
On Isomorphisms of Intersection Types

Mariangiola Dezani-Ciancaglini1, Roberto Di Cosmo2,
Elio Giovannetti1, Makoto Tatsuta3

1 Dipartimento di Informatica, Università di Torino, corso Svizzera 185, 10149 Torino, Italy
2 Université Paris Diderot, PPS, UMR 7126, case 7014, 2 place Jussieu, 75005 Paris, France

3 National Institute of Informatics, 2-1-2 Hitotsubashi, 101-8430 Tokyo, Japan

Abstract. The study of type isomorphisms for different λ-calculi started over
twenty years ago, and a very wide body of knowledge has been established, both
in terms of results and in terms of techniques. A notable missing piece of the puz-
zle was the characterization of type isomorphisms in the presence of intersection
types. While at first thought this may seem to be a simple exercise, it turns out that
not only finding the right characterization is not simple, but that the very notion
of isomorphism in intersection types is an unexpectedly original element in the
previously known landscape, breaking most of the known properties of isomor-
phisms of the typed λ-calculus. In particular, types that are equal in the standard
models of intersection types may be non-isomorphic.

1 Introduction
The notion of type isomorphism is a particularization of the general notion of isomor-
phism as defined, for example, in category theory. Two objects σ and τ are isomorphic
iff there exist two morphisms f : σ → τ and g : τ → σ such that f ◦ g = idτ and
g ◦ f = idσ:

?>=<89:;σ
f

((
idσ 55

?>=<89:;τ
g

hh idτ
vv

Analogously, two types σ and τ in some (abstract) programming language, like the
typed λ-calculus, are isomorphic if the same diagram holds, with f and g functions of
types σ→τ and τ→σ respectively.

In the early 1980s, some interest started to develop in the problem of finding all
the domain equations (type isomorphisms) that must hold in every model of a given
language, or valid isomorphisms of types, as they were called in [4].

There are essentially two families of techniques for addressing this question: it is
possible to work syntactically to characterize those programs f that possess an inverse g
making the above diagram commute, or one can work semantically trying to find some
specific model that captures the isomorphisms valid in all models (see [8] for a recent
survey).

Each approach has its own difficulty: finding the syntactic characterization of the
invertible terms can be very hard, while the rest follows then rather straightforwardly;
finding the right specific model and showing that the only isomorphisms holding in it
are those holding in all models can be very hard too, even if the advent of game se-
mantics has a bit blurred the distinction between these approaches, by building models
which are quite syntactical in nature [10].

2

Table 1 Type isomorphisms in typed lambda calculi

(swap) σ → (τ → γ) = τ → (σ → γ)
o
Th1

1. σ × τ = τ × σ
2. σ × (τ × γ) = (σ × τ)× γ
3. (σ × τ)→ γ = σ → (τ → γ)

4. σ → (τ × γ) = (σ → τ)× (σ → γ)

5. σ ×T = σ

6. σ → T = T

7. T→ σ = σ

9>>>>>>>>>>>>=>>>>>>>>>>>>;
Th1
×T

8. ∀X.∀Y.σ = ∀Y.∀X.σ
9. ∀X.σ = ∀Y.σ[Y/X]

10. ∀X.(σ → τ) = σ → ∀X.τ

9>>=>>; + swap = Th2

11. ∀X.σ × τ = ∀X.σ × ∀X.τ
12. ∀X.T = T

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;

Th2
×T

split ∀X.σ × τ = ∀X.∀Y.σ × (τ [Y/X])

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

− 10, 11 = ThML

N.B.: in equation 8,X must be free for Y in σ and Y 6∈ FTV (σ); in equation 10,X 6∈ FTV (σ).

In our work, we started along the first line (as we already know the shape of the in-
vertible terms), so here we only recall the relevant literature for the syntactic approach.

Type isomorphisms and invertible terms
In [6], Dezani fully characterized the invertible λ-terms as the finite hereditary

permutators, a class of terms which can be easily defined inductively, and which can be
seen as a family of generalized η-expansions.

Definition 1 (Invertible term). A λ-term M is invertible if there exists a term M−1

such that M ◦M−1 = M−1 ◦M =βη I (where ◦ denotes, as usual, functional compo-
sition, and I is the identity λx.x). Obviously, M−1 is called an inverse of M .

Definition 2 (Finite Hereditary Permutator). A finite hereditary permutator (f.h.p.)
is a λ-term whose head normal form is of the shape λzx1 . . . xn . zQ1 . . . Qn (n ≥ 0)
and is such that, for a permutation π of 1 . . . n, the λ-terms λxπ(1).Q1, . . . , λxπ(n).Qn
are finite hereditary permutators.

Theorem 1. [6] A λ-term is invertible iff it is a finite hereditary permutator.

Observe that f.h.p.’s are closed terms: so, by the above theorem, invertible λ-terms are
closed terms.The proof of Theorem ?? shows that every f.h.p. has a unique inverse
modulo βη-conversion. We use P to range over β-normal forms of f.h.p.’s. Thus P−1

denotes the unique (modulo η-conversion) inverse of P.
While the result of [6] was obtained in the framework of the untyped λ-calculus,

it turned out that this family of invertible terms can be typed in the simply typed λ-
calculus, and this allowed Bruce and Longo [4] to prove by a straightforward induction

3

on the structure of the f.h.p.’s that in the simply typed λ-calculus the only type isomor-
phisms w.r.t. βη-equality are those induced by the swap equation

σ → (τ → ρ) = τ → (σ → ρ).
Notice that the type isomorphisms which correspond to invertible terms (called defin-
able isomorphisms of types in [4]) are a priori not the same as the valid isomorphisms
of types: a definable isomorphism seems to be a stronger notion, demanding that not
only a given isomorphism holds in all models, but that it also holds in all models uni-
formly. Nevertheless, in all the cases studied in the literature, it is easy to build a free
model out of the calculus, and to prove that valid and definable isomorphisms coincide,
so this distinction has gradually disappeared in time, and in this work we will use the
following definition of type isomorphism.

Definition 3 (Type isomorphism). Given a λ-calculus along with a type system, two
types σ and τ (in the system’s type language) are isomorphic, and we write σ ≈ τ ,
if in the calculus there exists an invertible term, i.e., by the above theorem, a f.h.p. P,
such that ` P : σ → τ and ` P−1 : τ → σ hold in the system. Following a standard
nomenclature, we say that the term P proves the isomorphism σ ≈ τ , and we write
σ ≈P τ . Of course, σ ≈P τ iff σ ≈P−1 τ .

