
Predicting Upgrade Failures Using Dependency
Analysis

Pietro Abate 1, Roberto Di Cosmo 2

Universitè Paris Diderot, PPS
UMR 7126, Paris, France

1pietro.abate@pps.jussieu.fr
2roberto@dicosmo.org

Abstract— Upgrades in component based systems can disrupt
other components. Being able to predict the possible consequence
of an upgrade just by analysing inter-component dependencies
can avoid errors and downtime. In this paper we precisely
identify in a repository the components p whose upgrades force
a large set of others components to be upgraded. We are also
able to discriminate whether all the future versions of p have
the same impact, or whether there are different classes of future
versions that have different impacts. We perform our analysis
on Debian, one of the largest FOSS distributions.

I. INTRODUCTION

Component-based software architectures [1] have the prop-
erty of being upgradeable pointwise, without necessarily mod-
ifying all the components at the same time. Ideally one would
like to obtain a coherent software system when replacing any
component by any other version of it, but in practice this
is rarely possible, and most component systems provide rich
metadata to specify under which conditions on the context a
component can or cannot be installed.

As a consequence, an upgrade of a single component p from
a given version v to a new version w may end up forcing
the upgrade of many other components at the same time, and
the more pieces are affected by a single upgrade, the higher
the impact of the upgrade can be on the usual operations
performed by the overall system; this impact can either be
beneficial (if works as planned) or disastrous (if not).

We want to identify precisely in a repository the components
p whose upgrades force a large set of others components
to be upgraded too, and we want also to know whether all
the future versions w of p have the same impact, or whether
there are different classes of future versions that have different
impacts. For the maintainers of component repositories, this
information allows to spot the packages and upgrade paths
that need to be particularly tested; for the final users, this
information may be used to decide which upgrade path to
choose, when more than one are possible.

In this paper, we use the notion of strong dependency
introduced in [2] to build an efficient prediction algorithm that
analyses the metadata of a component repository and computes

Partially supported by the European Community’s 7th Framework Pro-
gramme (FP7/2007-2013), grant agreement n◦214898, “Mancoosi” project.
Work performed at the IRILL center for Free Software Research and Innova-
tion in Paris, France.

for each component p a sound approximation of the number
of other components that will be forced to be upgraded by an
upgrade of p. We also show that for any component p in the
repository there is only a finite set of future versions which
are enough to represent the impact of all its possible upgrades,
and our algorithm computes them very efficiently.

Our prediction algorithm can be applied to any component
based framework, but in this work we focus on Package-based
FOSS (Free and Open Source Software) distributions, which
are possibly the largest-scale examples of component-based
architectures, whose upgrade effects are experienced daily by
million of users world-wide, and for which historical data
concerning their evolution is publicly available.

The rest of the paper is structured as follows: Section II
recalls the basic notions about FOSS distributions, strong
dependencies and impact sets; Section III extends the notion of
impact set for upgrades; Section IV gives an efficient algorithm
to compute the effective impact sets for upgrades of large
software repositories; Section V presents the result of the
analysis of large Debian repositories, and a variation of impact
sets for upgrades of clusters of packages. Section VI discusses
related research.

II. FOSS DISTRIBUTIONS, STRONG DEPENDENCIES AND
IMPACT SETS

In FOSS distributions, software components are managed as
packages [3]. Packages are described with meta-information,
which include complex inter-relationships describing the static
requirements to run properly on a target system. Requirements
are expressed in terms of other packages, possibly with restric-
tions on the desired versions. Both positive requirements (de-
pendencies) and negative requirements (conflicts) are usually
allowed.
As the example in Figure 1 shows, inter-package relation-
ships can get quite complex, and there are plenty of more
complex examples to be found in distributions like Debian.
In particular, the language to express package relationships
is not as simple as flat lists of component predicates, but
rather a structured language whose syntax and semantics is
expressed by conjunctive normal form (CNF) formulae [4].
In Figure 1, commas represent logical conjunctions among
predicates, whereas bars (“|”) represent logical disjunctions.
Dependencies can be either versioned or unversioned. In the

