
On Isomorphisms of Intersection Types

Mariangiola Dezani-Ciancaglini

Roberto Di Cosmo

Elio Giovannetti

and

Makoto Tatsuta

The study of type isomorphisms for different λ-calculi started over twenty years ago, and a very

wide body of knowledge has been established, both in terms of results and in terms of techniques.

A notable missing piece of the puzzle was the characterization of type isomorphisms in the presence
of intersection types. While at first thought this may seem to be a simple exercise, it turns out that

not only finding the right characterization is not simple, but that the very notion of isomorphism in

intersection types is an unexpectedly original element in the previously known landscape, breaking
most of the known properties of isomorphisms of the typed λ-calculus. In particular, isomorphism

is not a congruence and types that are equal in the standard models of intersection types may be

non-isomorphic.

Categories and Subject Descriptors: F.4.1 [Theory of Computation]: Mathematical Logic—

Lambda calculus and related systems; F.3.3 [Theory of Computation]: Studies of Program

Constructs—Type structure; D.1.1 [Software]: Applicative (Functional) Programming

General Terms: Theory, Languages

Additional Key Words and Phrases: Type Isomorphism, Lambda calculus, Intersection Types

1. INTRODUCTION

The notion of type isomorphism is a particularization of the general notion of iso-
morphism as defined in category theory. Two objects σ and τ are isomorphic iff
there exist two morphisms f : σ → τ and g : τ → σ such that f ◦ g = idτ and
g ◦ f = idσ:

?>=<89:;σ
f

((
idσ 55

?>=<89:;τ
g

hh idτ

vv

Author addresses: Mariangiola Dezani-Ciancaglini, Dipartimento di Informatica, Università di

Torino, corso Svizzera 185, 10149 Torino, Italy, Roberto Di Cosmo, Université Paris Diderot,

PPS, UMR 7126, case 7014, 2 place Jussieu, 75005 Paris, France, Elio Giovannetti, Dipartimento

di Informatica, Università di Torino, corso Svizzera 185, 10149 Torino, Italy, Makoto Tatsuta,

National Institute of Informatics, 2-1-2 Hitotsubashi, 101-8430 Tokyo, Japan.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 1529-3785/09/0400-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009, Pages 1–23.

2 ·

Analogously, two types σ and τ in some (abstract) programming language, like the
typed λ-calculus, are isomorphic if the same diagram holds, with f and g functions
of types σ→τ and τ→σ respectively.

In the early 1980s, some interest started to develop in the problem of finding
all the domain equations (type isomorphisms) that must hold in every model of a
given language†, or valid isomorphisms of types, as they were called in [Bruce and
Longo 1985].

There are essentially two families of techniques for addressing this question: it
is possible to work syntactically to characterize those programs f that possess an
inverse g making the above diagram commute, or one can work semantically trying
to find some specific model that captures the isomorphisms valid in all models
(see [Di Cosmo 2005] for a recent survey).

Each approach has its own difficulty: finding the syntactic characterization of
the invertible terms can be very hard, while the rest follows then rather straight-
forwardly; finding the right specific model and showing that the only isomorphisms
holding in it are those holding in all models can be very hard too, even if the advent
of game semantics has a bit blurred the distinction between these approaches, by
building models which are quite syntactical in nature [Laurent 2005].

In our work, we started along the first line (as we already know the shape of
the invertible terms), so here we only recall the relevant literature for the syntactic
approach.

Type isomorphisms and invertible terms
In [Dezani-Ciancaglini 1976], Dezani fully characterized the invertible λ-terms

as the finite hereditary permutators, a class of terms which can be easily defined
inductively, and which can be seen as a family of generalized η-expansions.

Definition 1.1 Invertible term. A λ-term M is invertible if there exists a term
M−1 such that M ◦M−1 = M−1 ◦M =βη I (where ◦ denotes, as usual, functional
composition, i.e. N1 ◦ N2 = λx.N1(N2x), and I is the identity λx.x). Obviously,
M−1 is called an inverse of M .

Definition 1.2 Finite Hereditary Permutator. A λ-term is a finite hereditary per-
mutator (f.h.p.) when its β-normal form is λxy1 . . . yn.xQ1 . . . Qn (n ≥ 0) and is
such that, for a permutation π of 1 . . . n, the λ-terms λyπ(1).Q1, . . . , λyπ(n).Qn are
finite hereditary permutators.

An example of an f.h.p. is λxy1y2y3.xy2(λz1z2.y3z2z1)y1, and an inverse of this
λ-term is λxy1y2y3.xy3y1(λz1z2.y2z2z1).

Theorem 1.3. [Dezani-Ciancaglini 1976] A λ-term is invertible iff it is a finite
hereditary permutator.

Observe that f.h.p.’s are closed terms: so, by the above theorem, invertible λ-terms
reduce to closed terms. The proof of Theorem 1.3 shows that every f.h.p. has a
unique inverse modulo βη-conversion. We use P to range over β-normal forms of
f.h.p.’s. Thus P−1 denotes the unique (modulo η-conversion) inverse of P.

†A model of a set of types is a domain equipped with an interpretation function mapping each

type to a domain element.

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

· 3

While the result of [Dezani-Ciancaglini 1976] was obtained in the framework of
the untyped λ-calculus, it turned out that this family of invertible terms can be
typed in the simply typed λ-calculus, and this allowed Bruce and Longo [Bruce and
Longo 1985] to prove by a straightforward induction on the structure of the f.h.p.’s
that in the simply typed λ-calculus the only type isomorphisms w.r.t. βη-equality
are those induced by the swap equation

σ → (τ → ρ) = τ → (σ → ρ).

Notice that the type isomorphisms which correspond to invertible terms (called
definable isomorphisms of types in [Bruce and Longo 1985]) are a priori not the
same as the valid isomorphisms of types: a definable isomorphism seems to be a
stronger notion, demanding that not only a given isomorphism holds in all models,
but that it also holds in all models uniformly. Nevertheless, in all the cases studied
in the literature, it is easy to build a free model out of the calculus, and to prove
that valid and definable isomorphisms coincide, so this distinction has gradually
disappeared in time, and in this work we will use the following definition of type
isomorphism.

Definition 1.4 Type isomorphism. Given a λ-calculus along with a type system,
two types σ and τ (in the system’s type language) are isomorphic, and we write
σ ≈ τ , if in the calculus there exists an invertible term, i.e., by the above theorem,
an f.h.p. P, such that ` P :σ→ τ and ` P−1 : τ→σ hold in the system. Following
a standard nomenclature, we say that the term P proves the isomorphism σ ≈ τ ,
and we write σ ≈P τ . Of course, σ ≈P τ iff σ ≈P−1 τ .

An immediate observation is that

Theorem 1.5. Isomorphism is an equivalence relation.

Observe that transitivity holds because invertible terms are closed under func-
tional composition by definition. So if the f.h.p. P1 proves σ ≈ τ and the f.h.p. P2

proves τ ≈ ρ, then P2 ◦ P1 is an f.h.p. that proves σ ≈ ρ.
By extending Dezani’s original technique to the invertible terms in typed cal-

culi with additional constructors (like product and unit type) or with higher order
types (System F), it has been possible to pursue this line of research to the point
of getting a full characterization of isomorphisms in a whole set of typed λ-calculi,
from λ1βη, which corresponds to IPC(⇒), the intuitionistic positive calculus with
implication, whose isomorphisms are described by Th1 [Martin 1972; Bruce and
Longo 1985], to λ1βηπ∗, which corresponds to Cartesian Closed Categories and
IPC(True,∧,⇒), for which Th1

×T is complete [Bruce et al. 1992]‡, to λ2βη (Sys-
tem F), which corresponds to IPC(∀,⇒), and whose isomorphisms are given by
Th2 [Bruce and Longo 1985], and to λ2βηπ∗ (System F with products and unit
type), which corresponds to IPC(∀,True,∧,⇒), whose isomorphisms are given by
Th2
×T [Di Cosmo 1995]. A summary of the axioms in these theories is given in

Table I.

‡But this result had been proved earlier by Soloviev using model-theoretic techniques [Soloviev

1983; ?].

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

4 ·

Table I Type isomorphisms in typed lambda calculi

(swap) σ → (τ → γ) = τ → (σ → γ)
}
Th1

1. σ × τ = τ × σ
2. σ × (τ × γ) = (σ × τ)× γ
3. (σ × τ)→ γ = σ → (τ → γ)

4. σ → (τ × γ) = (σ → τ)× (σ → γ)

5. σ ×T = σ

6. σ → T = T

7. T→ σ = σ

Th1
×T

8. ∀X.∀Y.σ = ∀Y.∀X.σ
9. ∀X.σ = ∀Y.σ[Y/X]

10. ∀X.(σ → τ) = σ → ∀X.τ

+ swap = Th2

11. ∀X.σ × τ = ∀X.σ × ∀X.τ
12. ∀X.T = T

Th2
×T

(split) ∀X.σ × τ = ∀X.∀Y.σ × (τ [Y/X])

− 10, 11 = ThML

N.B.: in equation 9, Y does not occur free in σ and the substitution must be capture
avoiding; in equation 10, X does not occur free in σ.

Hence, in this line of research, the standard approach has been to find all the
type isomorphisms for a given language (λ-calculus) and a given notion of equality
on terms (which almost always contains extensional rules like η, as otherwise no
nontrivial invertible term exists [Dezani-Ciancaglini 1976]) as a consequence of an
inductive characterization of the invertible terms. The general schema in all the
known cases is the same: first guess an equational theory for the isomorphisms (this
is the hard part), then by induction on the structure of the invertible terms show
the completeness of the equational theory (the easy part).