An immediate observation is that

Theorem 2. Isomorphism is an equivalence relation.

Observe that transitivity holds because invertible terms are closed under functional com-
position by definition. So if the f.h.p. P1 proves σ ≈ τ and the f.h.p. P2 proves τ ≈ ρ,
then P2 ◦ P1 is a f.h.p. that proves σ ≈ ρ.

By extending Dezani’s original technique to the invertible terms in typed calculi
with additional constructors (like products and unit type) or with higher order (System
F or Core-ML), it has been possible to pursue this line of research to the point of getting
a full characterization of isomorphisms in a whole set of typed λ-calculi, from λ1βη,
which corresponds to IPC(⇒), the intuitionistic positive calculus with implication,
whose isomorphisms are described by Th1 [12,4], to λ1βηπ∗, which corresponds to
Cartesian Closed Categories and IPC(True,∧,⇒), for which Th1

×T is complete [3]4,
to λ2βη (System F), which corresponds to IPC(∀,⇒), and whose isomorphisms are
given by Th2 [4], to λ2βηπ∗ (System F with products and unit type), which corre-
sponds to IPC(∀,True,∧,⇒), whose isomorphisms are given by Th2

×T [7]. A sum-
mary of the axioms in these theories is given in Table 1.

Hence, in this line of research, the standard approach has been to find all the type
isomorphisms for a given language (λ-calculus) and a given notion of equality on terms
(which almost always contains extensional rules like η, as otherwise no nontrivial in-
vertible term exists [6]) as a consequence of an inductive characterization of the invert-
ible terms. The general schema in all the known cases is the same: guess an equational
theory for the isomorphisms, find the invertible terms (this is the hard part), then by
induction on their structure show the completeness of the equational theory (the easy
part).

One notable missing piece in the table summarizing the theory of isomorphisms of
4 But this result had been proved earlier by Soloviev using model theoretic techniques [14].

4

types is the case of intersection types. At first sight, it should be an easy exercise to deal
with it: we already know the form of the invertible terms, as they are again the f.h.p.’s,
and it should just be a matter of guessing the right equational theory and proving it
complete by induction.

But it turns out that with intersection types all the intuitions that one has formed in
the other systems fail: the intersection type discipline can give many widely different
typings for the same term, so that the simple proof technique originated in [4] does not
apply, and we are in for some surprises.

In this paper, we explore the world of type isomorphisms with intersection types,
establishing a series of results that are quite unexpected: on the one hand, we will see
in Section 2 that in the presence of intersection types the theory of isomorphisms is
no longer a congruence, so that there is no hope to capture these isomorphisms via an
equational theory, and the theory does not even include equality in the standard models;
yet, decidability can be easily established, though with no simple bound on its com-
plexity. On the other hand, we will be able to provide a very precise characterization of
isomorphisms, via a special notion of similarity for type normal forms.

2 Basic Properties of Isomorphisms with Intersection Types

In this section we establish the basic properties of intersection types that show their
deep difference with respect to the other cases studied in the literature, before tackling,
in the later sections, their precise characterization.

Isomorphisms of intersection types are not a congruence
In all the cases known in the literature, the isomorphism equivalence relation is a

congruence, as the type constructors explored so far (arrow, cartesian product, universal
quantification, sum) all preserve isomorphisms.

Intersection, by contrast, does not preserve isomorphism: from σ ≈ σ′ and τ ≈ τ ′

it does not follow, in general, that σ ∩ τ ≈ σ′ ∩ τ ′. The intuitive reason is that the
existence of two separate (invertible) functions that respectively transform all values of
type σ into values of type σ′ and all those of type τ into values of type τ ′, does not
ensure that there is a function mapping any value that is both of type σ and of type τ to
a value that is both of type σ′ and of type τ ′.

For example, though the isomorphism α→ β → γ ≈ β → α→ γ is given by
the f.h.p. λxyz . xzy, the two types ϕ ∩ (α→ β→ γ) and ϕ ∩ (β→ α→ γ) are not
isomorphic, since the term λyz . xzy cannot be typed (from the assumption x : ϕ) with
an atomic type ϕ, which can only be transformed into itself by the identity.

Therefore we have the following result:

Theorem 3. The theory of isomorphisms for intersection types is not a congruence.

In particular, this theory cannot be described with a standard equational theory: a non-
trivial equivalence relation has to be devised5.

5 Notice that even in the very tricky case of the sum types, isomorphism is a congruence [9].

5

Isomorphisms do not contain equality in the standard intersection models
Another quite unconventional fact is that 6

Theorem 4. Types equality in the standard models of intersection types does not entail
type isomorphisms.

Proof. Take for example the two isomorphic types α→γ and (α ∩ β→γ) ∩ (α→γ).
They are semantically coincident, because the type α ∩ β→ γ is greater than α→ γ,
and therefore its presence in the intersection is useless.

Now, if we just add to both a seemingly innocent intersection with an atomic type,
we obtain the two types (α→ γ) ∩ ϕ and (α ∩ β → γ) ∩ (α→ γ) ∩ ϕ, which also
have identical meanings but are not isomorphic: if they were, the isomorphism would
be given by the f.h.p. λxy.xy because, while the identity is trivially able to map any
intersection to each of its components (i.e., ` λx.x : σ ∩ τ→ σ, ` λx.x : σ ∩ τ→ τ),
the mapping in the opposite direction, from α→γ to (α ∩ β→γ) ∩ (α→γ), requires
an η-expansion of the identity, as can be seen from the following derivation, where
Γ = x : α→γ, y : α ∩ β:

Γ ` x : α→γ

Γ ` y : α ∩ β
(∩ E)

Γ ` y : α
(→E)

Γ ` xy : γ
(→I)

x : α→γ ` λy.xy : α ∩ β→γ

. . . (→E)
x : α→γ, y : α ` xy : γ

(→I)
x : α→γ ` λy.xy : α→γ

(∩ I)
x : α→γ ` λy.xy : (α ∩ β→γ) ∩ (α→γ)

(→I)
` λxy.xy : (α→γ)→ (α ∩ β→γ) ∩ (α→γ)

An η-expansion of the identity, however, cannot map an atomic type to itself; in par-
ticular, the judgment x : (α→ γ) ∩ ϕ ` λy.xy : ϕ cannot be derived, hence the term
λxy.xy cannot be assigned the type (α→γ) ∩ ϕ→ (α ∩ β→γ) ∩ (α→γ) ∩ ϕ.