1 Package: python-qt3
2 Priority: optional
3 Section: python
4 Installed-Size: 19324
5 A r c h i t e c t u r e: i386
6 Version: 3.17.4-1
7 Prov ides: python2.4-qt3, python2.5-qt3
8 Depends: libc6 (>= 2.7-1), libgcc1 (>= 1:4.2.1),
9 libqt3-mt (>= 3:3.3.7), libstdc++6 (>= 4.2.1),

10 libx11-6, libxext6, python (<< 2.6),
11 python (>= 2.4), python-sip4 (<= 4.8),
12 python-sip4 (>= 4.7)
13 Suggests:
14 libqt3-mt-mysql | libqt3-mt-odbc | libqt3-mt-psql,
15 python-qt3-doc, python-qt3-gl

Fig. 1. An excerpt of the inter-package relationships of the python-qt3
providing Python bindings for Qt.

first case, an unversioned dependency is specified only by
a package identifier. In the second case, it is specified by
a package identifier and a version constraint of the form
(constr,version) where constr is an operator of <,≤
,>,≥,=. Also, indirections by the mean of so-called virtual
packages can be used to declare feature names over which
other packages can declare relationships; in the example (see
line 7: “Provides”) the package declares to provide the features
called python2.4-qt3 and python2.5-qt3.

Definition 2.1 (Installation): A repository R is a set of
packages. An installation I is a subset of R that respects the
following two properties :
abundance: each package in I has its dependencies satisfied
by packages in I;
peace: no package in I conflicts with another package in I.

We say that a package p is installable in a repository R if
exists an installation I ⊆ R such that p ∈ I.

Checking installability of a single package in a given
repository is an NP-Complete problem, but at the same time
that experimental results show how modern SAT-Solvers can
handle package installation instances easily [4]. In [2], it has
been shown how to efficiently compute strong dependencies
in a FOSS distribution.

Definition 2.2 (Strong dependency): Given a repository R,
we say that a package p in R strongly depends on a package
q, written p⇒ q, if p is installable in R and every installation
of R containing p also contains q.

Intuitively, p strongly depends on q with respect to R if it
is not possible to install p without also installing q. Strong
dependencies were used in [2] to propose the impact set of p
as a first approximation of the packages that may be affected
by an upgrade of a package p.

Definition 2.3 (Impact set of a component): Given a
repository R and a package p in R, the impact set of p in R
is the set Is((, p)) = {q ∈ R | q⇒ p}.

The impact set of p with respect to R is the set of packages
of R that it is not possible to install without also installing
p, so changing p may have an impact on all its impact set;
Table I shows the top 20 packages with biggest impact set, as
computed for [2].

TABLE I
PACKAGES FROM DEBIAN 5.0, SORTED BY THE SIZE OF THE STRONG

IMPACT SET.

Package —IS(p)—
1 gcc-4.3-base 20128
2 libgcc1 20126
3 libc6 20126
4 libstdc++6 14964
5 libselinux1 14121
6 lzma 13534
7 libattr1 13489
8 libacl1 13467
9 coreutils 13454

10 dpkg 13450
11 perl-base 13310
12 debconf 11387
13 libncurses5 11017
14 zlib1g 10945
15 libdb4.6 9640
16 debianutils 8204
17 libgdbm3 8148
18 sed 8008
19 perl-modules 7898
20 perl 7898

. . .

III. IDENTIFYING DISCRIMINANT UPGRADES

Unfortunately, the size of the impact set of a package p
alone does not tell us much about what will really happen
when p is upgraded to a new version: this will depend on how
strict is the dependency relation connecting p to the elements
of impact set.

If a package q has an unversioned dependency on a package
p, then a change in the version of q will have little effect on
the other packages depending on p, as the constraint does not
depend on the version of q; the same is true for dependencies
of the form p (>,v) or p (≥,v) with v a version of p older
than the current one. On the contrary, dependencies of the
form p (=,v), p (≤,v) or p (<,v) can be easily broken by an
upgrade of v.

