
Learning from the Future of Component Repositories∗

Pietro Abate
abate@pps.jussieu.fr

Roberto Di Cosmo
roberto@dicosmo.org

Ralf Treinen
treinen@pps.univ-paris-

diderot.fr

Stefano Zacchiroli
zack@pps.univ-paris-

diderot.fr
Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205 Paris, France

ABSTRACT
An important aspect of the quality assurance of large component
repositories is the logical coherence of component metadata. We
argue that it is possible to identify certain classes of such problems
by checking relevant properties of the possible future repositories
into which the current repository may evolve. In order to make
a complete analysis of all possible futures effective however, one
needs a way to construct a finite set of representatives of this infinite
set of potential futures. We define a class of properties for which
this can be done.

We illustrate the practical usefulness of the approach with two
quality assurance applications: (i) establishing the amount of “forced
upgrades” induced by introducing new versions of existing compo-
nents in a repository, and (ii) identifying outdated components that
need to be upgraded in order to ever be installable in the future.
For both applications we provide experience reports obtained on
the Debian distribution.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software quality
assurance (SQA); K.6.3 [Management of Computing and Infor-
mation Systems]: Software Management—Software maintenance

Keywords
component repository, quality assurance, speculative analysis

1. INTRODUCTION
As a consequence of the fact that software systems must undergo

continuing evolution [10], any software has its own evolution his-
tory, made of changes, revisions, and releases. By mining those
histories—which are often conveniently stored in software repo-
sitories—one may find interesting facts and properties of software
systems [8]. The advent of component-based software systems [14]
has not diminished the relevance of this approach. We now have

∗Work performed at IRILL http://www.irill.org, center for
Free Software Research and Innovation in Paris, France.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’12, June 26–28, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1345-2/12/06 ...$10.00.

Package : libacl1 -dev
S ou rc e : acl
V e r s i o n : 2.2.51 -5
A r c h i t e c t u r e : amd64
P r o v i d e s : acl -dev
Depends: libc6 -dev | libc -dev , libacl1 (= 2.2.51 -5) ,

libattr1 -dev (>= 1:2.4.46)
C o n f l i c t s : acl (<< 2.0.0) , acl -dev ,

kerberos4kth -dev (<< 1.2.2 -4)

Figure 1: Example of Debian meta-data (excerpt)

component repositories, where new releases of individual compo-
nents get pushed to.

Free and Open Source Software (FOSS) distributions are par-
ticularly interesting data sources for mining component reposito-
ries [16]. Partly because their components—called packages in
this context—are freely available to study. Partly because some
of them, such as the Debian distribution, are among the largest co-
ordinated software collections in history [5]. Software packages
share important features with software component models [9], but
exhibit also some important differences. On one side, packages,
like components, are reusable software units which can be com-
bined freely by a system administrator; they are also independent
units that follow their own development time-line and versioning
scheme. On the other side, packages, unlike what happens in many
software component models, cannot be composed together to build
a larger component. In fact, packages are intended to be installed
in the shared space of an operating system, and they have to share
the resources provided by the system. This has important conse-
quences on the interrelationships between packages expressed in
their metadata.

Figure 1 shows an example of the metadata of a package of the
popular Debian distribution. (We will focus on Debian for the pur-
pose of this paper, however our findings apply equally to all other
popular package models.) As the example shows, inter-package
relationships can get pretty complex. In general, packages have
both dependencies, expressing what must be satisfied in order to al-
low installation of the package, and conflicts that state which other
packages must not be installed at the same time. While conflicts are
simply given by a list of offending packages, dependencies may
be expressed using logical conjunction (written ‘,’) and disjunc-
tions (‘|’). Furthermore, packages mentioned in inter-package re-
lations may be qualified by constraints on the version of the pack-
age. There are some more interesting types of metadata, like virtual
packages, but we may ignore them for the purpose of this paper, as
we ignore many types of metadata that are not expressing manda-
tory inter-package relationships.

Package : foo
V e r s i o n : 1.0
Depends: bar (<= 3.0) | bar (>= 5.0)

Package : bar Package : baz
V e r s i o n : 1.0 V e r s i o n : 1.0

Depends: foo (>= 1.0)

Figure 2: Package bar challenges package foo

An important feature of component architectures is that individ-
ual components may be upgraded independently of other compo-
nents. In case of package repositories, such upgrades may happen
on two different levels: (a) system administrators upgrading the
package installation on their machines, and (b) the maintenance
team of a package distribution accepting upgrades of existing pack-
ages, or new packages, into the package repository. It is the latter
that interests us for the present work since it leads to interesting
quality assurance issues. Due to the frenetic pace of change in
package repositories these can be properly dealt with only by us-
ing automated tool support. For instance, the development archive
(“unstable”) of the Debian distribution with its more than 35,000
packages (as of February 2012) receives each single day about 150
upgrades.

Previous work [11] has focused on analyzing the metadata con-
tained in a snapshot of a package repository. For instance, chasing
uninstallable packages is a common quality assurance activity for
distributions [15] and efficient tools to attend it exist, despite the
NP-completeness of the underlying problem. In this paper we ar-
gue that not only the past and present of component repositories are
worth studying. The future of component repositories, largely un-
explored up to now, is equally interesting since it allows to establish
important facts and properties, especially in the area of component
quality assurance. We have investigated two practically relevant
scenarios where the analysis of the possible future evolutions of a
repository (or futures for short) provides precious information.

Challenging upgrades When a repository is fine according to
some quality measure (e.g. all packages contained therein are in-
stallable), but a specific class of its futures is problematic (e.g. they
are affected by metadata incoherences that make some packages
uninstallable), we might want to prevent or delay such evolutions.
We use future analysis to develop tools that identify the most “chal-
lenging” upgrades. In a given repository, we say that a version v
of a package p challenges another package q when in all futures
where p is upgraded to version v (while all other packages are kept
unchanged) the package q becomes uninstallable, no matter how
p’s metadata may have changed. The number of packages that are
challenged by an upgrade to version v of p tells us how disruptive
for the repository is the transition to the new v version of p.

For example consider the repository in Figure 2. All packages
are currently installable, but it is easy to check that upgrading pack-
age bar to any future version greater than 3.0 and smaller than 5.0
will render the current packages foo and baz non installable. We
say that all upgrades to versions in the range 3.0 < ·< 5.0 of pack-
age bar challenge package foo and baz as in any futures evolution
of this repository containing the package bar with any version be-
tween 3.0 and 5.0 will make packages foo and baz uninstallable.

Outdated packages. If a quality problem is observed in the cur-
rent repository (e.g. a package is uninstallable due to unsatisfiable
dependencies), and if we can show that the problem will be present
in all futures of some kind, then we know that we have to move out
of that class of futures in order to solve the problem. We use future
analysis to develop tools that identify all the “outdated” packages.