We could establish an isomorphism relation including the pair of types (α→γ)∩ϕ
and (α ∩ β→ γ) ∩ (α→ γ) ∩ ϕ only by assuming, as in some models, that all atomic
types are arrow types.

One could simply see this fact as a proof that the universal model – traditionally hard
to find – where all and only the valid isomorphisms hold is not a standard model; but it
is quite unconventional that equality in the standard models is not included in the iso-
morphism relation, and this really comes from the strong intensionality of intersection
types.

Decidability
Despite the weird nature of isomorphisms with intersection types, it is easy to es-

tablish the following decidability result.

Theorem 5. Isomorphisms of intersection types are decidable.

Proof. Given two types σ and τ , a f.h.p. of type σ→τ may have a number of top-level
abstractions at most equal to the number of top-level arrows, and also every subterm of
the f.h.p. cannot have, at each nesting level, more abstractions than the corresponding

6 The standard models of intersection types are the models in which the arrow is interpreted as
function space constructor and the intersection as set theoretic intersection.

6

number of arrows nested at that level. The number of f.h.p.’s that are candidate to prove
the isomorphism σ ≈ τ is therefore finite, and each of them can be checked whether it
can be assigned the type σ→τ [13].

3 The Type System and the Reduction to Type Normal Form
In order to keep the theory sufficiently manageable, we restrict arrow types to the ones
ending with an atomic type: σ := α ∩ α · · · ∩ α, with α := σ → · · · → σ → ϕ, since
it is well known that such restriction does not alter the set of typeable terms [15].

The formal syntax of types therefore is:
σ := α | σ ∩ σ types
α := ϕ | σ → α atomic and arrow types

where ϕ denotes an atomic type. We use σ, τ, ρ to range over types, α, β, γ to range
over arrow types, and ϕ, χ, ψ, ϑ, ξ to range over atomic types. We will occasionally use
roman letters to denote atomic types in complex examples.

Also, we consider types modulo idempotence, commutativity and associativity of
∩, so we can write

⋂
i∈I σi with finite I . We write σ ≡ τ if σ coincides with τ modulo

idempotence, commutativity and associativity of ∩.
The type assignment system is the standard simple system with intersection types

for the ordinary λ-calculus [5].
(Ax) Γ, x : σ ` x : σ

(→ I)
Γ, x : σ `M : α
Γ ` λx.M : σ → α

(→ E)
Γ `M : σ → α Γ ` N : σ

Γ `MN : α

(∩I)
Γ `M : σ Γ `M : τ

Γ `M : σ ∩ τ
(∩E)

Γ `M : σ ∩ τ
Γ `M : σ

Γ `M : σ ∩ τ
Γ `M : τ

Since we do not allow an arrow type to have an intersection on the right-hand side,
we must modify the formal definition of isomorphism. To this purpose, the following
notation is useful.
Notation If τ =

⋂
i∈I αi, then ` P :σ 7→ τ is short for ` P :σ → αi for all i ∈ I .

Definition 3 is then replaced by

Definition 4 (Isomorphism for the intersection type system). Two intersection types
σ and τ are isomorphic (σ ≈ τ) if there exists a f.h.p. P such that ` P : σ 7→ τ and
` P−1 :τ 7→ σ.

Adopting a technique similar to one used by [7], we introduce a notion of type normal
form along with an isomorphism-preserving reduction, and then we give the syntactic
characterization of isomorphism on normal types only. We use reduction to eliminate
redundant (arrow) types in intersections, i.e., those that are intersected with types intu-
itively included in them. For example, (σ → α) ∩ (σ ∩ τ → α) reduces to (σ → α).
The reduction relation is expressed with the help of some preliminary definitions.

Definition 5 (Intersection Occurrence). An intersection occurrence of α in τ is de-
fined inductively as follows (always considering, as stated at the beginning, ∩ modulo
commutativity and associativity):

7

– if τ = α ∩ σ, then the showed occurrence of α is an intersection occurrence;
– if τ = ρ1 → . . . → ρn → τ ′ → β, and α is an intersection occurrence in τ ′, then
α is an intersection occurrence in τ ;

– if τ = β ∩ σ and α is an intersection occurrence in β, then α is an intersection
occurrence in τ .

Definition 6 (Erasure). If α is an intersection occurrence in τ , then the erasure of α
in τ (notation |τ |α) is defined by:

– |τ |α = σ if τ = α ∩ σ;
– |τ |α = σ1 → . . . → σn → |τ ′|α → β if τ = σ1 → . . . → σn → τ ′ → β and α is

an intersection occurrence in τ ′;
– |τ |α = |β|α ∩ σ if τ = β ∩ σ and α is an intersection occurrence in β.

Definition 7 (Finite Hereditary Identity). A finite hereditary identity (f.h.i.) is an η-
expansion of λx.x. We use Id to range over f.h.i.’s (Note that f.h.i.’s are particular forms
of f.h.p.’s).

We are now able to state the reduction rule.

Definition 8 (Reduction). The reduction rule is

τ |τ |α

if there are a type sub-expression α and two f.h.i.s Id, Id′ such that ` Id : |τ |α 7→ τ and
` Id′ :τ 7→ |τ |α.

It is immediate to see that reduction is confluent and terminating, thus defining a type
normal form. Also, a type and its normal form are isomorphic by definition since a f.h.i.
is a f.h.p. and all f.h.i. are mutually inverse.

Observe that, as noted in Section 1, redundant arrow types cannot be erased if they
occur in intersections with atomic types, which prevent η-expansions of the identity to
provide the isomorphism between the original type and the simplified type: thus, while
we have (α ∩ β→γ) ∩ (α→γ) α→γ, the type (α ∩ β→γ) ∩ (α→γ) ∩ ϕ does
not reduce to (α→γ) ∩ ϕ. For any type σ, the type σ ∩ ϕ (with ϕ atomic) is in normal
form, since the atom ϕ blocks any reduction.

