directly: visualising such large graphs is both
technically challenging, and of little interest, as one would need to follow recursively
a large number of dependency and conflict relations to understand how components
relate to one other.

In this paper, we develop a novel theoretical framework, based on formally certified
semantic preserving graph-theoretic transformations, that allow us to associate
to each concrete component repository a much smaller repository with a simpler
structure, but with equivalent co-installability properties. This repository is small
enough that its graphical representation gives a concise view of the co-installability
issues in the original repository, that can be detected simply by visual inspection. It
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Fig. 1. Graphical depiction of a repository

can also be used as a basis for various algorithms related to co-installability, like the
efficient computation of the strong conflicts defined in [Di Cosmo and Boender 2010].

We identified several bugs in the Debian distribution using the present work. For
instance, up to version 0.1.33, the harden-servers package, meant to prevent the
installation of unsafe packages, was in conflict with packages proftpd and sendmail
but did not prevent the installation of the corresponding binaries which were in fact
in packages proftpd-base and sendmail-bin (the first two packages were actually
transitional packages used to ease the upgrade from a previous release).

This article is organised as follows: Section 2 recalls the basic notions about pack-
ages and dependencies, and overviews the repository transformation developed in the
paper, which achieves impressive results on real-world GNU/Linux distributions (Sec-
tion 3). The technical development follows: repositories are equipped with a partial
order in Section 4, put into a flattened form in Sections 5, 6 and 7, simplified by re-
moving irrelevant dependencies and conflicts in Section 8 and reduced by identifying
equivalent packages in Section 9. Finally, we show how to draw a simplified graph of
the kernel of a repository in Section 11, that also explains how to compute efficiently
strong conflicts. We then present the coinst tool in Section 12, and discuss the results
obtained on the Ubuntu 10.10 distribution in Section 13. Finally, we discuss related
and future works, and conclude in Section 16.

2. OVERALL APPROACH
While the concrete details may vary from one technology to the other, the core meta-
data associated to component based systems always allows to express a few fundamen-
tal properties: a component, called package in the following, may depend on a combi-
nation of components, expressed as a conjunction of disjunctions of components, and a
component may conflict with a combination of components, expressed as a conjunction
of components.

Extra properties like provides (e.g. postfix-tls in Example 1.1), or versioned
constraints (e.g. libc6 (>= 2.7) in Example 1.1) can be easily preprocessed
out [Mancinelli et al. 2006], so that one can focus on a core dependency system that
contains a binary symmetric conflict relation, and a dependency function D(π) =
{{π1

1 , ..., π
1
n1
}, ..., {πk1 , ..., πknk

}} that is satisfied when for each i at least one of the πij
is installed.

An example repository in this core dependency system is depicted in Figure 1, that
also introduces the graphical notation used in the paper: package a has two depen-
dencies, and can be installed only if, first, either package b or package c is installed,
and second, package f is installed; package c conflicts with b and f : neither packages
b and c, nor packages c and f , can be installed simultaneously; package d depends on
package e, which in turn depends on both f and g.
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2.1. Repositories
We follow the notations of earlier works [Mancinelli et al. 2006; Treinen and Zacchiroli
2008; Di Cosmo et al. 2006; Di Cosmo et al. 2006], that we recall here. A repository is
a tuple R = (P ,D ,C ) where P is a finite set of packages, D : P → P(P(P)) is the
dependency function (we write P(X) for the set of subsets of X), and C , a symmetric
irreflexive relation over P , is the conflict relation. An installation I of a repository
(P ,D ,C ) is a subset of P . An installation I is healthy when the following holds:

— abundance: every package has what it needs. Formally, for every package π ∈ I , and
for every dependency d ∈ D(π), we have d ∩ I 6= ∅.

— peace: no two packages conflict, that is, C ∩ (I × I ) = ∅.
We call dependency a set of packages d included in D(π) for some package π ∈ P . Given
a repository (P ,D ,C ), the number of its dependencies is counted as

∑
π∈P card(D(π)).

Notice that the empty set ∅ is allowed by the definition: it is usually called a broken
dependency, as it makes any package containing it uninstallable, because the abun-
dance condition would be unsatisfiable for such package. Such broken dependencies
are not uncommon in real component repositories, where a package may mention
among its dependencies packages that are no longer present in the repository. We
will also use such empty dependencies to mark uninstallable packages as broken, in
Section 8.4.

One can give a logical interpretation of the dependency function and the conflict
relation. The logical variables are the packages π ∈ P . A set of packages d ∈ P(P) is
interpreted as a disjunction:

JdK =
∨
π∈d

π.

A set of set of packages D(π) ∈ P(P(P)) is interpreted as a conjunction:

JD(π)K =
∧

d∈D(π)

JdK.

A dependency function D is then interpreted as the set of formulas of the shape:
π =⇒ JD(π)K

where π ranges over P , which can also be written:

π =⇒
∧

1≤i≤n

∨
1≤j≤mi

πi,j

with D(π) = {di | 1 ≤ i ≤ n} and di = {πi,j | 1 ≤ j ≤ mi}. A conflict relation C is
interpreted as the set of formulas ¬π ∨ ¬π′ for (π, π′) ∈ C . A healthy installation is an
assignment which simultaneously satisfies all these formulas.

Remark 2.1 (Circular dependencies). It is normally recommended to avoid circu-
lar dependencies in package repositories, as it is not possible to define a deployment
order in the presence of cycles. Nevertheless, circular dependencies pose no problem
for the theoretical treatment: packages that depend on each other are simply logically
equivalent, and will be merged into a single equivalence class by our algorithm.

2.2. Co-Installability
A package π is installable in a repository if it is included in a healthy installation I
of this repository. A set of packages Π are co-installable in a repository if they are all
included in some healthy installation I of the repository.
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Checking co-installability has been shown equivalent to SAT by taking advantage of
the logical interpretation of repositories [Mancinelli et al. 2006]. However, our experi-
ence is that this problem is easy in practice: SAT-solver based tools are currently used
routinely to identify non-installable components on repositories that contains dozens
of thousands of packages, and hundreds of thousands of dependencies and conflicts.

Remark 2.2. Let (P ,D ,C ) and (P ′,D ′,C ′) be two repositories. If any healthy in-
stallation I of repository (P ,D ,C ) is a healthy installation of repository (P ′,D ′,C ′),
then any co-installable set of packages Π in repository (P ,D ,C ) is a co-installable set
of packages in repository (P ′,D ′,C ′).

Proof: Immediate 2
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Fig. 2. Transformations of a repository (added dependencies are in bold, dotted ones are removed in the
next phase)

2.3. Extracting a Co-Installability Kernel
Identifying all the sets of components that cannot be installed together is way more
complex: even if we limit ourselves to the simplest case of sets of non co-installable
components of size 2 (also known as strong conflicts), testing all possible pairs of pack-
ages is not a viable option, as the package number is in the tens of thousands. Even
using all the optimisations described in [Di Cosmo and Boender 2010], the computa-
tion takes almost a week on a modern workstation.

In the present work, we lay down the essential theoretical basis and algorithmic in-
sight for tackling this non co-installability problem: the fundamental idea is to extract
from the component repository a kernel repository which is equivalent to the original
one, as far as co-installability is concerned, but which turns out in practice to be orders
of magnitude smaller, and easily manageable.

Looking at the example repository of Figure 1, for example, one can check that c can-
not be installed together with b and and that c cannot be installed together with any of
a,d,e and f , while g can always be installed; also, a,d,e and f are really equivalent as far
as installability is concerned: if one of them can be installed in a given configuration,
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Fig. 3. Repository that blows-up when flattened

then all the others can, and viceversa. Instead of performing this check on the original
repository, which requires following dependency chains and performing complex case
analysis, we remark that not all the information present in the repository is relevant,
and take advantage of this fact to simplify and reduce it.

The key steps of this process are now summarised. The effect of each step on the
example repository of Figure 1 is shown in Figure 2.

Flattening. The recursive nature of dependencies is convenient for package develop-
ers, as it allows them to describe the dependencies among the different packages very
concisely, in a modular way. To study the properties of a repository, though, it is way
more convenient to use only a special flattened form D̂ of dependency functions that
directly describes all dependencies of each package: if

D̂(π) = {{π1
1 , ..., π

k1
1 }, ...{π1

n, ..., π
kn
n }},

then the packages πji are all the packages relevant for installing package π, and only
them.

Any dependency function can be converted in this form by a sort of transitive clo-
sure that expands the dependencies of each intermediate package, and then converts
the result again into a conjunction of disjunctions using distributivity: on our running
example, this amounts to adding a dependency from d to f , and one from d to g (Fig-
ure 2b).

This transformation has some similarity with the conversion of logical formulae to
conjunctive normal form, and is likewise subject to exponential blow-up (see for in-
stance [Buning and Lettmann 2002]): for any n, a repository shaped like the one shown
in Figure 3 contains 3n dependencies, but its expansion contains 2n dependencies.

This is a strong limiting result, but we are only interested in studying co-
installability of packages, so we need not fully maintain the logical equivalence of
repositories. In particular, we can prune the expanded dependency function by remov-
ing any dependency containing a package with no conflicts without changing the co-
installability property. In practice, this suffices to avoid the exponential blow-up. On
our running example, this pruning phase removes the dependencies from d to e, from
d to g and from e to g, leading to the repository of Figure 2c.

We take a further action to render the repository more homogeneous: we add a self
dependency to each package with conflicts. This sort of reflexive closure will be very
useful when quotienting the repository, in a later phase. (There is no point in adding
self dependencies to other packages as they would be removed by pruning.) We then
find it convenient to draw the repository using a two-level structure: on the top, we
have all packages; on the bottom, we have packages with conflicts; dependencies con-
nects the top layer to the bottom layer; conflicts are between packages on the bottom
layer. On our running example, this leads to the repository of Figure 2d.
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Fig. 5. A redundant conflict

The three phases of expansion, pruning and addition of self dependencies can be
performed in a single pass, and we thereafter use the term flattening to denote all of
them.

Elimination of irrelevant dependencies and conflicts. As a second phase, we iden-
tify several classes of dependencies and conflicts that are irrelevant as far as co-
installability is concerned, and remove them. In Figure 4, we can see some interesting
examples (more are given in Section 8), in all of which the disjunctive dependency
connecting package a to packages b and c can be dropped:

(a) if some branches of a disjunction are forced by a stronger dependency, all other
branches can be dropped;

(b) a package with no conflict can be added to any installation, so dependencies on such
a package are always satisfiable and all disjunctive dependencies containing it can
be simplified out (this is precisely the pruning defined above during flattening,
which may need to be performed again on the flattened repository when a conflict
is removed);

(c) if a package has a disjunctive dependency containing a package (here, b) that con-
flicts only with other packages in this dependency (here, c), this dependency is
always satisfiable and can be dropped: either a package conflicting with package
b is installed, or package b can be installed; in both cases, the dependency can be
satisfied.

In Figure 5, the conflict between packages a and b is implied by the conflict between
packages c and d and can be dropped.

Proving the soundness of such simplifications is far from trivial: in general, one has
to rely on a peculiar structure of the repository to justify that a dependency can be
removed, but removing a dependency may modify this very structure. Therefore, a
suitable invariant has to be found, that allows us to remove most, if not all, irrelevant
dependencies.

On our example repository, we already removed dependencies corresponding to Fig-
ure 4b during flattening; the disjunctive dependency from package a to packages b and
c, corresponding to Figure 4c, can be removed, yielding the repository of Figure 2e.