One notable missing piece in the table summarizing the theory of isomorphisms
of types is the case of intersection types. At first sight, it should be an easy exercise
to deal with it: we already know the form of the invertible terms, as they are again
the f.h.p.’s, and it should just be a matter of guessing the right equational theory
and proving it complete by induction.

But it turns out that with intersection types all the intuitions that one has formed
in the other systems fail: the intersection type discipline can give many widely
different typings for the same term, so that the simple proof technique originated
in [Bruce and Longo 1985] does not apply, and we are in for some surprises.

In this paper, we explore the world of type isomorphisms with intersection types,
establishing a series of results that are quite unexpected: on the one hand, we will
see in Section 2 that in the presence of intersection types the theory of isomorphisms
is no longer a congruence, so that there is no hope to capture these isomorphisms via
an equational theory, and the theory does not even include equality in the standard
ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

· 5

models; yet, decidability can be easily established, though with no simple bound
on its complexity. On the other hand, we will be able to provide in the following
sections a very precise characterization of isomorphisms, via a special notion of
similarity for type normal forms.

The present paper is an expanded version of [Dezani-Ciancaglini et al. 2008].
The main difference concerns the syntax of intersection types, which in [Dezani-
Ciancaglini et al. 2008] generated only arrow types ending with atomic types. This
syntactic restriction considerably simplified the characterization of isomorphisms,
since only one reduction rule was enough to get the normal forms of types, while here
we need a further reduction rule whose applicability condition was quite difficult to
devise.

2. BASIC PROPERTIES OF ISOMORPHISMS WITH INTERSECTION TYPES

In this section we recall the intersection type discipline, and establish the basic
properties of intersection types that show their deep difference w.r.t. the other
cases studied in the literature, before tackling, in the later sections, their precise
characterization.

2.1 Intersection types

The formal syntax of intersection types is:

σ := ϕ | σ → σ | σ ∩ σ

where ϕ denotes an atomic type. We use σ, τ, ρ to range over types, µ, ν, λ to range
over atomic and arrow types, α, β, γ to range over arrow types, and ϕ, χ, ψ, ϑ, ξ to
range over atomic types. We will occasionally use Roman letters to denote atomic
types in complex examples. We shall use the convention that ∩ takes precedence
over → and that → associates to the right.

Also, we consider types modulo idempotence, commutativity and associativity of
∩, so we can write

⋂
i∈I σi with finite I. This is sound since clearly idempotence,

commutativity and associativity of ∩ preserves type isomorphism, in fact:
` λx.x :σ → σ ∩ σ, ` λx.x :σ ∩ σ → σ, ` λx.x :σ ∩ τ → τ ∩ σ,
` λx.x : (σ ∩ τ) ∩ ρ→ σ ∩ (τ ∩ ρ) and ` λx.x :σ ∩ (τ ∩ ρ)→ (σ ∩ τ) ∩ ρ.
We write σ ≡ τ if σ coincides with τ modulo idempotence, commutativity and
associativity of ∩.

The type assignment system is the standard system with intersection types for
the ordinary λ-calculus [Coppo and Dezani-Ciancaglini 1980].

(Ax) Γ, x :σ ` x :σ

(→ I)
Γ, x :σ `M : τ

Γ ` λx.M : σ → τ
(→ E)

Γ `M : σ → τ Γ ` N : σ
Γ `MN : τ

(∩I)
Γ `M : σ Γ `M : τ

Γ `M : σ ∩ τ
(∩E)

Γ `M : σ ∩ τ
Γ `M : σ

Γ `M : σ ∩ τ
Γ `M : τ

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

6 ·

2.2 Isomorphisms of intersection types are not a congruence

In all the cases known in the literature, the isomorphism equivalence relation of
Definition 1.4 is a congruence, as the type constructors explored so far (arrow,
cartesian product, universal quantification, sum) all preserve isomorphisms.

Intersection, by contrast, does not preserve isomorphism: from σ ≈ σ′ and τ ≈ τ ′
it does not follow, in general, that σ ∩ τ ≈ σ′ ∩ τ ′. The intuitive reason is that
the existence of two separate (invertible) functions that respectively transform all
values of type σ into values of type σ′ and all those of type τ into values of type τ ′,
does not ensure that there is a function mapping any value that is both of type σ
and of type τ to a value that is both of type σ′ and of type τ ′. It is also worthwhile
to notice that set theoretic isomorphisms are not preserved by intersections.

For example, though the isomorphism σ → τ → ρ ≈ τ → σ → ρ is given by
the f.h.p. λxyz.xzy, the two types ϕ ∩ (σ→ τ → ρ) and ϕ ∩ (τ → σ→ ρ) are not
isomorphic, since the term λyz.xzy cannot be typed (from the assumption x : ϕ)
with an atomic type ϕ, which can only be transformed into itself by the identity.

Therefore we have the following result:

Theorem 2.1. The theory of isomorphisms for intersection types is not a con-
gruence.

In particular, this theory cannot be described with a standard equational theory: a
non-trivial equivalence relation has to be devised§.

2.3 Isomorphisms do not contain equality in the standard intersection models

Another quite unconventional fact is that

Theorem 2.2. Type equality in the standard models ¶ of intersection types does
not entail type isomorphisms.

Proof. Take for example the two isomorphic types

σ→ρ and (σ ∩ τ→ρ) ∩ (σ→ρ).

They are semantically coincident, because the type σ ∩ τ→ρ is greater than σ→ρ,
and therefore its presence in the intersection is useless.

Now, if we just add to both a seemingly innocent intersection with an atomic
type, we obtain the two types (σ→ ρ) ∩ ϕ and (σ ∩ τ → ρ) ∩ (σ→ ρ) ∩ ϕ, which
also have identical meanings but are not isomorphic: if they were, the isomorphism
would be given by the f.h.p. λxy.xy because, while the identity is trivially able
to map any intersection to each of its components (i.e., ` λx.x : σ1 ∩ σ2 → σ1,
` λx.x : σ1 ∩ σ2 → σ2), the mapping in the opposite direction, from σ → ρ to
(σ ∩ τ→ρ) ∩ (σ→ρ), requires an η-expansion of the identity, as can be seen from
the following derivation, where Γ = x : σ→ρ, y : σ ∩ τ :

§Notice that even in the very tricky case of the sum types, isomorphism is a congruence [Fiore

et al. 2006].
¶The standard models of intersection types map types to subsets of any domain that is a model

of the untyped lambda calculus, with the condition that the arrow is interpreted as function space
constructor and the intersection as set-theoretic intersection. I.e., the interpretation of σ → τ is
the set of functions which map every element belonging to (the interpretation of) σ to an element

belonging to (the interpretation of) τ .

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

· 7

Γ ` x : σ→ρ

Γ ` y : σ ∩ τ
(∩ E)

Γ ` y : σ
(→E)

Γ ` xy : ρ
(→ I)

x : σ→ρ ` λy.xy : σ ∩ τ→ρ

. . . (→E)
x : σ→ρ, y : σ ` xy : ρ

(→ I)
x : σ→ρ ` λy.xy : σ→ρ

(∩ I)
x : σ→ρ ` λy.xy : (σ ∩ τ→ρ) ∩ (σ→ρ)

(→ I)
` λxy.xy : (σ→ρ)→ (σ ∩ τ→ρ) ∩ (σ→ρ)

An η-expansion of the identity, however, cannot map an atomic type to itself; in
particular, the judgment x : (σ→ ρ) ∩ ϕ ` λy.xy : ϕ cannot be derived, and hence
the term λxy.xy cannot be assigned the type (σ→ρ)∩ϕ→ (σ∩τ→ρ)∩(σ→ρ)∩ϕ.

We could establish an isomorphism relation including the pair of types (σ→ρ)∩ϕ
and (σ ∩ τ→ρ)∩ (σ→ρ)∩ϕ only by assuming, as in some models, that all atomic
types are arrow types.

One could simply see this fact as a proof that the universal model – traditionally
hard to find – where all and only the valid isomorphisms hold is not a standard
model; but it is quite unconventional that equality in the standard models is not
included in the isomorphism relation, and this really comes from the strong inten-
sionality of intersection types.

2.4 Decidability

Despite the weird nature of isomorphisms with intersection types, it is easy to
establish the following decidability result.

Theorem 2.3. Isomorphisms of intersection types are decidable.

Proof. Given two types σ and τ , an f.h.p. of type σ→ τ may have a number
of top-level abstractions at most equal to the number of top-level arrows, and also
every subterm of the f.h.p. cannot have, at each nesting level, more abstractions
than the corresponding number of arrows nested at that level. The number of
f.h.p.’s that are candidate to prove the isomorphism σ ≈ τ is therefore finite, and
each of them can be checked whether it can be assigned the type σ→ τ [Ronchi
Della Rocca 1988].

3. REDUCTION TO TYPE NORMAL FORM

Adopting a technique similar to one used by [Di Cosmo 1995], we introduce a notion
of type normal form along with an isomorphism-preserving reduction, and then we
give the syntactic characterization of isomorphisms on normal types only. We use
reduction to:

- distribute arrows over intersections (splitting) and
- eliminate redundant (arrow) types in intersections (erasure), i.e., those types that

are intersected with types intuitively included in them.