Package : bar Package : foo
V e r s i o n : 2.3 V e r s i o n : 1

Depends: (baz (=2.5) | bar (=2.3)) ,
Package : baz (baz (<2.3) | bar (>2.6))
V e r s i o n : 2.5
C o n f l i c t s : bar (> 2.4)

Figure 3: Package foo is outdated

A package p contained in a repository is said to be outdated when
it is not installable and remains so in all futures of the repository
where p is unchanged. This means that the only way to make p
installable is to upload a fixed version of the package. This infor-
mation is useful for quality assurance since it pinpoints packages
where action is required.

Consider, for instance, the repository in Figure 3. foo is not
installable since its second dependency clause cannot be satisfied,
as we have neither baz in a version smaller than 2.3, nor bar in
a version greater than 2.6. Is it possible to make foo in version 1
installable by upgrading one or both of baz and bar? If we advance
both of these packages then foo will not be installable since its first
dependency clause will not be satisfied. Upgrading baz alone will
not work since baz can only be upgraded to versions greater than
the current version 2.5, hence baz (<2.3) can never be satisfied.
Upgrading bar alone will not work either since when we upgrade
it to a version greater than 2.6 then we will get a conflict with baz

in its current version. Hence, by investigating all possible cases we
find that foo in version 1 is indeed outdated. Our tool does this
analysis automatically.

The problem in answering all sorts of questions about the future
of component repository is that there are infinitely many possible
futures. The typical constraints on repository evolutions are indeed
pretty liberal: (i) both additions and removals of packages are al-
lowed; (ii) package upgrades must increase version numbers; and
(iii) packages can be organized into clusters that must be synchro-
nized, i.e. all packages in the cluster shall carry the same version.
Common use cases of the latter requirement are binary packages
that stem from a single source package (and hence inherit its ver-
sion), or synchronization requirements on component versions that
are known to work well together.

The main contribution of this paper is a formal framework to
reason about future properties of a component repository, by only
looking at a finite number of repositories. We start in Section 2 by
giving an informal overview of the proposed approach. We formal-
ize the notion of repositories in Section 3; in Section 4 we use it to
capture the set of properties about futures that can be established by
considering a finite set of repositories. The set of futures is infinite,
but we show in Section 5 that to check a general class of admissi-
ble properties, it is enough to explore a finite and manageable set of
futures. Section 6 discusses two quality assurance applications of
the proposed formal framework: finding challenging upgrades and
outdated packages. Experiences with the two applications obtained
on the Debian distribution are discussed in Section 7.

2. APPROACH
All investigations of the futures of a repository are faced with the

problem of dealing with potentially infinitely many futures. In this
section we illustrate our approach at hand of one specific example,
that is the problem of checking whether package p in version n is
outdated with respect to a current repository R. The ideas illustrated
here apply to other properties of futures, as will be shown in the
remainder. The approach consists of two steps:

1. First we will show that we may restrict the analysis to a finite
(albeit still very large) set of futures that is representative of
all possible futures.

2. Then we show that this large finite set of representative fu-
tures can be folded into only one universe, which then can be
efficiently checked by an automatic tool. This second step,
however, does not apply if we need a finer analysis telling us
which particular kind of future poses which particular prob-
lem (as it is the case of finding challenging upgrades).

A central notion in the analysis of metadata is the one of an in-
stallation: an installation is a subset of a repository such that all
package interrelationships are satisfied inside that set. In particu-
lar, a package is installable if it is contained in some installation.

Optimistic Futures.
The first insight is that when we advance a package q to a newer

version then we may assume that this new version behaves as nicely
as possible, that is it does not depend on any other packages and
does not conflict with any packages. We call such a future opti-
mistic. We may make this assumption since the property we are
interested in talks about all possible installations that are allowed
by all possible future repositories: a package p in version n is out-
dated if for any installation set I that is allowed in any possible
future of R, the set I does not contain package p in version n. Our
assumption is justified by the fact that any installation allowed in
any future F is also an installation allowed in some optimistic fu-
ture, namely the one obtained from F by dropping all dependencies
and conflicts from all new versions of packages in F .

Conservative futures.
Next, we cope with the problem that when moving to a future of

a repository we may arbitrarily remove packages or introduce new
packages. One sees easily that we may ignore package removals
from R since every installation w.r.t. a future F of R in which we
removed a package q is also an installation w.r.t. F ∪{q}. In other
words, by looking only at future repositories where we do not have
removed packages we cover already all possibles installations w.r.t.
all possible futures. Restricting the introduction of new packages,
however, is less immediate as introduction of new packages into
R may indeed make a package p installable that was not installable
before (for instance, if p depends on some package q that was miss-
ing from R). However, one can show that the only new packages
that are essential for us are packages whose name was mentioned
in the dependencies of package p. Hence, it is sufficient to look
only at futures where we possibly introduce new packages that are
mentioned in the dependencies of p. This leads us to the following
notion: a future F of R is conservative iff F contains all packages
of R, possibly in a newer version, and if F contains only packages
whose names occur in R, either as names of existing packages or in
dependencies.

Observational equivalence.
So far we have seen that we may restrict our analysis to futures

that are both optimistic and conservative. However, there are still
infinitely many such futures since each single package may assume
infinitely many different versions in the future. However, if two
different future version numbers of a package q behave exactly the
same with respect to all version constraints in dependencies and
conflicts of other packages (these exist only in the versions of pack-
ages in R since we have already restricted ourselves to optimistic
futures), then these two versions of q are equivalent in what con-
cerns relations to other packages. We call two such versions of

q observationally equivalent. Since R contains only finitely many
packages R, and hence only finitely many constraints of versions of
q, there may exist only finitely many different equivalence classes
of versions of q.

It is possible to compute an over-approximation of representa-
tives of these equivalence classes by simply taking all version num-
bers that are mentioned in constraints on q (restricted to numbers
that are greater than the version of q in R, if q already exists in
R), plus one between any two succeeding values. For instance,
if we currently have in R package q in version 5.1, and further-
more we have other packages declaring dependencies on q > 5.3
and q 6= 6.0, then {5.2,5.3,5.4,6.0,7.0} is an over-approximation
of a representative set of future versions of q. Some of these ver-
sions are redundant, though: for example 5.2 and 5.3 behave the
same w.r.t. the constraints > 5.3 and 6= 6.0, as do 5.4 and 7.0. By
dropping all redundant versions, we can get a minimal representa-
tive set for all the future versions of q, which is {5.2,5.4,6.0}.

By considering optimistic and conservative futures, and only one
representative per equivalence class of future versions of packages,
we get a finite set of possible futures. If we are interested in ex-
ploring only futures that modify a single package, or a small set
of packages that must evolve in lockstep, as is the case for com-
puting challenging packages, this reduction is enough to design an
efficient algorithm.

