
Why Do Software Packages Conflict?

Cyrille Artho, Kuniyasu Suzaki
Research Center for Information Security

AIST
Umezono 1-1-1, Tsukuba,
Ibaraki 305-8568, Japan

{c.artho,k.suzaki}@aist.go.jp

Roberto Di Cosmo, Ralf Treinen, Stefano Zacchiroli
Univ Paris Diderot, Sorbonne Paris Cité

PPS, UMR 7126, CNRS, F-75205
Paris, France

roberto@dicosmo.org, treinen@pps.jussieu.fr
zack@pps.univ-paris-diderot.fr

Abstract—Determining whether two or more packages can-
not be installed together is an important issue in the quality
assurance process of package based distributions. Unfortu-
nately, the sheer number of different configurations to test
makes this task particularly challenging, and hundreds of
such incompatibilities go undetected by the normal testingand
distribution process until they are later reported by a user as
bugs that we call “conflict defects”.
We performed an extensive case study of conflict defects
extracted from the bug tracking systems of Debian and RedHat,
and found that current meta-data is not fine-grained and
accurate enough to cover all common types of conflict defects,
that can be grouped into five main categories. We show
that with more detailed package meta-data, about 30 % of
all conflict defects could be prevented relatively easily, while
another 30 % could be found by targeted testing of packages
that share common resources or characteristics. These results
allow us to make precise suggestions on how to prevent and
detect conflict defects in the future.

I. I NTRODUCTION

A. Package-based software distributions

Modern software distributions are organized into pack-
ages. A software package is a self-contained unit that can
be installed or removed independently of other packages,
as long as dependencies are met. A package manager
controls such administrative tasks; compared to unmanaged
installations, the benefits of a package-based approach are
the ability to automatically install, upgrade, and remove
packages without the need to remember installation locations
or which files are affected by a change.

In real software, this ideal state is not easy to achieve, due
to dependencies between software packages, and interactions
between software belonging to different packages. Depen-
dencies arise because some packages provide functionality
used by others. Interactions occur on shared resources, such
as files, and because packages may provide components that
can be combined into a larger system (such as client and
server packages communicating together).

Dependencies restrict the ability to freely install, remove,
or upgrade packages. If a packagea depends on another
packageb, a package manager automatically requiresb to
be installed whena is requested to be installed. Furthermore,

packageb cannot be removed as long asa is still in use. Fi-
nally, upgrades of one package often require a simultaneous
upgrade of related packages. In addition to this, there is a
notion of conflicting packages: two packages may use the
same resource or provide the same service in a way that is
incompatible, so only one of these two packages may reside
on a system at any given time.

In package-based software distributions, so-calledpack-
age meta-datadescribe dependencies and relations between
packages. Most Free and Open Source Software (FOSS)
systems are managed in that way. Meta-data contain in-
formation about dependencies of packages, and conflicts
between them. At the time of writing, meta-data cover
relations among packages at the package level; dependencies
and conflicts are indicated by package, not by the actual
resources a package provides or depends on. So-called
virtual packagesare sometimes used as place-holders for
actual resources or services provided by a package, but they
do not constitute an accurate, fine-grained description of
those resources, which may be files, network ports, or system
services.

B. Conflict defects

Conflict defects occur if the combination of multiple
packages results in a defect that is absent otherwise. Package
meta-data—and in particular explicit conflict declarations—
may indicate such defects, which prevents conflicting combi-
nations of packages from being installed. However, conflict
defects may still arise in practice. The reasons for such
defects are manifold: packages are not just bundles of
files, but include pre-installation and post-installationscripts.
These scripts are unrestricted, Turing-complete programs
running with full system (root/administrator) access. It is
impossible in general to capture the full side effects of these
scripts with a formal description. Actual conflict defects
might simply go unnoticed through a testing phase or might
be impossible to describe properly. The same problem arises
when executing the software provided by these packages.
Therefore, a complete logical analysis of package behavior
is not possible. Nonetheless, as this paper shows, steps can
be taken towards covering certain types of common conflict

defects that are not automatically verifiable with current
tools.