For example, σ → τ ∩ ρ reduces to (σ → τ) ∩ (σ → ρ) by splitting,
and (σ ∩ ρ→ τ) ∩ (σ → τ) reduces to σ → τ by erasure.

The reduction relation is expressed with the help of some preliminary definitions,
in which, as stated at the beginning, we always consider ∩ modulo commutativity
and associativity. The syntax of type contexts with one hole is as expected:

C[] := [] | C[]→ σ | σ → C[] | σ ∩ C[].
ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

8 ·

3.1 Splitting

In order to decide when an occurrence of an arrow type σ→ τ ∩ ρ inside a type
context C[] can be split we must check if C[] has “enough arrows” to allow us to
find f.h.p.’s which map C[σ→ τ ∩ ρ] into C[(σ→ τ) ∩ (σ→ ρ)] and vice versa. To
this aim the notion of path is handy. A path is a possibly empty list of positive
naturals, which we denote by 〈n1, . . . , nm〉 (m ≥ 0). We use p to range over paths.
The agreement of a type with a path holds when the type has the arrows required
by the path (Definition 3.1). The path of a type context is defined by requiring the
agreement of some subtypes of the context with suitable subpaths (Definition 3.2).

Definition 3.1. The agreement of a type σ with a path p (notation σ ∝ p) is the
smallest relation between types and paths such that:

- σ ∝ 〈 〉 for all σ;
- τ ∝ 〈n1, . . . , nm〉 implies τ → ρ ∝ 〈1, n1, . . . , nm〉;
- ρ ∝ 〈n1, . . . , nm〉 implies τ → ρ ∝ 〈n1 + 1, . . . , nm〉;
- τ ∝ 〈n1, . . . , nm〉 and ρ ∝ 〈n1, . . . , nm〉 imply τ ∩ ρ ∝ 〈n1, . . . , nm〉.

For example the type σ1 → (σ2 → ρ1 ∩ ρ2) ∩ (σ3 → τ1)→ τ2 agrees with the path
〈2, 1〉, while the type σ1 → (σ2 → ρ1 ∩ ρ2) ∩ (σ3 → τ1) ∩ ϕ → τ2 does not agree
with the path 〈2, 1〉, since ϕ does not agree with 〈1〉.

It is easy to verify that if a type agrees with a path, then it agrees with all its
initial sub-paths, i.e. σ ∝ 〈n1, . . . , nm′ , . . . , nm〉 implies σ ∝ 〈n1, . . . , nm′〉.

Definition 3.2. The path of a type context C[] (notation p(C[])) is defined by
induction on C[]:

- p(C[]) = 〈1〉 if C[] = [];
- p(C[]) = 〈1, n1, . . . , nm〉 if C[] = C′[]→ σ and p(C′[]) = 〈n1, . . . , nm〉;
- p(C[]) = 〈n1 + 1, . . . , nm〉 if C[] = σ → C′[] and p(C′[]) = 〈n1, . . . , nm〉;
- p(C[]) = p(C′[]) if C[] ≡ C′[] ∩ σ and σ ∝ p(C′[]).

For example the path of the context σ1 → [] ∩ (σ2 → τ1) → τ2 is 〈2, 1〉, while the
path of the context σ1 → [] ∩ (σ2 → τ1) ∩ ϕ→ τ2 is undefined, since ϕ 6∝ 〈1〉.

One can easily show that p(C[]) is defined if and only if C[σ→ τ] ∝ p(C[]) for
arbitrary σ and τ .

Definition 3.3 Reduction by Splitting. The splitting reduction rule is:

C[σ→τ ∩ ρ] C[(σ→τ) ∩ (σ→ρ)]

if p(C[]) is defined.

For example σ→τ∩ρ (σ→τ)∩(σ→ρ), while ϕ∩(σ→τ∩ρ) cannot be reduced. It
is easy to verify that λxy.xy shows the isomorphism σ→τ ∩ρ ≈ (σ→τ)∩ (σ→ρ).

We will prove the soundness of this rule in Section 5, i.e., that if
C[σ→τ ∩ ρ] C[(σ→τ) ∩ (σ→ρ)], then there is P such that
` P :C[σ→τ ∩ ρ]→ C[(σ→τ) ∩ (σ→ρ)] and
` P−1 :C[(σ→τ) ∩ (σ→ρ)]→ C[σ→τ ∩ ρ].
ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

· 9

3.2 Erasure

The condition for erasing an arrow type in an intersection uses particular forms of
f.h.p.’s defined as follows.

Definition 3.4 Finite Hereditary Identity. A finite hereditary identity (f.h.i.) is
a β-normal form obtained from λx.x through a finite (possibly zero) number of
η-expansions. We use Id to range over f.h.i.’s.

An example of f.h.i. is λxy.x(λz.yz).

Definition 3.5 Reduction by Erasure. The erasure reduction rule is:

C[α ∩ σ] C[σ]

if there are two f.h.i.s Id, Id′ such that ` Id :C[α∩σ]→ C[σ] and ` Id′ :C[σ]→ C[α∩σ].

If we apply the erasure rule, then we only get isomorphic types by definition, since
an f.h.i. is an f.h.p. and every f.h.i. is its inverse.

We can use both splitting and erasure to reduce types, for example:
(σ → τ) ∩ (σ → τ ∩ ρ) (σ → τ) ∩ (σ → τ) ∩ (σ → ρ) (σ → τ) ∩ (σ → ρ), and
also (σ → τ) ∩ (σ → τ ∩ ρ) σ → τ ∩ ρ (σ → τ) ∩ (σ → ρ).

Note that ` Id : C[α ∩ σ] → C[σ] does not imply that there is Id′ such that
` Id′ :C[σ] → C[α ∩ σ], for example ` λx.x :σ ∩ α → σ. Also ` Id :C[σ] → C[α ∩ σ]
does not imply that there is Id′ such that ` Id′ : C[α ∩ σ] → C[σ], for example
` λxy.xy : (σ → τ) → σ ∩ α → τ . Moreover the existence of both Id, Id′ such that
` Id :C[α ∩ σ]→ C[σ] and ` Id′ :C[σ]→ C[α ∩ σ] does not imply their equality. Let
us consider for example the types σ = ((τ ∩ ρ→ ψ) → ϕ) ∩ ((τ → ψ) ∩ χ → ϕ)
and γ = (τ ∩ ρ→ ψ) → ϕ. Note that, as pointed out in Section 1, the mapping
from σ to γ only needs the simple identity (we have ` λx.x : σ → γ), but the
opposite mapping requires an η-expansion of the identity, so as to have the typing
` λxy.x(λz.yz) : γ → σ. We will discuss how to find f.h.i.’s typed by C[α∩σ]→ C[σ]
and by C[σ]→ C[α ∩ σ] in Section 7.

Observe that the path p(C[]) is undefined if the hole is in an intersection with
an atom: for example the path of σ1 → [] ∩ (σ2 → τ1) ∩ ϕ → τ2 is undefined.
Therefore we cannot reduce σ1 → (σ2 → ρ1 ∩ ρ2)∩ (σ3 → τ1)∩ϕ→ τ2 by splitting
σ2 → ρ1 ∩ ρ2. Similarly, as noted in Section 1, redundant arrow types cannot be
erased if they occur in intersections with atomic types, which prevent η-expansions
of the identity from providing the isomorphism between the original type and the
simplified type: thus, while we have (σ ∩ τ → ρ) ∩ (σ → ρ) σ → ρ, the type
(σ ∩ τ→ρ)∩ (σ→ρ)∩ ϕ does not reduce to (σ→ρ)∩ ϕ. For any type σ ≡

⋂
i∈I αi

such that αi 6≡ αj for all i, j ∈ I, the type σ ∩ϕ (with ϕ atomic) is in normal form,
since the atom ϕ blocks any reduction.

It is immediate to see that reduction by splitting and erasing is confluent and
terminating, thus defining a type normal form.

3.3 Similarity

We may now introduce the key notion of our work, i.e., a similarity between types,
which we will prove to be the desired syntactic counterpart of the notion of isomor-
phism.

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

10 ·

Definition 3.6 Similarity. The similarity relation between two sequences of types
〈σ1, . . . , σm〉 and 〈τ1, . . . , τm〉, written 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉, is the smallest
equivalence relation such that:

(1) 〈σ1, . . . , σm〉 ∼ 〈σ1, . . . , σm〉;
(2) if 〈σ1, . . . , σi, σi+1, . . . , σm〉 ∼ 〈τ1, . . . , τi, τi+1, . . . , τm〉, then
〈σ1, . . . , σi ∩ σi+1, . . . , σm〉 ∼ 〈τ1, . . . , τi ∩ τi+1, . . . , τm〉;

(3) if 〈σ(1)
i , . . . , σ

(m)
i 〉 ∼ 〈τ (1)

i , . . . , τ
(m)
i 〉 for 1 ≤ i ≤ n, then

〈σ(1)
1 → . . .→ σ

(1)
n → ρ(1), . . . , σ

(m)
1 → . . .→ σ

(m)
n → ρ(m)〉 ∼

〈τ (1)
π(1) → . . .→ τ

(1)
π(n) → ρ(1), . . . , τ

(m)
π(1) → . . .→ τ

(m)
π(n) → ρ(m)〉,

where π is a permutation of 1, . . . , n.

Similarity between types is trivially defined as similarity between unary sequences:
σ ∼ τ if 〈σ〉 ∼ 〈τ〉.

The reason is that, for two intersection types to be isomorphic, it is not sufficient
that they coincide modulo permutations of types in the arrow sequences, as in the
case of cartesian products: the permutation must be the same for all the corre-
sponding type pairs in an intersection. The notion of similarity exactly expresses
such property.