On the other hand, the type σ = ((α∩ β→ψ)→ ϕ)∩ ((α→ψ)∩χ→ ϕ) reduces
to the type γ = (α ∩ β→ ψ) → ϕ through the f.h.i. λxy.x(λv.yv) (which coincides
with its own inverse). Note that, as pointed out in Section 1, the mapping from σ to γ
only needs the simple identity (we have ` λx.x : σ→γ), but the opposite mapping re-
quires an η-expansion of the identity, so as to have the typing ` λxy.x(λv.yv) : γ 7→ σ.

We may now introduce the key notion of our work, i.e., a similarity between types,
which we will prove to be the desired syntactic counterpart of the notion of isomor-
phism.

Definition 9 (Similarity). The similarity between two sequences of types 〈σ1, . . . , σm〉
and 〈τ1, . . . , τm〉, written 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉, is the smallest equivalence
relation such that:
1. 〈σ1, . . . , σm〉 ∼ 〈σ1, . . . , σm〉;

8

2. if 〈σ1, . . . , σi, σi+1, . . . , σm〉 ∼ 〈τ1, . . . , τi, τi+1, . . . , τm〉, then
〈σ1, . . . , σi ∩ σi+1, . . . , σm〉 ∼ 〈τ1, . . . , τi ∩ τi+1, . . . , τm〉;

3. if 〈σ(1)
i , . . . , σ

(m)
i 〉 ∼ 〈τ (1)

i , . . . , τ
(m)
i 〉 for 1 ≤ i ≤ n, then

〈σ(1)
1 → . . .→ σ

(1)
n → α(1), . . . , σ

(m)
1 → . . .→ σ

(m)
n → α(m)〉 ∼

〈τ (1)
π(1) → . . .→ τ

(1)
π(n) → α(1), . . . , τ

(m)
π(1) → . . .→ τ

(m)
π(n) → α(m)〉,

where π is a permutation of 1, . . . , n.

Similarity between types is trivially defined as similarity between unary sequences:
σ ∼ τ if 〈σ〉 ∼ 〈τ〉.

The intuitive meaning is that, for two intersection types to be isomorphic, it is not suffi-
cient that they coincide modulo permutations of types in the arrow sequences, as in the
case of cartesian products: the permutation must be the same for all the corresponding
type pairs in an intersection. The notion of similarity exactly catches such meaning.

For example, the two types (ϕ1 → ϕ2 → ϕ3 → χ) ∩ (ψ1 → ψ2 → ψ3 → ϑ) and
(ϕ3→ϕ2→ϕ1→χ)∩ (ψ2→ψ3→ψ1→ϑ) are not similar and thus (as we will prove)
not isomorphic, while the corresponding types with cartesian product instead of inter-
section are. The reason is that, owing to the semantics of intersection, the same f.h.p.
must be able to map all the conjuncts of one intersection to the corresponding conjuncts
in the other intersection. In the example, there is obviously not one f.h.p. that maps both
ϕ1→ϕ2→ϕ3→χ to ϕ3→ϕ2→ϕ1→χ and at the same time ψ1→ψ2→ψ3→ϑ to
ψ2→ψ3→ψ1→ϑ.
On the other hand, the two types

(ρ1→ρ2→ρ3→α) ∩ (σ1→σ2→σ3→β),
(ρ2→ρ3→ρ1→α) ∩ (σ2→σ3→σ1→β)

are similar (and therefore isomorphic), since the permutation is the same in the two
components of the intersection.

A type like (σ1→ . . .→ σn→ α) ∩ ϕ may only be similar (and thus isomorphic)
to itself, since the presence of the atom ϕ in the intersection blocks the possibility of
any permutation other than the identity in the conjunct type subexpression σ1→ . . .→
σn→α.

A more complex example of similar types is the following:
α1 ∩ α2 ∼ β1 ∩ β2,
where (indicating atomic types by roman letters):
α1 = (e→f)→ (a ∩ b→c→d) ∩ (g→b→c)→ s→ t
α2 = (h→k) ∩ (p→q)→ (u→v→w)→ q ∩ r → (a ∩ b→z)
β1 = (c→a ∩ b→d) ∩ (b→g→c)→ s→ (e→f)→ t
β2 = (v→u→w)→ q ∩ r → (h→k) ∩ (p→q)→ (a ∩ b→z).

Note that the introduction of type sequences in the definition of similarity is needed in
order to keep the correspondence between types in intersections. Consider, for example,
the following two types:

ρ1 = (σ1 ∩ α→σ2→β) ∩ (τ1→τ2→γ),
ρ2 = (σ2→σ1→β) ∩ (τ2→α ∩ τ1→γ).

They are not isomorphic, and are also not similar since the sequences 〈σ1 ∩ α, τ1〉,
〈σ1, α∩τ1〉 are not. If, however, the definitions were given directly through intersection,

9

owing to the associativity of ∩ the two sequences would be represented by the same
intersection σ1 ∩ α ∩ τ1, and the two types ρ1, ρ2 would therefore be similar.
An equivalent, slightly more algorithmic, definition of similarity may be given through
a notion of permutation tree.

Definition 10 (Permutation Tree).
– The empty tree ∅ is a permutation tree.
– 〈π, [Π1, . . . ,Πn]〉 is a permutation tree if π is a permutation of 1, . . . , n and Π1, . . . ,Πn

are permutation trees.

An example of a permutation tree is the tree Π0 = 〈(2, 3, 1), [〈(2, 1), [∅,∅]〉,∅,∅]〉.
A more complex example is the tree Π defined as follows:

Π = 〈(2, 3, 1), [Π1,∅,Π3]〉
where

Π1 =
〈(

3, 1, 4, 2
)
,
[
∅,∅, 〈(2, 1), [∅,∅]〉, 〈(1, 3, 2), [∅,∅,∅]〉

]〉
Π3 =

〈(
1, 2, 3

)
,
[
〈(2, 1), [∅,∅]〉,∅, 〈(3, 2, 1, 4), [∅,∅,∅,∅]〉

]〉
A permutation tree is nothing but an abstract representation of a f.h.p. One may easily
build the concrete f.h.p. corresponding to a permutation tree, by creating as many fresh
variables as is the cardinality of the permutation and by recursively creating subterms
that respectively have those variables as head variables, in the order specified by the
permutation.
In the following definition trm is the recursive mapping: it takes a permutation tree and
the name z of a fresh variable, and creates a term with free head variable z, which is
the β-reduct of the corresponding f.h.p. applied to z. The top-level mapping fhp merely
abstracts the head variable so as to transform the term into a f.h.p. proper.