Another problem arises from the fact that a significant
part of package meta-data are provided manually, by pack-
age maintainers. It is therefore a challenge to keep such
meta-data up to date and accurate. This challenge becomes
especially daunting in the presence of a huge number of
software packages in distributions such as Debian, where the
number of packages available currently exceeds 30,000 [13].

As a consequence of this, bug reports referring to conflict
defects between packages are becoming frequent. This paper
investigates the origin of such defects and tries to answer the
following questions:

1) What are the main reasons why conflict defects arise?
2) Are there common categories of conflict defects?
3) Can these problems be addressed by using existing

tools, or is there a need to improve them, or create
new ones?

4) Are package meta-data currently being used, accurate
and sufficient? Is there a need to automatically verify
such meta-data for accuracy, or is there a need to
use additional meta-data for a more accurate notion
of package conflicts? In other words, are most or all
possible conflict defects covered by meta-data?

This paper is organized as follows: SectionII describes
related work. SectionIII shows two case studies on conflict
defects in Debian and RedHat, with a detailed evaluation
of different kinds of conflict defects. SectionIV discusses
the results and proposes possible strategies for remedying
problems found, and SectionV concludes and outlines future
work.

II. RELATED WORK

A. Software packaging

Software packages are a well-known example of the
component models that have originated from the field of
component-based software engineering (CBSE) [17], [3].
Packages fit within common component definitions, but
the raise in their popularity—started with the advent of
FOSS package managers such as the FreeBSD porting
system [15], APT [10], Yum, etc.—has highlighted very
specific challenges related to their deployment [6]. Some
of those challenges are being addressed relying on package
meta-data and their formalization.

Seminal work al [9] has shown how to encode the
installability problem for software packages as a SAT prob-
lem, established the (NP-Hard) complexity of the problem,
and shown applications of the encoding to improve the
quality of package repositories by avoiding non-installable
packages. Based on the same formalization, various quality
metrics have been established, such as strong dependency
and sensitivity [1] (to evaluate the “importance” of a package
in a given repository) and strong conflicts [5] (to pinpoint

packages which might hinder the installation of several other
packages). In the same vein, package meta-data have also
been used to predict future (non-)installability of software
packages [2]. The abundance of studies that rely on package
meta-data testifies the importance of the correctness of those
meta-data.

On the other hand, studies on package meta-data correct-
ness like this one, seem to be scarce. At the same time,
a few testing tools can be found in the realm of Quality
Assurance (QA) of FOSS distributions to discoversymptoms
that might then lead, a human, to discover errors in package
meta-data. To name one, the “file overwrite” [18] initiative
helps in discovering undeclared conflicts among packages in
the Debian distribution.

B. Alternatives to globally managed software packaging

As an alternative to globally managed software packages
that are organized in a fine-grained hierarchy, self-contained
packages including all sub-components, sometimes called
bundles, are sometimes used. Such bundles include the ap-
plication and all libraries it depends on, linked statically [12].
This contrasts to FOSS distributions where libraries are
shared, and generally required to be shipped as separate
packages—see for instance [8], “convenience copies of
code”—in order to ease the deployment of (security) up-
grades. In a system using bundled software, all applications
using the library in question need to be updated separately.
This usually entails a longer period during which a system is
vulnerable, because some software bundles may be provided
by third parties.

An advantage of self-contained software bundles is the
ease of testing and deployment, as system-specific con-
figurations and libraries have only limited impact on the
software bundle. However, statically linking all libraries used
by a bundle requires much disk space. If many applications
include the same statically-linked libraries, these libraries are
duplicated within the same system. Deduplication addresses
this problem [4], [16]. Memory and storage deduplication
merge same-contents chunks on block level, and reduce
the consumption of physical memory. By sharing identical
chunks of storage, logical-level redundancies caused by
static linking are resolved on the physical level.

III. E VALUATION OF CONFLICT DEFECTS

A. Repositories used in the case study

The evaluation of existing conflict defects was carried
out on two publicly accessible bug repositories: The Debian
bug repository1 and RedHat’s bugzilla repository2. These
represent the two of the most widely used FOSS distributions
for the past 10 years. RedHat’s repository also contains
bugs related to Fedora, a community distribution on which
RedHat Linux is based.