For example, the two types (ϕ1 → ϕ2 → ϕ3 → χ) ∩ (ψ1 → ψ2 → ψ3 → ϑ) and
(ϕ3→ ϕ2→ ϕ1→ χ) ∩ (ψ2→ ψ3→ ψ1→ ϑ) are not similar and thus (as we will
prove) not isomorphic, while the corresponding types with cartesian product instead
of intersection are. The reason is that, owing to the semantics of intersection,
the same f.h.p. must be able to map all the conjuncts of one intersection to the
corresponding conjuncts in the other intersection. In the example, there is obviously
no f.h.p. that maps both ϕ1→ϕ2→ϕ3→χ to ϕ3→ϕ2→ϕ1→χ and at the same
time ψ1→ψ2→ψ3→ϑ to ψ2→ψ3→ψ1→ϑ.
On the other hand, the two types

(τ1→τ2→τ3→ρ1) ∩ (σ1→σ2→σ3→ρ2),
(τ2→τ3→τ1→ρ1) ∩ (σ2→σ3→σ1→ρ2)

are similar (and therefore isomorphic), since the permutation is the same in the
two components of the intersection.

A type like (σ1→ . . .→ σn→ ρ) ∩ ϕ may only be similar (and thus isomorphic)
to itself, since the presence of the atom ϕ in the intersection blocks the possibility
of any permutation other than the identity in the conjunct type subexpression
σ1→ . . .→σn→ρ.

A more complex example of similar types is the following:

α1 ∩ α2 ∼ β1 ∩ β2,
where (with Roman letters indicating atomic types):
α1 = (e→f)→ (a ∩ b→c→d) ∩ (g→b→c)→ s→ t
α2 = (h→k) ∩ (p→q)→ (u→v→w)→ q ∩ r → (a ∩ b→z)
β1 = (c→a ∩ b→d) ∩ (b→g→c)→ s→ (e→f)→ t
β2 = (v→u→w)→ q ∩ r → (h→k) ∩ (p→q)→ (a ∩ b→z).

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

· 11

Note that the introduction of type sequences in the definition of similarity is needed
in order to keep the correspondence between types in intersections. Consider, for
example, the following two types:

τ1 = (σ1 ∩ α→σ2→ρ1) ∩ (σ3→σ4→ρ2),
τ2 = (σ2→σ1→ρ1) ∩ (σ4→α ∩ σ3→ρ2).

They are not isomorphic, and are also not similar since the sequences 〈σ1 ∩ α, σ3〉,
〈σ1, α ∩ σ3〉 are not. If the definitions were given directly through intersection,
owing to the associativity of ∩ the two sequences would be represented by the same
intersection σ1 ∩ α ∩ σ3, and the two types τ1, τ2 would be, incorrectly, considered
similar.
An equivalent, slightly more algorithmic, definition of similarity may be given
through a notion of permutation tree.

Definition 3.7 Permutation Tree. - The empty tree ∅ is a permutation tree.
- 〈π, [Π1, . . . ,Πn]〉 is a permutation tree if π is a permutation of 1, . . . , n and

Π1, . . . ,Πn are permutation trees.

An example of a permutation tree is the tree Π0 = 〈(2, 3, 1), [〈(2, 1), [∅,∅]〉,∅,∅]〉.
A more complex example is the tree Π defined as follows:

Π = 〈(2, 3, 1), [Π1,∅,Π3]〉
where
Π1 =

〈(
3, 1, 4, 2

)
,
[
∅,∅, 〈(2, 1), [∅,∅]〉, 〈(1, 3, 2), [∅,∅,∅]〉

]〉
Π3 =

〈(
1, 2, 3

)
,
[
〈(2, 1), [∅,∅]〉,∅, 〈(3, 2, 1, 4), [∅,∅,∅,∅]〉

]〉
.

A permutation tree is nothing but an abstract representation of an f.h.p. One may
easily build the concrete f.h.p. corresponding to a permutation tree, by creating
as many fresh variables as is the cardinality of the permutation and by recursively
creating subterms that respectively have those variables as head variables, in the
order specified by the permutation.
In the following definition trm is the recursive mapping: it takes a permutation
tree and the name z of a fresh variable, and creates a term with free head variable
z, which is the β-reduct of the corresponding f.h.p. applied to z. The top-level
mapping fhp merely abstracts the head variable so as to transform the term into
an f.h.p. proper.

Definition 3.8 F.h.p. corresponding to a permutation tree.
The f.h.p. corresponding to a permutation tree Π is:

fhp(Π) = λz.trm(Π, z),with z fresh variable;
trm(∅, z) = z;
trm(〈π, [Π1, . . . ,Πn]〉, z) = λx1 . . . xn.z trm(Π1, xπ(1)) . . . trm(Πn, xπ(n))
with x1 . . . xn fresh variables.

Examples.
The f.h.p. corresponding to the permutation tree Π0 = 〈(2, 3, 1), [〈(2, 1), [∅,∅]〉,∅,∅]〉
is the term λzx1x2x3.z(λu1u2.x2u2u1)x3x1.
The f.h.p. corresponding to the permutation tree Π = 〈(2, 3, 1), [Π1,∅,Π3]〉 of the
example above is the term P = λzx1x2x3.zP1P2P3, where

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

12 ·
P1 = λu1u2u3u4.x2u3u1(λv1v2.u4v2v1)(λw1w2w3.u2w1w3w2)
P2 = x3

P3 = λy1y2y3.x1(λs1s2.y1s2s1)y2(λt1t2t3t4.y3t3t2t1t4).

A permutation tree represents a tree of nested permutations: if we apply it to a
type having a homologous tree structure, i.e., if we (are able to) recursively perform
on the type all the permutations at all levels, we obtain a new type which is clearly
similar to the original one. We therefore give the following natural definition.

Definition 3.9 Application of a permutation tree to a type.
Application of a permutation tree is a partial map from types to types:

- ∅(σ) = σ

- 〈π, [Π1, . . . ,Πn]〉(σ1 → · · · → σn → ρ) = Π1(σπ(1))→ · · · → Πn(σπ(n))→ ρ

- Π(σ ∩ τ) = Π(σ) ∩ Π(τ)
- Π(σ) = undefined otherwise.

Taking again one of the examples above, if

α1 = (e→f)→ (a ∩ b→c→d) ∩ (g→b→c)→ s→ t
α2 = (h→k) ∩ (p→q)→ (u→v→w)→ q ∩ r → (a ∩ b→z)
Π0 = 〈(2, 3, 1), [〈(2, 1), [∅,∅]〉,∅,∅]〉

then we have Π0(α1 ∩ α2) = β1 ∩ β2, where

β1 = (c→a ∩ b→d) ∩ (b→g→c)→ s→ (e→f)→ t
β2 = (v→u→w)→ q ∩ r → (h→k) ∩ (p→q)→ (a ∩ b→z).

With the other example, if we have:

σ = γ1 → γ2 → ξ3 → ξ
where
γ1 = (ϕ11→ϕ12→χ1)→ χ2 → (ϕ31→ϕ32→ϕ33→ϕ34→χ3)→ χ
γ2 = ϑ1 → (ψ21→ψ22→ψ23→ϑ2)→ ϑ3 → (ψ41→ψ42→ϑ4)→ ϑ

then Π(σ) = τ , where

τ = γ′2 → ξ3 → γ′1 → ξ
where
γ′2 = ϑ3 → ϑ1 → (ψ42→ψ41→ϑ4)→ (ψ21→ψ23→ψ22→ϑ2)→ϑ
γ′1 = (ϕ12→ϕ11→χ1)→ χ2 → (ϕ33→ϕ32→ϕ31→ϕ34→χ3)→ χ.

Two types can then be defined as equivalent when one can be obtained from the
other (modulo idempotence, commutativity and associativity, as usual) by applying
a permutation tree.

Definition 3.10 Type permutation-equivalence.
Two types σ and τ are permutation-equivalent, notation σ l τ , if ∃Π .Π(σ) ≡ τ .

It is trivial to see that if Π(σ) ≡ τ , then there also exists an inverse permutation
tree Π−1 such that Π−1(τ) ≡ σ.

It is easy to prove that
ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

· 13

Proposition 3.11 Similarity vs. permutation equivalence. For any types
σ and τ , σ ∼ τ if and only if σ l τ .

So that the latter equivalence merely is an alternative definition of the previously
defined similarity. We will therefore always use the first notation.
As an immediate consequence of Definition 3.9, we have the following lemma.

Lemma 3.12. If Π(σ) ≡ τ , with Π = 〈π, [Π1, . . . ,Πn]〉, then there exists a set I
of indices such that σ and τ have the forms:

σ ≡
⋂
i∈I(σ

(i)
1 → . . .→ σ

(i)
n → ρ(i)), τ ≡

⋂
i∈I(τ

(i)
1 → . . .→ τ

(i)
n → ρ(i))

and for all i ∈ I, for k = 1, . . . , n, one has Πk(σ(i)
π(k)) ≡ τ

(i)
k , therefore σ(i)

π(k) ∼ τ
(i)
k .

Note that the above definitions of similarity are not equivalent to stating that, in
the inductive case:⋂

i∈I(σ
(i)
1 → . . .→ σ

(i)
n → ρ(i)) ∼

⋂
i∈I(τ

(i)
1 → . . .→ τ

(i)
n → ρ(i))

if there exists a permutation π such that

∀i ∈ I . τ (i)
k ∼ σ

(i)
π(k) and

⋂
i∈I τ

(i)
k ∼

⋂
i∈I σ

(i)
π(k) for k = 1, . . . , n.