Folding many futures into one.
Computing outdated packages still requires to explore all the fu-

ture in the set, and this poses a significant challenge: we have re-
duced the infinite number of futures to a finite set, but the size of
this set is astronomical. If we assume that different packages may
advance independently, and even if we have only c possible (cur-
rent or future) versions per package to consider, then we get cn

many future repositories where n is the number of packages, which
in case of Debian is around 35,000.

To overcome this difficulty, we can again exploit the fact that
our property is expressed as a quantification over all installations
in all possible futures: we build one big package universe U that
contains all representatives of future versions of packages in op-
timistic and conservative futures of R, and remark that the set of
installations allowed by U is exactly the same as the set of instal-
lations allowed by any future of R, because installations may never
contain two different versions of a same package. Hence, p in ver-
sion n is outdated if p in version n is not installable in the universe
U , which contains “only” c∗n many packages, so that the analysis
can be performed quite efficiently (less than a minute on a standard
desktop computer—see Section 7).

Synchronized upgrades.
There is one last point to consider: in reality, packages do not

evolve in isolation in package repositories since large applications
are usually split into several “synchronized” packages. For in-
stance, LibreOffice is released as a single software by its devel-
opers, but it gets split into about a hundred different packages (one
for each of its main applications, one for each localized version,
etc.) by distribution editors. All those packages carry the same ver-
sion and the upload of new LibreOffice releases to the repository
will advance the versions of all involved packages at once.

Whether two packages stem from the same source can be easily
detected since the source package name is usually part of pack-
age metadata. However, even if packages from the same source do
advance together, we do not necessarily know what exactly the ver-
sion numbers of future versions of packages will be, as the version

Package : white Package : green
V e r s i o n : 2.1 V e r s i o n : 5.2
S ou rc e : nocolor S ou rc e : color
Depends: black
C o n f l i c t s : red (> 5.2)

Package : black Package : red
V e r s i o n : 2.1 V e r s i o n : 5.2
S ou rc e : nocolor S ou rc e : color
Depends: green (> 5.2), red

Figure 4: {white,black} and {green,red} are clusters

numbers of packages may diverge from the version of the source
package (e.g. due to distribution specific changes).

We hence make two hypotheses here: packages do not change
their adherence to a source package (in reality, this is possible but
very rare), and furthermore we assume that if we can detect a sim-
ilarity between the current version numbers of two packages stem-
ming from the same source then the same similarity will hold for
future updates. We call a cluster a set of packages stemming from
the same source and for which the current versions are similar. The
problem now, when investigating installations w.r.t. the universe U ,
is to weed out installations containing packages that are in the same
cluster but do not have synchronized versions. This can be achieved
by having each package p of future version n in a cluster conflict
with versions of other packages in the same cluster that are not syn-
chronized with n. In this way we can again fold back a constraint
on the structure of future repositories into the packages that occur
in the universe U .

This approach is illustrated in Figure 4. First, package white

is currently not installable since any installation of it would require
black, which in its current version requires a version of green that
does not yet exist. If we ignore source information then we would
construct a universe U containing in addition to the original repos-
itory one future version per package without any conflicts and de-
pendencies. In that case, white in version 2.1 becomes installable
by installing black in its future version without dependencies. If
we use source information, however, we find by inspecting source
and current versions that black and white form one cluster, as do
red and green. Due to the added conflicts in this case, it becomes
impossible to install at the same time different versions of black
and white, or different versions of red and green. Hence, any
installation of white in version 2.1 also requires black in version
2.1, which in turn requires green in a future version, and also red

a fortiori in a future version, which conflicts with white. Hence,
when taking clustering into account, we find that white in version
2.1 is outdated.

3. PACKAGES AND REPOSITORIES
In this section we formalize a model of packages and repositories

that is general enough to capture the relevant metadata present in
the large majority of FOSS distributions. We will build on it in later
sections to capture the notion of future repository evolutions.

Packages.
Let N be a set of names and V be an ordered set of version num-

bers. Mimicking the characteristics of existing packaging systems,
we further assume that the order ≤ on the set V is total (i.e. for all
versions v1,v2 one has either v1 < v2 or v1 = v2 or v1 > v2), and
dense (i.e. for any two versions v1 < v3 there exists v2 such that
v1 < v2 < v3).

A version constraint is a unary predicate on versions: for any

v ∈ V we may write constraints = v, 6= v, < v, > v, ≤ v, and ≥ v.
The set of constraints is denoted by CON. The denotation [[c]] of a
constraint c ∈ CON is the set of versions that satisfy the constraint,
defined by

[[= v]] = {v} [[6= v]] = {w ∈ V | w 6= v}
[[< v]] = {w ∈ V | w < v} [[≥ v]] = {w ∈ V | w≥ v}
[[> v]] = {w ∈ V | w > v} [[≤ v]] = {w ∈ V | w≤ v}

Definition 1. A package p is a tuple (n,v,D,C) consisting of:

• a package name n ∈ N,

• a version v ∈ V,

• a set of dependencies D ∈P(P(N×CON)),

• a set of conflicts C ∈P(N×CON).

where we use P(X) for the set of all subsets of X . We also use the
infix notation (.) to access individual components (e.g. p.n stands
for the name of package p). This notion extends to sets of packages,
e.g. R.n is the set of names of packages in the repository R.

The dependencies of a package indicate which packages must be
installed together with it, the conflicts which packages must not.
Dependencies are represented as conjunctive normal form (CNF)
propositional logic formulae over constraints: the outer set is in-
terpreted as a conjunction, the elements of which are interpreted as
disjunctions. Conflicts are represented as flat lists of constraints.

Repositories and installations.
A repository is a set of packages that are uniquely identified by

name and version:

Definition 2. A repository is a set R of packages such that for all
p,q ∈ R: if p.n = q.n and p.v = q.v then p = q. A repository R also
comes with an equivalence relation ∼R on the set R.n of package
names, called its synchronization relation that tells which packages
shall carry the same version in the repository.

By abuse of notation we will write p∼R q when p.n∼R q.n. Com-
mon examples of the synchronization relation are equality (i.e. no
synchronization at all) and the relation that has as equivalence classes
the binary packages stemming from the same source package and
(currently) having similar versions.

An installation is a consistent set of packages, that is a set of
packages satisfying abundance (every package in the installation
has its dependencies satisfied) and peace (no two packages in the
installation are in conflict). Formally:

Definition 3. Let R be a repository. An R-installation I is a sub-
set I ⊆ R such that for every p ∈ I the following properties hold:

abundance For each element d ∈ p.D there exists (n,c) ∈ d and a
package q ∈ I such that q.n = n and p.v ∈ [[c]].

peace For each (n,c) ∈ p.C and package q ∈ I, if q.n = n then
q.v 6∈ [[c]].

We write Inst(R) for the set of all R-installations. We say that
a package p is installable in a repository R if there exists an R-
installation I such that p ∈ I.

