
Using Strong Conflicts to Detect Quality Issues in
Component-based Complex Systems ∗

Roberto Di Cosmo
PPS, Université Paris Diderot, Paris, France and

Inria Paris-Rocquencourt, France
roberto@dicosmo.org

Jaap Boender
PPS, Université Paris Diderot, Paris, France

Jaap.Boender@pps.jussieu.fr

ABSTRACT
The mainstream adoption of free and open source software
(FOSS) has widely popularised notions like software pack-
ages or plugins, maintained in a distributed fashion and
evolving at a very quick pace. Each of these components
is equipped with metadata, such as dependencies, which de-
fine the other components it needs to function properly, and
the incompatible components it cannot work with. In this
paper, we introduce the notion of strong conflicts, defined
from the component dependencies, that can be effectively
computed. It gives important insights on the quality is-
sues faced when adding or upgrading components in a given
component repository, which is one of the facets of the pre-
dictable assembly problem.Our work contains concrete ex-
amples drawn from the world of GNU/Linux distributions,
that validate the proposed approach. It also shows that the
measures defined can be easily applied to the Eclipse world,
or to any other coarse-grained software component model.

Categories and Subject Descriptors
D.2.8 Software Engineering: Metrics
D.2.9 Software Engineering: Management – Software Qual-
ity Assurance

General Terms
Measurement, Reliability

Keywords
Components, large component repositories, open source
software, quality assurance, strong conflicts.

1. INTRODUCTION
The management of large software systems has always

been a stimulating challenge in Software Engineering.
Many seminal advances by founding fathers of Comp. Sci.
were prompted by this challenge (see the book “Software
Pioneers”, edited by M. Broy and E. Denert [4], for an

∗Partially supported by the European Community’s 7th
Framework Programme (FP7/2007-2013), grant agreement
n◦214898, “Mancoosi” project, and the CIRILL center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC ’10, February 25-27, 2010, Mysore, India
Copyright 2010 ACM 978-1-60558-922-0/10/02 ...$10.00.

overview), but in recent years, the explosion of Internet
connectivity and the mainstream adoption of free and open
source software (FOSS) have deeply changed the scenarii
faced by today’s software engineers.

FOSS in particular has popularised notions like software
packages or plugins, which evolve very quickly and are main-
tained in a distributed fashion by many different actors, of-
ten only loosely connected. The best known among these
actors are distribution editors.

This new scenario has given a radically new meaning to
quality assurance by raising the issue of how to track the
overall quality of a huge collection of diverse software compo-
nents developed in a loosely coupled framework, like FOSS
distributions.

These packages or plugins are actually coarse-grained soft-
ware components that can be assembled together to build
complex systems, like a working GNU/Linux distribution or
a sophisticated configuration of an Eclipse-based develop-
ment platform.

Each of these components is equipped with metadata,
such as dependencies that contain information on the other
components it needs to function properly, and conflicts that
contain information on the components it cannot work with.

Ensuring the quality of a particular configuration of a sys-
tem based on these FOSS components is a technical and en-
gineering challenge, owing to the size and complexity of the
component base (tens of thousands of software packages in
a GNU/Linux distribution), and the speed of its evolution.

The quality assurance teams working for FOSS distribu-
tions (in particular those that contain large numbers of pack-
ages, such as Debian or Mandriva), face this challenge daily,
and they have to manually track and fix compatibility prob-
lems arising from the dependencies among the different pack-
ages. The EDOS research project 1 addressed some of these
issues, more specifically by developing the theory and tools
necessary to easily identify those components that are never
installable in a repository (often called broken packages),
and which we will briefly recall in Sec. 2.

In this paper, we make a significant step further, by
proposing the notion of strong conflicts, formally defined
from the dependencies among components. Strong conflicts
can be efficiently computed and give important insights
on the quality issues faced when adding or upgrading
components in a given installation.

A component p is in strong conflict with another com-
ponent q if it is never possible to install p and q together,
no matter what other combination of components, drawn

1See www.edos-project.org.

from a given universe often called a repository, is made. As
we will explain in more detail later on in the article, using
strong conflicts gives much more precise results than simply
looking at the dependencies and conflicts declared in the
metadata. It is possible for a package with only a few ex-
plicit dependencies and conflicts to have hundreds of strong
conflicts.

When a component p is in strong conflict with a large
number of other components, installing it can significantly
preclude further evolution of a software platform, so strong
conflicts are major obstacles to the modularisation of as-
semblies built out of packages. In an ideal world, one would
like to have very few of them in a repository, but in prac-
tice, as we will demonstrate, they seriously plague current
GNU/Linux distributions. This shows the need to identify
all strong conflicts in a repository, and explain the origin of
these strong conflicts to the maintainers of the repository.

This is the goal of the current work, which provides a theo-
retical study of the complexity of the problem, an optimised
algorithm that is efficient in practice, and a concise way of
presenting the results to the quality assurance team.

The problem we deal with can be seen as a specific in-
stance of the predictable assembly problem [5, 14], which
is one of the numerous challenges arising when integrating
software entities developed by third-party to form a coher-
ent system [3, 5]. In [5] the predictable assembly problem is
described as follows: “Given a set of components C, predict
property P of an assembly A of these components.” Al-
though a package, as a static entity, only represents the
notion of software component (w.r.t. the definition given
in [14]) in a limited way, the predictable assembly problem
can be recast in our context by considering the user instal-
lation as A, the set of packages that form the distribution
as C, and the absence of conflicts as P.

While the work presented here contains concrete exam-
ples drawn from the world of GNU/Linux distributions, the
measures defined can be easily applied to the Eclipse world,
or to any other coarse-grained software component model.