A counterexample is given by the following pair of types:

σ = (β1 → α1) ∩ (β2 → α2) ∩ (β3 → α3)
τ = (γ1 → α1) ∩ (γ2 → α2) ∩ (γ3 → α3)

where

β1 = ϕ→ χ→ ψ → ϑ = γ2

β2 = ϕ→ ψ → χ→ ϑ = γ3

β3 = χ→ ϕ→ ψ → ϑ = γ1.

We have Π1(β1) ≡ γ1, Π2(β2) ≡ γ2, Π3(β3) ≡ γ3, with

Π1 = 〈(2, 1, 3), [∅,∅,∅]〉, Π2 = 〈(1, 3, 2), [∅,∅,∅]〉,
Π3 = 〈(3, 1, 2), [∅,∅,∅]〉,

and therefore β1∼γ1, β2∼γ2, β3∼γ3; also, β1∩β2∩β3 ∼ γ1∩γ2∩γ3 since trivially
β1∩β2∩β3 ≡ γ1∩γ2∩γ3. This, however, does not allow us to conclude that σ ∼ τ ,
since there exists no permutation tree Π such that Π(σ) = τ (because Π(σ) =
Π(σ1) ∩ Π(σ2) ∩ Π(σ3) should hold), or, equivalently, since – following the first
definition of similarity – the two sequences 〈β1, β2, β3〉, 〈γ1, γ2, γ3〉 (= 〈β3, β1, β2〉)
are not similar. Accordingly, the two types σ and τ are not similar (σ 6∼ τ), and
thus, as will be proved by Theorem 6.5, not isomorphic (σ 6≈ τ).

4. STANDARD PROPERTIES OF THE TYPE SYSTEM

Since our system is a minor variant of the standard system [Barendregt et al.
1983], it has the usual properties: in particular a generation lemma holds, the sub-
ject reduction and the subject expansion properties hold for terms belonging to the
λI-calculus, and the proofs are routine.

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

14 ·

Lemma 4.1 Generation Lemma.

(1) If x :
⋂
i∈I µi ` x :

⋂
j∈J νj, then {νj | j ∈ J} ⊆ {µi | i ∈ I}.

(2) If Γ ` λx.M :
⋂
i∈I(σi → τi), then for all i ∈ I: Γ, x :σi `M :τi.

(3) If Γ `MN :τ , then there exist types σi, τi(i ∈ I) such that Γ `M :
⋂
i∈I(σi→τi)

and Γ ` N :
⋂
i∈I σi and either τ =

⋂
i∈I τi or τ ∩ ρ =

⋂
i∈I τi for some ρ.

(4) If Γ ` MN : µ, then there exists a type σ such that Γ ` N : σ and either
Γ `M :σ → µ or Γ `M :σ → µ ∩ ρ for some ρ.

Proof. The proof is by induction on derivations. Point (4) easily follows from
Point (3).

Note that ρ is needed in Points (3) and (4), for example x :σ → τ ∩ ρ, y :σ ` xy :τ .

Theorem 4.2 Subject Reduction.
If Γ `M :σ and M −→β N , then Γ ` N :σ.

Proof. Standard.

Theorem 4.3 Subject Expansion for λI-terms.
If Γ `M :σ, N is a λI-term, and N −→β M , then Γ ` N :σ.

Proof. Standard.

Lemmata 4.5 and 4.8 state some useful properties of η-expansions of the identity
and of permutators. In particular, Lemma 4.5.1 says that an f.h.i. is able to map
an intersection σ ∩ τ to one of its components, for example σ, only if it is able to
map such component σ to itself (which is not always the case, since the number
of top-level arrows in σ cannot be less than the number of top-level abstractions
of the f.h.i.). Lemma 4.5.2 states the rather obvious fact that if an f.h.i. is able
to map both the type σ to itself and the type τ to itself, then it also maps their
intersection to itself.

A key notion for characterising which types can be inhabited by f.h.p.’s is the
minimal number of top arrows, as defined in Definition 4.6. Lemma 4.7 relates the
number of top arrows to the agreement with paths (Point (1)), to the shapes of
arrows in types which cannot be reduced by the splitting rule (Point (2)) and to
derivability for λ-abstractions (Point (3)).

Finally, Lemma 4.8 states that if an f.h.p. P maps an intersection
⋂
i∈I µi to

another intersection
⋂
j∈J νj , i.e., ` P :

⋂
i∈I µi →

⋂
j∈J νj - under the hypothesis

that the number of top arrows of
⋂
i∈I µi is not lower than the number of top

arrows of
⋂
j∈J νj , and that all types are in normal form w.r.t. the splitting rule

- then every component νj in the target intersection is obtained by P from some
component µi in the source intersection (Point (1)). Moreover this lemma gives
other properties of the types and of the typing of P subterms (Point (2)).

Remark 4.4. In the following we write judgments of the form x : σ ` Px : τ
(where P may also be Id) instead of ` P : σ → τ , in order to simplify the proofs.
The two kinds of judgments can be easily shown equivalent as follows. Because
an f.h.p. P is an abstraction we can assume P = λx.M . From x : σ ` Px : τ
by β-reduction and subject reduction one has x : σ ` M : τ , whence, by (→ I),
` P : σ → τ . The opposite implication, from ` P : σ → τ to x : σ ` Px : τ , trivially
follows by (→E).
ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

· 15

Lemma 4.5. (1) If x :σ ∩ τ ` Idx :σ, then x :σ ` Idx :σ.
(2) If x :σ ` Idx :σ and x :τ ` Idx :τ , then x :σ ∩ τ ` Idx :σ ∩ τ .

Proof. Easy.

Definition 4.6. The minimum number of top arrows in a type τ is noted #(τ)
and is defined inductively as:

#(ϕ) = 0 #(σ → τ) = 1 + #(τ) #(σ ∩ τ) = min(#(σ),#(τ)).

For example #(σ1 → σ2 → τ ∩ ϕ) = 1 + #(σ2 → τ ∩ ϕ) = 2 + #(τ ∩ ϕ) =
2 + min(#(τ),#(ϕ)) = 2.

Lemma 4.7. (1) σ ∝ 〈n〉 if and only if #(σ) ≥ n, for all n ≥ 1 .
(2) If #(

⋂
i∈I µi) ≥ n and

⋂
i∈I µi does not contain subtypes which can be split,

then for all i∈I there are σ(i)
1 , . . . , σ

(i)
n , ν(i) such that µi=σ

(i)
1 → . . .→σ

(i)
n →ν(i).

(3) If Γ ` λx1 . . . xn.M :σ, then #(σ) ≥ n.

Proof. Points (1) and (3) can be easily shown by induction on n. For (2)
assume towards a contradiction that for some j ∈ I and m ≤ n we get µj =
σ

(j)
1 → . . . → σ

(j)
m → τ ∩ ρ. Note that m cannot be 0 being µj an atomic or an

arrow type. For m ≥ 1 point (1) implies
⋂
i∈I,i6=j µi ∝ 〈m〉 and then by definition

p((σ(j)
1 → . . . → σ

(j)
m → []) ∩

⋂
i∈I,i6=j µi) = 〈m〉 is defined. We conclude by

Definition 3.3 that
⋂
i∈I µi contains a subtype which can be split.

Lemma 4.8. Let
⋂
i∈I µi,

⋂
j∈J νj do not contain subtypes which can be split

and #(
⋂
i∈I µi) ≥ #(

⋂
j∈J νj). Then P β←− λyz1 . . . zn.y(P1zπ(1)) . . . (Pnzπ(n))

and x :
⋂
i∈I µi ` Px :

⋂
j∈J νj imply ∀j ∈ J. ∃ij ∈ I such that:

(1) x :µij ` Px :νj and

(2) µij = τ
(j)
1 → . . .→ τ

(j)
n → λ(j), νj = σ

(j)
1 → . . .→ σ

(j)
n → λ(j), and

zπ(l) :σ(j)
π(l) ` Plzπ(l) :τ (j)

l (1 ≤ l ≤ n) for some τ (j)
1 , . . . , τ

(j)
n , σ

(j)
1 , . . . , σ

(j)
n , λ(j).

Proof. See Table II, where P′ = λz1 . . . zn.x(P1zπ(1)) . . . (Pnzπ(n)).

It is easy to see that ∀j∈J. ∃ij ∈I. x :µij ` Px :νj implies x :
⋂
i∈I µi ` Px :

⋂
j∈J νj

by application of the (∩E) rule and then of the (∩I) rule.

5. SOUNDNESS OF THE REDUCTION BY SPLITTING

To each path we can naturally associate an f.h.i. (Definition 5.1) which maps to
itself each type which agrees with the path (Lemma 5.2).

Definition 5.1. The f.h.i. induced by the path p (notation Idp) is defined by
induction on p:

- Id〈 〉 = λy.y;
- Id〈1,n2,...,nm〉 β←− λyz.y(Id〈n2,...,nm〉z);
- Id〈n+1,n2,...,nm〉 β←− λyz.Id〈n,n2,...,nm〉(yz).

