
Feature Diagrams as Package Dependencies?

Roberto Di Cosmo and Stefano Zacchiroli

Université Paris Diderot, PPS, UMR 7126, Paris, France
roberto@dicosmo.org,zack@pps.jussieu.fr

Abstract. FOSS (Free and Open Source Software) distributions use de-
pendencies and package managers to maintain huge collections of pack-
ages and their installations; recent research have led to efficient and com-
plete configuration tools and techniques, based on state of the art solvers,
that are being adopted in industry. We show how to encode a significant
subset of Free Feature Diagrams as interdependent packages, enabling to
reuse package tools and research results into software product lines.

Keywords: software product lines, open source, package, component,
feature diagram, dependencies

1 Introduction

Feature models [11] are essential devices to reason about software product lines
(SPLs). As features and their interdependencies get more complex, managing
models quickly turns into a non-trivial task for humans. Researchers have worked
to improve the situation by establishing connections between Feature Diagrams
(FD) and notions like grammars [6], propositional logics [2], and constraint pro-
gramming [3], paving the way to use automatic tools like SAT solvers [9,12] and
proof assistants [10] for SPL configuration.

Meanwhile FOSS distributions like Debian, Red Hat, and Suse have used
for the past 15 years packages and dependencies to maintain some among the
largest software collections known: package managers are used daily to maintain
millions of installations built by selecting components from repositories of tens
of thousands packages. Recent research efforts [1,4,13,16] have led to the devel-
opment of efficient and complete configuration and maintenance tools, as well
as metrics for FOSS distributions, based on state of the art solvers, which are
rapidly being adopted in industry.

We show how a significant subset of Free Feature Diagrams can be compactly
encoded as interdependent packages, opening the way to massive reuse in SPLs
of research results and tools coming from FOSS research. In particular, package
management tools are able to scale up to tens of thousands components and
hundreds of thousands dependencies, and cope well with component evolution,
which is routine in FOSS. Both aspects may be of great interest for the SPL
community.

? This work is partially supported by the European Community FP7, MANCOOSI
project, grant agreement n. 214898.

2 Package dependencies for distribution maintenance

In FOSS distributions a package is a bundle that ships a (software) component,
the data needed to configure it, and metadata which describe its attributes and
expectations on the deployment environment [7]. For simplicity, we focus on
packages as used in the Debian distribution, but the discussion applies almost
unchanged to other popular package formats like RPM (see [13] for details).

Here is a sample metadata excerpt from the firefox package:

Package: firefox
Version: 1.5.0.1 -2 ...
Depends: fontconfig , psmisc , libatk1 .0-0 (>= 1.9.0) , libc6 (>= 2.3.5 -1) ...
Suggests: xprint , firefox -gnome -support (= 1.5.0.1 -2) , latex -xft -fonts
Conflicts: mozilla -firefox (<< 1.5-1)
Replaces: mozilla -firefox
Provides: www -browser , ...

Every package has a version that is used to give a temporal order to the
packaged component release. The kinds of relationships that can be expressed
in the metadata of a package p are numerous, but the most important are:

– Depends: a list of package disjunctions p1 | . . . | pn, . . . , q1 | . . . |qm, where
each atom can carry a version predicate (e.g. ≥ 1.9.0). For the owner package
to be installable, at least one package in each disjunction must be installed.

– Conflicts: a list of package predicates p1, p2, . . . pn. For the owner package
to be installable, none of the pi must be installed. Self conflicts are ignored.

– Recommends similar to Depends, it indicates an optional dependency; it might
be advisable to satisfy it, but it is not needed to obtain a working system.

A repository R is a set of packages; a subset I ⊆ R of it is said to be a
healthy installation if all dependencies of packages in I are satisfied, and none of
the conflicts is. Precise formal meanings to all these notions have been given else-
where (see [8,13] and the Mancoosi project http://www.mancoosi.org). Tools
are available in the distribution world to choose healthy installations according
to user requests [15] and to perform sophisticated repository analysis [1,5].

3 Encoding feature diagrams as package dependencies

We show how a core subset of Feature Diagrams (FD) can be compactly encoded
as packages. Due to the differences among FD formalisms, we provide the encod-
ing for a significant subset of Free Feature Diagrams (FFD) [14] that captures
many known formalisms, and allows to claim that our encoding is of general
interest.