The paper is organised as follows. Sec. 2 recalls the formal
description developed during the EDOS research project [7]
of the main characteristics of a software package found in the
mainstream FOSS distributions, as well as a few decidability
and complexity results from that project.

In Sec. 3 we identify and formally define a significant
measure, computed from the explicit dependency metadata,
useful for quality assurance in the maintenance of a FOSS
distribution. Sec. 4 discusses the feasibility of computing
this measure and introduces an optimised algorithm which
can be efficient in practice. In Sec. 5–7 we introduce a way
of presenting the information in a particularly appropriate
form for quality assurance teams, and provide significant ex-
perimental evidence of the relevance of strong conflicts, by
analysing both the Debian and the Mandriva GNU/Linux
distributions. Finally, in Sec. 8 and 9, we present a discus-
sion, related works and our conclusions.

2. BASIC DEFINITIONS
Every package management system [6, 2] takes into ac-

count a set of interrelationships among packages. The most
common relationships, present in all systems, are dependen-
cies and conflicts: a package p depends on q if in order to
install package p, it is necessary that package q is installed
as well. A package p conflicts with package q if it cannot

coexist with package q. In the rest of this section, we re-
call some basic definitions from the formalisation of package
interrelationships developed by the EDOS project. Pack-
ages are archive files containing metadata and installation
scripts, identified by a unit (package name) and a version
(an arbitrary string equipped with distribution-specific or-
derings, but for our purposes, it can just be modelled as a
positive integer).

Definition 1 (Package, unit). A package is a pair
(u, v) where u is a unit and v is a version. Units are arbi-
trary strings, and versions are non-negative integers.

The ordering over version strings as used in common OSS
distributions is not discrete (since for any two version strings
v1 and v2 such that v1 < v2, there exists v3 such that v1 <
v3 < v2), but taking integers as version numbers is justified
for two reasons. First, any given repository will have a finite
number of packages. Second, only packages with the same
unit will be compared.

For instance, if our Debian repository contains the
versions 2.15-6, 2.16.1cvs20051117-1 and 2.16.1cvs-

20051206-1 of the unit binutils, we may encode these
versions respectively as 0,1 and 2, giving the packages
(binutils, 0), (binutils, 1), and (binutils, 2).

Definition 2 (Repository). A repository is a tuple
R = (P, D, C) where P is a set of packages, D : P →
P(P(P)) is the dependency function2, and C ⊆ P × P
is the conflict relation. The repository must satisfy the fol-
lowing conditions:

• The relation C is symmetric, i.e., (p1, p2) ∈ C if and
only if (p2, p1) ∈ C for all p1, p2 ∈ P .

• Two packages with the same unit but different versions
conflict3, that is, if p1 = (u, v1) and p2 = (u, v2) with
v1 6= v2, then (p1, p2) ∈ C.

In a repository R = (P, D, C), the dependencies of each
package p are given by D(p) = {d1, . . . , dk} which is a set of
sets of packages, interpreted as follows. If p is to be installed,
then all its k dependencies must be satisfied. For di to be
satisfied, at least one of the packages of di must be available.
In particular, if one of the di is the empty set, it will never be
satisfied, and the package p is not installable. If a package
p has no dependencies, then D(p) = ∅.

Example 1. Let R = (P, D, C) be the repository given by

P = {a, b, c, d, e, f, g, h, i, j}
D(a) =

˘
{b}, {c, d}, {d, e}, {d, f}

¯
D(b) =

˘
{g}
¯

D(c) =
˘
{g, h, i}

¯
D(d) =

˘
{h, i}

¯
D(e) = D(f) =

˘
{j}
¯

D(g) = D(h) = D(i) = D(j) = ∅
C = {(c, e), (e, c), (e, i), (i, e), (g, h), (h, g)}

where a = (ua, 0), b = (ub, 0), c = (uc, 0) and so on. The
repository R is represented in Fig. 1. For the package a to be
installed, the following packages must be installed: b, either
c or d, either d or e, and either d or f . Packages c and e, e
and i, and g and h cannot be installed at the same time.

2We write P(X) for the set of subsets of X.
3This requirement is present in some package management
systems, notably Debian’s, but not all. For instance, RPM-
based distributions allow simultaneous installation of several
versions of the same unit, at least in principle.

Figure 1: The repository of Ex. 1.

So, the dependencies we are dealing with have the general
form of a conjunction of disjunctions:

a→ (b1
1 ∨ · · · ∨ br1

1) ∧ · · · ∧ (b1
s ∨ · · · ∨ brs

s). (1)

For a to be installed, each term of the right-hand side of the
implication 1 must be satisfied. In turn, the term b1

i∨· · ·∨bri
i

when 1 ≤ i ≤ s is satisfied when at least one of the bj
i with

1 ≤ j ≤ ri is satisfied. If a is a package in our repository,
we therefore have

D(a) = {{b1
1, . . . , b

r1
1 }, · · · , {b

1
s, . . . , b

rs
s }}.

Concerning the relation C, two packages
p1 = (u1, v1), p2 = (u2, v2) ∈ P conflict when
(p1, p2) ∈ C. Since conflicts are a function of presence and
not of installation order, the relation C is symmetric.

Definition 3 (Installation). An installation I of a
repository R = (P, D, C) is a subset of P , giving the set of
packages installed on a system. An installation is healthy
when the following conditions hold:

• Abundance: Every package has what it needs4. For-
mally, for every p ∈ I, and for every dependency d ∈
D(p) we have I ∩ d 6= ∅.

• Peace: No two packages conflict. Formally, (I × I) ∩
C = ∅.