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

16 ·

Table II Proof of Lemma 4.8
x :
⋂
i∈I µi ` Px :

⋂
j∈J νj =⇒ x :

⋂
i∈I µi ` P′ :

⋂
j∈J νj

by Theorems 4.2 and 4.3
=⇒ ∀j ∈ J. x :

⋂
i∈I µi ` P′ :νj

by rule (∩E)
=⇒ ∀j ∈ J. #(νj) ≥ n by Lemma 4.7(3)
=⇒ ∀j ∈ J. νj = σ

(j)
1 → . . .→ σ

(j)
n → λ(j)

for some σ(j)
1 , . . . , σ

(j)
n , λ(j)

by Lemma 4.7(2)
=⇒ ∀j ∈ J. Γ ` x(P1zπ(1)) . . . (Pnzπ(n)) :λ(j)

where Γ = x :
⋂
i∈I µi, z1 :σ(j)

1 , . . . zn :σ(j)
n

by Lemma 4.1(2)
=⇒ ∀j ∈ J. zπ(1) :σ(j)

π(1) ` P1zπ(1) :τ (j)
1 & . . .

& zπ(n) :σ(j)
π(n) ` Pnzπ(n) :τ (j)

n

for some τ (j)
1 , . . . , τ

(j)
n and

either x :
⋂
i∈I µi ` x :τ (j)

1 → . . .→ τ
(j)
n → λ(j)

or x :
⋂
i∈I µi ` x :τ (j)

1 → . . .→ τ
(j)
n → λ(j) ∩ ρ(j)

for some ρ(j)

by Lemma 4.1(4)
=⇒ ∀j ∈ J. ∃ij ∈ I. µij = τ

(j)
1 → . . .→ τ

(j)
n → λ(j)

or µij = τ
(j)
1 → . . .→ τ

(j)
n → λ(j) ∩ ρ(j)

by Lemma 4.1(1)
=⇒ ∀j ∈ J. ∃ij ∈ I. µij = τ

(j)
1 → . . .→ τ

(j)
n → λ(j)

by Lemma 4.7(2) since
⋂
i∈I µi

does not contain subtypes which can be split
and #(

⋂
i∈I µi) ≥ #(

⋂
j∈J νj) ≥ n

=⇒ ∀j ∈ J. ∃ij ∈ I. x :µij ` Px :νj
by rules (→ E) and (→ I).

For example Id〈2,1〉 β←− λy1z1.Id〈1,1〉(y1z1) β←− λy1z1.(λy2z2.y2(Id〈1〉z2))(y1z1)
β←− λy1z1.(λy2z2.y2((λy3z3.y3(Id〈 〉z3))z2))(y1z1), which in turn expands to the
term λy1z1.(λy2z2.y2((λy3z3.y3((λy4.y4)z3))z2))(y1z1), so we can conclude that Id〈2,1〉
= λy1z1z2.y1z1(λz3.z2z3).

Lemma 5.2. If σ ∝ p, then ` Idp :σ → σ.

Proof. By induction on σ and p. If σ = τ → ρ and p = 〈1, n2, . . . , nm〉, then
by induction ` Id〈n2,...,nm〉 : τ → τ , which implies ` λyz.y(Id〈n2,...,nm〉z) :σ → σ. If
σ = τ → ρ and p = 〈n + 1, n2, . . . , nm〉, then by induction ` Id〈n,n2,...,nm〉 : ρ → ρ,
which implies ` λyz.Id〈n,n2,...,nm〉(yz) :σ → σ. If σ = τ ∩ρ, then by definition τ ∝ p
and ρ ∝ p. This case easily follows by induction using Lemma 4.5(2).

We are now able to show the soundness of the reduction by splitting by using
the f.h.i. associated to the path p(C[]).

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

· 17

Theorem 5.3.
If p(C[]) is defined, then ` Idp(C[]) : C[σ → τ ∩ ρ] → C[(σ → τ) ∩ (σ → ρ)] and
` Idp(C[]) :C[(σ → τ) ∩ (σ → ρ)]→ C[σ → τ ∩ ρ] for arbitrary σ, τ , ρ.

Proof. By induction on C[]. The case C[] = [] is easy, since by definition
p([]) = 〈1〉 and Id〈1〉 = λyz.yz.

If C[] = C′[]→ σ′, then by induction

` Idp(C′[]) :C′[σ → τ ∩ ρ]→ C′[(σ → τ) ∩ (σ → ρ)]
` Idp(C′[]) :C′[(σ → τ) ∩ (σ → ρ)]→ C′[σ → τ ∩ ρ].

Since by definition Idp(C[]) β←− λyz.y(Idp(C′[])z) the result follows.
If C[] = σ′ → C′[] the proof is similar to that of previous case.
If C[] = C′[] ∩ σ′, then by induction

` Idp(C′[]) :C′[σ → τ ∩ ρ]→ C′[(σ → τ) ∩ (σ → ρ)]
` Idp(C′[]) :C′[(σ → τ) ∩ (σ → ρ)]→ C′[σ → τ ∩ ρ].

By definition p(C[]) = p(C′[]) and σ′ ∝ p(C′[]). From Lemma 5.2 we have
` Idp(C′[]) :σ′ → σ′ and so we conclude by Lemma 4.5(2).

6. ISOMORPHISM CHARACTERISATION

Having established an isomorphism-preserving reduction in Section 3, we can now
restrict ourselves to normal types, for which we show that the similarity relation is
a (sound and complete) characterization of isomorphism.

The first result is that isomorphic types have the same number of top arrows.

Lemma 6.1. If #(σ) 6= #(τ), then σ and τ cannot be isomorphic.

Proof. Since reduction by splitting does not change the number of top arrows,
we can assume without loss of generality that σ and τ do not contain subtypes
which can be split. If n = #(σ) < #(τ), then σ = (σ1 → . . .→ σn → ϕ) ∩ σ′ and
τ =

⋂
i∈I(τ

(i)
1 → . . .→ τ

(i)
n+1→ ρ(i)) for suitable σ1, . . . , σn, ϕ, σ

′, τ
(i)
1 , . . . , τ

(i)
n+1, ρ

(i)

(i∈ I), by the shape of normal forms w.r.t. the splitting rule and by definition of
#. Let’s assume, towards a contradiction, that x :τ ` Px :σ, where
P β←− λyz1 . . . zm.y(P1zπ(1)) . . . (Pmzπ(m)). By Lemma 4.8(2) there is j ∈ I such
that

τ
(j)
1 → . . .→ τ

(j)
n+1 → ρ(j) = σ

(j)
1 → . . .→ σ(j)

m → σm+1 → . . .→ σn → ϕ

for some σ(j)
1 , . . . , σ

(j)
m , i.e., τ (j)

n+1 → ρ(j) = ϕ, which is impossible.

If we only consider normal types, we can strengthen Lemma 4.8(1) by Lemma
6.3, which states that if an f.h.p. P has the type

⋂
i∈I µi →

⋂
j∈J νj and

⋂
j∈J νj has

no more top arrows than
⋂
i∈I µi, then not only ∀j∈J .∃ij ∈ I. ` P : µij→ νj , but

its inverse P−1 precisely maps each component νj of the target intersection to its
corresponding µij in the source intersection. This is the key lemma that allows us
to prove the main theorem, which states the coincidence between the two relations
∼ and ≈ for normal types.

Lemma 6.2 is instrumental to the proof of Lemma 6.3, and expresses the fact
that in an intersection in normal form there are no redundant components, i.e.,

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

18 ·

there cannot exist an η-expansion of the identity that “adds” one of the conjunct
types by starting from the others.

Lemma 6.2. If τ ∩ µ is normal, then there is no Id such that x :τ ` Idx :τ ∩ µ.

Proof. Let τ =
⋂
i∈I µi. Towards a contradiction assume x : τ ` Idx : τ ∩ µ.

Since x :τ ∩ µ ` x :τ we get τ ∩ µ τ .

Lemma 6.3. If
⋂
i∈I µi,

⋂
j∈J νj are normal types, and #(

⋂
i∈I µi) ≥ #(

⋂
j∈J νj),

and x :
⋂
i∈I µi ` Px :

⋂
j∈J νj, and x :

⋂
j∈J νj ` P−1x :

⋂
i∈I µi, and x :µi0 ` Px :νj0 ,

then x :νj0 ` P−1x :µi0 .

Proof. By Lemma 4.8(1) there is j1∈J such that x :νj1 ` P−1x :µi0 . We assume
j0 6= j1 towards a contradiction. From x : νj1 ` P−1x :µi0 and x :µi0 ` Px : νj0 we
get x : νj1 ` P(P−1x) : νj0 , which implies x :

⋂
j∈J,j 6=j0 νj ` (P ◦ P−1)x :

⋂
j∈J νj by

Lemma 4.5. This is, by Lemma 6.2, impossible, since P ◦ P−1 is β-reducible to an
f.h.i.

Theorem 6.4 Soundness of ∼. If σ and τ are arbitrary types, then σ ∼ τ
implies σ ≈ τ .

Proof. We show that 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉 implies that there is an f.h.p.
P such that ` P :σj → τj for 1 ≤ j ≤ m, proceeding by induction on the definition
of ∼. The only interesting case is

〈σ1, . . . , σm〉 = 〈σ(1)
1 → . . .→σ

(1)
n →ρ(1), . . . , σ

(m)
1 → . . .→σ

(m)
n → ρ(m)〉

〈τ1, . . . , τm〉 = 〈τ (1)
π(1)→ . . .→τ

(1)
π(n)→ρ(1), . . . , τ

(m)
π(1)→ . . .→τ

(m)
π(n)→ρ(m)〉,

with 〈σ(1)
i , . . . , σ

(m)
i 〉 ∼ 〈τ (1)

i , . . . , τ
(m)
i 〉 for 1 ≤ i ≤ n.