1http://www.debian.org/Bugs/
2https://bugzilla.redhat.com/

http://www.debian.org/Bugs/
https://bugzilla.redhat.com/

Keyword Matches Refined matches
break 575 161
conflict 252 85
overwrite 102 44

Table I
NUMBER OF MATCHES PER KEYWORD INDEBIAN BUG DATABASE.

Keyword Matches Refined matches
break 166 111
conflict 119 106
overwrite 19 9

Table II
NUMBER OF MATCHES PER KEYWORD INREDHAT BUG DATABASE.

To get a summary of the Debian bug repository, a snapshot
of the Ultimate Debian Database (UDD) [11] was taken.
This database contains key data of allopenbugs at that time,
such as bug ID, title, and the affected package. The snapshot
used was taken on January 23rd, 2011, and contained 79,936
bugs.

For RedHat, no such summary snapshot is available; how-
ever, bugzilla offers a web-based search that returns all data
in XML format. Like in the Debian case study, the search
returns matches on all open bugs. The searches on RedHat’s
database were carried out on February 4th, 2011. While the
exact total number of open bugs at that time is not known
(because a search with no filter is not possible), the highest
number (bug ID) returned by the search, roughly matches
Debian’s; furthermore, the number of search results is also
comparable. This leads us to believe that the samples in both
case studies are taken from repositories of comparable size.

B. Methodology

1) Automated search:As the bug database is too large to
be analyzed manually, the selection of bugs is first narrowed
down by a keyword search. We chose three keywords to
search for: “break”, “conflict”, “overwrite”. The first two
words are generic descriptions of conflict defects and often
appear in the form “a breaksb” or “ a conflicts with “b”.
The last keyword describes one of the most common inter-
package problems, where one package overwrite a resource
needed by another package.

TablesI and II give an overview of all the matches in
the search. A total of 929 bugs match the initial search
on the Debian repository, and 304 bugs match on RedHat’s
bugzilla. Some of the matches contain more than one key-
word and are therefore duplicates. Our aim is not to get an
exact number of how many conflict defects there are in total.
Rather, we want to know what types of conflicts occur more
often than others, relative to the total number.

We then narrow the search to eliminate bug reports that
describe problems that relate to one package alone, rather
than a conflict between two packages. For example, “over-
write” could appear in a bug report related to overwriting

text in a text editor. Indeed, an initial manual evaluation
on Debian shows that about half of all bug reports found
in the initial search are not related to conflict defects. To
make the results more accurate, the search is refined to
include only bug reports out of the initial selection, where
the title contains the name of another package. This may
filter out more bug reports than necessary (decreasing recall,
in search terms), but makes the results much more precise.
To avoid excluding too many packages, (version) numbers of
packages are not included in this filter, even if the package
name itself contains a version number. A manual check
shows that this filter is good approximation of a manual
selection of true conflict defects.

As shown in TableI, the refined selection on Debian
contains 290 matches. Some of these matches contain mul-
tiple keywords in the title; 241 of them are distinct bug
reports. On RedHat, all 226 refined matches are distinct
bug reports. On Debian, further manual post-processing of
that list removes another 51 items, where the title indicates
clearly that those are not conflict defects. This leaves 190
bug reports where, judging from the title of the report, a
possible conflict defect is reported.

At this early stage, checking the bug description filters
out a much smaller number of bugs on the RedHat case
study. We think that this is partly because more professional
developers and proportionally fewer volunteers contribute to
RedHat’s bug database. This may lead to the language on
RedHat’s database being more uniform, making a keyword
search more precise. Another reason is that a particular
category of bugs, a conflict between 32-bit and 64-bit
packages (see below), occurs often in RedHat; this improves
search precision. The second stage of the the evaluation on
RedHat’s bugzilla is performed on the remaining 226 bugs.

2) Manual evaluation:The cases of which the bug report
titles suggest an conflict defect are analyzed manually. This
requires the full information available on each bug. In
the initial web-based searches, these detailed results are
not returned. Both the debian summary database (UDD)
and RedHat’s search return only summary data. The bug
IDs returned in the summary link it to the detailed bug
description.