As we will see later in table II and III, in Debian Lenny
an upgrade of libstdc++6 will not force the upgrade of
any of the 14964 packages in its impact set, while any
upgrade of fontconfig-config will force a change of
all the 4739 packages in its impact set; despite the fact that
libstdc++6 has an impact set almost five times bigger
than fontconfig-config, the distribution maintainers
will need to follow the fontconfig-config package tran-
sitions even more than the libstc++6 package transitions,
at least as far as dependencies are concerned.

This is a clear motivation for computing, given a universe
R and a packages p with version v in it, the packages that
will be broken if we upgrade p to a future versions w, for all
possible future versions w. There are two main difficulties we
need to overcome in order to reach this goal:
• changes in p: we do not know what will be the metadata

of any future version w of p, precisely because, being a
future version, it is not part of the universe;

• open ended version space: the number of possible future
version being infinite, it is not possible to test them all
extensively.

A. Approximating upgrades using dummy packages

For the first issue, we build an upgraded universe by
replacing the current version of p with a dummy package with
name p and the new version w, but no other dependencies or
conflicts. Since the new dummy package will be installable
in all contexts, packages in the universe that become broken
because of this replacement will also be broken when replacing
p with a new, non-dummy p with extra dependencies and
conflicts.

Definition 3.1 (Dummy upgrade package): Given a pack-
age p with version v, and a target upgrade version w,
dummy(p,w) is a new package with the same package name
as p, the same provides as p, the new version w and with no
dependencies and conflicts.

A dummy package is used to conservatively simulate the
upgrade of package p to a future version.

Using a notation which is standard for environment ma-
nipulation [5], we write U [(p,v) 7→ (p,w)] for a universe U
where a package p with version v is replaced by a package p
with version w. If w > v we say that (p,w) is an upgrade for
package (p,v), if w < v we say that it is a downgrade.

Definition 3.2 (Universe Update): Given a package (p,v)
in a universe U and a package (p,w), the universe U updated
replacing (p,v) with (p,w) is

U [(p,v) 7→ (p,w)] =U−{(p,v)}∪{(p,w)}
Using dummy packages in computing the broken packages

in a future upgrade provides an approximation of what will
actually happen in an upgrade.

Proposition 3.3 (Approximation): Given a universe U con-
taining package p in version v, and a newer version w of
package p, then if a package q ∈ U becomes uninstallable
in U [(p,v) 7→ (dummy(p,w))], then it is also uninstallable
in U [(p,v) 7→ (p,w)], assuming the provides field does not
change.

B. Identifying discriminating versions

For the second issue, we notice that the satisfaction of a
package dependency only depends on the valuation of the
version constraints, which is true or false, and not on the
particular version that makes such valuation hold.

Definition 3.4 (Valuation of a constraints): The function
eval(constr,v) is defined as follows

eval(c,v) =


v = w if c≡ (=,w)
v≤ w if c≡ (≤,w)
v≥ w if c≡ (≥,w)
v < w if c≡ (<,w)
v > w if c≡ (>,w)

This function can be lifted to list of constraints as

leval([c1, ...,cn],v) = [eval(c1,v)), ...,eval(cn,v)]

Definition 3.5 (Constraints of a package): Given a pack-
age p in a universe U the list of its constraints constr(p,U)s
defined as the set of terms of the form (relop,version) asso-
ciated to package p found in the conflicts and dependencies
constraints of U , taken in lexicographic order. relop is the
usual relation operator list <,≤,>,≥,=,

This observation allows us to group the infinite set of future
version of a package into a finite set of equivalence classes.

Definition 3.6 (Version equivalence): For a package p in a
universe U , consider the finite list l of constraints of p. We
can define an equivalence relation on versions of p as follows

v∼ w = {leval(l,v) = leval(l,w)}
It is possible to prove the following :
Proposition 3.7 (Discretisation): If a package q can be in-

stalled in a universe U that contains a package p with version
v, and v∼ w, then q can be installed in U [(p,v) 7→ (p,w)].