Definition 4 (Installability and co-installability).
A package p of a repository R is installable if there exists a
healthy installation I such that p ∈ I. Similarly, a set of
packages Π of R is co-installable if there exists a healthy
installation I such that Π ⊆ I.

As we have shown in detail in [7, 10], installability is equiv-
alent to SAT, hence it is decidable and NP-complete. It is
straightforward to use the same encoding to get the equiva-
lent result for co-installability.

4This notion is similar to the notion of version consistency
from [9].

Theorem 1. Decidability of installability Given a reposi-
tory R, deciding whether a given package p of R is installable
is an NP-complete problem.

In practice, though, all the real-world instances encoun-
tered up to now turn out to be tractable5.

Definition 5 (Dependency closure (cone)).
The dependency closure ∆(Π), also called cone, of a set
of packages Π of a repository R is the smallest set of
packages included in R that contains Π and is closed under
the immediate dependency function D : P(P) → P(P)
defined as

D(Π) =
[
p∈Π

d∈D(p)

d.

In simpler words, ∆(Π) contains Π, as well as all the pack-
ages that are reachable from Π following the dependency re-
lation. Since repositories are finite, this set is computable
and can actually be calculated in linear time.

The notion of dependency closure is useful to extract the
part of a repository that pertains to a package or to a set of
packages.

Definition 6 (Generated subrepository). Let
R = (P, D, C) be a repository and Π ⊆ P be a set
of packages. The subrepository generated by Π is the
repository R|Π = (P ′, D′, C′) whose set of packages is
the dependency closure of Π and whose dependency
and conflict relations are those of R restricted to that
set of packages. More formally we have P ′ = ∆(Π),
D′ : P ′ → P(P(P ′)), p 7→ {d ∩ P ′ | d ∈ D(p)} and
C′ = C ∩ (P ′ × P ′).

We then have the following property, which allows to con-
sider only the relevant subrepositories when answering ques-
tions of installability.

Proposition 1 (Subrepository completeness).
A package p is installable w.r.t. R if and only if it is
installable w.r.t. R|p. (Similar for co-installability.)

Proof. Let I be a healthy (i.e., abundant and peaceful)
installation of p in R.

Since I is abundant and p ∈ I, for every d ∈ D(p), d∩I 6=
∅. However, if d ∈ D(p), any element of d is also an element
of ∆({p}), and thus, an element of d ∩ I will also be in
I ∩∆({p}). Therefore, I ∩∆({p}) is abundant.

I is peaceful, therefore (I×I)∩C = ∅. Since I∩∆({p}) ⊆
I, (I ∩∆({p})× I ∩∆({p})∩C = ∅. Therefore, I ∩∆({p})
is peaceful.

3. STRONG CONFLICTS VS. EXPLICIT
CONFLICTS

GNU/Linux distributions have been around for more
than 15 years now, and they all provide tools that
help the quality assurance teams to spot problems in
the component collection they maintain, and some of
this information is freely available. The most typical
interface are bug tracking systems like the one found

5The EDOS tools are used daily on tens of thousands of
instances, see for example http://edos.debian.net.

at http://wiki.debian.org/qa.debian.org/pts,
and component browsers like those found at
http://www.debian.org/distrib/packages or
http://doc4.mandriva.org.

These tools allow one to follow bugs filed against given
packages, or to browse the explicit dependency and conflict
relationships, but they fall very short of what is needed to
be able to identify the reasons for package incompatibilities,
since these may be caused by a complex interplay of depen-
dencies and conflicts (see Sec. 7 for concrete examples).

Recent research work in the EDOS project has made a first
step towards a more effective method to identify problems
in packages, via the development of tools able to efficiently
find packages that are not installable at all (so-called broken
packages). These tools are now used daily: for example,
Jerôme Vouillon’s edos-debcheck is now incorporated into
edos.debian.net.

We propose a next step, allowing to identify components
that are not broken, but that prevent, if selected, the instal-
lation of a large set of other components. In an ideal world,
there would be no such components in a repository, but in
practice, we have found thousands of them. Hence, it is im-
portant to find them efficiently, classify them and explain
the reasons of their existence, so that the faulty components
can be fixed.

With the current tools, it is almost impossible for the qual-
ity assurance teams to identify such packages. Therefore, a
stronger, semantic, notion of conflicts is needed, which we
introduce here as strong conflicts; informally, two packages
p and q strongly conflict w.r.t. a repository R if it is not
possible to install them together in R.

Here is the formal definition of strong conflicts:

Definition 7 (Strong Conflicts). Given a
repository R, we say that a package p in R strongly conflicts
with a package q in R if there exists a healthy installation
of R containing p, a healthy installation of R containing q
and no healthy installation of R containing p and q.

Note that the formal definition requires p and q to be in-
stallable separately in R, as otherwise they would trivially
conflict with every other package in the distribution. It is
easy to see that strong conflicts are decidable: since R is
finite, the set of all installations in R is finite too, and one
can check the property on each of these installations (the
question of doing so efficiently is addressed later in the pa-
per).

Once we dispose of all the strong conflicts in a given repos-
itory R, it is possible to know, for every package p, the set
of the packages that strongly conflict with p. We call this
set the exclusion set of p in R.

Definition 8 (Exclusion set of a component).
Given a repository R and a package p in
R, the exclusion set of p in R is the set
Excl(p, R) = {q ∈ R|q strongly conflicts with p}.

Problematic packages are now easily identifiable as those
having large exclusion sets: in table 1, we give a signifi-
cant example by presenting the 20 packages with the highest
number of strong conflicts for the Debian Lenny distribution
(containing over 23.000 packages and more than 400.000 ex-
plicit dependency and conflict relationships), that we have
fully analysed using tools built on the results of this article.