The actual bug reports are obtained by downloading them
from the web page. Manual study and categorization of
the bugs rules out a number of possible candidates as
being problems related to a single package rather than a
combination of packages, as shown in TableIII . Bugs that
are not counted include the following:

• bugs that are clearly not reproducible,
• bugs whose description is unclear,
• bug reports which are later retracted as incorrect, and,
• in RedHat, two bugs where access to details is denied

to the public.
This leaves 139 and 183 genuine conflict defects, respec-

tively. A subset of these bug reports is evaluated in a first

Debian RedHat
Bugs after initial search and filtering 190 226
Bugs that are not conflict defects 51 43
Actual conflict defects 139 183

Table III
BUGS EVALUATED IN DETAIL .

 0

 50

 100

 150

 200

 1998
 1999

 2000
 2001

 2002
 2003

 2004
 2005

 2006
 2007

 2008
 2009

 2010
 2011

Frequency of bug reports by year

Debian (submitted)
Debian (last modified)

RedHat (submitted)
RedHat (last modified)

Figure 1. Characteristics of both bug repositories.

sample, to come up with a categorization of bug reports that
would not be too coarse (giving only a few rough classes
of bugs) and not be overly fine-grained either (putting most
bugs into a category of their own). After that, all bug reports
are classified according to these criteria, or eliminated asnot
being conflict defects. The categorization is again refined
during the process, to merge similar categories where one
category has few elements. This is similar to a clustering
algorithm, except that the measure of similarity between
categories is subjective, as the semantics of natural language
cannot be easily quantified with today’s technology.

C. Repository characteristics

With respect to the recentness and lifetimes of bug re-
ports, the repositories are similar but also show interesting
differences. Figure1 shows a histogram of the frequency of
bug reports per year, for the final 190 and 226 cases.3 The
number of bugs is shown by the year in which they were
submitted, and the year in which they were last modified.
This information is taken from the detailed description, and
it is not directly available for the entire repository. However,
we think that our sample illustrates an overall trend.

Both repositories contain open bug reports going back
several years, with most of the bug reports being very recent
(from the last two years). Debian has a markedly higher
number of bug reports going back more than a few years,

3The choice of this sample arose from the need to download the detailed
bug reports for these cases.

while older bugs are almost absent in RedHat’s repository.
Furthermore, all bug reports in RedHat’s database are modi-
fied frequently, and most of them have been modified in the
last 12 months.

For the year of the case study itself (2011), the dotted box
in Figure1 shows the projected number of bugs in that year,
based on an extrapolation of the number of bugs during the
days of 2011 before the snapshot was taken. This estimate,
116 and 257 bugs, respectively, shows that the exponential
distribution of open bugs towards recent years continues.
This is due to a “half-life” of bug reports, which indicates a
probability for any bug to be closed at a given time. For the
time of the last update, such an extrapolation cannot be done
well, because updates of older bugs cause the timestamps of
these bugs to move within the histogram.

This overview may suggest that RedHat frequently fixes
old bugs, or at least updates them. It turns out that the latter
is indeed the case, via automated updates of bugs concerning
packages that are no longer supported. However, it does not
seem to be the case that RedHat fixes old bugs at a higher
rate than Debian. Rather, old bug reports are often obsoleted:
If a bug report relates to software that is no longer in today’s
RedHat distributions, they are first updated with an end-of-
life warning, and later closed automatically. This process
contains a standardized message and is probably at least
partially automated.

Debian has no practice of automatically closing bug
reports related to outdated or obsolete packages, with the
notable exception of bugs belonging to packages that get
removed from the Debian archive.

D. Categorization of conflict defects

As described above and shown by TableIII , 190 (Debian)
and 226 (RedHat) bug candidates are subject to manual
classification. The manual evaluation categorizes bugs into a
hierarchy of categories. The categories for both repositories
are identical, except for one specific type of bug that does
not occur in Debian.

On RedHat’s bug repository, a large number of bug reports
refers to conflicts between 32-bit and 64-bit packages of the
same application. These packages can be installed in parallel
but doing so may lead to a corrupt system, as described
below. These cases can be counted by matching the bug
description against one of the following keywords/phrases:
“multiarch conflict”, “multilib conflict”, or “i386/x64”. 57
bugs on RedHat’s side fit into this category.

• ### TODO:
Detailed
descrip-
tion
of this
problem.