Definition 11 (F.h.p. corresponding to a permutation tree).
The f.h.p. corresponding to a permutation tree Π is:

fhp(Π) = λz.trm(Π, z),with z fresh variable;
trm(∅, z) = z;
trm(〈π, [Π1, . . . ,Πn]〉, z) = λx1 . . . xn . z trm(Π1, xπ(1)) . . . trm(Πn, xπ(n))
with x1 . . . xn fresh variables.

Examples.
The f.h.p. corresponding to the permutation tree Π0 = 〈(2, 3, 1), [〈(2, 1), [∅,∅]〉,∅,∅]〉
is the term λzx1x2x3.z(λu1u2.x2u2u1)x3x1.
The f.h.p. corresponding to the permutation tree Π = 〈(2, 3, 1), [Π1,∅,Π3]〉 of the
example above is the term P = λzx1x2x3.zP1P2P3, where

P1 = λu1u2u3u4 . x2u3u1(λv1v2 . u4v2v1)(λw1w2w3 . u2w1w3w2)
P2 = x3

P3 = λy1y2y3 . x1(λs1s2 . y1s2s1)y2(λt1t2t3t4 . y3t3t2t1t4)

A permutation tree represents a tree of nested permutations: if we apply it to a type
having a homologous tree structure, i.e., if we (are able to) recursively perform on the
type all the permutations at all levels, we obtain a new type which is clearly similar to
the original one. We therefore give the following natural definition.

10

Definition 12 (Application of a permutation tree to a type).
Application of a permutation tree is a partial map from types to types:

– ∅(σ) = σ
– 〈π, [Π1, . . . ,Πn]〉(σ1 → · · · → σn → α) = Π1(σπ(1))→ · · · → Πn(σπ(n))→ α
– Π(σ ∩ τ) = Π(σ) ∩ Π(τ)
– Π(σ) = undefined otherwise.

Taking again one of the examples above, if
α1 = (e→f)→ (a ∩ b→c→d) ∩ (g→b→c)→ s→ t
α2 = (h→k) ∩ (p→q)→ (u→v→w)→ q ∩ r → (a ∩ b→z)
Π0 = 〈(2, 3, 1), [〈(2, 1), [∅,∅]〉,∅,∅]〉

then we have Π0(α1 ∩ α2) = β1 ∩ β2, where
β1 = (c→a ∩ b→d) ∩ (b→g→c)→ s→ (e→f)→ t
β2 = (v→u→w)→ q ∩ r → (h→k) ∩ (p→q)→ (a ∩ b→z)

With the other example, if we have:
σ = γ1 → γ2 → ξ3 → ξ
where
γ1 = (ϕ11→ϕ12→χ1)→ χ2 → (ϕ31→ϕ32→ϕ33→ϕ34→χ3)→ χ
γ2 = ϑ1 → (ψ21→ψ22→ψ23→ϑ2)→ ϑ3 → (ψ41→ψ42→ϑ4)→ ϑ

then Π(σ) = τ , where
τ = γ′2 → ξ3 → γ′1 → ξ
where
γ′2 = ϑ3 → ϑ1 → (ψ42→ψ41→ϑ4)→ (ψ21→ψ23→ψ22→ϑ2)→ϑ
γ′1 = (ϕ12→ϕ11→χ1)→ χ2 → (ϕ33→ϕ32→ϕ31→ϕ34→χ3)→ χ

Two types can then be defined as equivalent when one can be obtained from the other
(modulo idempotence, commutativity and associativity, as usual) by applying a permu-
tation tree.

Definition 13 (Type permutation-equivalence).
Two types σ and τ are permutation-equivalent, notation σ l τ , if ∃Π .Π(σ) ≡ τ .

It is trivial to see that if Π(σ) ≡ τ , then there also exists an inverse permutation tree
Π−1 such that Π−1(τ) ≡ σ.

It is easy to prove that σ ∼ τ if and only if σ l τ , so that the latter equivalence
merely is an alternative definition of the previously defined similarity. We will therefore
always use the first notation.
As an immediate consequence of Definition 12, we have the following lemma.

Lemma 1. If Π(σ) ≡ τ , with Π = 〈π, [Π1, . . . ,Πn]〉, then there exists a set I of indices
such that σ and τ have the forms:

σ ≡
⋂
i∈I(σ

i
1 → . . .→ σin → αi), τ ≡

⋂
i∈I(τ

i
1 → . . .→ τ in → αi)

and for all i ∈ I , for k = 1, . . . , n, one has Πk(σiπ(k)) ≡ τ
i
k, therefore σiπ(k) ∼ τ

i
k.

Note that the above definitions of similarity are not equivalent to stating that, in the
inductive case:

11⋂
i∈I(σ

i
1 → . . .→ σin → αi) ∼

⋂
i∈I(τ

i
1 → . . .→ τ in → αi)

if there exists a permutation π such that
∀i ∈ I . τ ik ∼ σ iπ(k) and

⋂
i∈I τ

i
k ∼

⋂
i∈I σ

i
π(k) for k = 1, . . . , n.

A counterexample is given by the following pair of types:
σ = (β1 → α1) ∩ (β2 → α2) ∩ (β3 → α3)
τ = (γ1 → α1) ∩ (γ2 → α2) ∩ (γ3 → α3)

where
β1 = ϕ→ χ→ ψ → ϑ = γ2

β2 = ϕ→ ψ → χ→ ϑ = γ3

β3 = χ→ ϕ→ ψ → ϑ = γ1

We have Π1(β1) ≡ γ1, Π2(β2) ≡ γ2, Π3(β3) ≡ γ3, with
Π1 = 〈(2, 1, 3), [∅,∅,∅]〉, Π2 = 〈(1, 3, 2), [∅,∅,∅]〉,

Π3 = 〈(3, 1, 2), [∅,∅,∅]〉,
and therefore β1 ∼ γ1, β2 ∼ γ2, β3 ∼ γ3; also, β1 ∩ β2 ∩ β3 ∼ γ1 ∩ γ2 ∩ γ3 since
trivially β1 ∩ β2 ∩ β3 ≡ γ1 ∩ γ2 ∩ γ3. This, however, does not allow us to conclude
that σ ∼ τ , since there exists no permutation tree Π such that Π(σ) = τ (because
Π(σ) = Π(σ1)∩Π(σ2)∩Π(σ3) should hold), or, equivalently, since – following the first
definition of similarity – the two sequences 〈β1, β2, β3〉, 〈γ1, γ2, γ3〉 (= 〈β3, β1, β2〉)
are not similar. Accordingly, the two types σ and τ are not similar (σ 6∼ τ), and thus, as
will be proved by Theorem 8, not isomorphic (σ 6≈ τ).