Quotienting equivalent packages. It is now quite evident looking at Figure 2e, that
packages a, d, e and f are, as far as co-installability is concerned, really equivalent:
they share the very same set of dependencies (notice that this fact is easily detectable
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Debian Ubuntu Mandriva
before after before after before after

Packages 28919 1038 7277 100 7601 84
Dependencies 124246 619 31069 29 38599 8
Conflicts 1146 985 82 60 78 62
Median cone size 38 1 38 1 59 1
Avg. cone size 66 1.7 84 1.3 153 1.1
Max. cone size 1134 15 842 4 1016 5
Running time (s) 10.6 1.19 11.6

Fig. 6. Repository sizes

on the graph thanks to the self dependency of package f introduced during the flatten-
ing phase).

As many packages in a repository share the same behaviour with respect to co-
installability, it is useful to quotient the final repository, identifying these packages;
this step contributes greatly in reducing the size of the repository, as can be seen on
our running example in Figure 2f.

After removing self dependencies, one gets the final repository of Figure 2g, where
it is now quite easy to see which package can be installed with which other package,
and which package cannot.

3. EXPERIMENTAL RESULTS
The transformations described in this paper have been proven correct, and all the
proofs have been certified in Coq [The Coq Development Team 2008]. An OCaml
program implementing these transformations has been run on several mainstream
GNU/Linux distributions: Debian testing (full suite, amd64, snapshot taken August
22, 2010), Ubuntu 10.10 (main suite, x386) and Mandriva 2010.1 (main suite, x386).
Running time were measured on a machine using a Intel Core 2 Duo Processor E6600
at 2.4GHz. The relevant statistics of the results are given in the table of Figure 6.

The number of packages is greatly reduced: many packages share the same be-
haviour as far as co-installability is concerned, and the quotienting phase identifies
them. In particular, many packages can always be installed, which is good news for
the GNU/Linux distributions; they are thus mapped to a single equivalence class. The
number of dependencies is reduced even more: many dependencies are not relevant to
co-installability, and are removed by our transformations. The simplification shown in
Figure 4c turns out to be essential; for example, in Debian, thousands of packages de-
pend on debconf which depends on either debconf-i18n or debconf-english, these two
last packages being mutually exclusive: removing the disjunctive dependency hugely
reduces the size of the final repository.

As for conflicts, we notice that distributions contain only few of them, which explains
that flattening is practical; most of them cannot be removed.

Finally, to each package p in a repository one can associate its cone, the set of pack-
ages that are reachable from p by following the dependency relations; the cone size
of a package is typically quite large (Figure 7): two third of the packages have a cone
of more than a hundred packages. On the other hand, after simplification, two third
of the package equivalence classes have a cone of size one, meaning that they do not
depend on any other package than themselves.

After simplification, the Ubuntu distribution fits on a three A5 size sheets (see
Figures 16, 17 and 18 in Section 13) and can be easily inspected visually for er-
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Fig. 8. Examples of dependency functions related by the preorder

rors. The corresponding graph for the Debian distribution is much larger, but it is
our experience that it can still be displayed in a usable way with a suitable graph
viewer: the visualisation of the Debian co-installability kernel can be tested online at
http://ocsigen.org/js_of_ocaml/graph/.

As a consequence of the small size of the kernel extracted from a repository, many
analyses can be performed very quickly. For example, it is easy to compute on the co-
installability kernel of a repository the pairs of packages that can never be installed
together, known as strong conflicts [Di Cosmo and Boender 2010], which is the sim-
plest case of co-installability. On the same data as [Di Cosmo and Boender 2010], the
computation takes a few seconds, instead of the several days reported there. This time
is in fact included in the running times reported in Figure 6 as we use this informa-
tion when drawing the simplified repository to emphasise packages that prevent the
installation of many other packages.

4. ORDERING REPOSITORIES
A large part of our work consists of finding constraints that can be removed while
leaving co-installability invariant. We make the idea of removing constraints precise
by defining a preorder on repositories.

We first define a preorder on dependency functions: D v D ′ iff for every package π,
for every dependency d ∈ D(π), there exists a dependency d′ ∈ D ′(π) such that d′ ⊆ d.
As an example, the dependency function D of the repository shown in Figure 8a is
strictly subsumed by the dependency function D ′ of the repository shown in Figure 8b.

To see that this is really a preorder, consider the dependency function D of the
repository shown in Figure 8c: it is subsumed by the dependency function D ′ of the
repository shown in Figure 8d, but it also subsumes it, and yet the two functions are
different.
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This preorder corresponds exactly to the converse of logical implication: D v D ′ if
and only if the formulas JD ′(π)K =⇒ JD(π)K can be derived for all packages π ∈ P .
The preorder v is coarser than point-wise inclusion:

Remark 4.1. If, for all π ∈ P , D(π) ⊆ D ′(π), then D v D ′.

The preorder induces an equivalence relation over dependency functions :D is equiv-
alent to D′ if and only if D v D′ and D′ v D. A canonical representative of an equiv-
alence class can be defined by taking the element which is point-wise the smallest.
Given a dependency function D , its canonical representative can be explicitly defined
as:

D ′(π) = {d ∈ D(π) | ∀d′ ∈ D(π), d′ ⊆ d =⇒ d′ = d}.
In the example above, the dependency function D ′ of Figure 8d is the canonical
representative of the dependency function D of the repository shown in Figure 8c.

This provides a first way to simplify the dependency function (illustrated by Fig-
ure 4a), and our implementation aggressively puts all dependencies in canonical form.

We can now define a preorder on repositories: (P ,D ,C ) v (P ′,D ′,C ′) if and only if:

P = P ′, D v D ′, C ⊆ C ′.

We write ∼ for the equivalence relation associated to the relation v. Given two repos-
itories related under this preorder, going from the right hand side one to the left hand
side one consists in possibly removing conflicts or relaxing dependencies, thus making
it easier to install packages.

THEOREM 4.2. When (P ,D ,C ) v (P ′,D ′,C ′), any healthy installation I of reposi-
tory (P ′,D ′,C ′) is also a healthy installation of repository (P ,D ,C ).

PROOF. We suppose that I is a healthy installation of (P ′,D ′,C ′) and prove that I
is a healthy installation of (P ,D ,C ).

We first prove abundance. Let π ∈ I and d ∈ D(π). As D v D ′, there exists d′ ∈ D ′(π)
such that d′ ⊆ d. As I is a healthy installation of (P ′,D ′,C ′), by abundance, d′ ∩ I 6= ∅.
Hence, d ∩ I 6= ∅ as wanted.

We now prove peace. As I is a healthy installation of (P ′,D ′,C ′), we have C ′ ∩ (I ×
I ) = ∅. On the other hand, C ⊆ C ′. Hence, C ∩ (I × I ) = ∅ as wanted.

5. FLATTENING DEPENDENCIES
The flattened form of a dependency function, whose intuition has been given in the
introduction, is formally defined as follows; given a repository (P ,D ,C ), the flattened
dependency function D̂ is the smallest function (with respect to point-wise inclusion)
such that:

REFL
(π, π′) ∈ C

{π} ∈ D̂(π)

TRANS
{π1, . . . , πn} ∈ D(π)

d1 ∈ D̂(π1) . . . dn ∈ D̂(πn)⋃
1≤i≤n

di ∈ D̂(π)

As the above rules are monotonic, such a function D̂ exists.
The rule TRANS expands the intermediate dependencies of a package π and converts

the result back into a conjunction of disjunctions; this rule silently drops circular de-
pendencies: adding a dependency {π} ∈ D(π) has no effect on D̂(π).
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D D̂

a {{b, c}, {f}} {{b, c}, {f}}
b ∅ {{b}}
c ∅ {{c}}
d {{e}} {{f}}
e {{f}, {g}} {{f}}
f ∅ {{f}}
g ∅ ∅

Table I.

The rule REFL is designed to capture precisely the two properties we have outlined
informally in the introduction: on one hand, we want to keep in D̂(π) only dependencies
on packages with at least a conflict (we prove in the next section that they are enough
for keeping co-installability invariant); on the other hand, we want D̂(π) to contain
explicitly all the packages that have a conflict and are needed to install package π (so,
if π has a conflict, it will also be an explicit dependency of itself).

The application of the transformation on the repository of Figure 1 gives the result
shown in Table I, which is illustrated by Figure 2e:

Packages d, e and f now have the same dependencies, which reflects the intuition
that they behave the same way as far as co-installability is concerned.

6. STRONGLY FLAT REPOSITORIES
After being flattened as described in the previous section, a repository satisfies two
properties (Theorem 6.1 below): a reflexivity property (if a package has a conflict,
then it depends on itself), and a transitivity property (dependencies are stable under
composition).

In this section, we define precisely these two properties and study repositories that
satisfies them, that we call strongly flat.

For strongly flat repositories, co-installability can be shown equivalent to a more
convenient property, that we call weak co-installability (Theorem 6.6). Using this
fact, we prove the key result of this section: a set of packages are co-installable
in a repository if and only if they are co-installable in the corresponding flattened
repository (Theorem 6.8).

We define the composition D ; D ′ of two dependency functions over a set of packages
P as the smallest function (with respect to point-wise inclusion) such that for every
package π ∈ P , for every set {π1, . . . , πn} ∈ D(π), for every sets di ∈ D ′(πi), we have⋃

1≤i≤n di ∈ (D ; D ′)(π).
To any conflict relation C , we associate a dependency function ∆C defined as follows:

∆C (π) =

{
{{π}} if (π, π′) ∈ C for some π′ ∈ P
∅ otherwise

A repository (P ,D ,C ) is strongly flat when the following conditions hold:

— reflexivity: ∆C v D (every package with conflict depends on itself);
— transitivity: D ; D v D (dependencies are closed under composition).

The flattening transformation produces strongly flat repositories.
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THEOREM 6.1. Let (P ,D ,C ) be a repository. Let D̂ be the corresponding flattened
dependency function. The repository (P , D̂ ,C ) is strongly flat.

PROOF. Reflexivity, that is ∆C v D̂ , is a direct consequence of rule REFL.
We now show transitivity, that is D̂ ; D̂ v D̂ . Let π ∈ P and d ∈ (D̂ ; D̂)(π). By

definition of composition, there exists d′ = {π1, . . . , πn} ∈ D̂(π) and sets di ∈ D̂(πi) such
that d =

⋃
1≤i≤n di. We need to show that there exists d′′ ∈ D̂(π) such that d′′ ⊆ d =⋃

1≤i≤n di. The proof is by induction on a derivation of d′ ∈ D̂(π). We have two cases.

— Case REFL. There exists π′ ∈ P such that (π, π′) ∈ C , and d′ = {π}. We have, d = d1 ∈
D̂(π1) = D̂(π), hence we can take d′′ = d.

— Case TRANS. There exists a set {π′1, . . . π′m} ∈ D̂(π) and sets d′j ∈ D̂(π′j) such that
d′ =

⋃
1≤j≤m d

′
j . Besides, by induction hypothesis, for all j, if one can find packages πkj

and dependencies dkj such that d′j = {π1
j , . . . , π

pj
j }, and dkj ∈ D̂(πkj ), then there exists

d′′j ∈ D̂(π′j) such that d′′j ⊆
⋃

1≤k≤pj d
k
j . We have d′j ⊆ d′. Hence we can choose for each

indices j and k an index i such that πkj = πi. Then, we take dkj = di. We therefore
have dependencies d′′j ∈ D̂(π′j) such that d′′j ⊆

⋃
1≤k≤pj d

k
j . We take d′′ =

⋃
1≤j≤m d

′′
j .