We think that future software distributions will avoid
providing packages for different architectures in this par-
ticular way. Conflict defects of this type can be avoided by
providing all binary packages in the same binary format,
matching the hardware. This is possible when all packages
are available from source, or in all required binary formats;
hence the problem did not occur on Debian. As this problem

is specific to an attempt to combine incompatible binaries
on RedHat-based systems, we elide this category for the
remainder of this section.

The remaining bugs are classified into five broad cate-
gories:

1) Conflicts on files and similar shared resources(such
as files or C library function names). Whenever a
conflict occurs directly on a file, the conflict is caught
at installation time by the package manager. This
handling is safe, but unsatisfactory: if a list of files
used were provided beforehand, then an enhanced
package manager could prevent an installation attempt
that is bound to fail. On the other hand, other types of
conflicts, such as name clashes in libraries, may not
be detected until an application is used at run-time.
To summarize, bugs in this broad category are caused
by the unavailability or inaccessibilityof shared re-
sources (e.g. due to mutual exclusion of the resource
and ownership by “others”).

2) Conflicts on shared data, configuration information, or
the information flow between programs.Configuration
information is often found in/etc, while shared data
may be located elsewhere. Information flow refers
to function calls or communication via pipes or a
network. There are two basic cases where conflicts
occur on data or communication: (1) An installation
action of a package changes the configuration such
that either the syntax of a configuration file is broken
(made unreadable for the parser used by another tool),
or its semantics changes in an incompatible way with
respect to previous expectations. (2) A change in the
data format between versions of an application, which
requires updating other components; the lack of an
appropriate newer version of other components, or the
lack of a declaration of such, causes a conflict. In both
cases (1) and (2), the conflict usually only becomes
evident at run-time.
Bugs in this category are caused byincorrect datain
shared resources or interfaces.

3) Uncommon, previously untested combinations of pack-
ages, cause a conflict.In some cases, a packagea us-
ing another packageb makes a previously undetected
fault in b evident; it is possible that other use cases
for b could produce the same problem, so the failure
can (at least in theory) be reproduced usingb alone. In
other cases, the combination ofa andb is necessary for
those packages to fail, and either package would work
fine without the conflicting package being present.
The bugs have in common that they are observed as a
conflict arising from theinteraction between packages.

4) Package evolution issues.When a software distribution
evolves, packages may be renamed or split up into
multiple packages, or several packages may be merged

File/resource name/
access 31 %

File format/API/
configuration 35 %

Rare combination 15 %

Package evolution/
meta−data 14 %

Spurious
conflict 6 %

Figure 2. Conflict defects in Debian.

File/resource name/
access 30 %

File format/API/
configuration 27 %

Rare combination 33 %

Package evolution/
meta−data 10 %

Spurious
conflict 1 %

Figure 3. Conflict defects in RedHat.

into one. This may require updating meta-data in other
packages for the distribution to remain consistent.
Furthermore, version changes with a package may
also require meta-data changes due to possible in-
compatibilities mentioned above. Unfortunately, meta-
data changes are not automated, and are primarily the
responsibility of the maintainer of a given package.
This causes a potential for meta-data to be outdated
and not reflect a correct state anymore.
Problems in this category arise due to incorrect or
outdatedmetadata.

5) The last category represents cases where two packages
are incorrectly classified as conflicting, although there
is no conflict, at least not for the current version of
these packages. We call this aspurious conflict.

Table IV and Figures2 and 3 show an overview of the
classification into these five categories. Larger categories are
split up into smaller groups to get a more detailed picture.
Conflicts between binaries for different architectures (on
RedHat) are excluded in Figure3. While human error in
individual classifications is possible, the results are overall
quite clear for larger categories. Some trends are evident:

1) Resource conflicts are common, representing about
30 % of all conflicts (43 and 38 cases in total). About

of conflicts Conflict type
Debian RedHat
0 57 32-bit/64-bit binary conflict

43 38 access to/names of files and similar shared resources
22 22 package provides same file as other package
8 6 package (de-)installers modifies file or file permission, or deletes file used by other package
3 5 file/directory name conflict (for names including versionnumber etc.)