To show the importance of the new notion, in this table,
for each package, we show the size of its exclusion set
(number of strong conflicts), alongside with the other,
simpler measures that may appear natural to use when
classifying it: the number of explicit conflicts it is involved
in, the size of the dependency closure, and the height of the
dependency closure.

The figures speak by themselves: none of the simplistic
measures allows to identify the problematic packages
identified using strong conflicts: the most astounding
example is the case of ppmtofb, which is negligible under
all of these simplistic measures, while it prevents, when in-
stalled, the installation of over two thousand other packages.

Once we have found the problematic packages, the other
important issue is finding a meaningful way to explain where
their large exclusion sets come from. It turns out that such
explanations will be easier to find once we have designed an
optimised algorithm for computing all strong conflicts in a
repository, which is the subject of the next section.

4. EFFICIENT COMPUTATION OF
STRONG CONFLICTS

The naive method to check whether a particular pair of
packages (p, q) strongly conflicts in a repository R would
consist in taking all pairs of packages in R and check them
for co-installability. However, this is not fast enough: if R
has n elements, the naive method requires us to examine all
2n subsets of R, and check that p and q never occur together
in those that are abundant and peaceful.

An improvement on this naive method is to encode the
co-installability of p and q in a SAT instance, which can be
done efficiently (see [10]).

In practice, though, one really wants to find all pairs (p, q)
that strongly conflict in a repository R; the naive way of
doing this is the following:

procedure strongconflicts(R)
strongconflicts ← ∅
forall p, q ∈ R

if p and q are not co-installable in R
then strongconflicts ← {p, q}∪ strongconflicts

return strongconflicts

This implies checking n2 SAT instances. With current
repositories, which contain over 20.000 packages, this is to-
tally unfeasible, so we need to look for an optimised ap-
proach. Since our analysis of the structure of the reposito-
ries shows that conflicts do not often occur, in the rest of
this section, we will focus on designing an algorithm that
works well in this particular case.

We start with some key properties of repositories with
respect to abundance and peace.

Observation 1 (Abundance is closed under union).
Given a repository R and two installations I and I ′ of R,
if I and I ′ are abundant, then so is I ∪ I ′.

Lemma 1 (Peace vs. union). Given a repository R
and two installations I and I ′ of R, if I and I ′ are peaceful,
and I ∪ I ′ is not, then there exists a conflict (c1, c2) with
c1 ∈ I and c2 ∈ I ′.

Strong Package Explicit Explicit Closure Closure
Conflicts Conflicts Dependencies Size Height

2368 ppmtofb 2 3 6 4
127 libgd2-noxpm 4 6 8 4
127 libgd2-noxpm-dev 2 5 15 5
107 heimdal-dev 2 8 121 10
71 dtc-postfix-courier 2 22 348 8
71 dtc-toaster 0 11 429 9
70 citadel-mta 1 6 123 9
69 citadel-suite 0 5 133 9
66 xmail 4 6 105 8
63 apache2-mpm-event 2 5 122 10
63 apache2-mpm-worker 2 5 122 10
62 harden 0 4 214 9
62 harden-servers 36 2 103 8
57 gpe 0 31 263 10
56 heimdal-servers 10 16 139 9
55 heimdal-servers-x 2 15 142 9
53 libapache2-mod-php5filter 2 16 129 9
52 dtc-cyrus 2 17 345 8
50 kdepimlibs5-dev 1 6 225 9
46 kdebase-runtime-data-common 2 0 1 1

Table 1: The 20 packages with the highest number of strong conflicts in Debian stable (main) 5.0, February
2009

Proof. I∪I ′ is not peaceful, so there is a conflict (c1, c2)
with c1 and c2 elements of I ∪ I ′. However, it cannot be the
case that both c1 and c2 are elements of I, since I is peaceful.
The same goes for I ′, so it must be that c1 ∈ I and c2 ∈ I ′

(or c1 ∈ I ′ and c2 ∈ I, but since the conflict relation is
symmetric, this is equivalent).

Lemma 2 (Reachability of packages in a closure).
Given a repository R, if p′ belongs to ∆({p}), then there is
a path from p to p′ in the dependency graph.

Proof. ∆({p}) is closed under the repeated application
of the immediate dependency function, so if p′ ∈ ∆({p}),
there must be a list p, p1, . . . , pn, p′ so that p1 = D(p), p2 =
D(p1), . . . , and p′ = D(pn). Since D is the union of all
immediate dependencies of a package, the list p, p1, . . . , pn, p′

is also a path in the dependency graph.

Now we can prove the main result of this section

Theorem 2 (Origin of strong conflicts). If p is
installable in R and q is installable in R, but p and q are
not co-installable in R, then there exists an explicit conflict
(c1, c2), a dependency path from p to c1 and a dependency
path from q to c2.

Proof. Since p and q are separately installable in R,
then by Proposition 1 there exist Ip ⊆ cone(p, R) and Iq ⊆
cone(q, R) which are both abundant and peaceful.

Since p and q are not co-installable, we have that Ip ∪ Iq

cannot be abundant and peaceful (otherwise, it would be
an installation containing both p and q). Since Ip ∪ Iq is
abundant, by Observation 1, we have that Ip ∪ Iq is not
peaceful, and then Lemma 1 gives us a conflict (c1, c2) in R
with c1 in Ip and c2 in Iq, so we conclude by Lemma 2.

This theorem demonstrates that the strong conflicts are
a strict subset of all the pairs of packages (p, q) found
following the predecessors of explicit conflicts.