By rule TRANS, d′′ ∈ D̂(π). Besides, d′′ ⊆
⋃

1≤j≤m
⋃

1≤k≤pj d
k
j . But, as d′ =

⋃
1≤j≤m di,

the packages πkj ranges over all the distinct packages πi. Hence, the dependencies dkj
ranges over all dependencies di, and we have d′′ ⊆

⋃
1≤i≤n di as wanted. 2

Intuitively, strongly flat repositories have a two level structure. Looking for instance
at Figure 2e, we find all packages on the top layer, and typically only packages with
conflicts at the bottom layer: thanks to transitivity, everything a package π may need
to be installed is fully described by D(π), without recursive traversal of dependencies;
and thanks to reflexivity, conflicts need only be considered on the image of D .

We can take advantage of this to define a more convenient way of capturing co-
installability by defining it specifically on the two level structure of strongly flat repos-
itories: while in our application we will have packages on the top and the bottom layer,
the definition and the following mathematical development make perfect sense even if
the objects on the two levels are different. To make this fact explicit, that we refer to
the objects at the lower level, that only carry conflicts, as features in the following.

A configuration is a pair (I ,F ) of a set I of packages and a set F of features; we say
that it is healthy when the following conditions hold:

— abundance: every package has what it needs. Formally, for every package π ∈ I , and
for every dependency d ∈ D(π), we have d ∩ F 6= ∅.

— peace: no two features conflict, that is, C ∩ (F × F ) = ∅.

This is subtly different from the homonymous definitions regarding installations. Con-
flicts are only checked in F , and abundance only checked for packages in I w.r.t. F ; the
sets F and I might as well be disjoint, here.

Remark 6.2. The two following properties hold:

— an installation I is healthy iff the configuration (I , I ) is healthy;
— if (Π,F ) is healthy and Π′ ⊆ Π, then (Π′,F ) is healthy.
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A set of packages Π are weakly co-installable if there exists a set of features F ⊆ P
such that the configuration (Π,F ) is healthy. In general, this is a weaker notion.

LEMMA 6.3. If a set of packages Π are co-installable, then they are also weakly
co-installable.

PROOF. Suppose the set of packages Π are co-installable. By definition, there exists
a healthy installation F such that Π ⊆ F . We terminate the proof by using in turn both
properties in Remark 6.2. The configuration (F ,F ) is healthy. Hence, by anti-monotony
of the definition of healthiness, (Π,F ) is healthy.

In strongly flat repositories, though, the two notions are equivalent.
We present here two technical lemmas needed in the proof of Theorem 6.8.

LEMMA 6.4. Let (P ,D ,C ) be a repository such that ∆C v D . Let (I ,F ) be a healthy
configuration. For every package π ∈ I , if (π, π′) ∈ C for some π′ ∈ P , then π ∈ F .

PROOF. We consider a package π ∈ I such that (π, π′) ∈ C for some package π′ ∈ P .
As ∆C v D , there exists d ∈ D(π) such that d ⊆ ∆C (π) = {π}. By abundance, d∩F 6= ∅.
Hence, π ∈ F .

LEMMA 6.5. Let (P ,D ,C ) be a repository. Let D ′ be a dependency function such that
∆C v D ′ and D ; D ′ v D ′. If a set of packages Π are weakly co-installable in (P ,D ′,C ),
then they are co-installable in (P ,D ,C ).

PROOF. We consider a set of packages Π which are weakly co-installable in
(P ,D ′,C ). This means that there exists a set of packages F such that the configu-
ration (Π,F ) is healthy in (P ,D ′,C ). We then consider a maximal set of packages I
such that Π ⊆ I and the configuration (I ,F ) is healthy in (P ,D ′,C ). We can conclude
if we prove that I is healthy in (P ,D ,C ).

We first prove abundance. We take π ∈ I and d = {π1, . . . , πn} ∈ D(π) and need to
prove that d ∩ I 6= ∅. We want to show that we can find π′′ ∈ d such that (I ∪ {π′′},F ),
is healthy. Indeed, then, by maximality of I , we have π′′ ∈ I . Hence, d ∩ I 6= ∅ as
wanted. The package π′′ should be such that, for all d′′ ∈ D(π′′), we have d′′ ∩ F 6= ∅.
The proof is by contradiction. Suppose that for all i, there exists di ∈ D ′(πi) such that
di ∩ F = ∅. As D ; D ′ v D ′, there exists d′ ∈ D ′(π) such that d′ ⊆

⋃
1≤i≤n di. We have

d′ ∩F ⊆
⋃

1≤i≤n di = ∅. This contradicts the fact that π ∈ I and (I ,F ) is healthy. Hence
the existence of a suitable package π′′ which allow us to finish the proof of abundance.

We now prove peace by contradiction. Suppose that C ∩ (I × I ) 6= ∅, that is, there
exists π ∈ I and π′ ∈ I such that (π, π′) ∈ C . As (I ,F ) is healthy, we have π ∈ F and
π′ ∈ F by Lemma 6.4, and then (π, π′) 6∈ C by peace. We reach a contradiction, hence
C ∩ (I × I ) = ∅.

THEOREM 6.6. Any set of packages Π weakly co-installable in a strongly flat repos-
itory are also co-installable.

PROOF. This is an immediate consequence of Lemma 6.5, taking D = D ′.

It is interesting to remark that the result of the flattening operation can be mathe-
matically characterised as follows.

LEMMA 6.7. The flattened dependency function D̂ associated to a repository
(P ,D ,C ) is the least dependency function D ′ (for preorder v, and up to equivalence)
such that:

— ∆C v D ′

— D ; D ′ v D ′.
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PROOF. Clearly, the flattened dependency function satisfies these equations. Let D ′
be another dependency function satisfying the equations. We want to prove that, for all
π ∈ P , D̂(π) v D ′(π). By unfolding the definition of the preorder, this can be rephrased
as: for all π ∈ P , for all d ∈ D̂(π), there exists d′ ∈ D ′(π) such that d′ ⊆ d. The proof is
by induction on a derivation of d ∈ D̂(π). We have two cases.

— Case REFL. There exists π′ ∈ P such that (π, π′) ∈ C , and d = {π}. From the first
assumption, there exists d′ ∈ D ′(π), such that d′ ⊆ {π}. Hence, d′ ⊆ d as wanted.

— Case TRANS. There exists a set {π1, ..., πn} ∈ D(π) and sets di ∈ D̂(πi) such that
d =

⋃
1≤i≤n di. Besides, by induction hypothesis, for all i, there exists d′i ∈ D ′(πi)

such that d′i ⊆ di. From the second assumption, there exists d′ ∈ D ′(π), such that
d′ ⊆

⋃
1≤i≤n d

′
i. We have, d′ ⊆

⋃
1≤i≤n d

′
i ⊆

⋃
1≤i≤n di = d as wanted. 2

The essential result of this section is that co-installability is left invariant by flat-
tening.

THEOREM 6.8. Let (P ,D ,C ) be a repository. Let D̂ be the corresponding flattened
dependency function. Let Π be a set of packages. The following propositions are equiva-
lent:

(1) Π is co-installable in (P ,D ,C );
(2) Π is weakly co-installable in (P , D̂ ,C );
(3) Π is co-installable in (P , D̂ ,C ).

PROOF. (3) implies (2) by Lemma 6.3. (2) implies (3) by Lemmas 6.6 and 6.1. (2)
implies (1) by Lemmas 6.5 and 6.7. We now assume (1) and prove (3).

By definition, there exists a healthy installation I of repository (P ,D ,C ) such that
Π ⊆ I . We can just show that I is also a healthy installation of repository (P , D̂ ,C ).
Peace is immediate. We prove abundance. We consider π ∈ P and d ∈ D̂(π). We need to
show that if π ∈ I , then d∩ I 6= ∅. The proof is by induction on a derivation of d ∈ D̂(π).
We have two cases.

— Case REFL. We have d = {π}. Hence, if π ∈ I then d ∩ I = {π} 6= ∅.
— Case TRANS. We have {π1, . . . , πn} ∈ D(π) and d =

⋃
1≤i≤n di where di ∈ D̂(πi) and, if

πi ∈ I , then di ∩ I 6= ∅ (induction hypothesis). Let us assume π ∈ I . By abundance, as
{π1, . . . , πn} ∈ D(π), there must exists some i such that πi ∈ I . Then, di ∩ I 6= ∅, and
thus d ∩ I 6= ∅. 2

7. FLAT REPOSITORIES
In this section, we focus on a particular class ∇C ⊆ P(P) of dependencies that can
be safely removed (Theorem 7.11). Removing these dependencies may destroy the
strongly flat structure of a repository, but we introduce the weaker notion of flat repos-
itory which is preserved (Theorem 7.11), and for which co-installability and weak co-
installability still coincide (Theorem 7.8), thus enabling further simplifications intro-
duced in Section 8.

We want to capture in the class ∇C a set of dependencies that have the following
two key properties:
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Fig. 9. Illustration of monotony requirement

always satisfiable any healthy configuration in the repository can be extended to
satisfy these dependencies, so they are irrelevant for co-installability and we can
remove them; formally, this means that if d ∈ ∇C , then for all F ∈ P(P) maximal
with respect to set inclusion such that C ∩ (F × F ) = ∅, we have d ∩ F 6= ∅;
monotony a dependency which is in ∇C must still be always satisfiable even if we
remove some conflicts from the repository; formally, if C ′ ⊆ C , then ∇C ⊆ ∇C ′ .

The monotony property is necessary, because in the next section we introduce further
simplifications that remove redundant conflicts. We want to be sure that removing a
conflict later on does not invalidate the decision taken here of removing a dependency,
as illustrated in Figure 9: the disjunctive dependency on packages b and c can always
be satisfied because the conflict between d and e prevents the simultaneous installation
of d and e; but this dependency is not in∇C since it is no longer satisfiable if the conflict
between d and e is removed. This leads to the following:

Definition 7.1. Given a repository (P ,D ,C ), the set ∇C is the largest set such that
d ∈ ∇C if and only if, for all C ′ ⊆ C , for all F ∈ P(P) maximal with respect to set
inclusion such that C ′ ∩ (F × F ) = ∅, we have d ∩ F 6= ∅.

We can give a more explicit characterisation of the elements of ∇C : these are exactly
the dependencies that contain at least a package having only internal conflicts, like in
Figure 4c. This is quite a remarkable fact, as the property introduced in definition 7.1
is a global property of the repository, and yet it turns out to be possible to characterise
it purely locally, as a condition on individual dependencies.

THEOREM 7.2. Let (P ,D ,C ) be a repository. The set ∇C is the set of dependencies d
such that there exists a package π ∈ d such that, for all pairs (π, π′) ∈ C , we have π′ ∈ d.

PROOF. We first assume that there exists no package π ∈ d such that, for all pairs
(π, π′) ∈ C , we have π′ ∈ d. We show that then d 6∈ ∇C . Let C ′ be the set of conflicts in
C that cross d:

C ′ = {(π, π′) ∈ C |#({π, π′} ∩ d) = 1}.
Clearly, this is a conflict relation (it is symmetric and irreflexive). We consider the set
of features F = P \ d. We have C ′ ∩ (F ×F ) = ∅. If we can now prove that the set F is a
maximal set satisfying this property, we can conclude. Indeed, then, as d ∩ F = ∅, the
set d is not in ∇C . We consider a strictly larger set of features F ′ and show that it does
not satisfies the property. The set F ′ must contain at least a package π in dependency
d. But then, by assumption, there exists π′ ∈ P \ d = F such that (π, π′) ∈ C . By
definition of C ′, we have (π, π′) ∈ C ′. Hence, C ′ ∩ (F ′ × F ′) 6= ∅, as wanted.