Some packaging systems (such as Debian’s) have an additional
implicit flatness condition on installations: one cannot install at
the same time two different versions of the same package. Al-
though not explicitly supported, flatness can be easily encoded in
our model by adding conflicts between packages of same name
and different version. Checking package installability is an NP-
Complete problem, although modern SAT-Solvers can easily solve
real instances of it [11].

Definition 4. Let P be a set of packages. We define dep(P) :=⋃
d∈p.D d, and depnames(P) := {n|(n,c) ∈ dep(P)}.

That is, dep(P) is the set of all pairs of names and constraints oc-
curring in dependencies in P, and depnames(P) its projection to
names. We abbreviate dep({p}) to dep(p).

A repository is synchronized if packages that have to be syn-
chronized (according to ∼R) share the same version number. No-
tice that a synchronized repository may contain only one version
for any package name.

Definition 5. A cluster of a repository R is an equivalence class
w.r.t. the synchronization relation ∼R. A repository R is synchro-
nized if all packages belonging to the same cluster have the same
version. We write cluster(p) to denote the packages {r ∈R|r∼R p}
which are synchronized with p.

4. FUTURES
We now formalize the notion of possible future states of a com-

ponent repository, or futures for short.
Real world component repositories evolve via modifications of

the set of packages they contain such as package additions, re-
movals, and upgrades. All component models impose some re-
strictions on how repositories may evolve; we consider three very
common restrictions:

1. Name and version uniquely identify packages. It is not pos-
sible to have in a future two packages with the same name
and version, but otherwise different metadata.

2. If a package with the same name of an existing package is
introduced, then its version must be greater than the one of
the existing package. In this case we say that the existing
package is being upgraded.

3. Futures must be synchronized, that is, all packages belonging
to a same cluster must evolve together.

Note that the only way to change package metadata is via an up-
grade to a newer version. The above restrictions on repository evo-
lution are captured by the following definition:

Definition 6. A repository F is a future of a repository R, written
F ∈ futures(R), if the following properties hold:

uniqueness R∪F is a repository; this ensures that if F contains
a package p with same version and name as a package q al-
ready present in R, then p = q;

monotonicity For all p∈ R and q∈ F : if p.n = q.n then p.v≤ q.v;

synchronization F is synchronized (w.r.t. the synchronization re-
lation ∼R).

Note that R ∈ futures(R), and that uniqueness implies that name
and version together uniquely identify packages. We require the
future to be synchronized w.r.t. the original relation ∼R, that is,
packages are not allowed to change their cluster.

Our goal is to prove properties that hold for any installation w.r.t.
any possible future. We now formally define two such properties
that we have been using as motivating examples: outdated and chal-
lenging packages.

Definition 7. Let R be a repository. A package p∈ R is outdated
in R if p is not installable in any future F of R.

In other words p is outdated in R if it is not installable (since R ∈
futures(R)) and if it has to be upgraded to make it ever installable
again. We discussed the interest of this property in Section 1, let us
just observe that automatically finding outdated packages enables
repository maintainers to spot packages that are in need of manual
intervention.

Definition 8. Let R be a repository, p,q ∈ R, and q installable in
R. The pair (p.n,v), where v > p.v, challenges q if q is not instal-
lable in any future F which is obtained by upgrading to version v
all packages in cluster(p) in R.

Intuitively (p.n,v) challenges q when upgrading its cluster to a
new version v without touching other packages makes q not instal-
lable, no matter how the dependencies and conflicts of the packages
in the cluster of p change. The interest of this property is that it
permits to pinpoint critical (future) upgrades that challenge many
packages and that might therefore need special attention before be-
ing pushed to the repository.

The outdated and challenging properties have in common the fact
that they are defined in terms of installability w.r.t. some future of R.
More generally, the two properties are instances of a more general
class of admissible properties. To define such a class, we first need
to introduce the set of properties that can be established by only
looking at the packages whose names already exist in repository R:

Definition 9. A property φ of a package set is called R-focused
if for all package sets P1 and P2 (not necessarily subsets of R)

{(p.n, p.v) | p ∈ P1, p.n ∈ R.n}= {(p.n, p.v) | p ∈ P2, p.n ∈ R.n}
implies φ(P1) = φ(P2)

A property φ of package sets is downward-closed if P1 ⊆ P2 and
φ(P2) implies φ(P1).

Definition 10. Let R be a repository. A property ψ of futures of
R is called admissible if there is an R-focused property φ s.t. for all
futures F of R:

ψ(F)⇔ for all F-installations I: φ(I)

Trivially, admissible predicates are closed under boolean combina-
tions.

Lemma 1. Let φ1,φ2 be properties of package sets, and φ1 be
downward-closed. Then the following two statements are equiva-
lent:

1. ∀F ∈ futures(R) :
(
φ1(F)→∀I ∈ Inst(F) : φ2(I)

)
2. ∀F ∈ futures(R), ∀I ∈ Inst(F) : (φ1(I)→ φ2(I))

(proof in Appendix)

In other words, we can under certain circumstances fold restric-
tions on futures into restrictions on installations. As a consequence,
both the properties of a package p being outdated and a pair (p,v)
challenging a package q are admissible predicates that we will write
ψoutdated , resp. ψchalleng.. The interest of admissible properties is
that we can actually build a finite set of futures of R such that the
property holds for all futures of R iff it holds for all futures in such
a set.

5. CONTROLLING THE FUTURE
In this section we show that we can compute a finite set of fu-

tures of a given repository, such that all admissible properties can
be answered by just looking at this set. We proceed by iteratively
narrowing down the set of futures to consider, following the same
schema as in Section 2.

Optimistic futures.
As a first step we show that it is sufficient to consider futures

where all new versions of packages have no dependencies and no
conflicts.

Definition 11. Let p be a package. We define a blank package
ω(p) that has the same package name and version as p, but no
dependencies and conflicts:

ω(p) = (p.n, p.v, /0, /0)

Note that a blank package is always installable by definition,
since in any installation a blank package is always abundant and
peaceful. Blank packages give an over-approximation of the future
where all constraints associated to a package disappear. We can
now build an optimistic vision of the future.

Definition 12. Let F be a future of R, and S ⊆ F . The blanking
of S is:

ωR(S) = (S∩R)∪{ω(p) | p ∈ S\R}

Blanking a set S corresponds to blanking out all packages in
S that are not in R. Obviously, when F ∈ futures(R) then also
ωR(F) ∈ futures(R).

Definition 13. A repository F is an optimistic future of a repos-
itory R iff F is a future of R, F = ωR(F), and if for every package
p ∈ F with p.n 6∈ R.n the cluster of p is a singleton set.