This allows to rewrite the procedure strongconflicts as
follows:

procedure strongconflicts(R)

candidates ← ∅
strongconflicts ← ∅
explicit ← {(c, c′)| c and c′ are an explicit conflict in R}

(* compute all pairs (p, q) of predecessors of ex-
plicit conflicts in R *)
forall (c, c′) ∈ explicit
forall p predecessor of c in R
forall q 6= p predecessor of c′ in R
candidates ← {p, q} ∪ candidates

(* check strong conflicts only among the selected candi-
dates *)
forall p, q ∈ candidates
if p and p are not co-installable in R
then strongconflicts ← {p, q} ∪ strongconflicts

The notion of predecessor used in the algorithm is reflex-
ive: a package p is a predecessor of q if there is a, possibly
empty, dependency path from p to q.

If the number of explicit conflicts is small, and the set
of their predecessors too, the search space can be hugely
reduced: this is the case in our actual experiments with
real-world data.

We also note the following:

Proposition 2. Given a repository R, if c, c′ is an ex-
plicit conflict, there is a path from p to c following only
conjunctive dependencies, and there is a path from q to c′

following only conjunctive dependencies, then (p, q) are a
strong conflict in R.

Proof. Any healthy installation containing p will also
contain c; likewise for q and c′. Since c and c′ conflict, there
are no healthy installations that contain p and q.

Since the co-installability check is extremely expensive
(NP-complete in the size of R), while conjunctive predeces-
sors can be precomputed in linear time and then checked in
constant time, one can further optimise the above algorithm,
moving directly from candidates to strongconflicts all

pairs p, q which are obtained following only conjunctive de-
pendencies in the predecessor relation.

For example, if we take a look at the repository from
Fig. 1, we see that it is impossible to install package a with-
out also installing package b (there is a conjunctive depen-
dency). Hence, b is a strong dependency of a. However,
for the other dependencies of a, (all disjunctive), matters
are more complicated and we will have to check for co-
installability using a SAT solver.

5. EMPIRICAL MEASUREMENTS
In parallel with our formal complexity and algorithmic

investigations, we also performed empirical measurements
on the Debian and Mandriva distributions: this allowed us
both to assess the relevance of the optimisations outlined in
the previous sections, and to identify the most relevant form
for presenting the measurements to allow their immediate
exploitation in terms of quality assurance.

5.1 Computation of Strong Conflicts for De-
bian and Mandriva Distributions

We have developed a tool6 that implements all the opti-
misations mentioned in the previous section and allows to
compute the strong conflicts of a given repository.

We used this tool to analyse two kinds of repositories
which are representative of different development models
and packaging policies: the stable repository of the De-
bian distribution (version 5.0, February 2009) and the main

release of the Mandriva 2009.1 distribution7.
The table in Fig. 2 summarises the experimental data we

gathered. The“Packages”row shows the number of packages
and the time spent parsing the distribution metadata; the
“Explicit conflicts”row shows the number of explicit conflicts
mentioned in the metadata (and the time spent gathering
this data).

The two“Pairs to check”rows show the reduction in search
space obtained by using the optimised algorithm. Using the
naive method, all pairs need to be checked, which, for a
repository of size n, will result in checking n(n − 1) pairs.
The optimised method uses the result of Proposition 2 and
only checks the pairs that are necessary, reducing the search
space by 63,3 percent for Debian and 57,2 percent for Man-
driva.

5.2 Assessment
The optimised algorithm provides a significant

improvement over the naive one, and it allows to
compute the strong conflict measures weekly on a modern
commodity Unix workstation.8.

The algorithm being fully parallelisable, it would be
straightforward to reduce the computation time to a few
hours using a small cluster, or a few minutes using a
medium-sized cluster. However, we noticed on all cases
that we have analysed (not only the two we have selected
for presentation in this paper), that the vast majority of
strong conflicts found in GNU/Linux distributions can be

6Available from the subversion repository at
http://tinyurl.com/strongconflicts
7The data can be downloaded from snapshot.debian.net
for Debian and http://tinyurl.com/sc-mdv-2009-1 for
Mandriva
8Intel Xeon 3 GHz processor, 3 Gb of memory

found following only conjunctive dependencies. These do
not require a call to a SAT-solver, and can be computed
extremely quickly (less than a second). In the figures
above, for example, 4878 strong conflicts in Mandriva
can be found in less than a second following conjunctive
dependencies, and the huge amount of time spent to cover
the rest of the search space only brings in 39 extra strong
conflicts.

In practice, computing the conjunctive strong conflicts
might provide a useful approximation when a quick estimate
of the final result is required: all packages having large ex-
clusion sets due to conjunctive strong conflicts will have a
large exclusion set anyway, and they will be brought to the
attention of a quality assurance team right away.

6. PRESENTATION OF THE STRONG
CONFLICT DATA

Since the Mandriva and the Debian repository have
several thousands of strong conflicts, the question of how
to present the information for quality assurance purposes is
essential.

We have already shown in table 1 earlier in this article
how a simple textual representation of the analysis
results, with a list of the packages in decreasing order of
their exclusion set, allows to immediately find the more
problematic packages.

At an aggregate level, one can also present to the
quality assurance team a simple graph showing the density
distribution of the strong conflicts, like the one in figure 2b.
This may provide a visual way of assessing the overall
distribution of the exclusion sets present in the repository:
a point on this graph at (x, y) means that there are y
packages with x strong conflicts (with the shape of the
dot indicating their cause); dots in the far right of the
picture are the ones coming from the more problematic
packages: for example in figure 2a we see that there are
three packages with 881 strong conflicts.

