
Aeolus: Mastering the Complexity
of Cloud Application Deployment

Michel Catan1, Roberto Di Cosmo2, Antoine Eiche1, Tudor A. Lascu3,
Michael Lienhardt2, Jacopo Mauro3, Ralf Treinen2, Stefano Zacchiroli2,

Gianluigi Zavattaro3, and Jakub Zwolakowski2

1 Mandriva SA
{mcatan,aeiche}@mandriva.com

2 Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS
roberto@dicosmo.org, michael.lienhardt@inria.fr,

{treinen,zack,zwolakowski}@pps.univ-paris-diderot.fr
3 Lab. Focus, Department of Computer Science/INRIA, University of Bologna

{lascu,jmauro,zavattar}@cs.unibo.it

Cloud computing offers the possibility to build sophisticated software systems on
virtualized infrastructures at a fraction of the cost necessary just few years ago, but
deploying/maintaining/reconfiguring such software systems is a serious challenge. The
main objective of the Aeolus project, an initiative funded by ANR (the French “Agence
Nationale de la Recherche”), is to tackle the scientific problems that need to be solved in
order to ease the problem of efficient and cost-effective deployment and administration
of the complex distributed architectures which are at the heart of cloud applications.

The approach taken in Aeolus is to
bridge the gap between Infrastructure as
a Service and Platform as a Service. In
fact, as shown in the picture, applications
leveraging the power of the Cloud need
to allow efficient deployment and config-
uration of their components at the level
of IaaS and at the level of Services. For
this, it is necessary to develop advanced
tools that propose a deployment config-
uration according to the requirements of
the user or of a higher level application.

Integrated solutions to this problem
needs to deal at the same time with both
fine grained software components, like
packages to be installed on one single
virtual machine, and coarse grained ser-
vices possibly obtained as composition
of distributed and properly connected
sub-services. To this aim, in [3] we have
proposed the Aeolus component model:
a component is a grey-box showing rel-
evant internal states and the actions that

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M. Catan et al.

can be acted on the component to change state during deployment and reconfigura-
tion, each state activates provide, require and conflict ports, active require ports must be
bound to active provide ports of other components and active conflict ports prohibit the
presence of components with specific active ports.

In the Aeolus component model, as
depicted, one can express also numerical
constraints indicating the maximal num-
ber of require ports that can be connected
to a provide port, as well as a minimal
number of provide ports that need to be
connected to a require port. In the exam-
ple, for instance, the wordpress ser-
vice require two instances of the mysql
database (for example, to have both a pri-
mary and a backup instance).

Based on the Aeolus formalization of
software components, we have studied
the reconfigurability problem: given an
initial configuration, an universe of avail-
able components, and a target compo-
nent, verify the existence of a sequence

of low-level actions that bring the initial configuration to a new one in which the target
component is correctly deployed. This study (see [3,2] for the details) allowed us to
precisely characterize the theoretical limits of the reconfigurability problem: it is unde-
cidable in the general case, EXP-Space hard if no numeric constraints are considered,
and Polytime if also conflicts are not taken into account.

The current research in Aeolus is devoted to the identification of efficient solutions.
We plan to gain effectiveness by identifying interesting sub-cases in which feasible
solutions are possible. The Zephyrus tool [1] is a first achievement along this direction.

Zephyrus operates on a simplified cloud configuration model, abstracting over the
dynamic aspect of Aeolus, and focusing on the problem of finding a target final config-
uration. When searching for such a configuration that satisfies a user reconfiguration re-
quest, Zephyrus takes into account multiple factors: the current cloud deployment status,
the software universes (repository of available components on the different machines)



Aeolus: Mastering the Complexity of Cloud Application Deployment 3

and desired optimization criteria (e.g. minimize the amount of deployed machines and,
hence, the total cost of operation). Zephyrus is guaranteed to find an optimal solution if
one exists, and to do so relies on an external constraint solver. Description of the soft-
ware components that Zephyrus can grasp includes information about their dependen-
cies, as well as resource consumption information (e.g. memory, bandwidth, disk space,
etc.) and the distribution packages which they require to work properly. Thanks to this
last piece of information, Zephyrus can assign components to virtual machines guar-
anteeing that they are actually installable there. We are currently extending Zephyrus
with simple internal states like installed, running, and stopped. We have already imple-
mented a prototype that computes a sequence of state transitions under the assumption
that the initial configuration is empty and that the numerical constraint and the conflicts
are considered only in the final configuration.

In order to practically experiment and trial our tools in an industrial environment, we
are currently developing a n-tiers application deployment engine. This engine applies,
on an IaaS, a final configuration proposed by the Zephyrus tool. First, this tool provi-
sions the required virtual machines thanks to the cloud operating system Openstack.
When the virtual machines are running, we go to the second step which is installation
and configuration. In this step, the engine will connect to each virtual machine involved
in the n-tiers application to install required packages and configure services. This is
done using the deployment tool MSS (Mandriva Server Setup). Finally, the third step
consists of launching each services in order to have an application running. These steps
are performed, without any human interaction, by combining the MSS configuration
informations and the Zephyrus solution. Currently, we have already deployed a varnish
load balancer with several instances of Wordpress. We are now integrating more exam-
ples with complex databases configuration containing master and slave requirements.

As future work, we plan to extend the Aeolus model to deal also with different ad-
ministrative domains to support a more realistic representation of complex and possi-
bly multi-cloud applications. In fact, different administrative domains could impose to
contemporaneously deal with different deployment and reconfiguration policies. At the
moment, the unique form of heterogeneity that we are able to deal with in the Zephyrus
model is at the level of virtual machines: those could provide different resource levels
as well as different universes of basic packages depending on the installed operating
system.

References

1. Di Cosmo, R., Lienhardt, M., Treinen, R., Zacchiroli, S., Zwolakowski, J.: Optimal provision-
ing in the cloud. Technical report, Aeolus project (Juin 2013),
http://hal.archives-ouvertes.fr/hal-00831455

2. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Component reconfiguration in the
presence of conflicts. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part II. LNCS, vol. 7966, pp. 187–198. Springer, Heidelberg (2013)

3. Di Cosmo, R., Zacchiroli, S., Zavattaro, G.: Towards a formal component model for the cloud.
In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp.
156–171. Springer, Heidelberg (2012)

http://hal.archives-ouvertes.fr/hal-00831455

	Aeolus: Mastering the Complexity of Cloud Application Deployment
	References