By induction, there is a Pi such that ` Pi :σ
(j)
i → τ

(j)
i for 1 ≤ j ≤ m. We can then

choose P as the β-normal form of λyz1 . . . zn.y(P1zπ−1(1)) . . . (Pnzπ−1(n)).

The opposite implication does not hold: two isomorphic types are not necessarily
similar. The simplest example is σ → τ ∩ρ and (σ → τ)∩(σ → ρ). Also isomorphic
types not containing subtypes that can be split may be not similar. For instance,
the type σ = ((τ ∩ ρ → ψ) → ϕ) ∩ ((τ → ψ) ∩ χ → ϕ) and its normal form
γ = (τ ∩ ρ→ ψ) → ϕ, already considered in Section 3, are isomorphic but not
similar, simply because they are intersection types of different arities: γ consists
of only one arrow type, while σ is an intersection of two arrow types, though one
of them is redundant. On the other hand, the double implication holds for normal
types.

Theorem 6.5 Main Theorem. If σ and τ are normal types, then σ ≈ τ iff
σ∼τ .

Proof. We have to prove that σ ≈ τ =⇒ σ ∼ τ (the opposite implication is
established by Theorem 6.4).

We show by structural induction on P that if ` P : σj → τj and ` P−1 : τj → σj
for 1 ≤ j ≤ m, then 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉. By Lemma 6.1 #(σj) = #(τj).
Let σj =

⋂
1≤i≤nj µ

(j)
i and τj =

⋂
1≤i≤pj ν

(j)
i .

By Lemma 6.3 we get nj = pj and ` P : µ(j)
i → ν

(j)
i and ` P−1 : ν(j)

i → µ
(j)
i . Let

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

· 19

P β←− λyz1 . . . zn.y(P1zπ(1)) . . . (Pnzπ(n)). By Lemma 4.8(2), we get
µ

(j)
i = τ

(i,j)
1 → . . .→ τ

(i,j)
n → λ(i,j) and ν

(j)
i = σ

(i,j)
1 → . . .→ σ

(i,j)
n → λ(i,j)

and ` Pl :σ
(i,j)
π(l) → τ

(i,j)
l and ` P−1

l : τ (i,j)
l → σ

(i,j)
π(l) for 1 ≤ l ≤ n. By induction we

have

〈σ(1,1)
π(l) , . . . , σ

(n1,1)
π(l) , . . . , σ

(1,m)
π(l) , . . . , σ

(nm,m)
π(l) 〉

∼
〈τ (1,1)
l , . . . , τ

(n1,1)
l , . . . , τ

(1,m)
l , . . . , τ

(nm,m)
l 〉

for 1 ≤ l ≤ n, which implies

〈µ(1)
1 , . . . , µ

(1)
n1 , . . . , µ

(m)
1 , . . . , µ

(m)
nm 〉 ∼ 〈ν

(1)
1 , . . . , ν

(1)
n1 , . . . , ν

(m)
1 , . . . , ν

(m)
nm 〉

and then 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉.

Of course, the characterization of isomorphisms immediately extends, via normali-
sation, to all types of our system, as stated by the following corollary of the main
theorem.

Theorem 6.6. For any two types σ and τ , σ ≈ τ ⇐⇒ σ↓∼ τ↓, where σ↓
and τ↓ are the normal forms respectively of σ and τ .

Proof. Since a type is isomorphic to its normal form we have that:

(1) for the ⇒-direction, if σ ≈ τ , then σ↓ ≈ σ ≈ τ ≈ τ ↓, whence, by the Main
Theorem in the ⇒-direction, σ↓∼ τ↓;

(2) for the opposite direction, if σ↓∼ τ ↓, then by the Main Theorem in the ⇐-
direction we have σ↓ ≈ τ↓, whence: σ ≈ σ↓ ≈ τ↓ ≈ τ, i.e., σ ≈ τ .

7. HOW TO NORMALISE TYPES

The application of the type reduction rule, as defined in Section 3, suffers from com-
binatorial explosion in the search for the splittable and erasable type subexpression
α, thus possibly making the normalisation impractical. However, the search space
can be considerably reduced with a more accurate formulation of the algorithm.
Thanks to confluence we can first apply splitting and then erasure. So we will only
consider types that are in normal form w.r.t. the splitting rule.

As explained in Section 3, the reduction may only simplify an intersection by
erasing a type that is greater – according to the standard semantics – than one
of the other conjuncts. We can then formally introduce a preorder relation on
types, whose axioms and rules correspond to the view of “→” as a function space
constructor and of “∩” as set intersection:

σ ≤ σ σ ≤ τ, τ ≤ ρ ⇒ σ ≤ ρ

σ ∩ τ ≤ σ σ ∩ τ ≤ τ

σ ≤ τ, σ ≤ ρ⇒ σ ≤ τ ∩ ρ

σ′ ≤ σ, τ ≤ τ ′ ⇒ σ → τ ≤ σ′ → τ ′.

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

20 ·

Note that we do not need the axiom (σ → τ) ∩ (σ → ρ) ≤ σ → τ ∩ ρ, since we
assume that the current types are irreducible w.r.t. the splitting rule. It is easy to
verify that an algorithmic equivalent definition of ≤ is:⋂

i∈I
(σi → τi) ∩

⋂
h∈H

ϕh ≤
⋂
j∈J

(σ′j → τ ′j) ∩
⋂
k∈K

ϕ′k

if ∀j ∈ J∃i ∈ I.σ′j ≤ σi & τi ≤ τj and ∀k ∈ K∃h ∈ H.ϕh = ϕ′k.

Then, when reducing a type σ to normal form, the search for a redundant type
within σ may be limited to an outermost search for a type α that is greater than a
type β in an intersection, followed by the testing whether there exist two f.h.i.’s Id,
Id′ with suitable types, i.e. such that ` Id : C[β]→ C[α∩β] and ` Id′ : C[α∩β]→C[β],
where σ = C[α∩β]. This can be performed through the following mapping I which,
applied to two types σ and τ , builds the set of all f.h.i.’s Id such that ` Id :σ → τ .

I(ϕ,ϕ′) = ∅ if ϕ 6= ϕ′

I(ϕ, σ → τ) = I(σ → τ, ϕ′) = ∅
I(ϕ,ϕ) = {λx.x}

I(σ → τ, σ → τ)
= {λx.x}
∪{Id | λyz.Id1(y(Id2z)) −→β Id & Id1 ∈ I(τ, τ) & Id2 ∈ I(σ, σ)}

I(σ → τ, σ′ → τ ′)
= {Id | λyz.Id1(y(Id2z)) −→β Id & Id1 ∈ I(τ, τ ′) & Id2 ∈ I(σ′, σ)}

if σ 6= σ′ or τ 6= τ ′

I(
⋂
i∈I

µi,
⋂
j∈J

νj)

= {Id | ∀j ∈ J ∃i ∈ I. Id ∈ I(µi, νj)}.

The correctness of the last clause defining the mapping I follows from Lemma
4.8(1), which can be applied since the current types cannot be split and since by
Lemma 6.1 two isomorphic types must have the same number of top arrows. The
correctness of the other clauses defining the mapping I follows from the following
lemma, which can be easily proved using the Generation Lemma.

Lemma 7.1. (1) If ϕ 6= ϕ′, then there is no Id such that ` Id :ϕ→ ϕ′.

(2) There is no Id such that ` Id :ϕ→ σ → τ or ` Id : (σ → τ)→ ϕ.
(3) If ` Id : (σ → τ)→ σ′ → τ ′ and σ 6= σ′ or τ 6= τ ′, then Id β←− λyz.Id1(y(Id2z))

for some Id1, Id2 such that ` Id1 :τ → τ ′ and ` Id2 :σ′ → σ.

We end this session by a property of f.h.i.’s that allows us to search for only one
between Id and Id′ such that ` Id :C[σ] → C[α ∩ σ] and ` Id′ :C[α ∩ σ] → C[σ]. For
this we need a type preservation under η-reduction for f.h.i’s.

Lemma 7.2. If x :σ ` Idx :σ and Id −→η Id′, then x :σ ` Id′x :σ.

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

· 21

Proof. Standard by induction on −→η, using Lemma 4.1 and assuming
Id β←− λyz1 . . . zn.y(Id1z1) . . . (Idnzn) for some n ≥ 1.

We define positive and negative occurrences of holes in contexts as expected:

- the occurrence of the hole in [] is positive,
- if the occurrence of the hole is positive (respectively negative) in C[] then

- it is positive (respectively negative) in ρ→ C[] and in ρ ∩ C[],
- it is negative (respectively positive) in C[]→ ρ.

It is easy to verify that when the occurrence of the hole is positive in C[], then
C[α∩ σ] ≤ C[σ], and vice versa if the occurrence of the hole is negative in C[], then
C[σ] ≤ C[α ∩ σ]. Clearly this is due to the contra-variance and the co-variance of
the arrow type constructor.

The subtyping C[α ∩ σ] ≤ C[σ] suggests that we can find an f.h.i. which inhabits
C[α ∩ σ] → C[σ] as soon as we can find an f.h.i. which “reaches” the hole in C[].
This can be assured by the existence of an f.h.i. which inhabits C[σ] → C[α ∩ σ]
but does not inhabit C[ϕ]→ C[α ∩ σ] when ϕ does not occur in C[α ∩ σ]. Similarly
when the hole occurrence is negative. This intuition is formalised in the following
lemma.