So, finding highly problematic packages is easy, but we
need now a way to allow the quality assurance team to fix
them, and for this it is necessary to precisely identify the
reasons of the abnormal level of strong conflicts for a given
package: the data presented in the table is very useful to
see the packages one should focus on (for example, ppmtofb
is clearly a disaster), but says nothing about the reason
of the disaster. When discussing with quality assurance
people from the Debian project, it became clear that the
raw data presented like this is really inadequate.

Our first step to provide useful reports has then been to
compute, for every strong conflict between a package p and
a package q, one of the explicit conflicts that are necessary
for the strong conflict to occur, according to Theorem 2,
and then to group all strong conflicts using these “roots”.

In the case of ppmtofb, for example, this allows to
produce a report like the following one.

(a) Mandriva 2009.1

(b) Debian 5.0

Figure 2: Distribution of strong conflicts in package repositories

Debian 5.0 Mandriva 2009.1
Number Time Number Time

Packages (parsing) 22311 15.88 s 5849 12.03 s
Explicit conflicts 1003 0.45 s 121 0.06 s
Pairs to check (naive) 497758410 - 34204952 -
Pairs to check (optimised) 183050886 0.42 s 14640594 0.06 s
Strong conflicts (conjunctive) 6384 0.06 s 4878 0.38 s
Strong conflicts (other) 531 471365.77 s 39 40660.91 s
Strong conflicts (overall) 7918 471384.64 s 4917 40668.93 s

Table 2: Strong conflicts in Debian and Mandriva

Package p Explicit conflict Package q
ppmtofb-0.32-0.1 python-2.5.2-3 atomix-2.14.0-1

ppmtofb-0.32-0.1
ppmtofb-0.32-0.1 python-2.5.2-3 live-magic-1.5

ppmtofb-0.32-0.1

...
(2368 lines)

...

We went one step further, though: since the explicit con-
flict, even if it is not unique in general, plays clearly the role
of an explanation, we used it as a key to organise the error
report to the quality assurance team. For each package, we
list the packages it strongly conflicts with, clustered accord-
ing to the explicit conflict that leads to discovering them, in
the following format:

nsc package-p :
nsce1 c1 <-> c1’ :
* package-q-1-1

dependency path from package-p to c1
dependency path from package-q-1-1 to c1’

.

.

.
* package-q-1-nsce1

dependency path from package-p to c1
dependency path from package-q-1-nsce1 to c1’

...
nsce2 c2 <-> c2’ :
* package-q-2-1

dependency path from package-p to c2
dependency path from package-q-2-1 to c2’

.

.

.
* package-q-2-nsce2

dependency path from package-p to c2
dependency path from package-q-2-nsce2 to c2’

...

where nsc is the number of strong conflicts that package
p has; then, for each explicit conflict ci, c

′
i, we indicate the

number nscei of strong conflicts that come from it for each
package qj

i we provide the dependency path linking p to ci

and qj
i to c′i that exists according to Theorem 2.

After some further interaction with the Debian team,
we have found that this is the most appropriate way to
present the data. It allows to easily identify the explicit
conflicts at the origin of the strong conflict, and then to
zoom on each package in the exclusion set to see the chain
of dependencies leading to the strong conflict.

7. ANALYSIS OF REAL-WORLD
EXAMPLES

We validated our approach on real world examples com-
ing from both the Debian and Mandriva distributions. Our
findings confirm that it is quite easy to spot and fix the er-
rors, when the root reason is a single explicit conflict. The
public availability of all the quality assurance information
has also allowed to verify that some of the serious problems
identified via strong conflicts were either unknown, or, when
identified, not handled at all because no objective measure
was available to assess their impact on the overall quality of
the component collection.

7.1 Dependencies on Obsolete Components
An excerpt of the 2368 lines of output produced by our

tool for the most conflictual package ppmtofb in Debian is
shown below:

2368 ppmtofb-0.32-0.1 :
2368 (python-2.5.2-3 <-> ppmtofb-0.32-0.1) :
* atomix-2.14.0-1 (conjunctive)
...

* live-magic-1.5 (conjunctive)
...

...

This shows us that all of the 2368 strong conflicts involv-
ing ppmtofb are actually due to one single explicit conflict
(the one between python-2.5.2-3 and ppmtofb-0.32-0.1).
Here is the relevant part of the metadata for ppmtofb:

Package: ppmtofb
Version: 0.32-0.1
Replaces: ppmtoagafb
Provides: ppmtoagafb
Depends: libc6 (>= 2.7-1), libnetpbm9, libpopt0 (>= 1.10)
Recommends: python, netpbm

Conflicts: ppmtoagafb, python (>> 2.4)

Looking at this report and the metadata above a mem-
ber of the quality assurance team sees immediately that the
cause is the conflict between ppmtofb and an old version of
python: as time went by, when the python package evolved
to new versions, this dependency produced an incompatibil-
ity with all other packages using python. Clearly, ppmtofb
has not been updated, or tested, for a while, and the respon-
sibility is with its maintainer.

This problem had been cursorily reported to the Debian
bug tracking system in 20069; since there was no way of
recognizing the importance of this bug report, no action had
been undertaken: in the newest stable version of Debian
from February 2009, the problem is still present.

9http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=
385209

After we added our findings to the bug report, its severity
was upgraded to ’serious’ (which means that the package is
unsuitable for release), and it was even suggested that the
package be removed completely from the distribution.

This shows clearly that packages that have a high number
of strong conflicts are really problematic, and yet tend to go
unnoticed using current measures.