As a consequence, when studying the effect of upgrades of
a package p in a universe U , we only need to care about the
representatives of the equivalence classes of v w.r.t. ∼, and not
all possible future versions of p. We call such representatives
the discriminants of p in U . For space limitations, we omit
here the details of the algorithm that allows to compute such
discriminants, but we can mention the fact that in the worst
case one gets 2n + 1 discriminants if n is the number of
versions of p mentioned in the universe.

C. Prediction maps

Putting together the results of the two previous sections, we
can define the predictions that we can obtain from the analysis
of a given universe.

Definition 3.8 (Prediction Map): The prediction map PM
of a universe U associates to all packages (p,v) ∈U and all
versions vi ∈ discriminants(p) the maximum set of packages
{q1, · · · ,qn} ⊆U that are not installable any more when any
possible implementation of a new package (p,vi) replaces
(p,v).

Intuitively, a prediction map tells us, for each package
(p,v) in a universe U , and for each relevant future versions
w of p, all the packages that will be surely broken by an
upgrade of p to w, no matter what the precise dependency
metadata of (p,w) will be.

We are now in a position to present the algorithm that will
compute a prediction map for the upgrades.

IV. COMPUTING PREDICTIONS

The algorithm in Figure 2 computes the prediction map for
a universe U . For each package p with version v, for each
versions vi in the discriminants of p, we compute how many
packages q in the impact set of p will be broken if we upgrade
package p from version v to vi.

As we have seen in the previous section, this provides a
sound approximation of the packages that will actually be
broken by any possible upgrade of p with an actual package
p at version vi.

PM← []
for all (p,v) ∈U do

for all vi ∈ Discriminants(p) do
for all q ∈ IS(p) do

U [(p,v) 7→ (dummy(p,vi))]
if ¬check(U ′,q) then
PM[(p,vi)]← PM[(p,vi)]∪{q}

end if
end for

end for
end for
return PM

Fig. 2. Computing the prediction map of a universe.

Notice that if q is installable in U , but breaks in an updated
universe U [(p,v) 7→ (dummy(p,w))], this means that q really
needs (p,v) to be installed in U , so q ∈ IS(p). This is why in
the algorithm of Figure 2 we test only the packages of IS(p),
the impact set of p, and not all packages in the universe; this
allows a significant performance gain, as many packages have
a small impact set.

The function check(U,q) uses a SAT solver to return true
if the package q is installable in the universe U or false
otherwise. The map PM is the prediction map of the universe
U . In the worst case, this algorithm requires checking n2∗m(v)
SAT instances, where n is the number of packages in the
universe and 2m(v)+ 1 is the number of versions mentioned
in the universe. To this must be added the algorithmic cost of
computing the impact set of each package in the universe, as
described in [2].

V. EXPERIMENTAL RESULTS

A. Upgrade Predictions in Debian Lenny

We have performed an extensive experimental evaluation of
our algorithm on Debian GNU/Linux, that we have chosen as
a case study because Debian is the largest FOSS distribution
in terms of number of packages (about 22,000 in the latest
stable release) and, to the best of our knowledge, the largest
component-based system freely available for study.

TABLE II
PREDICTION MAP FOR THE TOP 20 DEBIAN IMPACT SETS

Package Version Target Version #(IS) #(BP)
gcc-4.3-base 4.3.2-1.1 any 20128 20127
libgcc1 1:4.3.2-1.1 any 20126 4
libc6 2.7-18 any 20126 1413
libstdc++6 4.3.2-1.1 any 14964 0
libselinux1 2.0.65-5 any 14121 53
lzma 4.43-14 any 13534 0
libattr1 1:2.4.43-2 any 13489 37
libacl1 2.2.47-2 any 13467 36
coreutils 6.10-6 any 13454 0
dpkg 1.14.25 any 13450 0
perl-base 5.10.0-19 any 13310 7975
debconf 1.5.24 any 11387 0
libncurses5 5.7+20081213-1 any 11017 290
zlib1g 1:1.2.3.3.dfsg-12 any 10945 573
libdb4.6 4.6.21-11 any 9640 12
debianutils 2.30 any 8204 0
libgdbm3 1.8.3-3 any 8148 3
sed 4.1.5-6 any 8008 0
perl 5.10.0-19 ≥ 6 7898 14
perl 5.10.0-19 5.10.0-19 < . < 6 7898 13