Lemma 7.3. Let #(C[σ]) = #(C[α ∩ σ]) hold, and let C[α ∩ σ] do not contain
subtypes which can be split.

(1) If ` Id :C[σ] → C[α ∩ σ] and 6` Id :C[ϕ] → C[α ∩ σ], where ϕ does not occur in
C[α∩σ] and the hole occurrence is positive, then there is Id′ such that Id −→η Id′

and ` Id′ :C[α ∩ σ]→ C[σ].
(2) If ` Id :C[α ∩ σ] → C[σ] and 6` Id :C[α ∩ ϕ] → C[σ], where ϕ does not occur in
C[α∩σ] and the hole occurrence is negative, then there is Id′ such that Id −→η Id′

and ` Id′ :C[σ]→ C[α ∩ σ].

Proof. We show both points simultaneously by induction on C[].
First steps. If C[] = [], then ` λx.x : α ∩ σ → σ. If C[] = [] → ρ, then

` λxy.xy : (σ → ρ)→ α ∩ σ → ρ.
Induction steps. We always assume Id β←− λxyz1 . . . zn.x(Id0y)(Id1z1) . . . (Idnzn)

for some n ≥ 0. We only consider the cases in which the hole occurrence is positive
in C[], since the proof is similar when the hole occurrence in C[] is negative.

If C[] = C′[]→ ρ, then by Lemma 4.1(2)

x :C′[σ]→ ρ, y :C′[α ∩ σ] ` λz1 . . . zn.x(Id0y)(Id1z1) . . . (Idnzn) :ρ.

Using all the first three points of Lemma 4.1 we get ` Id0 :C′[α∩σ]→ C′[σ]: then by
induction there is Id′0 such that Id0 −→η Id′0 and ` Id′0 :C′[σ]→ C′[α∩σ] (notice that
the hole occurrence is negative in C′[]). We can then choose Id′ as the β-normal
form of λxyz1 . . . zn.x(Id′0y)(Id1z1) . . . (Idnzn).

If C[] = ρ→ C′[], then by Lemma 4.1(2)

x :ρ→ C′[σ], y :ρ ` λz1 . . . zn.x(Id0y)(Id1z1) . . . (Idnzn) :C′[α ∩ σ].

Using again all the first three points of Lemma 4.1, along with the typing rules, we
get t :C′[σ] ` λz1 . . . zn.t(Id1z1) . . . (Idnzn) :C′[α ∩ σ]: then by induction there is Id′′

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

22 ·

such that λtz1 . . . zn.t(Id1z1) . . . (Idnzn) −→η Id′′ and ` Id′′ : C′[α ∩ σ] → C′[σ]. We
can then choose Id′ as the β-normal form of λxy.(Id′′xy).

If C[] = ρ ∩ C′[] and C′[] is an arrow type, then by Lemma 4.8(1) either
` Id : C′[σ] → C′[α ∩ σ] or ρ = β ∩ ρ′ and ` Id : β → C′[α ∩ σ]. In the first case,
by induction there is Id′′ such that Id −→η Id′′ and ` Id′′ : C′[α ∩ σ] → C′[σ]. By
Lemma 4.5(1) ` Id : ρ → ρ, which implies ` Id′′ : ρ → ρ, since Id −→η Id′′ by
Lemma 7.2. So we can choose Id′ = Id′′ by Lemma 4.5(2). The second case implies
` Id :C[ϕ]→ C[α ∩ σ] for an arbitrary ϕ, so it is impossible.

An example showing the necessity of the condition 6` Id :C[ϕ]→ C[α ∩ σ] is given
by C0[] = (([] → τ) → ρ ∩ ρ′) ∩ ((α ∩ σ → τ) → ρ) ∩ (ψ → ψ), for we have both
` λxy.xy :C0[σ]→ C0[α ∩ σ] and ` λxy.xy :C0[ϕ]→ C0[α ∩ σ], but there is no f.h.i.
which inhabits C0[α ∩ σ]→ C0[σ].

By Lemma 7.3 we can conclude with the following theorem which ensures the
soundness of an improved formulation of the erasure reduction rule.

Theorem 7.4. An equivalent formulation of the erasure reduction rule is:

C[α ∩ σ] C[σ]

if

- either there is Id such that ` Id :C[σ]→ C[α ∩ σ] and 6` Id :C[ϕ]→ C[α ∩ σ] where
ϕ does not occur in C[α ∩ σ] and the hole occurrence is positive;

- or there is Id such that ` Id :C[α ∩ σ] → C[σ] and 6` Id :C[α ∩ ϕ] → C[σ] where ϕ
does not occur in C[α ∩ σ] and the hole occurrence is negative.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have investigated for the first time the type isomorphisms for
intersection types, and we have provided, by means of a fine analysis of the invertible
terms, a precise characterization of their structure, despite the unexpected fact that
isomorphism with intersection types is not a congruence.

Even if the isomorphism relation is decidable, we have shown that it is weaker
than type equality in the standard models of intersection types, where arrows are
interpreted as sets of functions, and intersections as set intersections; such equality
is a congruence, consisting of the equality theory given by the axioms of commuta-
tivity, associativity and swap (i.e., the first line and the axioms 1 and 2 of Table I
with × replaced by ∩) and by the order relation induced by the preorder reported
in Section 7. This means that the universal model for type isomorphisms is not
a standard model of intersection types, while Cartesian Closed Categories build a
universal model for the simply typed lambda calculus with surjective pairing and
terminal object; the existence of such natural universal model for intersection types
is an open question.

Finally, we recall that since types may in general be interpreted – owing to the
well-known Curry-Howard correspondence – as propositions in some suitable logic, a
characterization of type isomorphisms may immediately become a characterization
of strong logical equivalences between propositions. In the case of intersection types,
however, this is a problematic issue, since it is well known that intersection is an
intensional operator, with no direct logical counterpart in the Curry-Howard sense.
ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

· 23

Recently, new kinds of logics have been proposed which give a logical meaning to the
intersection operator [Bono et al. 2008], [Liquori and Ronchi Della Rocca 2007]. It
might therefore be interesting to explore the role of intersection type isomorphisms
in such contexts.

A prototypal isomorphism checker, directly obtained by the permutation-tree
definition of similarity, has been realized in Prolog, and a simple web interface for
it is available at the address http://lambda.di.unito.it/iso/index.html.

Acknowledgments. We would like to thank the anonymous referees of CSL’08
submission and of the present submission for their detailed remarks and helpful
comments. We are indebted to Loris D’Antoni and Daniele Rispoli for the Prolog
implementation of our isomorphism checker.

REFERENCES

Barendregt, H., Coppo, M., and Dezani-Ciancaglini, M. 1983. A filter lambda model and
the completeness of type assignment. The Journal of Symbolic Logic 48, 4, 931–940.

Bono, V., Venneri, B., and Bettini, L. 2008. A typed lambda calculus with intersection types.

Theoretical Computer Science 398, 1-3, 95–113.

Bruce, K., Di Cosmo, R., and Longo, G. 1992. Provable isomorphisms of types. Mathematical
Structures in Computer Science 2, 2, 231–247.

Bruce, K. and Longo, G. 1985. Provable isomorphisms and domain equations in models of

typed languages. In STOC’85, R. Sedgewick, Ed. ACM Press, Providence, 263 – 272.

Coppo, M. and Dezani-Ciancaglini, M. 1980. An extension of the basic functionality theory
for the λ-calculus. Notre Dame Journal of Formal Logic 21, 4, 685–693.

Dezani-Ciancaglini, M. 1976. Characterization of normal forms possessing an inverse in the

λβη-calculus. Theoretical Computer Science 2, 3, 323–337.

Dezani-Ciancaglini, M., Di Cosmo, R., Giovannetti, E., and Tatsuta, M. 2008. On isomor-
phisms of intersection types. In CSL’08, M. Kaminski and S. Martini, Eds. Lecture Notes in

Computer Science, vol. 5213. Springer-Verlag, Berlin, 461–477.

Di Cosmo, R. 1995. Second order isomorphic types. A proof theoretic study on second order

λ-calculus with surjective pairing and terminal object. Information and Computation 119, 2,
176–201.

Di Cosmo, R. 2005. A short survey of isomorphisms of types. Mathematical Structures in

Computer Science 15, 825–838.

Fiore, M., Di Cosmo, R., and Balat, V. 2006. Remarks on isomorphisms in typed lambda
calculi with empty and sum types. Annals of Pure and Applied Logic 141, 1–2, 35–50.

Laurent, O. 2005. Classical isomorphisms of types. Mathematical Structures in Computer

Science 15, 969–1004.

Liquori, L. and Ronchi Della Rocca, S. 2007. Intersection types à la Church. Information
and Computation 205, 9, 1371–1386.

Martin, C. F. 1972. Axiomatic bases for equational theories of natural numbers. Notices of the

American Mathematical Society 19, 7, 778.

Ronchi Della Rocca, S. 1988. Principal type scheme and unification for intersection type

discipline. Theoretical Computer Science 59, 1-2, 1–29.

Soloviev, S. V. 1983. The category of finite sets and cartesian closed categories. Journal of Soviet
Mathematics 22, 3, 1387–1400. English translation of the original paper in russian published

in Zapiski Nauchyn Seminarov LOMI, v.105, 1981.

Received October 2008; revised March 2009; accepted April 2009.

ACM Transactions on Computational Logic, Vol. V, No. N, April 2009.