In an optimistic future of R all packages that are not in R are
hassle-free: they have no dependencies, no conflicts, and they do
not impose a synchronization constraint. A simple kind of opti-
mistic future can be obtained by replacing a package by a blank
package with a newer version:

Definition 14. Given a repository R and a set P = {p1, ..., pn} ⊆
R, we write R[P 7→ v] for the repository obtained from R by replac-
ing each package pi ∈ P with a blank package (pi.n,v, /0, /0). When
v > pi.v for each i, this is called a blank upgrade.

Lemma 2. Let R be a repository, F ∈ futures(R), and I an F-
installation. Then, ωR(I) is an ωR(F)-installation, and the pack-
ages in I and ωR(I)∩R have the same name and version.

(proof in Appendix)

Conservative futures.
As a second step of our reduction we address the problem that

new packages may be arbitrarily introduced in the future. As we
will show, we may assume that this happens only for packages that
are already known, i.e. packages whose names appear in a depen-
dency of some package in the repository. It will also be established
that package removals can be ignored because any package that is
installable in a future repository is also installable in a future where
no package has been removed.

Definition 15. F ∈ futures(R) is a conservative future of R if
F.n = R.n∪depnames(R).

Lemma 3. Let R be a repository, F ∈ futures(R), and I ∈ Inst(F).
There exists an optimistic and conservative future F ′ of R and I′ ∈
Inst(F ′) such that P(I) = P(I′) for any R-focused property P.

(proof in Appendix)

Proving admissible properties.
We can now prove the fundamental result that admissible prop-

erties can be verified by looking only at optimistic and conservative
futures:

THEOREM 1. Let R be a repository, and ψ an admissible prop-
erty of repositories. Then ψ holds for all futures of R iff it holds for
all optimistic and conservative futures of R.

PROOF. If ψ holds for all futures of R then it also holds in par-
ticular for all optimistic and conservative futures. The inverse di-
rection follows immediately from Lemma 3.

Note that the result would not hold without the restriction to R-
focused properties. For instance, if φ(I) is the property “I does
not contain package foo,” where foo 6∈ R.n, then φ holds for all
installations in conservative futures, but not in all futures. Also, the
property “each package not originally in R has no conflicts” holds
in installations of optimistic futures, but not in all futures.

Observational equivalence.
We have shown that we can restrict our search, without loss of

generality, to conservative futures of a repository R which contain
exactly the same package names as R. We also know that optimistic
futures provide the best possible approximation. But there is still
one important obstacle: the number of possible future versions to
examine, which is potentially infinite. The key observation to solve
this problem is that abundance and peace only depend on the satis-
fiability of version constraints—a boolean judgement—and not on
the particular versions that make such valuations hold.

Definition 16. Let n ∈ N and v,v′ ∈ V. The pairs (n,v) and
(n,v′) are R-observationally equivalent, noted (n,v)' (n,v′), when
for all packages p ∈ R and all (n,c) ∈ dep(p)∪ p.C we have that
v ∈ [[c]] iff v′ ∈ [[c]].

This definition can be used directly to check equivalence of two
versions v and v′ of a package p: just collect all constraints men-
tioning p in R, which are a finite set, and evaluate them on v and
v′; the two versions are equivalent iff the valuations agree. Since
an equivalence class of versions of p is uniquely determined by the
value of the finite set of constraints mentioning p, it is easy to prove
the following.

Lemma 4. For any repository R, and any package name n, there
is a finite set of equivalence classes of versions of n in R.

In our algorithms, we use representatives of these finite equiva-
lence classes, that we call discriminants of p.

Definition 17. For any package p such that p.n∈ depnames(R)∪
R.n we call discriminants of p any set of representatives of the
equivalence classes of the versions of p that may appear in a fu-
ture of R with respect to '.

Algorithm 1 describes the method used in our tools, and we show
how it works on a simple example. Notice though that there are
many ways of picking one representative out of each equivalence
class, so our algorithm is not the only possible one.

We start from the set of versions V of a package p with name
n mentioned in the repository R. For instance, suppose we have
version 3.1 of a package with name n, and there are dependen-
cies on n with constraints = 5.0 and ≥ 9.1 in the repository. Then
V = {3.1,5.0,9.1}. As a first step, we add to V one intermediate
version between any two successive versions in V , plus one version
bigger than all and one version smaller than all: since the version

Algorithm 1 Computing discriminants
function DISCRIMINANTS(S : package set,R : repository)

C←{all constraints in R mentioning a package name in S}
V ←{all versions appearing in C}
D←{}
E←{}
for all v ∈ interpolate(V) (in descending order) do

valuation← map(fun c→ v ∈ [[c]],C)
if valuation 6∈ E then

D← D∪{v}
E← E ∪{valuation}

end if
end for
return D

end function

space is dense, we can always do this, and the choice of the interme-
diate version is arbitrary. On our example, we can get a sequence
V ′ = {2,3.1,4,5.0,7,9.1,10}. Then we need to trim our sequence
by removing versions that cannot appear in a future: if the package
p is not present in R, there is nothing to do, but if p is present with a
given version, as is our case, we need to remove all versions smaller
or equal than the current one, 3.1, as a future can only contain up-
grades. On our example, this leads to V ′′ = {4,5.0,7,9.1,10}. All
these steps leading from V to V ′′ are performed by the function
interpolate(V) used in Algorithm 1.

Finally, we test the constraints = 5.0 and ≥ 9.1 on each version
in interpolate(V), and discover that (n,4) ' (n,7) as both 4 and
7 falsify = 5.0 and ≥ 9.1; we also find (n,9.1) ' (n,10) as 9.1
and 10 both falsify = 5.0 and satisfy ≥ 9.1. This test is done by
mapping over all constraints c ∈C a function that checks whether
v satisfies c (that is v ∈ [[c]]). So we end up with the discriminants
{4,5.0,10}.

When performing upgrades of clusters of packages, to upgrade
them in a synchronised way, we need to take discriminants not of
a package, but of a set of packages S. The notion of discriminant
extends naturally to sets of packages, and Algorithm 1 computes
them by checking all possible valuations of the constraints men-
tioning a package in the set S and picking a representative version
for each of them.

Version equivalence can be extended to repositories.

Definition 18. Let F , G be optimistic and conservative futures
of R. Then F and G are R-observational equivalent, noted F ' G,
when for all (n,v) ∈ F and (n,w) ∈ G one has that (n,v)' (n,w).

The interest of this equivalence is that the properties we are inter-
ested in cannot distinguish equivalent repositories, so it is enough
to check them only on a representative of each equivalence class.

THEOREM 2. Let F,G∈ futures(R), and ψ and admissible pred-
icate. If F ' G then ψ(F) = ψ(G).

The upshot of these theoretical considerations for the quality as-
surance applications we are interested in is:

• Challenging upgrades. To find the packages challenged by
future versions of a package p, it is enough to examine the
optimistic and conservative futures of the repository obtained
by replacing p with a blank package for p with one of the
versions in the discriminants of p.