TABLE III
TOP 20 UPGRADES SORTED BY NUMBER OF BROKEN PACKAGES

Package Version Target Version #(BP) #(IS)
gcc-4.3-base 4.3.2-1.1 any 20127 20128
perl-base 5.10.0-19 any 7975 13310
libmagic1 4.26-1 any 5262 5585
fontconfig-config 2.6.0-3 any 4739 4739
python2.5-minimal 2.5.2-15 any 2468 2470
python-minimal 2.5.2-3 any 2368 2369
libc6 2.7-18 any 1413 20126
python 2.5.2-3 ≥ 3 1094 2367
python 2.5.2-3 2.6 < . < 3 1090 2367
gconf2-common 2.22.0-1 ≥ 2.23 899 899
kdelibs-data 4:3.5.10.dfsg.1-0lenny1 ≥ 4:3.5.10.dfsg.2 729 730
libgnomevfs2-common 1:2.22.0-5 ≥ 1:2.23 664 664
libbonobo2-common 2.22.0-1 any 623 623
libgnomecanvas2-common 2.20.1.1-1 ≥ 2.21 611 611
libgnome2-common 2.20.1.1-1 ≥ 2.21 596 596
zlib1g 1:1.2.3.3.dfsg-12 any 573 10945
libbonoboui2-common 2.22.0-1 ≥ 2.23 532 532
libgnomeui-common 2.20.1.1-2 ≥ 2.21 529 529
libxau6 1:1.0.3-3 any 502 6795
libxdmcp6 1:1.0.2-3 any 497 6782

In table II we refine the data of the packages in table I: for
each package p in the 20 packages with the biggest impact
set, we provide the number of broken packages for each future
version w in the discriminants of p.

As one can easily see, there is no clear correlation between
the size of the impact set and the number of surely broken
packages in an upgrade, so it is more pertinent to single out
the upgrades with largest number of broken components.

This is done in Figure III, where we present the top 20
package upgrades sorted by the number of actually broken
packages. It is remarkable how this new list is different from
the previous one: many new packages are brought to our
attention, despite their relatively small impact set.

For many packages in this list all future version are equiva-
lent and upgrading to any of them breaks the same number of
components, but there are quite a few notable exceptions: for
python, upgrading to a version strictly greater than 2.06
and strictly smaller than 3 will break 1090 packages, moving
to version 3 or later breaks 1094, and upgrading to a version
greater than the current 2.5.2-3, but smaller then 2.06,
breaks only 88 packages (this last entry is not shown in the
list as it appears way below). Similarly, the packages related to
bonobo, gnome and kde become problematic only further
in the future, and there is a version span for which they do
not wreak havoc on the system.

B. Clustering related packages

The prediction analysis we have performed up to now allows
to identify those packages whose upgrade, if done in isolation,
may break many installed packages, forcing their upgrade too.

In practice, sometimes certain clusters of packages need to
be upgraded simultaneously, to avoid breaking too many other
packages. For example, consider again gcc-4.3-base: this
is a binary package that is generated automatically from
the same source that produces libgcc1, and is expected
to be upgraded in sync with it, as a close examination of
their interdependencies shows: the pointwise analysis of the
previous section is not able to tell us what will happen
when performing a real upgrade, that will install new, aligned
versions of both packages.