7.2 Insufficient Precision in the Metadata
Another relevant example in Debian is the package

libgd2-noxpm-2.0.36~rc1~dfsg3, with 127 strong
conflicts, which again emanate from one specific conflict:

127 libgd2-noxpm-2.0.36~rc1~dfsg-3 :
127 (libgd2-xpm-2.0.36~rc1~dfsg-3 <-> libgd2-noxpm-
2.0.36~rc1~dfsg-3)

* moodle-book-1.6.3-1.1 (conjunctive)
...
...

The explicit conflict in itself seems justified: both pack-
ages provide the same library, one in a version with support
for XPM, and the other in a version without XPM.

However, this is not a simple conflict; in fact, the func-
tionality of libgd2-xpm is a superset of the functionality of
libgd2-noxpm. Therefore, it should in all cases be possi-
ble to replace the libgd2-noxpm package, if installed, by the
libgd2-xpm package, without affecting the functionality of
the system.

A simple fix for this problem would be to add an entry
Replaces: libgd2-noxpm in the package specification for
libgd2-xpm. The Replaces field informs the packaging sys-
tem that it should remove the libgd2-noxpm package when
installing the libgd2-xpm package, so that the installation
can proceed.

7.3 Overlooked File Conflicts
In Mandriva 2009.1 distribution we find 881 strong

conflicts for the package perl-ExtUtils-ParseXS-2.19-

2mdv2009.1:

881 perl-ExtUtils-ParseXS-2.19-2mdv2009.1 :
881 (perl-2:5.10.0-25mdv2009.1 <->

perl-ExtUtils-ParseXS-2.19-2mdv2009.1)
* openoffice.org64-gnome-1:3.0.1-5mdv2009.1 (conjunctive)
...

...

When we look at the metadata, we see that the
conflict between perl and perl-ExtUtils-ParseXS

is caused by the fact that they both contain the file
/usr/share/man/man3/ExtUtils::ParseXS.3pm.lzma.
In fact, both packages install a version of the ExtU-

tils::ParseXS library, though in different directories: it is
only the man page that is installed in the same place and
thus causes the conflict.

A possible solution to the problem is to remove the Ex-

tUtils::ParseXS library from the perl package and either
add a dependency on perl-ExtUtils-ParseXS to perl, or
change those packages that use the ExtUtils::ParseXS li-
brary from perl to depend on perl-ExtUtils-ParseXS in-
stead.

There are two other packages in the distribution that suf-
fer from a similar problem: perl-Pod-Escapes and perl-

DB_File. Both of these packages have 881 strong conflicts
as well.

7.4 Assessment
The three examples highlighted above correspond to very

serious quality issues in mainstream GNU/Linux distribu-
tion that had never been addressed before, and show that
there was no metric previously available capable of clearly
identifying them. Any user of ppmtofb, for example, would
experience significant problems when trying to install any
of the 2368 packages in its exclusion set (some of them very
popular), but the data made available to him is not enough
to reveal the extent of the issue, and the problem has little
chances to be reported, and even less chances to be taken
seriousy.

The availability of our new metric based on strong
conflicts and exclusion sets has allowed to immediately
pinpoint these issues (and several others) as relevant ones
to the quality assurance team, that has taken steps to fix
them: looking at the bug tracking system entry for ppmtofb
(at http://bugs.debian.org/cgi-bin/bugreport.cgi?

bug=385209), for example, it is easy to see how the
dependency problem was reported by one user back in
August 2006, and totally ignored for three years, while
as soon as we filed a report in February 2009 with the
evidence coming from the exclusion sets, the issue was
dealt with immediately.

A natural research line woudl be to push the analysis fur-
ther and identify automatically the precise problem at the
origin of a large exclusion set. As we have seen in the ex-
amples above, when a single explicit conflict is a the root of
a large exclusion set, it is natural to identify it as the root
cause, but understanding why this single explicit conflict is
there requires actual knowledge of the functionality of the
package (for ppmtofb it is a matter of updating the pack-
age to a more recent version of python, for perl-ExtUtils-
ParseXS it is a forgotten file conflict): it is surely interesting
to try and build a taxonomy of common error patterns, but
the authors believe that a full automatisation will be difficult
to achieve.

8. DISCUSSION AND RELATED WORKS
Predicting and ensuring the correct behaviour of compo-

nents when composed into an assembly is a central issue in
modern research, and has been extensively stuudied, but we
believe that the maintenance of GNU/Linux distributions
poses several novel challenges.

On one side, a significant part of the literature studies the
dynamic aspects of composition: knowing the behaviour of
the components, one looks for means to ensure certain prop-
erties of the behaviour of the system obtained by assembling
them, like for example in [8, 15]. This is a crucial issue, but
in the world of GNU/Linux distributions we are still very far
from having any information available on the behaviour of
each component after installation, so it is too early to tackle
this facet of the problem.

On the other side, the research on static inter-module de-
pendencies is essentially performed at the level of the source
code, with a different focus: in [11, 12], dependencies are
automatically extracted from huge sets of source code, and
then used to predict failures, but not to identify issues in
the architecture of the code, unlike what we do with strong
conflicts here; in [16] and [17] dependencies are used as a
guideline for testing component-based systems; finally, [13],

which shares similar concerns with us, as the analysis of the
architectural dependencies is used to improve the modular-
isation of the software architecture, the size of the problem
is sufficiently small (some 20 components) to allow manual
analysis and resolution of component relationships, which
is totally unfeasible in our case. More recently, a notion of
strong dependency has been introduced by the Abate, Zac-
chiroli and the authors in [1].