• Outdated packages. To check for outdated packages in a
repository R, it is enough to examine for all packages p ∈ R

Algorithm 2 Computing prediction maps
PM← []
for all C ∈ Clusters(R), at version cv do

for all v ∈ Discriminants(C,R) with v > cv do
F = R[C 7→ v]
for all q ∈ R do

if ¬checkinstall(F,q) then
PM[(C,cv)]← PM[(C,cv)]∪{q}

end if
end for

end for
end for
return PM

all optimistic and conservative futures of R, obtained by re-
placing some number of packages different from p by their
futures. Furthermore, it is enough to consider for these fu-
tures of packages p′ only versions that are discriminants of p′

in R.

6. APPLICATIONS
The theoretical results we have obtained lead to efficient algo-

rithms to compute challenging upgrades and outdated packages,
that we detail in this section.

Challenging upgrades.
We can collect information about all the upgrades of a repository

R in a single data structure, that we call a prediction map. This is
a function that associates to each cluster C of packages, and each
relevant future version v of the packages it contains, the set of pack-
ages that will be surely broken by upgrading the cluster C to version
v, no matter the actual dependency and conflicts.

Definition 19. The prediction map of a repository R is a function
PM that maps every cluster C ⊆ R of synchronized packages, at
version cv, and each version v ∈ Discriminants(C,R) with v > cv,
to the set of all packages Q ⊆ R \C that are not installable in the
future F = R[C 7→ v].

The prediction map for a repository R can be computed using
Algorithm 2. Notice that the discriminants are computed taking
into account all the packages in the cluster C, and that the future F
is the result of upgrading all packages in the cluster C to the same
discriminant version v.

The algorithm needs to check for all broken packages in all fu-
tures F . That can lead to a worst case scenario of nc · nv · np SAT
solver calls, where nc is the number of clusters in the repository,
nv the maximum number of discriminants of a cluster, and np the
number of packages in the repository. Notice, however, that the size
of the discriminants of a cluster is usually smaller than the sum of
the size of the discriminants of the packages it contains, as many
discriminants may be shared.

We have implemented the above algorithm to experiment on real
world repositories (see Section 7). In the actual implementation
there is a further optimization that allows to check only a subset of
R for broken packages in case a cluster contains only one package
p. Indeed, if q is installable in R, but breaks in an updated repos-
itory R[P 7→ v], this means that q really needs p with version p.v
to be installed in R, so q strongly depends on p and belongs to the
impact set of p as defined in [1]. In practice this optimization is
quite effective since impact sets are small, can be computed in a
few minutes, and many clusters contain only one package.

Algorithm 3 Computing outdated packages
OutDatedPackages← []
U ← R
for all p ∈ R do

for all v ∈ Discriminants(q)\ p.v do
U ←U [p 7→ v]

end for
end for
for all p ∈ R do

if ¬checkinstall(synch(U), p) then
OutDatedPackages← OutDatedPackages∪{p}

end if
end for
return OutDatedPackages

Outdated packages.
As discussed in Section 2, it is not feasible to find outdated pack-

ages by checking, for every package p ∈ R, whether p is not instal-
lable in each conservative and optimistic future of R where pack-
ages other than p have been upgraded to a blank package, even
when only considering the discriminant versions.

The key idea to an efficient algorithm is that we can fold all the
relevant futures together in one large set U of packages. In case all
clusters have size 1 this is trivial to achieve:

U = {p}∪{(q.n,v, /0, /0 | q ∈ R,q 6= p,v ∈ Discriminants(q)}

The set of all U-installations is exactly the union of all F-installations
over all conservative and optimistic futures of R. Hence, package p
is installable in some future of R iff it is installable in U .

In case of non-trivial clusters this is not sufficient since the big
universe U allows for installations that are not synchronized. This
can be avoided by adding additional constraints to blank packages
that forbid to install a package together with a package from the
same cluster but a different version. This is done by first construct-
ing U as above, and then applying the following synchronization:

synch(U) = {(cluster(p), p.v, /0,{(cluster(p), 6= p.v)} | p ∈U}
∪ {(p.n, p.v, p.D∪{cluster(p),= p.v}, p.C) | p ∈U}

Dummy packages for clusters are always installable since they
have no dependencies, however, at most one version of a cluster
package can be installed at a time due to its conflict with other ver-
sions. Furthermore, all packages p in R are amended by adding to p
an additional dependency on its cluster package, with a version that
is equal to the version of p. Since installation of any package with
version v entails installation of the cluster package with version v,
and since it is not possible to install two cluster packages with the
same name and different version, an synch(U)-installation cannot
contain two packages that are in the same cluster but have different
version. This leads to our final Algorithm 3.

7. EXPERIMENTAL EVALUATION
We have implemented the algorithms presented in the previous

section in a tool suite that finds challenging upgrades and outdated
packages in component repositories, and we have performed an ex-
tensive experimental evaluation of our tools on the Debian distri-
bution,1 one of the largest known software repositories.

In the Debian repository, packages built from the same source
are upgraded together due to the fact that the process of uploading
new (versions of) packages to the repository is based on uploading

1http://www.debian.org

(or recompiling) source packages. Clusters can be large: the one
corresponding to gcc-4.3 contains 44 different packages includ-
ing libgcc1 and gcc-4.3-base.

All our experiments have been performed on a commodity 2.4GHz
quad-core desktop computer running Debian. Finding challenging
upgrades on a full Debian distribution takes 20 minutes, with a par-
allel version of Algorithm 2 that uses the Parmap library [4] to an-
alyze different chunks of the repository independently. Finding all
outdated packages takes less than 1 minute, and we did not need to
parallelize the algorithm.

Since our tools will be incorporated in the quality assurance pro-
cess of the Debian distribution, we had to make them robust by
taking into account practical details such as the fact that packages
built from the same source may in fact adopt slightly different ver-
sioning schemes. In particular, we have implemented heuristics to
perform version synchronization even in the presence of minor dif-
ferences in the versioning scheme. These heuristics are specific to
Debian and not of interest for this paper.

Challenging upgrades.
We run our algorithm on the 5.0 “Lenny” Debian release that

contains 22,314 packages. Table 1 shows the top 25 challenging
cluster upgrades sorted by the number of packages that would be
broken by the upgrade.

These results reveal some interesting facts. Not all cluster up-
grades break the same number of components: for example, up-
grading the cluster python-defaults to a version strictly greater
than 2.6 and strictly smaller than 3 will break 1,075 packages,
moving to version 3 or later breaks 1,079. There are cases where
problems will arise only after a while: for python-defaults up-
grades are dangerous only starting with version 2.6, and ghc6

will be problematic only when upgrading to versions higher than
6.8.2dfsg1-999. These critical version changes roughly corre-
spond to changes in the ABI.