We now assume that there exists a package π ∈ d such that, for all pairs (π, π′) ∈ C ,
we have π′ ∈ d. We show that then d ∈ ∇C . Let C ′ be a conflict relation such that
C ′ ⊆ C . Let F be a maximal set of features such that C ′ ∩ (F × F ) = ∅. We need to
show that d ∩ F 6= ∅. If we assume that there exists no π′ ∈ F such that (π, π′) ∈ C ′,
then, by maximality of F , we must have π ∈ F . Hence, d∩F 6= ∅ as wanted. Otherwise,
there exists π′ ∈ F such that (π, π′) ∈ C ′. But then, π′ ∈ d. Hence, d∩F 6= ∅ as well.

Notice that, if a dependency d contains a package π with no conflict, then it is in ∇C ;
so ∇C also contains the redundant dependencies shown in Figure 4b.
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Fig. 10. Transitivity of dependencies is lost

Remark 7.3. Let (P ,D ,C ) be a repository. The set ∇C is upward-closed: if d ⊆ d′

and d ∈ ∇C , then d′ ∈ ∇C .

PROOF. This is immediate thanks to Theorem 7.2.

As we shall see, weak co-installability is preserved by the transformation that removes
the elements of set ∇C from a dependency function D of a strongly flat repository.
But, in general, the strongly flat property is lost: when we remove one dependency
from a strongly flat repository, it may be the case that the transitivity of the flattened
dependency function does no longer hold. Consider for example the repository shown
in Figure 10: the dependency {a, b} for package e is in ∇C , but it can also be obtained
by composing the depency {c, b} with the dependency {a} ∈ Dc and {b} ∈ Db. So, if we
remove {a, b}, we break transitivity.
So we need a weaker notion of repository that is preserved by this simplification. We
start by defining a coarser preorder on dependency functions that ignores dependen-
cies in ∇C :

D ≺C D ′ if and only if for every package π in the domain of D , for every
dependency d ∈ D(π), either d ∈ ∇C or there exists a dependency d′ ∈ D ′(π)
such that d′ ⊆ d.

This preorder can be extended to repositories by setting (P ,D ,C ) ≺ (P ′,D ′,C ′) iff
P = P ′, D ≺C D ′, and C ⊆ C ′. We write ≈ for the associated equivalence relation.

Remark 7.4. The following implications hold:

— if C ′ ⊆ C and D ≺C D ′, then D ≺C ′ D ′;
— if D v D ′, then D ≺C D ′;
— if (P ,D ,C ) v (P ′,D ′,C ′), then (P ,D ,C ) ≺ (P ′,D ′,C ′).

A repository (P ,D ,C ) is flat when it satisfies the following properties:

— reflexivity: ∆C ≺C D ;
— transitivity: D ; D ≺C D .

Flat repositories have a series of good properties: they include strongly flat reposito-
ries, co-installability and weak co-installability still coincide, removing ∇C preserves
flatness and keeps co-installability invariant.

LEMMA 7.5. Any strongly flat repository is flat.

PROOF. This is a direct consequence of Remark 7.4.

Remark 7.6. Let (P ,D ,C ) be a flat repository. Let π ∈ P such that (π, π′) ∈ C for
some π′ ∈ P . Then, there exists d ∈ D(π) such that d ⊆ {π}.
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PROOF. Let π ∈ P such that (π, π′) ∈ C for some π′ ∈ P . By reflexivity (∆C ′ ≺C D),
we have either {π} ∈ ∇C or there exists d ∈ D(π) such that d ⊆ {π}. By Theorem 7.2,
{π} 6∈ ∇C . Hence the result.

LEMMA 7.7. If (P ,D ,C ) ≺ (P ′,D ′,C ′), (P ′,D ′,C ′) v (P ,D ,C ), and the repository
(P ,D ,C ) is flat, then the repository (P ′,D ′,C ′) is flat.

PROOF. We assume that (P ,D ,C ) ≺ (P ′,D ′,C ′), (P ′,D ′,C ′) v (P ,D ,C ), and
(P ,D ,C ) is flat. We show that (P ′,D ′,C ′) is flat.

We first show reflexivity, that is, ∆C ′ ≺C ′ D ′. We have ∆C ≺C D ≺C D ′ by hypoth-
esis. Hence, ∆C ≺C ′ D ≺C ′ D ′ by Remark 7.4. On the other hand, we have C ′ ⊆ C .
Hence, for all π ∈ P , we have ∆C ′(π) ⊆ ∆C (π). Thus, ∆C ′ v ∆C by Remark 4.1, and
finally ∆C ′ ≺C ′ ∆C by Remark 7.4. We conclude by transitivity of ≺C ′ .

We now show transitivity, that is, D ′ ; D ′ ≺C ′ D ′. Let π0 ∈ P and d0 ∈ (D ′ ; D ′)(π0).
We show that either d0 ∈ ∇C ′ or there exists a dependency d ∈ D ′(π0) such that d ⊆ d0.
By definition of composition, there exists a dependency d′ = {π1, . . . , πn} ∈ D ′(π0) and
dependencies d′i ∈ D ′(πi) such that d0 =

⋃
1≤i≤n d

′
i. As D ′ v D , there exists d ∈ D(π0)

such that d ⊆ d′. Similarly, for all i, there exists di ∈ D(πi) such that di ⊆ d′i. By
transitivity in (P ,D ,C ), either

⋃
1≤i≤n di ∈ ∇C or there exists d1 ∈ D(π0) such that

d1 ⊆
⋃

1≤i≤n di. In the first case, we have
⋃

1≤i≤n di ⊆
⋃

1≤i≤n d
′
i = d0. Then, as ∇C is

upward-closed (Remark 7.3) and C ′ ⊆ C , we have d0 ∈ ∇C ⊆ ∇C ′ as wanted. In the
second case, we have d1 ⊆

⋃
1≤i≤n di ⊆

⋃
1≤i≤n d

′
i = d0. As D ≺C D ′, either d1 ∈ ∇C ′ or

there exists d2 ∈ D ′(π0) such that d2 ⊆ d1. If d1 ∈ ∇C ′ , then d0 ∈ ∇C ′ as well, as ∇C ′ is
upward-closed. This is what we wanted to prove. Otherwise, we have d2 ∈ D ′(π0) such
that d2 ⊆ d1 ⊆ d0, which is again what is needed to conclude.

THEOREM 7.8. Any set of packages Π weakly co-installable in a flat repository are
co-installable in this repository.

PROOF. The proof follows the proof of Theorem 6.6, with minor modifications.
Let (P ,D ,C ) be a flat repository. Let Π be a set of packages weakly co-installable in

(P ,D ,C ). There exists a set of packages F such that the configuration (Π,F ) is healthy
in (P ,D ,C ). We assume that F is a maximal set of packages satisfying this property.
We then consider a maximal set of packages I such that Π ⊆ I and the configuration
(I ,F ) is healthy in (P ,D ,C ). We can conclude if we prove that I is healthy in (P ,D ,C ).

We first prove abundance. We take π ∈ I and d = {π1, . . . , πn} ∈ D(π) and need to
prove that d ∩ I 6= ∅. We want to show that we can find π′′ ∈ d such that (I ∪ {π′′},F ),
is healthy. Indeed, then, by maximality of I , we have π′′ ∈ I . Hence, d ∩ I 6= ∅ as
wanted. The package π′′ should be such that, for all d′′ ∈ D(π′′), we have d′′ ∩ F 6=
∅. The proof is by contradiction. Suppose that for all i, there exists di ∈ D(πi) such
that di ∩ F = ∅. As D ; D ≺C D , either

⋃
1≤i≤n di ∈ ∇C or there exists d′ ∈ D(π)

such that d′ ⊆
⋃

1≤i≤n di. In the first case, by maximality of F and definition of ∇C ,
(
⋃

1≤i≤n di) ∩ F 6= ∅. This contradicts the assumption that di ∩ F = ∅ for all i. In the
second case, we have d′ ∩ F ⊆

⋃
1≤i≤n di = ∅. This contradicts the fact that π ∈ I and

(I ,F ) is healthy. Hence the existence of a suitable package π′′ which allow us to finish
the proof of abundance.

We now prove peace by contradiction. Suppose that C ∩ (I × I ) 6= ∅, that is, there
exists π ∈ I and π′ ∈ I such that (π, π′) ∈ C . As (I ,F ) is healthy, we have π ∈ F and
π′ ∈ F by Lemma 6.4, and then (π, π′) 6∈ C by peace. We reach a contradiction, hence
C ∩ (I × I ) = ∅.

LEMMA 7.9. If (P ,D ,C ) ≺ (P ′,D ′,C ′), then any set of packages Π weakly co-
installable in repository (P ′,D ′,C ′) is weakly co-installable in repository (P ,D ,C ).
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PROOF. We assume that (P ,D ,C ) ≺ (P ′,D ′,C ′) and that the set of packages Π is
weakly co-installable in (P ′,D ′,C ′). There exists a set of packages F such that (Π,F )
is a healthy configuration in (P ′,D ′,C ′). In particular, we have C ′ ∩ (F × F ) = ∅. As
C ⊆ C ′, we also have C ∩ (F × F ) = ∅. There exists thus a set of packages F ′ maximal
such that C ∩ (F ′ × F ′) = ∅ and F ⊆ F ′. We can conclude by showing that (Π,F ′)
is a healthy configuration in (P ,D ,C ). We have peace by definition of F ′. We show
abundance. Let π ∈ Π and d ∈ D(π). We need to show that d ∩ F ′ 6= ∅. As D ≺C D ′,
either d ∈ ∇C or there exists d′ ∈ D ′(π) such that d′ ⊆ d. In the first case, by definition
of∇C and maximality of F ′, we have d∩F ′ 6= ∅ as wanted. In the second case, as (Π,F )
is a healthy configuration, we have d′ ∩ F 6= ∅, and therefore d ∩ F ′ 6= ∅ as wanted.

LEMMA 7.10. Let (P ,D ,C ) be a repository. We define a simplified dependency func-
tion D ′ by: D ′(π) = D(π) \ ∇C for all π ∈ P . Then:

— (P ,D ′,C ) v (P ,D ,C );
— (P ,D ′,C ) ≈ (P ,D ,C ).

PROOF. For all π ∈ P , we have D ′(π) ⊆ D(π). Hence, by Remark 4.1, D ′ v D , and
therefore, (P ,D ′,C ) v (P ,D ,C ). Then, by Remark 7.4, (P ,D ′,C ) ≺ (P ,D ,C ).

We now prove (P ,D ,C ) ≺ (P ,D ′,C ). It is sufficient to show that D ≺C D ′. Let
π ∈ P and d ∈ D(π). We need to prove that either d ∈ ∇C or there exists d′ ∈ D ′(π) =
D(π)\∇C such that d′ ⊆ d. This is clearly satisfied, taking d′ = d in the second case.

THEOREM 7.11. Let (P ,D ,C ) be a flat repository and D ′ be the dependency function
such that D ′(π) = D(π) \ ∇C for all π ∈ P . The repository (P ,D ′,C ) is flat, and co-
installability is left invariant by this transformation.