4 Standard Properties of the Type System
Our system, being a trivial restriction of the simple intersection type system, obviously
has the well-known standard properties of the unrestricted system [1]. In particular, the
Lemma 2, a generation lemma and the subject reduction property hold, and the proofs
are standard.

Lemma 2. If Γ ` λx.M :σ, then σ cannot be an atomic type.

Lemma 3 (Generation Lemma).
1. If x :

⋂
i∈I αi ` x :

⋂
j∈J βj , then {βj | j ∈ J} ⊆ {αi | i ∈ I}.

2. If Γ ` λx.M :
⋂
i∈I(σi → αi), then for all i ∈ I: Γ, x :σi `M :αi.

3. If Γ `MN :α, then there exists a type σ such that Γ `M :σ → α and Γ ` N :σ.
Proof. The proof is by induction on derivations.

Theorem 6 (Subject Reduction). If Γ `M :σ and M −→β N , then Γ ` N :σ.
Proof. Standard.

The Lemmata 4, 5 and 6 state some useful properties of η-expansions of the identity and
of permutators. In particular, Lemma 4 expresses a necessary condition for a f.h.i. to be
typeable with an arrow type, and gives the forms of the types of its subterms. Lemma
5.1 says that a f.h.i. is able to map an intersection α ∩ β to one of its components, for
example α, only if it is able to map such component α to itself (which is not always
the case, since the number of top-level arrows in α cannot be less than the number of

12

Table 2 Proof of Lemma 6
x :

T
i∈I αi ` Px :

T
j∈J βj =⇒ x :

T
i∈I αi ` λz1 . . . zn.x(P1zπ(1)) . . . (Pnzπ(n)) :

T
j∈J βj

by Theorem 6
=⇒ ∀j ∈ J. x :

T
i∈I αi ` λz1 . . . zn.x(P1zπ(1)) . . . (Pnzπ(n)) :βj

by rule (∩E)

=⇒ ∀j ∈ J. βj = σ
(j)
1 → . . .→ σ

(j)
n → γ(j)

for some σ(j)
1 , . . . , σ

(j)
n , γ(j) by Lemma 2

=⇒ ∀j ∈ J. Γ ` x(P1zπ(1)) . . . (Pnzπ(n)) :γ(j)

where Γ = x :
T

i∈I αi, z1 :σ
(j)
1 , . . . zn :σ

(j)
n by Lemma 3(2)

=⇒ ∀j ∈ J. x :
T

i∈I αi ` x :τ
(j)
1 → . . .→ τ

(j)
n → γ(j) &

zπ(1) :σ
(j)

π(1) ` P1zπ(1) :τ
(j)
1 & . . .

& zπ(n) :σ
(j)

π(n) ` Pnzπ(n) :τ
(j)
n

for some τ (j)
1 , . . . , τ

(j)
n by Lemma 3(3)

=⇒ ∀j ∈ J. ∃ij ∈ I. αij = τ
(j)
1 → . . .→ τ

(j)
n → γ(j)

by Lemma 3(1)
=⇒ ∀j ∈ J. ∃ij ∈ I. x :αij ` Px :βj

by rules (→ E) and (→ I).

top-level abstractions of the f.h.i.). Lemma 5.2 states the rather obvious fact that if a
f.h.i. is able to map both the type σ to itself and the type τ to itself, then it also maps
their intersection to itself.

Finally, Lemma 6 states that a f.h.p. P maps an intersection
⋂
i∈I αi to another

intersection
⋂
j∈J βj , i.e., ` P :

⋂
i∈I αi 7→

⋂
j∈J βj , if and only if every component

βj in the target intersection is obtained by P from some component αi in the source
intersection.

In such lemmata and in the following we write judgments of the form x : σ ` Px : τ
(where P may also be Id) instead of ` P : σ 7→ τ , in order to simplify the proofs. The
two kinds of judgments are equivalent not because of a property of subject expansion,
which does not hold in general, but because a f.h.p. P is an abstraction, and therefore
` P : σ 7→ τ if and only if x : σ ` Px : τ , as can be easily seen: if x : σ ` Px : τ , with
P = λx.M , then by β-reduction and subject reduction one has x : σ ` M : τ , whence,
by (∩ E) and (→I), ` P : σ 7→ τ (rule (∩ E) is needed since (→I) can only build arrow
types). More generally, this is a consequence of the property of subject expansion for
intersection types in the λI-calculus. The opposite implication, from ` P : σ 7→ τ to
x : σ ` Px : τ , trivially follows by (→E) and (∩ I).

Lemma 4. 1. If n 6= m or ϕ 6= ϕ′, then there is no Id such that

` Id : (σ1 → . . .→ σn → ϕ)→ τ1 → . . .→ τm → ϕ′.

2. If ` Id : (σ1 → . . . → σn → ϕ) → τ1 → . . . → τn → ϕ and σm 6= τm and
σq = τq for m + 1 ≤ q ≤ n, then Id β←− λyz1 . . . zp.y(Id1z1) . . . (Idpzp) for
some p and some Id1, . . . , Idp such that and m ≤ p ≤ n and ` Idl : τl 7→ σl for
1 ≤ l ≤ p.

Proof. Easy, using the Generation Lemma.

Lemma 5. 1. If x :σ ∩ α ` Idx :α, then x :α ` Idx :α.

13

2. If x :σ ` Idx :σ and x :τ ` Idx :τ , then x :σ ∩ τ ` Idx :σ ∩ τ .
Proof. Easy.

Lemma 6. x :
⋂
i∈I αi ` Px :

⋂
j∈J βj iff ∀j ∈ J. ∃ij ∈ I. x :αij ` Px :βj .

Proof. The right-to-left direction easily follows by application of the (∩E) rule and
then of the (∩I) rule. For the left-to-right direction the proof is given in Table ??,
where P β←− λyz1 . . . zn.y(P1zπ(1)) . . . (Pnzπ(n)).

5 Isomorphism Characterisation
Having established an isomorphism-preserving reduction in Section 3, we can now re-
strict ourselves to normal types, for which we show that the similarity relation is a
(sound and complete) characterization of isomorphism.