TABLE IV
TOP 25 CLUSTER UPGRADES, BY NUMBER OF BROKEN COMPONENTS

Source Version Target Version #(BP)
python-defaults 2.5.2-3 ≥ 3 1079
python-defaults 2.5.2-3 2.6 ≤ . < 3 1075
e2fsprogs 1.41.3-1 any 139
ghc6 6.8.2dfsg1-1 ≥ 6.8.2+ 136
libio-compress-base-perl 2.012-1 ≥ 2.012. 80
libcompress-raw-zlib-perl 2.012-1 ≥ 2.012. 80
libio-compress-zlib-perl 2.012-1 ≥ 2.012. 79
icedove 2.0.0.19-1 > 2.1-0 78
iceweasel 3.0.6-1 > 3.1 70
haskell-mtl 1.1.0.0-2 ≥ 1.1.0.0+ 48
sip4-qt3 4.7.6-1 > 4.8 47
ghc6 6.8.2dfsg1-1 6.8.2dfsg1+ ≤ . < 6.8.2+ 36
haskell-parsec 2.1.0.0-2 ≥ 2.1.0.0+ 29
haskell-parsec 2.1.0.0-2 2.1.0.0-2 < . < 2.1.0.0+ 26
sip4-qt3 4.7.6-1 4.8 25
haskell-network 2.1.0.0-2 ≥ 2.1.0.0+ 22
ghc6 6.8.2dfsg1-1 < 6.8.2dfsg1-1 22
pidgin 2.4.3-4 ≥ 3.0 20
ghc6 6.8.2dfsg1-1 6.8.2dfsg1-999 ≤ . < 6.8.2dfsg1+ 20
pcre3 7.6-2.1 ≥ 7.8 17
haskell-regex-base 0.93.1-3 ≥ 0.93.1+ 16
haskell-regex-posix 0.93.1-1 ≥ 0.93.1+ 14
haskell-time 1.1.2.0-2 ≥ 1.1.2.0+ 13
haskell-quickcheck 1.1.0.0-2 ≥ 1.1.0.0+ 13
haskell-hsql 1.7-2 ≥ 1.7+ 13

We adapted our algorithm to handle upgrades of a cluster
of packages instead of just a package at a time: one needs
to use an upgrade universe with dummy packages for all
packages belonging to the same cluster, and craft some careful
modification of the code to maintain performance of execution,
that we do not discuss here for lack of space.

In Debian, a good heuristic for clustering packages turned
out to be the Source tag in the metadata, that identifies binary
packages coming from the same source.

The cluster corresponding to the source package gcc-4.3,
contains 44 different binary package, among which libgcc1
and gcc-4.3-base, and if we upgrade all these 44 compo-
nents together, we find out that no other package is broken,
so an aligned upgrade of this cluster will not force any other
package to upgrade.

We can now present the results of this final, refined analysis,
that identifies those packages whose upgrade, even if done
together with all their related packages, still wreaks havoc on
the whole distribution.

Table IV shows results from the same data set where clusters
of packages generated from the same source are migrated
together.

For some of the packages, the impact of their upgrade on
the rest of the system is reduced to nothing: as noticed above,
gcc-4.3-base now breaks no package if upgraded with
all its related packages at once. Some packages which were
pinpointed as problematic are still sources of extreme fragility:
python-defaults still breaks more than 1000 packages.

But, more important, we can now finally see several pack-

ages that will actually be responsible for serious trouble, and
that were hidden low in the ranking of the previous measures:
one of these is e2fsprogs that will break at least 139
packages as soon as we change it for any new version.

It is also interesting to notice that all future ver-
sions are not equivalent for most of these packages: for
python-defaults all upgrades are dangerous, but there
is a bump when going to version 3 or higher, and for ghc6
there will be problems only when upgrading to versions higher
than 6.8.2+.

VI. CONCLUSIONS AND RELATED WORKS

This work follows the research line opened by [2] and [4].
Both works focus on quality assurance of FOSS distributions:
In [4] some of the authors give a formalization of the in-
stallation problem, various complexity results and an efficient
algorithm to check the installability of a single component. In
[2] we introduced the notion of strong dependency and impact
set as a measure of the relevance of a package with respect to
other components in the distribution.