10 5 clashing library symbols/function names/device names
48 34 file/API/data/configuration format/resource management

20 12 update/installation script breaks configuration, fileformat, or resource management
14 8 package breaks on uncommon or user-defined configuration/setting
4 6 package use (post-install) overwrites/breaks configuration files

10 8 API/file format change between different package version breaks other package
21 41 rare (previously untested) combination of packages

13 22 defect in one package made visible by failure of other package/functionality
8 19 uncommon combination of packages makes one or more packages always fail

19 12 package evolution (split/merge/change) or faulty meta-data results in conflict
10 6 incorrect/outdated dependency meta-data (requires/conflicts)
9 6 package renaming/split/merge results in incorrect meta-data of other package

8 1 spurious conflict declaration prevents compatible packages from being used
139 183 (126) total (in parentheses: total excluding 32/64-bit binary conflicts)

Table IV
OVERVIEW OF ALL CONFLICT DEFECTS FOUND IN THE TWO BUG DATABASES.

half of these conflicts are on files and caught by the
package manager at installation time; other similar
conflicts may not be caught until a package is actually
used.

2) Conflicts on configuration, and to a lesser degree,
the format of shared data, are equally common. In
many cases, syntactic problems cause a conflict be-
tween packages; the most common reason is the
automatic modification of configuration files by in-
stallation scripts (20 cases in Debian, 12 in RedHat).
These installation scripts are likely tested for common
configurations, but may not behave as expected for
less common settings. While syntactic problems are
prevalent, unintended semantic changes are also a
significant problem, both during and after installation.
It is compounded by the fact that many files have to
be customized by the user before a package can be
used, and the formatting of a configuration file may
see subtle changes that are correctly dealt with by the
packaged software itself, but not by the installation
scripts that manage the package.

3) Other problems between packages that are usually not
installed together represent another significant share.
The huge number of available packages makes it
impossible to test all combinations (or even just all
pairwise possible combinations) of packages together,
so a conflict often goes undetected until reported by
a user. In RedHat, the number is fairly large be-
cause many problems are reported for specific laptop
hardware configurations where kernel modules did
not behave well. It seems that the use of Debian in
such cases is less common, accounting for a lower
percentage of such bug reports.

4) Conflicts on meta-data level, often caused by package
evolution, contribute about 10 %.

5) Incorrect (or outdated) information on conflicting
packages sometimes occurs as well, which does not
create a conflict defect per se, but instead prevents
two packages from being used together even if this is
possible in principle.

IV. D ISCUSSION

The previous section has given a categorization of conflict
defects based on empirical data. We now propose possible
solutions that can potentially cover some or all instances of
each class of conflicts.

1) Conflicts on files are not directly covered by existing
meta-data, although they may be implied by package-
level conflicts. Work is in progress to systematically
test package installations against overwriting files pro-
vided by another package [18], at least in Debian.
As an alternative to this,file diversions enable a
package to install files at a different location; work
is in progress to automate this.4

This case study shows that while the majority of
such conflicts occurs at file level, filepermissions
(and ownership) rather than just file names, and pos-
sible file/directory renaming actions during package
upgrades, should also be considered. Finally, coverage
of similar resources such as network ports and function
or library names would further augment the ability of
such tools to detect conflicts proactively.
More detailed meta-data will require much more space
than existing (rather compact) package meta-data. We

4http://wiki.debian.org/SummerOfCode2011/DeclarativeDiversions,
retrieved June 2011

http://wiki.debian.org/SummerOfCode2011/DeclarativeDiversions

propose that some extra meta-data is generated and
used only by developers and package maintainers. As
it covers possible conflicts proactively, at development
time, not all fine-grained meta-data need be included
in the final distribution. We think that most or all
of such resource-related meta-data can be extracted
automatically by static analysis or run-time analysis.
Automation would eliminate extra effort from package
maintainers.