It may seem surprising that complex cluster structures as gnome
or kde do not appear in the table. In practice these systems are of-
ten assembled from highly inter-dependent components that evolve
together and that are connected by a tight dependency structure:
upgrading all packages of these clusters together will not break the
in-cluster dependency structure and therefore will not cause prob-
lems.

The results of our analysis can be checked independently by
changing in a Debian Packages package archive index the version
of all packages of a cluster to a version in the target version col-
umn, and then running the edos-distcheck tool on the resulting
repository to find the broken packages.

Outdated packages.
Finding outdated packages requires both automated tools and

critical review of their results from distribution editors. We started
by narrowing down a first list by applying to the Debian archive our
implementation of the outdated packages algorithm. On October 6,
2011, the archive contained 34,444 packages in the unstable/main
branch for the i386 architecture. The edos-distcheck tool re-
ported 386 of these as not installable in the current repository, 110
of which our tool found to be outdated.

It turns out that a Python transition was going on at the time,2

which means that many packages were being upgraded from a de-
pendency on Python version 2.6 to Python version 2.7. Since tran-
sitions like this are closely monitored by the Debian release team
we choose to exclude these packages from our analysis. To do this,

2http://release.debian.org/transitions/

Table 1: Top 25 challenging upgrades (clustered)

Source Version Target Version Breaks
python-defaults 2.5.2-3 ≥ 3 1079
python-defaults 2.5.2-3 2.6 ≤ . < 3 1075
e2fsprogs 1.41.3-1 any 139
ghc6 6.8.2dfsg1-1 ≥ 6.8.2+ 136
libio-compress-base-perl 2.012-1 ≥ 2.012. 80
libcompress-raw-zlib-perl 2.012-1 ≥ 2.012. 80
libio-compress-zlib-perl 2.012-1 ≥ 2.012. 79
icedove 2.0.0.19-1 > 2.1-0 78
iceweasel 3.0.6-1 > 3.1 70
haskell-mtl 1.1.0.0-2 ≥ 1.1.0.0+ 48
sip4-qt3 4.7.6-1 > 4.8 47
ghc6 6.8.2dfsg1-1 6.8.2dfsg1+ ≤ . < 6.8.2+ 36
haskell-parsec 2.1.0.0-2 ≥ 2.1.0.0+ 29

Source Version Target Version Breaks
haskell-parsec 2.1.0.0-2 2.1.0.0-2 < . < 2.1.0.0+ 26
sip4-qt3 4.7.6-1 4.8 25
haskell-network 2.1.0.0-2 ≥ 2.1.0.0+ 22
ghc6 6.8.2dfsg1-1 < 6.8.2dfsg1-1 22
pidgin 2.4.3-4 ≥ 3.0 20
ghc6 6.8.2dfsg1-1 6.8.2dfsg1-999 ≤ . < 6.8.2dfsg1+ 20
pcre3 7.6-2.1 ≥ 7.8 17
haskell-regex-base 0.93.1-3 ≥ 0.93.1+ 16
haskell-regex-posix 0.93.1-1 ≥ 0.93.1+ 14
haskell-time 1.1.2.0-2 ≥ 1.1.2.0+ 13
haskell-quickcheck 1.1.0.0-2 ≥ 1.1.0.0+ 13
haskell-hsql 1.7-2 ≥ 1.7+ 13

we added to the repository a dummy python package with version
2.6 to make packages depending on that version of Python instal-
lable. Our tool reported only 42 outdated packages, 22 of which
stem from the source package kdebindings. Contacting the kde-
bindings package maintainer we discovered that the package was
being reorganized, and that many transient breakages were to be ex-
pected. We hence removed (by hand) all reports about concerned
packages.

Of the remaining 20 outdated packages, 17 were outdated due to
a versioned dependency on some package that had been upgraded,
like this:

Package : nitpic
V e r s i o n : 0.1-12
Depends: binutils (< 2.21.53.20110923)

Package : binutils
V e r s i o n : 2.21.90.20111004 -1

This means that the nitpic package has to be migrated to the
newer version of binutils. We filed bugs against these packages,
resp. asked for recompilation in case the offending dependency was
filled in during the package compilation process.

The remaining 3 reports of outdated packages were due to the
same mistake in the cyrus-imapd-2.4 source package. This source
package generates, among others, some transitional packages that
only exist to facilitate the transition between different packages.
Transitional packages have to use the right combination of inter-
package relationships, which are quite easy to get wrong. This is
what happened in this case:

Package : cyrus -common -2.2
V e r s i o n : 2.4.12 -1
Depends: cyrus -common -2.4

Package : cyrus -common -2.4
V e r s i o n : 2.4.12 -1
C o n f l i c t s : cyrus -common -2.2

Once reported by us, this bug was then promptly acknowledged and
fixed by changing the conflict to cyrus-common-2.2 (< 2.4).3

Bugs filed as consequence of our analysis are available for pub-
lic inspection4 and seem to have provided useful feedback to the
respective maintainers.

8. RELATED WORK
Brun et al. [3] have proposed the idea of applying speculative

analysis to software artifacts in order to guide software engineer-
ing decisions. They try to predict changes to the source code in in-
tegrated development environments to guide programmers towards
the most likely solution to compilation errors. Our approach can
also be seen as a form of speculative analysis, with the remarkable
fact that we are able to consider all possible future repository states,
rather than only some of them.
3
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=644503

4
http://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=edos-outdated;

users=treinen@debian.org

This work complements previous studies in the area of compo-
nent quality assurance: in [11], some of the authors have given a
formalization of the installation problem, various complexity re-
sults, and an efficient algorithm to check for installability; in [1],
the notions of strong dependency and impact set have been pro-
posed as a way to measure the relevance of a package with respect
to other components in the distribution. The framework presented
in this paper is based on a formal model similar to those used in
these studies. The main difference is in the explicit syntactic treat-
ment of constraints, which is needed to formalize futures.

Of the two applications of the framework we propose, the search
for challenging packages has been introduced before in [2]; it is
here reinstated in the general formal framework that allows to prove
it correct.

In the area of quality assurance for large software projects, many
authors have correlated component dependencies with past failure
rates, in order to predict future failures [12, 13, 17]. The underly-
ing hypothesis is that software “fault-proneness” of a component is
correlated to changes in components that are tightly related to it.
In particular, if a component A has many dependencies on a com-
ponent B and the latter changes a lot between versions, one would
expect that errors propagate through the “component network” re-
ducing the reliability of A. A related interesting statistical model
to predict failures over time is the weighted time damp model that
correlates recent changes to software fault-proneness [6]. Social
network methods [7] have also been used to validate and predict
the list of sensitive components in the Windows platform [17].

It would be interesting to enrich our prediction model by corre-
lating package dependencies, which are formally declared and can
be assumed trustworthy, with upgrade failures, but this is not yet
possible, as current FOSS distributions still lack the data to corre-
late upgrade failures with dependencies.