This paper is a significant improvement of our previous
results. It provides for the first time a method to estimate
faithfully the impact on a distribution of future component
evolution, be it pointwise, or cluster by cluster, by analysing
present knowledge of a distribution.

This paper also provides a first connection with the area of
quality assurance for large software projects, where many au-
thors correlate component dependencies and past failure rates
in order to predict future failures [6], [7], [8]. The underlying

hypothesis is that software “fault-proneness” of a component
is correlated to changes in components that are tightly related
to it. In particular if a component A has many dependencies on
a component B and the latter changes a lot between versions,
one might expect that errors propagates through the network
reducing the reliability of A. A related interesting statistical
model to predict failures over time is the “weighted time damp
model” that correlates most recent changes to software fault-
proneness [9]. Social network methods [10] were also used
to validate and predict the list of sensitive components in the
Windows platform [6].

Our work still differs for several reasons: the dependency
information is not inferred from the source code, but formally
declared by the package maintainers, and it is more coarse
grained. Second, in FOSS distributions we miss the data
needed to correlate upgrade disasters coming from bugs in the
components with dependencies and hence to create statistical
models that allow to predict future upgrade disasters: this is a
future research direction we plan to explore in future work.

VII. DATA AVAILABILITY

The data presented in this paper, and much more
that was omitted due to space constraints, is avail-
able to download from http://data.mancoosi.org/
papers/hostswup2011/

The tools used to compute the data are released under open
source licenses and are available from the Mancoosi website
http://mancoosi.org/software/. Notice that you
do not need our tools to check the results; it is quite straight-
forward to edit manually a Debian Packages file to change
the version of a given package, and then run on this modified
file the standard edos-debcheck tool developed by the
EDOS project, and for which a package has been available
in Debian for quite a while. A script is available from http:
//data.mancoosi.org/papers/hostswup2011/ to
check all the data of our experiments presented in this paper.

VIII. ACKNOWLEDGEMENTS

The authors are very grateful to many people for interesting
discussions: all the members of the Mancoosi team at Uni-
versity Paris Diderot, and Julien Cristau and Mehdi Dogguy,
from the Debian release team. A special thank goes to the
anonymous referees for their remarks, that allowed to improve
the paper presentation.

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Addison Wesley Professional, 1997.

[2] P. Abate, J. Boender, R. Di Cosmo, and S. Zacchiroli, “Strong
dependencies between software components,” in International
Symposium on Empirical Sofware Engineering and Measurement.
IEEE Press, Oct. 2009, pp. 89–99. [Online]. Available:
http://ieeexplore.ieee.org:80/search/wrapper.jsp?arnumber=5316017

[3] R. Di Cosmo, P. Trezentos, and S. Zacchiroli, “Package upgrades in
FOSS distributions: Details and challenges,” in HotSWup’08, 2008.

[4] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, X. Leroy,
and R. Treinen, “Managing the complexity of large free and open source
package-based software distributions.” in ASE, 2006, pp. 199–208.

[5] A. W. Appel, Modern Compiler Implementation in ML. Cambridge
University Press, 1998.

[6] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in ICSE’08. ACM, 2008, pp. 531–
540.

[7] N. Nagappan and T. Ball, “Using software dependencies and churn
metrics to predict field failures: An empirical case study,” in ESEM,
2007, pp. 364–373.

[8] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in ACM Conference on Computer and
Communications Security, 2007, pp. 529–540.

[9] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Trans. Softw. Eng.,
vol. 26, no. 7, pp. 653–661, 2000.

[10] R. A. Hanneman and M. Riddle, Introduction to social network
methods, University of California, Riverside, 2005. [Online]. Available:
http://www.faculty.ucr.edu/∼hanneman/

[11] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world
networks,” Nature, vol. 393, no. 6684, pp. 440–442, June 1998.
[Online]. Available: http://dx.doi.org/10.1038/30918