PROOF. Flatness is a consequence of Lemmas 7.7 and 7.10. Invariance is a conse-
quence of Theorem 7.8, and Lemmas 7.9 and 7.10.

One can still reason on flat repositories, as far as co-installability is concerned, as if
their dependency function was transitive: just choose configurations (I ,F ) where F is
maximal, and then any dependency obtained by composition is satisfied, even when it
is not explicitly in the dependency function. (For strongly flat repositories, this holds
for arbitrary sets F .)

The following technical lemma is a crucial tool for reasoning on flat repositories. It
states that a stronger form of transitivity where dependencies are not fully composed
holds for flat repositories.

LEMMA 7.12. Let (P ,D ,C ) be a flat repository, π ∈ P , d ∈ D(π). Let Π =
{π1, . . . , πn} be a subset of d. We assume that, for all i, there exists di ∈ D(πi). Then,
there exists d′ ∈ D(π) ∪∇C such that d′ ⊆ (d \Π) ∪

⋃
1≤i≤n di.

PROOF. Suppose that there exists π′ ∈ d \ Π such that {π′} ∈ ∇C (that is, by The-
orem 7.2, package π′ conflicts with no package). Then we can take d′ = {π′} and con-
clude. Thus, we can assume that, for all π′ ∈ d \ Π, there exists π′′ ∈ P such that
(π′, π′′) ∈ C .

We show that for all π′ ∈ d we can find d′ ∈ D(π′) such that d′ ⊆ (d \ Π) ∪
⋃

1≤i≤n di.
We can then use transitivity (D ; D ≺C D) to conclude. Indeed, by transitivity, there
exists d′′ ∈ D ; D such that d′′ ⊆ (d \ Π) ∪

⋃
1≤i≤n di and either d′′ ∈ ∇C or there exists

d′′′ ∈ D(π) such that d′′′ ⊆ d′′. We can then conclude by taking either d′′ or d′′′.
Let π′ ∈ d. If π′ = πi for some i, we can take d′ = di. Otherwise, π′ ∈ d \ Π. We

have assumed that there exists π′′ such that (π′, π′′) ∈ C . By Remark 7.6, there exists
d′ ∈ D(π′) such that d′ ⊆ {π′}. This dependency is suitable as π′ ∈ d \Π.
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LEMMA 7.13. Let (P ,D ,C ) be a flat repository. Let C ′ be a conflict relation such
that C ′ ⊆ C . The repository (P ,D ,C ′) is flat.

PROOF. We first prove reflexivity: ∆C ′ ≺C D . By assumption, ∆C ≺C D . Hence,
by transitivity, it is sufficient to prove that ∆C ′ ≺C ∆C . Clearly, as C ′ ⊆ C , we have
∆C ′(π) ⊆ ∆C (π) for all π. We conclude by Remark 4.1 and 7.4.

We now prove transitivity. By assumption, we have D ; D ≺C D . Hence, by Re-
mark 7.4, as C ′ ⊆ C , we have D ; D ≺C ′ D as wanted.

8. IRRELEVANT CONSTRAINTS
We review now several classes of dependencies and conflicts that are redundant and
can be simplified out.

In the following, we will write D \ {π 7→ d} for the dependency function D where the
dependency d of package π has been removed. Formally,

(D \ {π0 7→ d0})(π0) = D(π0) \ {d0}
(D \ {π0 7→ d0})(π) = D(π) when π 6= π0.

8.1. Clearly Irrelevant Dependencies
The results of the previous section let us remove the dependencies in ∇C from a flat
repository while leaving weak co-installability invariant and keeping the repository
flat.

8.2. Conflict Covered Dependencies
An example of another very interesting class of irrelevant dependencies is shown in
Figure 11, where the dependency for package a can always be satisfied despite the
conflict between packages e and f (we assume the other packages in this dependency
also have conflicts, even if not shown in the picture, so the dependency cannot be ob-
viously removed): indeed, for this conflict to be relevant for the dependency, f needs to
be installed; but if f is installed, at least one of packages c and d is installed as well,
and thus the dependency is satisfied without needing to install e. This generalizes to
the case where package e is in conflict with several packages with the same property
as package f .

More formally, we say that a dependency d is conflict covered at π if it contains a
package π such that for all (π, π′) ∈ C , there exists a dependency d′ ∈ D(π′) such that
d′ ⊆ d \ {π}. Removing one such dependency leaves co-installability invariant.

LEMMA 8.1. Let (P ,D ,C ) be a flat repository, d be a conflict covered dependency,
and D ′ be the dependency function obtained by removing d from D . Any set of packages
weakly co-installable in (P ,D ′,C ) is weakly co-installable in (P ,D ,C ).

PROOF. Let d0 ∈ D(π0) be one of these dependencies. There exists π1 ∈ d0 such
that for all (π1, π) ∈ C , there exists a dependency d ∈ D(π) such that d ⊆ d0 \ {π1}.
Let D ′ = D \ {π0 7→ d0} be the dependency function with this dependency removed.
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Let Π be a weakly co-installable set of packages in the repository (P ,D ′,C ). There
exists a set of features F such that (Π,F ) is a healthy configuration of (P ,D ′,C ). We
consider a maximal such a set F (with respect to inclusion). Clearly, the set F is then
maximal such that C ∩ (F ×F ) = ∅. If d0∩F 6= ∅, then (Π,F ) is a healthy configuration
of (P ,D ,C ) as well, as wanted. We now consider the case where d0 ∩ F = ∅. Let F ′ =
(F \{π | (π1, π) ∈ C})∪{π1}. We show that (Π,F ′) is a healthy configuration of (P ,D ,C ).
Peace is clear. We need to show abundance.

Let π ∈ I and d ∈ D(π). We want to show that d ∩ F ′ 6= ∅. If π1 ∈ d, this is the case.
We can thus assume that π1 6∈ d. In particular, this means that d 6= d0, and therefore,
by abundance, d ∩ F 6= ∅. The remainder of the proof is by contradiction. We assume
that d ∩ F ′ = ∅. We consider the packages πi such that d ∩ F = {π1, . . . πn}. We have
πi ∈ F \ F ′. Thus, for all i, we have (π1, π

i) ∈ C , and therefore, by assumption, there
exists di ∈ D(πi) such that di ⊆ d0 \ {π1}. By Lemma 7.12, there exists a dependency
d′ such that d′ ∈ D(π) ∪∇C and d′ ⊆ (d \ (d ∩ F )) ∪

⋃
1≤i≤n d

i. From this last inclusion,
we get d′ ⊆ (d \ F ) ∪ (d0 \ {π1}). From this, on the one hand, as π1 6∈ d, we can see that
π1 6∈ d′, and therefore d′ 6= d. Hence, d′ ∈ D ′(π) ∪ ∇C . By abundance and maximality
of F , we get d′ ∩ F 6= ∅. On the other hand, d′ ∩ F ⊆ ((d \ F ) ∪ (d0 \ {π1})) ∩ F =
(d0 \ {π1}) ∩ F = ((d0 ∩ F ) \ {π1}) = ∅. We reach a contraction, which completes the
proof.

Unfortunately, removing such dependencies may destroy the flatness of the reposi-
tory, so we remove them one after another, in a greedy way, and only after checking
that flatness is preserved by using the following result.

LEMMA 8.2. Let (P ,D ,C ) be a flat repository. Let π ∈ P and d ∈ D . Let D ′be the
dependency function D where the dependency d of package π has been removed. If the
following two conditions hold, then (P ,D ′,C ) is flat.

— d 6⊆ {π};
— for all d′ ∈ (D ′ ; D ′)(π), we have d 6⊆ d′.

PROOF. We first prove reflexivity, that is, ∆C ≺C D ′. Let π′ ∈ P and d′ ∈ ∆C (π′). We
show that either d′ ∈ ∇C , or there exists d′′ ∈ D ′(π′) such that d′′ ⊆ d′. By definition,
we must have d′ = {π′}. By reflexivity in repository (P ,D ,C ), we have either d′ ∈
∇C , or there exists d′′′ ∈ D(π′) such that d′′′ ⊆ d′. In the first case, we can conclude
immediately. If d′′′ ∈ D ′(π′), we can conclude as well by taking d′′ = d′′′. Otherwise, we
must have π′ = π and d′′′ = d. But, then, d = d′′′ ⊆ d′ = {π′} = {π}. This is not possible
due to the first assumption.

We now prove transitivity, that is, D ′ ;D ′ ≺C D ′. Let π′ ∈ P and d′ ∈ (D ′ ;D ′)(π′). We
show that either d′ ∈ ∇C , or there exists d′′ ∈ D ′(π′) such that d′′ ⊆ d′. By definition,
there exists a dependency {π1, . . . , πn} ∈ D ′(π′) and dependencies di ∈ D ′(πi) such
that d′ =

⋃
1≤i≤n di. By transitivity in repository (P ,D ,C ), either d′ ∈ ∇C or there

exists d′′′ ∈ D(π′) such that d′′′ ⊆ d′. In the first case, we can conclude immediately.
If d′′′ ∈ D ′(π′), we can conclude as well by taking d′′ = d′′′. Otherwise, we must have
π′ = π and d′′′ = d. But, then, d = d′′′ ⊆ d′ ∈ D ′ ; D ′. This is not possible due to the
second assumption.

In practice, it can be simpler to get all possible dependencies d′ above by taking all
dependencies d′′ ∈ D(π) \ {d, {π}} and composing them with dependencies in D .

In theory, the result of this simplification may depend on the order in which one
applies the conflict covered reductions to remove dependencies: indeed, as a graph
rewriting system [Baader and Nipkow 1998], this transformation has unsolvable
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Fig. 13. Dependence on conflicting package

critical pairs.

In practice, though, we remove all instances present in the initial repository.

8.3. Redundant Conflicts
We consider some of the conflicts that can be removed from a repository while leaving
co-installability invariant. A conflicting pair (π1, π

′
1) ∈ C is redundant if there exists a

dependency d ∈ D(π1) such that for all π2 ∈ d, there exists a package π′2 such that:

— (π2, π
′
2) ∈ C ;

— {π1, π′1} 6= {π2, π′2};
— there exists d′ ∈ D(π2) such that d′ ⊆ {π′2}.

Redundant conflicts can be removed, but only one at a time: for example, if two con-
flicts are considered redundant thanks to the existence of one another, then removing
both of them simultaneously is incorrect.

LEMMA 8.3. Let (P ,D ,C ) be a repository. Let (π1, π2) be a redundant conflict in this
repository. Any healthy installation of repository (P ,D ,C \{(π1, π2), (π2, π1)}) is healthy
in repository (P ,D ,C ).

PROOF. Let Π be a healthy set of packages of repository (P ,D ,C \{(π1, π2), (π2, π1)}).
We show that it is healthy in repository (P ,D ,C ). Abundance is clear. We prove peace,
that is, C ∩ (Π×Π) = ∅. We have by hypothesis (C \ {(π1, π2), (π2, π1)})) ∩ (Π×Π) = ∅.
Thus, we can conclude if packages π1 and π2 are not both in Π. The proof is by contra-
diction: we assume the packages are in Π and reach a contradiction. By abundance in
the initial repository, for any dependency d ∈ D(π1), there exists a package π′1 ∈ d ∩Π.
Then, by definition of redundant conflicts, there exists a dependency d1 ∈ D(π1), a
package π′1 in d1 ∩ Π, a dependency d2 ∈ D(π2) and a package π′2 ∈ Π such that
(π′1, π

′
2) ∈ C \ {(π1, π2), (π2, π1)}) and d2 ⊆ {π′2}. By abundance, d2 ∩ Π 6= ∅, hence

π′2 ∈ Π. This contradicts peace in the initial repository. Hence the result.