2) Conflicts on configuration files, file formats and API
versions are also common, and clearly demonstrate the
need for systematic testing against such conflicts. In
the light of testing against overwriting files [18], inter-
package tests should also be automatically run against
conflicts on shared data. This is much more difficult to
automate, and only feasible for packages that include
automated regression tests.
The problem is that regression tests are primarily
used by developers, and less often by package main-
tainers, not to mention end users. Because of this,
combined with the fact that a unit test failure does
not automatically imply that a package is unusable,
regression tests are currently not covered by package
meta-data. This makes them inaccessible to today’s
package management tools, and pretty much precludes
the automated discovery of such intricate conflicts.
However, at a lower level, many source-level distri-
butions have a “make test” or “make check” build
target that automatically performs such tests. In the
future, such information could be provided in package
meta-data, for package maintainers. Furthermore, on
a basic level, certain problems may be found just by
executing a program and checking whether its return
value indicates an error, or by attempting to start and
stop a system service cleanly.

3) The fact that rare combinations of packages may cause
problems is not surprising, given the large number of
packages available. An exhaustive testing of package
combinations is not feasible, but heuristic-based test-
ing of sets of packages may be. A possible approach
may be to install larger subsets of packages, and to
narrow down the set of conflicting packages by a
systematic search such as delta debugging [19].

4) Package evolution often brings with it an invalidation
of package meta-data. About one tenth of conflict
defects in our study is caused directly due to invalid
meta-data after larger package modifications (such as
splitting a package into two packages). This shows
that meta-data needs to be verified for consistency
and accuracy. Especially when given a situation with
“known good” meta-data (before the modification),
automatic verification of the new meta-data is feasible
if packages can be tested automatically.
As with other issues described above, meta-data does

not cover the requirements of packages in enough
detail. For example, take a packagea that is split up
into a

′ anda′′, because some parts ofa are not used by
many packages. If a packageb depends ona in the old
configuration, it is possible thatb depends ona′, a′′,
or both packages, in the new configuration. If some of
the resources provided by these packages are loaded
dynamically byb (at run-time), then verification of the
actual software is required to determine the correct
new dependency.

5) Spurious (or outdated) declarations of conflict defects
can be responded to, by automated testing of pack-
ages that supposedly conflict. This would detect cases
where a conflict is resolved in a newer version of a
package.

To summarize, we think that bugs in these five categories
can be discovered more effectively through the following
means:

• Identification of potentially conflicting packages
through analysis of existing meta-data or package be-
havior. Such an analysis yields candidates for auto-
mated testing, covering bug categories 1–3. We expect
that such testing may partially use recent virtualization
technologies (e.g. [14], among many others). Virtual-
ization technology may provide both a “sandbox” for
executing tests and automated inspection of test execu-
tions, to determine the usage of shared resources such
as files or network ports. As of recently, distributions
seem indeed be interested in proceeding along this
direction [7].

• More detailed and accurate meta-data, generated or
verified by automated tools. This primarily covers bugs
related to the availability of shared resources, and the
correctness of meta-data itself (categories 1, 4, and 5).

V. CONCLUSIONS ANDFUTURE WORK

Conflicts between software packages occur due to a
variety of reasons. Conflict defects on shared resources and
configuration files are particularly common. The underlying
problem is that package behavior at installation, use, and
de-installation time is unrestricted, so a complete formalde-
scription of package behavior cannot be achieved. However,
steps can be taken towards increasing the expressiveness and
accuracy of package meta-data, by adding meta-data that is
intended for package developers and maintainers.

In our case study, we categorize a large number of
conflict defects, and propose possible solutions to common
categories of conflicts. Our study uses two snapshots of
bugs between packages reported in Debian GNU/Linux and
RedHat Linux (including derivatives such as Fedora). Future
work includes studying the evolution of packages, and bugs
reported, over time by investigating multiple snapshots taken
over time.

As a conclusion from our case study, we found that
ongoing and future projects can reduce conflict defects
most efficiently by (a) identifying and testing combinations
of packages that may conflict, (b) generating and using
extra meta-data, and (c) checking the validity of (man-
ually provided) meta-data. Such meta-data should cover
files including file meta-data in particular, and as a next
step, other system resources such as network ports, shared
(global) configuration data, and communication between
components. Another aspect currently omitted in meta-data
is information about regression tests that already exist in
many packages, but are inaccessible on a package level
because they are not declared or available in a uniform way.
An enhanced set of meta-data for testers and distribution
maintainers could cover such testing-related information.