9. CONCLUSIONS
Studying the future of component repositories can reveal impor-

tant facts about their present. In particular, it can be used as a tech-
nique to pinpoint installability problems that need to be manually
addressed by component maintainers—such as outdated packages—
or to watch out for challenging upgrade paths that, if followed,
would break a significant amount of existing components.

In order to be effective, though, analyses about component evo-
lution need to take into account all possible repository evolutions,
which are infinite in all non-trivial repository models. This work
presents a formal model of component repositories and identifies
the class of future-looking properties that can be established by
considering only a finite number of repository evolutions. We have
applied the formal framework to two specific quality assurance ap-

plications: finding challenging upgrades and outdated packages.
We have validated the framework by implementing quality assur-
ance tools that have been run on the Debian distribution.

Our results show that investigating the future of component repos-
itories is not only feasible but may also be beneficial. It can be used
as a sound formal basis for tools that help repository maintainers
spotting defects in their software assemblies, a welcome help when
the sizes of those assemblies ramp up to hundreds of thousands
components.

Data availability.
All data presented here are available, in greater detail, from

http://data.mancoosi.org/papers/cbse2012/. The tools used
to conduct the experiments are Free Software and available from
http://mancoosi.org/software/.

10. REFERENCES
[1] P. Abate, J. Boender, R. Di Cosmo, and S. Zacchiroli. Strong

dependencies between software components. In
International Symposium on Empirical Sofware Engineering
and Measurement, pages 89–99. IEEE, 2009.

[2] P. Abate and R. Di Cosmo. Predicting upgrade failures using
dependency analysis. In HotSWup’11, 2011.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Speculative
analysis: exploring future development states of software. In
FoSER Workshop on Future of Software Engineering
Research at FSE 2010, pages 59–64. ACM, 2010.

[4] M. Danelutto and R. Di Cosmo. A “minimal disruption”
skeleton experiment: seamless map & reduce embedding in
OCaml. Procedia CS, 2012. To appear.

[5] J. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. Amor,
and D. German. Macro-level software evolution: a case study
of a large software compilation. Empirical Software
Engineering, 14(3):262–285, 2009.

[6] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans.
Softw. Eng., 26(7):653–661, 2000.

[7] R. A. Hanneman and M. Riddle. Introduction to social
network methods. University of California, Riverside, 2005.

[8] H. H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and
taxonomy of approaches for mining software repositories in
the context of software evolution. Journal of Software
Maintenance, 19(2):77–131, 2007.

[9] K.-K. Lau and Z. Wang. Software component models. IEEE
Trans. Software Eng., 33(10):709–724, 2007.

[10] M. M. Lehman and L. A. Belady, editors. Program
evolution: processes of software change. Academic Press
Professional, Inc., San Diego, CA, USA, 1985.

[11] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon,
B. Durak, X. Leroy, and R. Treinen. Managing the
complexity of large free and open source package-based
software distributions. In ASE, pages 199–208, 2006.

[12] N. Nagappan and T. Ball. Using software dependencies and
churn metrics to predict field failures: An empirical case
study. In ESEM, pages 364–373, 2007.

[13] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller.
Predicting vulnerable software components. In ACM
Conference on Computer and Communications Security,
pages 529–540, 2007.

[14] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison Wesley Professional, 1997.

[15] R. Treinen and S. Zacchiroli. Solving package dependencies:
from EDOS to Mancoosi. In DebConf 8: proceedings of the
9th conference of the Debian project, 2008.

[16] J. Whitehead and T. Zimmermann, editors. 7th International
Working Conference on Mining Software Repositories, MSR
2010. IEEE, 2010.

[17] T. Zimmermann and N. Nagappan. Predicting defects using
network analysis on dependency graphs. In ICSE’08, pages
531–540. ACM, 2008.

APPENDIX
Definition 20. Let R,P be two sets of packages The R-focus of

P is πR(P) := {(p.n, p.v)) | p ∈ P, p.n ∈ R.n}

Informally, πR(P) consists of the pairs (n,v) of package name
and version such that a package p with that name and version ap-
pears in P, restricted to package names that are defined in R. In
particular, πR(R) is the set of all the pairs (n,v) of package name
and version that can be found in packages of R.

Lemma 1.
PROOF. Observe that futures are closed under subset, that is if

I ⊆ F ∈ futures(R) then I ∈ futures(R). We show that if (1) is false
then (2) is false.

Assume that F ∈ futures(R), φ1(F), I ∈ installations(F), and
¬φ2(I). Since futures are closed under subset we also have that
I ∈ futures(R), I ∈ installations(I), φ1(I) (since φ is downward
closed) and ¬φ2(I).

Finally, we show that if (2) is false then (1) is false. Assume
that F ∈ futures(R), I ∈ installations(F), φ1(I) and ¬φ2(I). Since
futures are closed under subset we also have that I ∈ futures(R),
φ1(I), I ∈ installations(I), and ¬φ2(I).

For instance, we obtain that (p,v) challenges q if and only if
∀F.∀I ∈ Inst(F).φchalleng.(I) where

φchalleng.(I) =
(
(p.n,v) ∈ πR(I)
∧(∀n′ 6= p.n.(n′,v′) ∈ πR(I)→ (n′,v′) ∈ πR(R))

)
→ (q.n,q.v) 6∈ πR(I)Lemma 2.

PROOF. The blanking operation does not change version names,
so the packages in I and ωR(I)∩R have the same name and version.
Furthermore ωR(I) is an ωR(F)-installation since for every package
p ∈ωR(I) there exists a package p′ ∈ I with p.D⊆ p′.D and p.C⊆
p′.C: Since peace and abundance are satisfied for p′ in I they are
also satisfied for p in ωR(I).

Lemma 3.
PROOF. By Lemma 2, ωR(I) is an ωR(F)-installation with πR(I)=

πR(ωR(I)), and ωR(F) is optimistic. We construct

F ′ = {p ∈ ωR(F) | p.n ∈ R.n∪depnames(R)}
∪ {p ∈ R | p.n 6∈ F.n}

By construction, F ′ is an optimistic and conservative future of R.
Let I′= {p∈ωR(I) | p.n∈R.n∪depnames(R)}Obviously, πR(I)=
πR(I′) . It remains to show that I′ is an installation.

Since I′ ⊆ ωR(I) and since ωR(I) is in peace, I′ is in peace, too.
Let p ∈ I′. If p ∈ R then let d ∈ p.D, (n,c) ∈ d, and p′ ∈ ωR(I)
such that p′.n = n and p′.v ∈ [[c]]. Hence, we have that p′.n ∈
depnames(R), and consequently that p′ ∈ I′. This means that the
dependencies of p are also satisfied in I′. If p 6∈ R then p is a blank
package, and hence has no dependencies.