Removing redundant conflicts involves a trade off. On one side, it may allow removing
some additional dependencies; on the other, it can also break some interesting struc-
tures. In Figure 12, the conflict between b and c is redundant, but removing it breaks
the clique a, b, c, which is useful when drawing a simplified graph.

8.4. Dependence on Conflicting Packages
A special configuration may surface in the repository during simplification when the
initial repository contains broken packages, as depicted in Figure 13: clearly, package
a cannot be installed, and leaving such a configuration in the repository would pollute
the graphical representation. In this case, we mark explicitly package a as broken
by replacing its dependencies by the empty dependency ∅. All conflicts involving a
can then be also removed, as they are redundant (Section 8.3). The transformation
preserves healthiness.

LEMMA 8.4. Let π be a package not installable in some repository (P ,D ,C ). Let
D ′ be the dependency function that coincide with D for all packages but π and such
that D ′(π) = {∅}. Any healthy installation of repository (P ,D ,C ) is also healthy in
repository (P ,D ′,C ).
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PROOF. Let I be an healthy installation of repository (P ,D ,C ). We show that it
is an healthy installation of repository (P ,D ′,C ). Clearly, peace is satisfied and abun-
dance is satisfied for all packages distinct from π. We now show abundance for package
π. As D ′(π) = ∅, this reduces to showing that π 6∈ I . This is indeed the case as π is not
installable in the initial repository.

The flatness of the repository may be destroyed, as some of the removed dependencies
may be involved in transitivity. Thus, after applying such simplification, flattening
should be performed again.

9. QUOTIENTING THE SET OF PACKAGES
In real-world repositories, many packages share the same behaviour as far as co-
installability is concerned: for example, a lot of packages can always be installed, and
some groups of packages only conflicts with a single other package.

In this section, we define an equivalence relation between packages, and show that
the quotient w.r.t. this relation preserves all the good properties of a repository. We
define two packages as equivalent in a repository (P ,D ,C ) if they have the same de-
pendencies:

π ≡ π′ if and only if D(π) = D(π′).

We write [π] for the equivalence class of package π, and extend this definition to set
of packages: [Π] = {[π] |π ∈ Π}. The quotient repository (P ′,D ′,C ′) of a repository
(P ,D ,C ) is naturally defined as follows:

— P ′ is the set of all equivalence classes: P ′ = P/≡ = {[π] |π ∈ P};
— the dependency function D ′ is such that D ′([π]) = {[d] | d ∈ D(π)} for all π ∈ P ;
— the conflict relation C ′ is defined by

C ′ = {([π], [π′]) | (π, π′) ∈ C}.
If the original repository does not contain dependencies between conflicting pack-

ages, like those between a and b shown in Figure 13, nor redundant conflicts, then the
quotient repository is indeed a repository (the key point to check is irreflexivity of the
conflict relation).

LEMMA 9.1. Let (P ,D ,C ) be a flat repository such that, for all π ∈ P and for all
d ∈ D(π), if d ⊆ {π′} for some π′ ∈ P , then (π, π′) 6∈ C . Its quotient is indeed a repository.

PROOF. Let (P ′,D ′,C ′) be the tentative quotiented repository associated to reposi-
tory (P ,D ,C ), as defined above. The result is clear, except for irreflexivity of C ′, which
we show below. We assume that (π′, π′) ∈ C ′ for some package π′ ∈ P ′ and reach a con-
tradiction. By definition of C ′, there exists π1 ∈ P and π2 ∈ P such that π′ = [π1] = [π2]
and (π1, π2) ∈ C . By Remark 7.6, there exists a dependency d ∈ D(π2) such that
d ⊆ {π2}. By definition of quotienting, D(π1) = D(π2), and thus d ∈ D(π1). But then,
by hypothesis, we should have (π1, π2) 6∈ C . Hence a contradiction, as wanted.

Remark 9.2. Let (P ,D ,C ) be a repository. Let (I ,F ) be a healthy configuration
of repository (P ,D ,C ). We assume that the set F is a maximal set (with respect to
inclusion) satisfying this property. Then, for all packages π in P \ F , there exists a
package π′ such that (π, π′) ∈ C .

PROOF. We have {π} 6∈ ∇C . Indeed, otherwise, we would have, by definition, {π} ∩
F 6= ∅, and thus π ∈ F . Then, by Theorem 7.2, there exists π′ such that (π, π′) ∈ C .

LEMMA 9.3. Let (P ,D ,C ) be a flat repository. Let (I ,F ) be a healthy configuration
of repository (P ,D ,C ). We assume that the set F is a maximal set (with respect to
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inclusion) satisfying this property. Let π ∈ P \ F . Let π′ ∈ P such that D(π′) = D(π) (in
other words, π′ ∈ [π]). Then, there exists d ∈ D(π′) such that d ⊆ {π}.

PROOF. By Remark 9.2, there exists π′′ such that (π, π′′) ∈ C . By Remark 7.6, there
exists d ∈ D(π) such that d ⊆ {π}. We have D(π′) = D(π′), hence the result.

LEMMA 9.4. Let (P ,D ,C ) be a repository. Let (P ′,D ′,C ′) be the corresponding quo-
tient repository. Let (I ,F ) be a healthy configuration of repository (P ,D ,C ). We assume
that the set F is a maximal set (with respect to inclusion) satisfying this property. Then
([I ], [F ]) is a healthy configuration of repository (P ′,D ′,C ′). (We write F for the comple-
ment P \ F of set F .)

PROOF. Let F ′ = [F ] = {[π] ∈ P |∀π′ ∈ [π], π′ ∈ F}.
We first prove abundance. Let π′0 ∈ [I ] and d′0 ∈ D ′(π′0). There exists π0 ∈ I and

d0 ∈ D(π0) such that π′0 = [π0] and d′0 = [d0]. By abundance in repository (P ,D ,C ), we
have d0 ∩ F 6= ∅. Suppose there exists π ∈ d0 ∩ F such that [π] ∈ F ′. Then, as [π] ∈ d′0,
we have d′0 ∩ F ′ 6= ∅ as wanted. Otherwise, for all package π ∈ d0 ∩ F , there exists a
package π′ ∈ [π] \F . By Lemma 9.3, there also exists a dependency d ∈ D(π) such that
d ⊆ {π′}, and therefore d ∩ F = ∅. We can apply Lemma 7.12 to compose d0 with all
these dependencies. Hence, there exists d′ ∈ D(π0) ∪ ∇C such that d′ ∩ F = ∅. But by
abundance and maximality of F , we should have d′ ∩ F 6= ∅. We reach a contradiction.
Hence, this second case is actually not possible.

We now show peace. The proof is by contradiction. Suppose that peace does not hold.
Then, there exists π′1 ∈ F ′ and π′2 ∈ F ′ such that (π′1, π

′
2) ∈ C ′. By definition of C ′,

there exists a pair (π1, π2) ∈ C such that π′1 = [π1] and π′2 = [π2]. By definition of F ′,
π1 ∈ F and π2 ∈ F . Then, by peace in repository (π,D ,C ), (π1, π2) 6∈ C . We reach a
contradiction, hence the result.

LEMMA 9.5. Let (P ,D ,C ) be a repository. Let (P ′,D ′,C ′) be the corresponding quo-
tient repository. Let (I ,F ) be a healthy configuration of repository (P ′,D ′,C ′). We pose
I ′ = {π | [π] ∈ I } and F ′ = {π | [π] ∈ F}. Then (I ′,F ′) is a healthy configuration of
repository (P ,D ,C ).

PROOF. We first prove abundance. Let π ∈ I ′ and d ∈ D(π). We need to show that
d ∩ F ′ 6= ∅. We have [π] ∈ I . By definition of D ′, we have [d] ∈ D ′([π]). By abundance,
we thus have [d] ∩ F 6= ∅, that is, there exists a package π ∈ d such that [π] ∈ F . We
thus have π ∈ F ′, hence the result.

We now prove peace, that is C ∩ (I ′ × I ′) 6= ∅, The proof is by contradiction. Let π1
and π2 be two packages in F ′ such that (π1, π2) ∈ C . We have [π1] and [π2] in F and,
by definition of C ′, ([π1], [π2]) ∈ C ′. This contradicts peace in the quotient repository.
Hence the result.

Quotienting preserves flatness and keeps co-installability invariant.

THEOREM 9.6. A set of packages Π is weakly co-installable in the flat repository
(P ,D ,C ) if and only if the set [Π] is weakly co-installable in the associated quotient
repository.

PROOF. This is a direct consequence of Lemmas 9.4 and 9.5.

THEOREM 9.7. If a repository is flat, then the corresponding quotiented repository
is flat as well.

PROOF. Let (P ,D ,C ) be a flat repository. We show that its quotient repository
(P ′,D ′,C ′) is also flat.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:24

We first prove reflexivity, that is, ∆C ≺C D ′. It is sufficient to prove that ∆C v
D ′. Let π1, π2 ∈ P such that ([π1], [π2]) ∈ C ′. We need to prove that there exists a
dependency d′ ∈ D ′([π1]) such that d′ ⊆ {[π1]}. By definition of C ′, there exists a pair
of packages (π3, π4) ∈ C such that [π3] = [π1] and [π4] = [π2]. By reflexivity in the
initial repository, either {π3} ∈ ∇C or there exists d ∈ D(π3) such that d ⊆ {π3}. By
Theorem 7.2, {π3} 6∈ ∇C . Hence, there exists a dependency [d] in D ′([π3]) = D ′([π1])
such that [d] ⊆ {[π3]} = {[π1]}, as wanted.

We now prove transitivity, that is, D ′ ; D ′ ≺C D ′. Let π be a package. Let d =
{π1, ..., πn} a dependency such that [d] ∈ D ′([π]) (that is, d ∈ D(π)).

Let di be dependencies such that [di] ∈ D ′([πi]) (that is, di ∈ D(πi)) for each i. We need
to prove that either

⋃
i[di] ∈ ∇′C (where ∇′C is our class of always satisfiable depen-

dencies for the quotiented repository) or there exists d′ ∈ D ′([π]) such that d′ ⊆
⋃
i[di].

We assume that
⋃
i[di] 6∈ ∇′C and show we are in the second case. By Theorem 7.2,

for all [π] ∈
⋃
i[di], there exists a package [π′] ∈ P ′ \

⋃
i[di] such that ([π], [π′]) ∈ C ′.

This means that we can define a function f which associates to each [π] ∈
⋃
i[di] a

package f([π]) ∈ [π] such that there exists a package π′′ such that [π′′] ∈ P ′ \
⋃
i[di]

and (f([π]), π′′) ∈ C . Note that π′′ ∈ P \ f(
⋃
i[di]). Hence, for any dependency d′′, if

d′′ ⊆ f(
⋃
i[di]), then d′′ 6∈ ∇C . Now, by reflexivity and Theorem 7.2 both applied to

f(π′′), for each π′′ ∈ di, there exists a dependency d′′ ∈ D(f([π′′]) = D(π′′) such that
d′′ ⊆ {f([π′′])}. Thus, for all i, by transitivity applied to di and the corresponding d′′,
there exists a dependency d′′i ∈ D(πi) such that d′′i ⊆ f(

⋃
j [dj ]). By transitivity again,

applied to dependency d and dependencies d′′i , there exists a dependency d′′ ∈ D(π)
such that d′′ ⊆ f(

⋃
i[di]). We have [d′′] ∈ D ′([π]) and [d′′] ⊆ [f(

⋃
i[di])] =

⋃
i[di] as

wanted.