FFD is a general framework that allows to capture different classes of FD
by specifying a few parameters: the kind of graph GT (Tree or DAG); the node
type NT (and, or, xor, or opt; the latter encoding explicit optionality within
a node-based semantics [14]); the graphical constraint type GCT (⇒ for impli-
cation, and | for mutual exclusion); and the textual constraint language TCL
(usually including just implication and mutual exclusion, noted n implies n′ and
n mutex n′, respectively).

http://www.mancoosi.org

Definition 1 (Free Feature Diagram). d ∈ FFD(GT,NT,GCT, TCL) =
(N,P, r, λ,DE,CE,Φ) where:

– N is a set of nodes
– P ⊆ N is a set of primitive nodes
– r ∈ N is the root node
– λ : N → NT labels each node with an operator from NT
– DE ⊆ N×N is the set of decomposition edges; (n, n′) ∈ DE is noted n→ n′

– CE ⊆ N ×GCT ×N is the set of constraint edges
– Φ ⊆ TCL are the textual constraints

A few well-formedness constraints are imposed: only r has no parent; the
decomposition edges do not contain cycles; if GT is Tree, then DE forms a tree;
nodes are labeled with operators of the appropriate arity.

Precise formal semantics of FFD is given in terms of valid models [14]:

Definition 2 (Valid model). A valid model of a feature diagram d is M ⊆
N such that: (a) r ∈ M , (b) M satisfies the operators attached to each node,
as well as all the (c) graphical and (d) textual constraints, with the additional
requirement that (e) if a node is in the model, then at least one of its parents
(called the justification) is in the model too.

We call FFDcore the fragment of FFD obtained by restricting the operators
in NT to or, and, xor, opt, and the operators in GCT and TCL to implies
and mutex; this fragment is enough to cover several well known Feature Diagram
formalisms (OFT, OFD, RFD, VBFD, GPFT and PFT in the classification given
in [14]).

We will now show how to encode any d ∈ FFDcore as a package reposi-
tory R(d), so that valid models correspond to healthy installations of a specific
package pr ∈ R(d).

Definition 3 (FFDcore encoding). Let d ∈ FFDcore(GT,NT,GCT, TCL) =
(N,P, r, λ,DE,CE,Φ), we define the package repository R(d) as follows:

– the packages P are defined as {(n, 1)|n ∈ N}, so we have a package for each
node in the diagram, with a unique version number, 1

– ∀ node n with sons n1, . . . , nk, add dependencies as follows:
• if λ(n) = or, add n1, . . . , nk as disjunctive dependencies for n
• if λ(n) = and, add n1, . . . , nk as conjunctive dependencies for n
• if λ(n) = xor, add n1, . . . , nk as disjunctive dependencies of n, and add
n1, . . . ni−1, ni+1, . . . , nk as conflicts for ∀ni

– ∀ node n with son n′ and λ(n) = opt, add n′ as a recommend of n
– ∀ constraint c in CE or Φ, add the following dependencies:
• if c is n⇒ n′ or n implies n′, add n′ as a conjunctive dependency of n
• if c is n|n′ or n mutex n′, add n′ to the conflicts of n

– if GT = Tree, ∀n→ n′ ∈ DE, add n as a conjunctive dependency for n′

– if GT = DAG, ∀n 6= r, add a dependency on n1 | · · · | nk where n1, . . . , nk

are all the parents of n

Fig. 1. Sample E-Shop feature model: as FD (on the left) and FFD (on the right).

An even more compact, linear-space encoding for justifications and xor nodes
can be given using virtual packages [7], exploiting the property that self-conflicts
are ignored; it has been omitted here due to space constraints.

Example 1. A feature model using an edge-based semantics for an e-shop is
shown in Figure 1 as FD (on the left) and FFD (on the right). Its encoding as
package repository is reported below, where we drop Version: 1.