What makes strong conflicts novel and appealing is the
fact that they allow us to identify architectural problems in
huge collections of components that are impossible to detect
in other ways, as we have clearly shown with the selected
examples presented in Sec. 7.

Furthermore, using strong conflicts results in significantly
higher precision than more direct (and less costly) meth-
ods such as using the conflicts or dependencies mentioned
directly in the metadata; a package like ppmtofb can have
only a few conflicts or dependencies, and still has an enor-
mous exclusion set.

The number of conflicts in Debian distributions is decreas-
ing slightly over the different releases, even though the num-
ber of packages increases steadily. Thus it seems that many
declared conflicts are not caused by incompatibility between
components, but by other factors, as seen in the examples
presented above. With strong conflicts, distribution editors
can check the explicit conflicts in their distribution system-
atically, and keep only the conflicts that are absolutely nec-
essary.

We believe that all large bodies of software components,
like OSGI, Eclipse plugins10 or Firefox extensions, will even-
tually adopt a dependency model similar to the one existing
in GNU/Linux distributions, and the notion of strong con-
flict, with the associated algorithms, will be of paramount
importance in their maintenance.

9. CONCLUSIONS
In this paper, we have presented and motivated a fun-

damental property for large repositories of FOSS packages,
strong conflicts.

Despite its theoretical algorithmic complexity, we have al-
ready performed large-scale tests on two major GNU/Linux
distributions, Debian and Mandriva, indicating that strong
conflicts can be mechanically checked in reasonable time on
real-world component repositories, and we have shown how
major issues in the quality of the repositories can be easily
identified using strong conflicts.

These tools are currently being integrated in the quality
assurance process of these distributions, and we believe that
exactly the same concepts can be applied to many other
coarse-grained loosely coupled component collections, like
Eclipse plugins.

Acknowledgements.
The starting idea came from a discussion with Arnaud

Laprevote, from the Mandriva group, during the meeting
held in Lisbon in October 2008 of the Mancoosi research
project11, which is dedicated to improving the maintenance
of installations for users of GNU/Linux distributions.

Interesting discussions on these issues have taken place

10This is already happening with the Eclipse P2 provisioning
platform.

11See www.mancoosi.org.

during the Mancoosi weekly meeting at the University
Paris Diderot since then: special thanks go to Pietro Abate,
Yacine Boufkhad, Alfonso Pierantonio, Ralf Treinen,
Jerôme Vouillon and Stefano Zacchiroli.

Data Availability
The metadata for Debian and Mandriva used for the ex-
perimental validation, together with the full presentation
of the strong conflicts found is available from http://www.

dicosmo.org/Mancoosi/measures-data.tar.bz2.

10. REFERENCES
[1] P. Abate, J. Boender, R. Di Cosmo, and S. Zacchiroli.

Strong dependencies between software components. In
Proceedings of ESEM 2009, pages 89–99. IEEE Press,
15-16 Oct. 2009.

[2] E. C. Bailey. Maximum RPM, taking the Red Hat package
manager to the limit. http://rikers.org/rpmbook/,
http://www.rpm.org, 1997.

[3] B. Boehm and C. Abts. COTS integration: Plug and pray?
IEEE Computer, 32(1):135–138, Jan. 1999.

[4] M. Broy and E. Denert. Software Pioneers: Contributions
to Software Engineering. Springer-Verlag, 2002.

[5] I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau.
Anatomy of a research project in predictable assembly. In
Proceedings of CBSE5, 2002. White paper.

[6] Debian Group. Debian policy manual.
http://www.debian.org/doc/debian-policy/, 1996–1998.

[7] R. Di Cosmo, F. Mancinelli, J. Boender, J. Vouillon,
B. Durak, X. Leroy, D. Pinheiro, P. Trezentos,
M. Morgado, T. Milo, T. Zur, R. Suarez, M. Lijour, and
R. Treinen. Report on formal mangement of software
dependencies. Technical report, EDOS, Apr. 2006. D2.2,
available as http://tinyurl.com/cd9mzo.

[8] P. Inverardi, A. L. Wolf, and D. Yankelevich. Static
checking of system behaviors using derived component
assumptions. ACM Trans. Softw. Eng. Methodol.,
9(3):239–272, 2000.

[9] M. Larsson, A. Wall, C. Norström, and I. Crnkovic. Using
prediction-enabled technologies for embedded product line
architectures. In Proceedings of CBSE5, 2002.

[10] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, Berke,
X. Leroy, and R. Treinen. Managing the complexity of
large free and open source package-based software
distributions. ASE ’06, 0:199–208, 2006.

[11] N. Nagappan and T. Ball. Using software dependencies and
churn metrics to predict field failures: An empirical case
study. ESEM 2007, 0:364–373, 2007.

[12] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller.
Predicting vulnerable software components. In P. Ning,
S. D. C. di Vimercati, and P. F. Syverson, editors,
Proceedings of CCS 2007, pages 529–540. ACM, 2007.

[13] H. Pei-Breivold, I. Crnkovic, R. Land, and S. Larsson.
Using dependency model to support software architecture
evolution. In Proceedings of Evol’08, September 2008.

[14] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison Wesley
Professional, 1997.

[15] M. Tivoli and P. Inverardi. Failure-free coordinators
synthesis for component-based architectures. Sci. Comput.
Program., 71(3):181–212, 2008.

[16] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter.
Direct-dependency-based software compatibility testing. In
Proceedings of ASE ’07, pages 409–412, New York, NY,
USA, 2007. ACM.

[17] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter.
Effective and scalable software compatibility testing. In
Proceedings of ISSTA ’08, pages 63–74, New York, NY,
USA, 2008. ACM.