10. REFLEXIVE TRANSITIVE REDUCTION
It would not be suitable to graph directly a repository after flattening as it would be
polluted by dependencies which are not informative: due to reflexivity, we have pack-
ages π where {π} ∈ D(π), and some dependencies can be deduced from others by tran-
sitivity. Thus, we perform a kind of reflexive transitive reduction of the dependency
function: given a repository (P ,D ,C ), we find a minimal dependency function D ′ with
the same flattening (that is, D̂ = D̂ ′).

Because of disjunctive dependencies, the complexity of finding an optimal solution is
high [Ausiello et al. 1983; Ausiello et al. 1986], in constrast with the case of reflexive
transitive reduction for graphs. As this is mostly a cosmetic issue for us, we use a sim-
ple non-optimal algorithm. As a first step, we iteratively remove dependencies which
are implied from other dependencies by transitivity, in a greedy way. The second step
is to remove all self dependencies, that is, dependencies d ∈ D(π) such that π ∈ d.
Co-installability is left invariant by these operations.

LEMMA 10.1. Let (P ,D ,C ) be a repository. Let π ∈ P be a package and d ∈ D(π) be
a dependency of this package. Let D ′ = D \{π 7→ d} be the dependency function D where
the dependency has been removed. If d ∈ (D ′ ; D ′)(π) then any healthy installation I of
repository (P ,D ′,C ) is a healthy installation of repository (P ,D ,C ).

PROOF. Let I be a healthy installation of (P ,D ′,C ). We show that it is a healthy
installation of (P ,D ,C ). Peace is clear. We prove abundance.

Let π′ ∈ I and d′ ∈ D(π′). We need to show that d′ ∩ I 6= ∅. If π′ 6= π or d′ 6= d,
then d′ ∈ D ′(π′) and the result holds by abundance in (P ,D ′,C ). We now show that
d ∩ I 6= ∅. As d ∈ (D ′ ; D ′)(π), there exists a dependency d′′ = {π1, . . . , πn} ∈ D ′(π) and,
for all i, a dependency di ∈ D ′(πi) such that d =

⋃
1≤i≤n di. By abundance, as π ∈ I , we
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repeat
(P,D,C)← flatten(P,D,C)
(P,D,C)← canonise(P,D,C)
(P,D,C)← (P,D,C) \ ∇C

(P,D,C)← remove-clearly-broken(P,D,C)
(P,D,C)← remove-redundant-conflicts(P,D,C)

until the last two steps above have no effect
(P,D,C)← remove-conflict-covered-deps(P,D,C)
return quotient(P,D,C)

Fig. 14. Simplifying the repository.

have d′′ ∩ I 6= ∅, that is, there exists i such that πi ∈ I . Then, by abundance again, we
have di ∩ I 6= ∅. Hence, d ∩ I 6= ∅ as wanted.

LEMMA 10.2. Let (P ,D ,C ) be a repository. Let D ′ be the dependency function de-
fined by D ′(π) = {d ∈ D |π 6∈ d}. Any healthy installation I of repository (P ,D ′,C ) is
also a healthy installation of repository (P ,D ,C ).

PROOF. Let I be a healthy installation of (P ,D ′,C ). We show that it is a healthy
installation of (P ,D ,C ). Peace is clear. We prove abundance.

Let π ∈ I and d ∈ D(π). We need to show that d ∩ I 6= ∅. If π ∈ d, this is the case.
Otherwise, d ∈ D ′(π), and we can conclude by healthiness of I in (P ,D ′,C ).

11. PUTTING IT ALL TOGETHER
We now have all the ingredients at hand to perform on any repository (P,D,C) the
transformations that allow us to produce the final repository, which is suitable both
for drawing a simplified graph, or performing efficiently various analysis related to
co-installability.

11.1. Extracting a Co-Installability Kernel
The complete algorithm is shown in Figure 14. We first flatten the initial reposi-

tory (Section 5), canonise the dependency function (Section 4), and remove the clearly
irrelevant dependencies in ∇C (Section 7). In our implementation, all these opera-
tions are performed simultaneously: this is significantly more efficient, as we have
less dependencies to consider while flattening. Then, we set the dependencies of bro-
ken packages of the form of Figure 13 to the empty dependency ∅ (Section 8.4), and
we remove redundant conflicts (Section 8.3). As changing the dependencies of broken
packages may break flatness and removing may grow ∇C , these fives steps are iter-
ated until no change occurs. The process terminates as at each iteration either D(π) is
set to {∅} for a package π or a conflict is removed. In practice, only two iterations are
performed: more iterations are only needed in unlikely configurations where dealing
with a broken package exposes another package as broken. Finally, we remove the con-
flict covered dependencies that can be safely dropped (Section 8.2) and the repository
is quotiented (Section 9).

By combining the results of the previous sections, we obtain the fundamental result
on the simplification performed by the algorithm.

THEOREM 11.1. The transformation performed by the simplification algorithm
leaves co-installability invariant. This algorithm produces a flat repository.

PROOF. First, the quotienting operation performed at the end indeed produces a
repository, as the hypothesis of Lemma 9.1 are satisfied: if ∅ ∈ D(π), then package π
has no conflicts thanks to redundant conflict removal; if {π′} ∈ D(π), then (π, π′) 6∈ C
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thanks to the dependency strengthening of clearly broken packages. These two prop-
erties are preserved by dependency removal.

We now show that once the loop in Figure 14 is exited, the repository remains flat.
Indeed, flattening produces a flat repository (Theorem 6.1 and Lemma 7.5), which re-
mains flat by canonisation and removal of dependencies in ∇C (Remark 7.4, Lem-
mas 7.7 and 7.10). Then, the removal of conflict cover dependencies is defined so as to
preserve flatness, and quotienting preserves flatness (Lemma 9.7).

To show that co-installability is left invariant, we rely heavily on the equivalence be-
tween co-installability and weak co-installability in flat repositories (Lemma 6.3 and
Theorem 7.8), which let us use weak co-installability preservation results to prove co-
installability preservation. We also use the fact that healthiness preservation implies
co-installability preservation (Remark 2.2). Then, co-installability is left invariant by
flattening (Theorem 6.8), canonisation (Theorem 4.2), removal of dependencies in ∇C

(Theorem 7.11), dependency strengthening of clearly broken packages (Lemma 8.4 and
Theorem 4.2), removal of redundant conflicts (Lemma 8.3 and Theorem 4.2), removal
of conflict covered dependencies (Lemma 8.1) and Theorem 4.2), and quotienting (The-
orem 9.6).

As noticed above, on a repository with no broken package, it is not necessary to
iterate the flattening phase, so the algorithm could run slighly faster; but finding all
broken packages is slower than performing the whole simplification, as it requires to
call a SAT solver repeatedly on large problems. On the other hand, repositories with
good quality control should contain no broken packages, and a simpler version of the
simplification algorithm could be used on them.

11.2. Computing Non Co-Installable Pairs
We are now in a position to compute efficiently all the pairs of packages that cannot
be installed together, which are the strong conflicts of [Di Cosmo and Boender 2010].
First, we notice that, when checking whether a package is installable, one only need
to consider features on which this package may depend.

LEMMA 11.2. Let (P ,D ,C ) be a repository. If the package π ∈ P is weakly in-
stallable in this repository, there exists a set of features F such that the configuration
({π},F ) is healthy and for all π′ ∈ F there exists a dependency d ∈ D(π) such that
π′ ∈ d.

PROOF. Let π ∈ P be a weakly installable in repository (P ,D ,C ). There exists a set
of features F ′ such that ({π},F ′) is installable. We take F = F ′ ∩

⋃
d∈D(π) d. Clearly,

for all π′ ∈ F there exists a dependency d ∈ D(π) such that π′ ∈ d. We now prove that
({π},F ) is healthy.

We first prove abundance. Let d ∈ D(π). By abundance for configuration ({π},F ′),
d ∩ F ′ 6= ∅. By definition of F , we have d ∩ F = d ∩ F ′. Hence d ∩ F 6= ∅ as wanted.

We now prove peace. By peace for configuration ({π},F ′), C ∩ (F ′ × F ′) = ∅. As
F ⊆ F ′, we C ∩ (F × F ) = ∅ as wanted.

And then, we can prove that whenever two packages are not coinstallable in a flat
repository, they directly share a conflict.

LEMMA 11.3. If the packages π1 and π2 are both weakly installable in a repository
(P ,D ,C ) but the set {π1, π2} is not weakly co-installable in this repository, there must
exists d1 ∈ D(π1), d2 ∈ D(π2), π′1 ∈ d1, and π′2 ∈ d2 such that (π′1, π

′
2) ∈ C .
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PROOF. We prove the contrapositive. Let π1 and π2 be two packages in repository
(P ,D ,C ). We assume that there is no dependencies d1 and d2 as specified above and
show that then the set {π1, π2} is not weakly co-installable.

By Lemma 11.2, there exists sets of features F1 and F2 such that configurations
({π1},F1) and ({π2},F2) are healthy. Besides, F1 ⊆

⋃
d∈D(π1)

d, and similarly for F2. We
want to show that the set {π1, π2} is not weakly co-installable. We define F = F1 ∪ F2

and show that the configuration ({π1, π2},F ) is healthy.
We first prove abundance. Let π ∈ {π1, π2} and d ∈ D(π). We need to show that

d∩ F 6= ∅. Suppose π = π1. Then, by abundance, d∩ F1 6= ∅. Thus, d∩ F 6= ∅ as wanted.
We get the same result when π = π2.

We now prove peace, that is, C ∩ (F × F ) = ∅. The proof is by contradiction. Let π
and π′ in F such that (π, π′) ∈ C . If π and π′ are both in F1, we reach a contradiction
as, by peace for configuration ({π1},F1), we have (π, π′) 6∈ C . The same result holds
if they are both in F2. We now assume that π ∈ F1 and π′ ∈ F2. By definition of F1,
there exists d1 ∈ D(π1) such that π ∈ D1. Similarly, there exists d2 ∈ D(π2) such that
π′ ∈ D2. Besides, (π, π′) ∈ C . This case is not possible, as this contradicts our initial
assumption that no such dependencies existed. The last case, where π ∈ F1 and π′ ∈ F2,
is not possible as well.

To find all non co-installable pairs, we iterate over all such pairs (in the quotiented
repository, which is way smaller that the initial repository) and check co-installability
using a SAT solver. This way we can find all strong conflicts in a few seconds, versus
5 days in [Di Cosmo and Boender 2010]. One major reason for this huge performance
improvement is that the transformations leading to the flat repository prune a large
part of the search space by removing many dependencies that would otherwinse need
to be explored. Another part of the performance improvement comes from quotienting,
which makes it possible to test a large number of packages at once.

Besides the usage in quality assurance advocated in [Di Cosmo and Boender 2010],
this information can be used to give a sense of how much a package may be problem-
atic: we can count the number of packages it cannot be installed with, and use this
information to emphasize the nodes with more strong conflicts.

11.3. Drawing a Simplified Graph
Before drawing the final repository, we perform the transitive reflexive reduction of
Section 10. The structure of the graph is then passed as input to the dot program of
the Graphviz toolkit [Ellson et al. 2001] that performs the layout.