If we only consider normal types, we can strengthen the Lemma 6 by Lemma
8, which states that if a f.h.p. P has the type

⋂
i∈I αi 7→

⋂
j∈J βj , then not only

∀j∈J .∃ij ∈ I. ` P : αij → βj , but its inverse P−1 precisely maps each component
βj of the target intersection to its corresponding αij in the source intersection. This is
the key lemma that allows us to prove the main theorem, which states the coincidence
between the two relations ∼ and ≈ for normal types.

Lemma 7 is instrumental to the proof of Lemma 8, and expresses the fact that in an
intersection in normal form there are no redundant components, i.e., there cannot exist
an η-expansion of the identity that “adds” one of the conjunct types starting from the
others.

Lemma 7. If τ ∩ α is normal, then there is no Id such that x :τ ` Idx :τ ∩ α.
Proof. Let τ =

⋂
i∈I αi. Towards a contradiction assume x : τ ` Idx : τ ∩ α. Since

x :τ ∩ α ` x :τ we get τ ∩ α τ .

Lemma 8. If
⋂
j∈J βj is a normal type, and x :

⋂
i∈I αi ` Px :

⋂
j∈J βj , and x :⋂

j∈J βj ` P−1x :
⋂
i∈I αi, and x :αi0 ` Px :βj0 , then x :βj0 ` P−1x :αi0 .

Proof. By Lemma 6 there is j1 ∈ J such that x :βj1 ` P−1x :αi0 . We assume j0 6= j1
towards a contradiction. From x : βj1 ` P−1x : αi0 and x : αi0 ` Px : βj0 we get
x : βj1 ` P(P−1x) : βj0 , which implies x :

⋂
j∈J,j 6=j0 βj ` (P ◦ P−1)x :

⋂
j∈J βj by

Lemma 5. This is, by Lemma 7, impossible, since P ◦ P−1 is β-reducible to a f.h.i.

Theorem 7 (Soundness of∼). If σ and τ are arbitrary types, then σ∼τ implies σ ≈ τ .
Proof. By induction on the definition of ∼ we show that 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉
implies that there is a f.h.p. P such that ` P :σj 7→ τj for 1 ≤ j ≤ m.
The only interesting case is

〈σ1, . . . , σm〉 = 〈σ(1)
1 → . . .→σ

(1)
n →α(1), . . . , σ

(m)
1 → . . .→σ

(m)
n → α(m)〉

〈τ1, . . . , τm〉 = 〈τ (1)
π(1)→ . . .→τ

(1)
π(n)→α(1), . . . , τ

(m)
π(1)→ . . .→τ

(m)
π(n)→α(m)〉,

since 〈σ(1)
i , . . . , σ

(m)
i 〉 ∼ 〈τ (1)

i , . . . , τ
(m)
i 〉 for 1 ≤ i ≤ n.

By induction, there is a Pi such that ` Pi : σ(j)
i 7→ τ

(j)
i for 1 ≤ j ≤ m. We can then

choose P as the β-normal form of λyz1 . . . zn.y(P1zπ−1(1)) . . . (Pnzπ−1(n)).

14

The opposite implication does not hold: two isomorphic types are not necessarily sim-
ilar. For example, the type σ = ((α ∩ β→ ψ) → ϕ) ∩ ((α→ ψ) ∩ χ → ϕ) and its
normal form γ = (α ∩ β→ψ) → ϕ, already considered in Section 3, are isomorphic
but not similar, simply because they are intersection types of different arities: γ consists
of only one arrow type, while σ is an intersection of two arrow types, though one of
them is redundant. On the other hand, the double implication holds for normal types.

Theorem 8 (Main Theorem). If σ and τ are normal types, then σ ≈ τ iff σ∼τ .

Proof. We have to prove that σ ≈ τ =⇒ σ∼τ (the opposite implication is established
by Theorem 7).

We show by structural induction on P that if ` P : σj 7→ τj and ` P−1 : τj 7→ σj
for 1 ≤ j ≤ m, then 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉.
Let σj =

⋂
1≤i≤nj α

(j)
i and τj =

⋂
1≤i≤pj β

(j)
i .

By Lemma 8 we get nj = pj and ` P : α(j)
i → β

(j)
i and ` P−1 : β(j)

i → α
(j)
i . Let

P β←− λyz1 . . . zn.y(P1zπ(1)) . . . (Pnzπ(n)). As in the proof of Lemma 6, we get
α

(j)
i = τ

(i,j)
1 → . . .→ τ

(i,j)
n → γ(i,j) and β(j)

i = σ
(i,j)
1 → . . .→ σ

(i,j)
n → γ(i,j)

and ` Pl :σ
(i,j)
π(l) 7→ τ

(i,j)
l and ` P−1

l : τ (i,j)
l 7→ σ

(i,j)
π(l) for 1 ≤ l ≤ n. By induction we

have

〈σ(1,1)
π(l) , . . . , σ

(n1,1)
π(l) , . . . , σ

(1,m)
π(l) , . . . , σ

(nm,m)
π(l) 〉

∼
〈τ (1,1)
l , . . . , τ

(n1,1)
l , . . . , τ

(1,m)
l , . . . , τ

(nm,m)
l 〉

for 1 ≤ l ≤ n, which implies

〈α(1)
1 , . . . , α

(1)
n1 , . . . , α

(m)
1 , . . . , α

(m)
nm 〉 ∼ 〈β

(1)
1 , . . . , β

(1)
n1 , . . . , β

(m)
1 , . . . , β

(m)
nm 〉

and then 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉.

Of course, the characterization of isomorphisms immediately extends, via normaliza-
tion, to all types of our system, as stated by the following corollary of the main theorem.

Theorem 9. For any two types σ and τ , σ ≈ τ ⇐⇒ σ↓∼ τ↓, where σ↓ and τ↓ are
the normal forms respectively of σ and τ .

Proof. Since a type is isomorphic to its normal form we have that:

1. for the ⇒-direction, if σ ≈ τ , then σ↓ ≈ σ ≈ τ ≈ τ ↓, whence, by the Main
Theorem in the⇒-direction, σ↓∼ τ↓;

2. for the opposite direction, if σ↓∼ τ↓, then by the Main Theorem in the⇐-direction
we have σ↓ ≈ τ↓, whence: σ ≈ σ↓ ≈ τ↓ ≈ τ, i.e., σ ≈ τ .