Package: E-Shop
Depends: Catalogue , Payment , Security , SearchOpt

Package: Catalogue
Depends: E-Shop

Package: Payment
Depends: BankTransfer | CreditCard , E-Shop

Package: BankTransfer
Depends: Payment

Package: CreditCard
Depends: Payment , High

Package: Security
Depends: High | Standard , E-Shop

Package: High
Depends: Security
Conflicts: Standard

Package: Standard
Depends: Security
Conflicts: High

Package: SearchOpt
Depends: E-Shop
Recommends: Search

Package: Search
Depends: SearchOpt

Notice how all kinds of metadata are used: conflicts encodemutual exclusion,
recommends encode optional features, conjunctive depends encode and nodes
and implications, disjunctive dependencies encode or nodes. It is now possible
to establish the key property of the detailed encoding.

Theorem 1 (Soundness and completeness). A subset M ⊆ N of the nodes
of a d ∈ FFDcore is a valid model of d if and only if m is a healthy installation
for the package repository encoding R(d).

Proof. The proof is by case analysis on the definition of a valid model, and the
structure of the encoding. Details are omitted due to lack of space.

4 Conclusions and future work

We have established a direct mapping from a significant subset of Free Feature
Diagrams to packages of FOSS distributions. This paves the way to reuse of theo-

retical results as well as tools coming from FOSS research. Package management
tools scale to tens of thousands packages and hundreds of thousands dependen-
cies, and cope with evolving components. For instance, the edos.debian.net

site provides quality metrics for FOSS distributions comprising more than 20’000
packages and 400’000 dependencies, daily, since 2006. Also, model construction
with respect to user-defined optimizations is implemented by several tools, and
competitions like www.mancoosi.org/misc-2010 are improving their efficiency.

We plan to extend the current encoding to all FFD constructs such as car-
dinality constraints and to validate the proposed approach by providing a full
toolchain that attacks SPL problems using existing package management tech-
nology.

We hope that our work will contribute to establish a connection between
SPLs and package management, for the joint benefit of both communities.

References

1. Abate, P., Boender, J., Di Cosmo, R., Zacchiroli, S.: Strong dependencies between
software components. In: ESEM 2009. pp. 89–99. IEEE (2009)

2. Batory, D.: Feature models, grammars, and propositional formulas. In: SPLC 2005.
LNCS, vol. 3714, pp. 7–20. Springer (2005)

3. Benavides, D., Mart́ın-Arroyo, P.T., Cortés, A.R.: Automated reasoning on feature
models. In: CAiSE. LNCS, vol. 3520, pp. 491–503. Springer (2005)

4. Berre, D.L., Rapicault, P.: Dependency management for the Eclipse ecosystem. In:
IWOCE’09. ACM (2009)

5. Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Mancinelli, F.: Improving the
quality of GNU/Linux distributions. In: COMPSAC. pp. 1240–1246. IEEE (2008)

6. de Jonge, M., Visser, J.: Grammars as feature diagrams. In: ICSR7 Workshop on
Generative Programming. pp. 23–24 (2002)

7. Di Cosmo, R., Trezentos, P., Zacchiroli, S.: Package upgrades in FOSS distribu-
tions: Details and challenges. In: HotSWup’08. ACM (2008)

8. EDOS project, WP2 team: Report on formal management of software dependen-
cies. Deliverable Work Package 2, Deliverable 2 (2006)

9. Janota, M.: Do sat solvers make good configurators? In: SPLC 2008, Second Vol-
ume (Workshops). pp. 191–195 (2008)

10. Janota, M., Kiniry, J.: Reasoning about feature models in higher-order logic. In:
SPLC. pp. 13–22. IEEE Computer Society (2007)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Tech. rep., CMU (1990)

12. Le Berre, D., Parrain, A.: On SAT technologies for dependency management and
beyond. In: ASPL’08 (2008)

13. Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R.: Managing the complexity of large free and open source package-based
software distributions. In: ASE 2006. pp. 199–208. IEEE (2006)

14. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a
formal semantics. In: RE’06. pp. 136–145. IEEE (2006)

15. Treinen, R., Zacchiroli, S.: Solving package dependencies: from EDOS to Mancoosi.
In: DebConf 8: proceedings of the 9th conference of the Debian project (2008)

16. Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: OPIUM: Optimal package instal-
l/uninstall manager. In: ICSE 2007. pp. 178–188 (2007)

http://edos.debian.net/
http://www.mancoosi.org/misc-2010

	Feature Diagrams as Package Dependencies