REFERENCES

[1] Pietro Abate, Jaap Boender, Roberto Di Cosmo & Stefano
Zacchiroli (2009): Strong Dependencies between Software
Components. In: ESEM 2009, IEEE, pp. 89–99.

[2] Pietro Abate & Roberto Di Cosmo (2011):Predicting up-
grade failures using dependency analysis. In: 27th Interna-
tional Conference on Data Engineering, IEEE, pp. 145–150.

[3] Alan W. Brown & Kurt C. Wallnau (1998):The Current State
of CBSE. IEEE Software15, pp. 37–46.

[4] Christian Collberg, John H. Hartman, Sridivya Babu &
Sharath K. Udupa (2005):Slinky: Static linking reloaded. In:
Proc. USENIX 2005 Annual Technical Conference, USENIX,
Anaheim, USA, pp. 309–322.

[5] Roberto Di Cosmo & Jaap Boender (2010):Using strong
conflicts to detect quality issues in component-based complex
systems. In: 3rd India software engineering conference, ISEC
’10, ACM, pp. 163–172.

[6] Roberto Di Cosmo, Paulo Trezentos & Stefano Zacchiroli
(2008): Package Upgrades in FOSS Distributions: Details
and Challenges. In: International Workshop on Hot Topics
in Software Upgrades, HotSWUp ’08, ACM, New York, NY,
USA, pp. 7:1–7:5.

[7] Ian Jackson, Iustin Pop & Stefano Zacchiroli:autopkgtest -
automatic as-installed package testing. Debian Enhancement
Proposal 8:http://dep.debian.net/deps/dep8/.

[8] Ian Jackson & Christian Schwarz (2008):Debian Policy
Manual. http://www.debian.org/doc/debian-policy/.

[9] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jérˆome
Vouillon, Berke Durak, Xavier Leroy & Ralf Treinen (2006):
Managing the Complexity of Large Free and Open Source
Package-Based Software Distributions. In: ASE 2006, IEEE,
pp. 199–208.

[10] Gustavo Noronha Silva (2008): APT HOWTO.
http://www.debian.org/doc/manuals/apt-howto/.

[11] Lucas Nussbaum & Stefano Zacchiroli (2010):The Ulti-
mate Debian Database: Consolidating Bazaar Metadata for
Quality Assurance and Data Mining. In: 7th IEEE Working
Conference on Mining Software Repositories (MSR’2010),
Cape Town, South Africa.

[12] L. Presser & J.R. White (1972):Linkers and loaders. Com-
puting Surveys (CSUR)4(3), pp. 149–167.

[13] The Debian Project:Software packages in [Debian] “sid”.
http://packages.debian.org/sid/allpackages. Retrieved June
2011.

[14] Red Hat, Inc.:KVM. http://www.linux-kvm.org.

[15] Murray Stokely (2004):The FreeBSD Handbook, 3 edition.
FreeBSD Mall.

[16] Kuniyasu Suzaki, Toshiki Yagi, Kengo Iijima, Nguyen Anh
Quynh, Cyrille Artho & Yoshihito Watanebe (2010):Moving
from Logical Sharing of Guest OS to Physical Sharing of
Deduplication on Virtual Machine. In: Proc. 5th USENIX
Workshop on Hot Topics in Security (HotSec 2010), USENIX,
Washington D.C., USA.

[17] Clemens Szyperski (1998):Component Software. Beyond
Object-Oriented Programming. Addison-Wesley.

[18] Ralf Treinen (2011):EDOS-Debcheck: File Overwrite Errors.
http://edos.debian.net/file-overwrites/. Retrieved June 2011.

[19] A. Zeller & R. Hildebrandt (2002):Simplifying and Isolating
Failure-Inducing Input. Software Engineering28(2), pp. 183–
200.

http://dep.debian.net/deps/dep8/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/apt-howto/
http://packages.debian.org/sid/allpackages
http://www.linux-kvm.org
http://edos.debian.net/file-overwrites/

	Introduction
	Package-based software distributions
	Conflict defects

	Related Work
	Software packaging
	Alternatives to globally managed software packaging

	Evaluation of conflict defects
	Repositories used in the case study
	Methodology
	Automated search
	Manual evaluation

	Repository characteristics
	Categorization of conflict defects

	Discussion
	Conclusions and Future Work
	References