A prototypal isomorphism checker, directly obtained by the permutation-tree definition
of similarity, has been realized in Prolog, and a simple web interface for it is available
at the address http://lambda.di.unito.it/iso/index.html.

15

6 How to Normalise Types
The application of the type reduction rule, as defined in Section 3, suffers from com-
binatorial explosion in the search for the erasable type subexpression α, thus possibly
making the normalization impractical. However, the search space can be considerably
reduced with a more accurate formulation of the algorithm.

As explained in Section 3, the reduction may only simplify an intersection by eras-
ing a type that is greater – according to the standard semantics – than one of the other
conjuncts. We can then formally introduce a preorder relation on types, whose axioms
and rules correspond to the view of “→” as a function space constructor and of “∩” as
set intersection:

σ ≤ σ σ ≤ τ, τ ≤ ρ ⇒ σ ≤ ρ

σ ∩ τ ≤ σ σ ∩ τ ≤ τ

σ ≤ τ, σ ≤ ρ⇒ σ ≤ τ ∩ ρ

σ ≤ τ, α ≤ β ⇒ τ → α ≤ σ → β

Then, when reducing a type σ to normal form, the search for a redundant type within
σ may be limited to an outermost search for a type α that is greater than a type β in
an intersection, followed by the testing whether two f.h.i. Id, Id′ with the appropriate
type exists, i.e., such that ` Id : |σ|α 7→ σ and ` Id′ : σ 7→ |σ|α. This can be performed
through a mapping I which, applied to two types σ and τ , builds the set of all f.h.i.’s Id
such that ` Id :σ 7→ τ .

I(σ1 → . . .→ σn → ϕ, τ1 → . . .→ τm → ϕ′) = ∅
if n 6= m or ϕ 6= ϕ′

I(σ1 → . . .→ σn → ϕ, τ1 → . . .→ τn → ϕ) = {Id |
λyz1 . . . zp.y(Id1z1) . . . (Idpzp) −→β Id
& Idl ∈ I(τl, σl) for 1 ≤ l ≤ p}
if σm 6= τm and σq = τq
for m+ 1 ≤ q ≤ n and m ≤ p ≤ n

I(
⋂
i∈I αi,

⋂
j∈J βj) = {Id | ∀j ∈ J∃i ∈ I. Id ∈ I(αi, βj)}

The correctness of the mapping I easily follows from Lemmas 4 and 6.

7 Conclusions and Future Work
In this paper we have investigated for the first time the type isomorphisms for intersec-
tion types, and we have provided, by means of a fine analysis of the invertible terms, a
precise characterization of their structure, despite the unexpected fact that isomorphism
with intersection types is not a congruence.

Even if the isomorphism relation is decidable, we have shown that it is weaker than
type equality in the standard models of intersection types, where arrows are interpreted
as sets of functions, and intersections as set intersections; such equality is a congruence,
consisting of the equality theory given by the axioms of commutativity, associativity
and swap (i.e, the first line and the axioms 1 and 2 of Table 1 with × replaced by ∩
) and by the order relation induced by the preorder reported in Section 6. This means

16

that the universal model for type isomorphisms is not a standard model of intersection
types, while Cartesian Closed Categories build a universal model for the simply typed
lambda calculus with surjective pairing and terminal object; the existence of such natu-
ral universal model for intersection types is an open question.

Finally, we recall that since types may in general be interpreted – owing to the
well-known Curry-Howard correspondence – as propositions in some suitable logic, a
characterization of type isomorphisms may immediately become a characterization of
strong logical equivalences between propositions. In the case of intersection types, how-
ever, this is a problematic issue, since it is well known that intersection is an intensional
operator, with no direct logical counterpart in the Curry-Howard sense. Recently, new
kinds of logics have been proposed which give a logical meaning to the intersection
operator [2], [11]. It might therefore be interesting to explore the role of intersection
type isomorphisms in such contexts.
Acknowledgments. We would like to thank the anonymous referees for their detailed
remarks and helpful comments.

References

1. H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the com-
pleteness of type assignment. The Journal of Symbolic Logic, 48(4):931–940 (1984), 1983.

2. V. Bono, B. Venneri, and L. Bettini. A typed lambda calculus with intersection types. Theo-
retical Computer Science, 2008. To appear.

3. K. Bruce, R. Di Cosmo, and G. Longo. Provable isomorphisms of types. Mathematical
Structures in Computer Science, 2(2):231–247, 1992.

4. K. Bruce and G. Longo. Provable isomorphisms and domain equations in models of typed
languages. In R. Sedgewick, editor, STOC’85, pages 263 – 272. ACM, 1985.

5. M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the
λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

6. M. Dezani-Ciancaglini. Characterization of normal forms possessing an inverse in the λβη
calculus. Theoretical Computer Science, 2:323–337, 1976.

7. R. Di Cosmo. Second order isomorphic types. A proof theoretic study on second order λ-
calculus with surjective pairing and terminal object. Information and Computation, pages
176–201, 1995.

8. R. Di Cosmo. A short survey of isomorphisms of types. Mathematical Structures in Com-
puter Science, 15:825–838, 2005.

9. M. Fiore, R. Di Cosmo, and V. Balat. Remarks on isomorphisms in typed lambda calculi
with empty and sum types. Annals of Pure and Applied Logic, 141(1–2):35–50, 2006.

10. O. Laurent. Classical isomorphisms of types. Mathematical Structures in Computer Science,
15:969–1004, 2005.

11. L. Liquori and S. Ronchi Della Rocca. Intersection types a la Church. Information and
Computation, 205(9):1371–1386, 2007.

12. C. F. Martin. Axiomatic bases for equational theories of natural numbers. Notices of the
American Mathematical Society, 19(7):778, 1972.

13. S. Ronchi Della Rocca. Principal type scheme and unification for intersection type discipline.
Theoretical Computer Science, 59:1–29, 1988.

14. S. Soloviev. A complete axiom system for isomorphism of types in closed categories. In
A. Voronkov, editor, LPAR’93, volume 698 of Lecture Notes in Computer Science, pages
360–371. Springer-Verlag, 1993.

15. S. van Bakel. Complete restrictions of the intersection type discipline. Theoretical Computer
Science, 102(1):135–163, 1992.

	On Isomorphisms of Intersection Types
	Mariangiola Dezani-Ciancaglini, Roberto Di Cosmo, Elio Giovannetti, Makoto Tatsuta