It is important to name nodes using meaningful representatives of each equivalence
class: we give preference to packages π that are directly involved in conflicts, as they
have more chances to be relevant for the repository maintainers; these are easy to find
by checking if {π} ∈ D(π).

There can be many packages all mutually in conflict. For instance, this is the case
of all mailer agents in Debian. We identify maximal such cliques and draw them in a
more concise way, as shown in Figure 15.

We compute strong conflicts [Di Cosmo and Boender 2010] (non-coinstallable pairs
of packages) as described in Section 11.2 above, and we colour nodes according to the
logarithm of the number of packages it is incompatible with. This way one can imme-
diately identify in the picture the nodes that prevent the installation of many other
packages.
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(a) Explicit representation
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(b) Compact representation

Fig. 15. Conflict clique

12. THE COINST TOOL
All the transformations described above have been implemented by Jérôme Vouillon
in the coinst tool, that can be used to extract and visualize the coinstallability kernel
for any GNU/Linux distribution.

The coinst program is a command line tool that takes package information from
standard input in either one of the most popular formats among GNU/Linux distribu-
tions, RPM and DEB; DEB format is the default, and RPM metadata can be specified
using the -rpm option.

It writes on standard output:

— the list of equivalence classes, providing, for each, a selected representative package
as well as all the packages it corresponds to;

— the list of packages that cannot be installed at all;
— the list of non-coinstallable pairs: for each package, the tool lists all packages it can

never be installed with.

The coinstallability kernel is written as a dot graph which can be passed to the
Graphviz tool suite [Ellson et al. 2001]; the file name can be specified with the -o
option.

To unclutter the results, coinst omits by default packages with simple conflict
configurations, but one can use the -all option to include all packages in the output.

A typical run of the tool will look like this:

Compute If you have all the metadata for Ubuntu Maverick in a directory
~/maverick-beta/, you can run the tool by issueing the command

zcat ~/maverick-beta/* | coinst -all -o g.dot

Layout The graph can be layed out, using the Graphviz dot tool

dot g.dot -o graph.dot

Display The result can be visualised using your choice of tool; we strongly recommend
to use the companion coinst viewer tool, though:

coinst_viewer graph.dot
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The -ignore option can be used to ignore a package, like in

zcat ~/testing-2010-08-22/* | coinst -ignore liboss-salsa-asound2 -o g.dot

To focus on a particular package, use the -root option.

zcat ~/testing-2010-08-22/* | coinst -root libhdf5-openmpi-1.8.4 -o g.dot

Artifact evaluation and availability: coinst has been evaluated by the ES-
EC/FSE 2011 Artifact Evaluation Committee, and it has been awarded the Distin-
guished Artifact Award. Full source code, build and installation instructions as well as
some running examples of this tool can be found online at http://coinst.irill.org.

13. VISUALIZING UBUNTU
In the Figures 16, 17 and 18, we can see the result of applying the simplifications
described in this paper to the main section of release 10.10 of the Ubuntu GNU/Linux
distribution; solid arrows indicate dependencies, dotted lines indicate conflicts, and
conflict cliques are represented with a node containing a # connected with dotted lines
to all packages in the clique. Of the thousands of packages, and dozens of thousands of
relationships, only a handful are left, and it is possible to read interesting information
directly on the graph.

We give here just a few examples of what can be easily discovered at a glance without
needing to sift through thousands of hyperlinked web pages.

In Figure 16 we see all the simple binary conflicts; for example, qt-x11-free-dbg is
in conflict with 24 packages which are equivalent to libqt4-dbg. The isolated node in
the bottom left, named abrowser, stands for 7049 packages that are always installable.
The four conflict cliques in Figure 17 and the conflict clique in Figure 18 are justified,
as they all correspond to incompatible implementations of libraries which are compiled
with different backends. In Figure 18, we see that package libjpeg8-dev is in conflict
with 28 other packages, which is likely to make it unconvenient to use. The core pack-
age ubuntu-desktop is in conflict with a number of packages. These packages should
either be removed from the main section, or the dependencies should be revised. For in-
stance, packages foomatic-db and libgd2-noxpm should probably be removed. On the
other hand, package libsdl1.2debian-all provides a superset of the functionalities of
libsdl1.2debian-pulseaudio. Thus, it should not be in conflict with ubuntu-desktop.
Overall, there are still a few issues left in this repository, which are immediately ap-
parent when looking at the output of our tool. Since this repository corresponds to a
stable distribution that has undergone extensive testing and quality assurance, we be-
lieve that this is clear proof of the effectiveness of our approach.
Of course, our tool is even more useful for detecting issues proactively when the distri-
bution is in flux (during alpha and beta stages).

14. RELATED WORKS
Ensuring the correct behaviour of components when composed into an assembly is
a fundamental concern for modern software architectures, and has been extensively
studied, but the maintenance of GNU/Linux distributions is quite a different subject,
that poses new challenges, and has started to be studied formally only recently. In this
section, we survey various related reserch ares, pointing out the differences with our
work, which is, to the best of our knowledge, completely novel.
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A large body of literature is dedicated to the dynamic aspects of component com-
position: knowing the behaviour of the components, one looks for means to determine
the behaviour of the system obtained by assembling them [de Alfaro and Henzinger
2001], or to ensure certain properties of the composition [Inverardi et al. 2000; Tivoli
and Inverardi 2008]; when confronted with large systems, one may look for ways of
detecting automatically behavioural incompatibilities from the component source code
[McCamant and Ernst 2003; 2004], or to deploy and upgrade such systems [Ajmani
et al. 2006; Crameri et al. 2007].

These are important issues, but in the world of GNU/Linux distributions we are still
very far from having any information available on the behaviour of each component
after installation, so it is too early to tackle this facet of the problem.

On the other side, the mainstream research on static inter-module dependencies is
essentially performed at the level of the source code, with a different focus: in [Nagap-
pan and Ball 2007a; Neuhaus et al. 2007a], dependencies are automatically extracted
from huge sets of source code, and then used to predict failures, but not to identify
issues in the architecture of the code, unlike what our co-installability kernel allows
to do; in [Yoon et al. 2007] and [Yoon et al. 2008] dependencies are used as a guideline
for testing component-based systems; finally, [Pei-Breivold et al. 2008], which shares
some concerns similar to ours, analyses the architectural dependencies to improve the
modularisation of the software architecture, but the size of the problem is sufficiently
small (some 20 components) to allow manual analysis and resolution of component
relationships, which is totally unfeasible in our case.

In the area of quality assurance for large software projects, many authors have
correlated component dependencies with past failure rates, in order to predict fu-
ture failures [Nagappan and Ball 2007b; Neuhaus et al. 2007b; Zimmermann and
Nagappan 2008]. The underlying hypothesis is that software “fault-proneness” of a
component is correlated to changes in components that are tightly related to it. In
particular, if a component A has many dependencies on a component B and the latter
changes a lot between versions, one would expect that errors propagate through the
“component network” reducing the reliability of A. A related interesting statistical
model to predict failures over time is the weighted time damp model that correlates
recent changes to software fault-proneness [Graves et al. 2000]. Social network
methods [Hanneman and Riddle 2005] have also been used to validate and predict the
list of sensitive components in the Windows platform [Zimmermann and Nagappan
2008].

Our work is part of a recent research area that focuses on the properties of compo-
nent repositories that can be established automatically without looking at the source
code of the components, and without testing them: it is only assumed that each com-
ponent carries with itself a small amount of metadata describing what the component
provides and what it requires to be deployed and run; this metadata may be inferred
automatically using tools, or built manually, or a mixture of the two, but what is im-
portant to notice is that this is the raw material which is used by researchers in this
area.

A first natural question in this setting is how difficult is to determine whether a
component can be installed at all: in [Mancinelli et al. 2006], it has been shown that
this problem is NP-complete, but tractable in practice, for packages in GNU/Linux
distributions, and this result has been recently generalised to a wide class of com-
ponent systems, including OSGI bundles and Eclipse plugins [Abate et al. 2012a].
Since feature diagrams, used in software product lines, can be encoded as component
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repositories [Di Cosmo and Zacchiroli 2010], all the problems related to configuration
management can be equivalently stated in terms of repositories.

An important issue for users of component repositories is computing installations
that optimise some given objective functions: various experiments have been done
since 2006 [Tucker et al. 2007; Argelich et al. 2010; Trezentos et al. 2010; Di Cosmo
et al. 2011; Gebser et al. 2011], and are now organised around the Mancoosi Inter-
national Solver Competition (http://www.mancoosi.org/misc-2011/); the results of
this research line have been used to develop next generation package mangers [Abate
et al. 2011], and several of these solvers are now available as plugins for the Debian
package manager, apt, starting from version 0.9.5.1.

To help repository maintainers in their quality assurance task, It has have been
shown relevant the ability to identify what other components a package will always
need [Abate et al. 2009], what pairs of packages are incompatible [Di Cosmo and
Boender 2010], and what component upgrades are more likely to impact a reposi-
tory [Abate et al. 2012b].

The present work is a significant step forward in this direction, as it provides for
the first time a means to produce a very compact representation of all the sources of
incompatibilities in a repository that stem from its component metadata.

It is also the first work, to our knowledge, that deals with the fine structure of
repositories directly, and not throuh encodings: connections between component
repositories and boolean satisfiability and constraint solving have been made only a
few years ago in the framework of GNU/Linux distributions [Mancinelli et al. 2006;
Tucker et al. 2007] and the Eclipse platform [Le Berre and Parrain 2008], but these
connections, and other recent developments such as [Abate et al. 2009; Di Cosmo
and Boender 2010; Abate et al. 2012b] do not exploit the special structure of the
dependencies and conflicts found in a repository.

15. FUTURE WORK
The underlying structure of software component repositories exposed here can be
seen as a generalisation of some well known mathematical structures : prime event
structure [Winskel 1987] correspond to repositories without loops and disjunctions;
directed hypergraphs [Ausiello et al. 1983] correspond to repositories without conflict
arcs, and Dual Horn theories correspond to repositories without conflicts [Dowling
and Gallier 1984].

The notions of strongly flat and flat repository introduced in this article, together
with the simplification that preserve co-installability, can be used as building blocks
for tackling new interesting problems for the maintenance of component reposito-
ries. A first natural question that we will investigate is how co-installability evolves
along with repository evolution: it is quite interesting for quality assurance to iden-
tify those set of components that are co-installable in a repository, and are no longer
co-installable in a repository that has been updated with newer versions of some com-
ponents.

We will also continue to investigate the mathematical properties of the structure of
component repositories.
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16. CONCLUSIONS
In this paper, we have developed a theory and algorithms to extract from a repository
a co-installability kernel, which can be seen as a minimal representation of the
dependency and conflict relations: despite the apparent simplicity of the definition of
the problem, and the intuitive appealing of the hypergraph transformations we have
developed, the proofs of the crucial properties turned out to be surprisingly complex,
so we decided to machine check them using Coq [The Coq Development Team 2008].

The results presented here allow to quickly identify non co-installable components
in a repository, and pave the way to attacking significantly more complex problems
concerning software component repositories.

More generally, we believe this work clearly shows the interest of the mathematical
objects underlying software repositories, which turn out to be amenable to an elegant
formal treatment and of high practical interest.
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Fig. 16. Output graph for Ubuntu 10.10 (main), simple conflicts
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Fig. 17. Output graph for Ubuntu 10.10 (main), more complex cases
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Fig. 18. Output graph for Ubuntu 10.10 (main), last and largest connected component
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