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When simulating large scale phenomena, it is natural to divide the domain of computation into
subdomains. Then, besides the issue of the existence of a global solution to the coupled problem,
arises the difficulty of its implementation. The OCamlP3l system provides a structured approach
to parallel programming using skeletons and template based compilation techniques: designing and
debugging is performed on a sequential version, and the parallel version is automatically deduced
by a recompilation of the source program. We present the application of a domain decomposition
method to a 3D flow problem around a deep underground nuclear waste disposal.

1. Introduction

This work deals with the simulation of flow and transport in porous media to study the feasibility
of an underground nuclear waste disposal. Reliable simulations are crucial to forecast the behavior
of contaminants in the geological layers, and thus should be computed in 3 dimensions on very long
time scales (transport simulations over 10 million years), with very different length scales (going
from the meter to 20 or 30 kilometers), involving possibly different physics. A natural way of
treating such a large scale problem is to divide it into smaller subproblems, and then to couple them.

We restrict ourselves in this paper to the efficient simulation of stationary flow. The Darcy equa-
tions are solved by using a non-overlapping domain decomposition method that allows the treatment
of non-matching grids. This coupling method is based on Robin interface conditions and was studied
in [1]. This nonconforming domain decomposition method is very practical as it allows the separate
meshing of the subdomains: for example, a local refinement around the underground storage, and
the rest of the domain can be meshed with a coarser mesh, following the geological layers.

Code coupling and parallelism are a very demanding implementation task, especially when the
codes to couple have been developed separately. The main difficulty is the fine tuning of the com-
munications between the codes. Most of these aspects actually correspond to a sequence of generic
basic tasks that should be automatically set up by a program, or better via compilation. This is where
OCamlP3l enters the picture. Objective Caml (or OCaml) is a fast modern high-level functional pro-
gramming language based on formal semantics. It is particularly well suited for the implementation
of complex algorithms. As an example, the OCamlP3l system, see [3], provides a structured ap-
proach to parallel programming using skeletons and template based compilation techniques, see [6].
It brings all the piping capabilities we need to implement the communications, and moreover, it of-
fers the parallelization for free: designing and debugging is driven on a sequential version, and the
parallel version is automatically deduced by a simple recompilation of the same source program.

We present first the domain decomposition method in Section 2, then Section 3 is devoted to
the OCamlP3l system and Section 4 to the implementation of the coupling algorithm, and finally in
Section 5, we show numerical results for both extensibility tests and a realistic 3D flow computation.
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Figure 1. The subdomainΩi and itsni neighborsΩjk
, jk ∈ Ni. The approximation spacesΛijk

andΛjki on each side of the interfaceΣijk
are different.

2. Domain Decomposition

2.1. A model problem
Let Ω be a convex domain inRd, d = 2 or 3, and letΓ = ∂Ω be its boundary. We suppose that the

flow in Ω is governed by a conservation equation together with Darcy’s law relating the gradient of
the pressurep to the Darcy velocityu via





div u = q in Ω
u = −K∇ p in Ω
p = p onΓ,

(1)

whereK is the permeability tensor,q a source term andp the given pressure on the boundaryΓ.
The domainΩ is decomposed inton non-overlapping subdomainsΩi with i ∈ I = {1, 2, . . . , n},

and we denote byΓi = ∂Ωi ∩ Γ theexternal boundaries. Let Σi = ∂Ωi\Γ be theinternal boundary
of Ωi, and letΣ =

⋃
i∈I Σi be the geometricstructureof the decomposition. Then, we can define the

geometricinterfacebetween neighboring subdomainsΩi andΩj asΣij = Σji = Σi∩Σj. We denote
the number of neighbors of subdomainΩi by ni and the set of their indices byNi = {j1, j2, . . . , jni

}.
See Figure 1 for an illustration in the 2D case. The set of all couples of neighbors, calledconnectivity
table, is denoted byN = {(i, j)/i ∈ I, j ∈ Ni}, it is naturally ordered by the lexicographic order
onN2. Let s be the permutation involution onN defined bys(i, j) = (j, i).

2.2. A fixed point formulation
Let T h

i be a conforming finite element partition of the subdomainΩi. We denote bySh
ij the trace

of T h
i on Σij. In general,Sh

ij 6= Sh
ji when the meshesT h

i andT h
j do not match at the interfaceΣij.
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Let Λij = P0(Sh
ij) the space of facewise, or edgewise in 2D, constant functions onSh

ij and set

Λi =
⊕
j∈Ni

Λij, Λ =
⊕
i∈I

Λi =
⊕

(i,j)∈N
Λij,

Λ̃i =
⊕
j∈Ni

Λ̃ij =
⊕
j∈Ni

Λji, Λ̃ =
⊕
i∈I

Λ̃i =
⊕

(i,j)∈N
Λji =

⊕

(i,j)∈s(N)

Λij.

The global problem (1) can be rewritten as a transmission problem which states the same equations
on each subdomain together with transmission conditions expressing continuity of the pressure and
of the normal velocity across each interfaceΣij. These transmission conditions can be rewritten as
mixed Robin conditions with Robin coefficientsαij > 0 andαji > 0 on each interfaceΣij. Using
a mixed finite element method with hybrid Lagrange multipliers, see [7], the discrete approximation
of the local elliptic subproblems with Robin conditions take of the form

Livi = (qi, g(vi)) (2)

wherevi summarizes the velocity, pressure and Lagrange multiplier unknowns, and the functiong
expresses the Robin conditions on all the interfaces of the subdomainΩi.

Then, a simple method to solve all subproblems (2) fori ∈ I is to solve iteratively the following
fixed point problem: givenλ0 ∈ Λ, for k ≥ 0, compute until convergenceλk+1

i = g(vk+1
i ) where

vk+1
i is the solution of the local linear system

Liv
k+1
i = (qi, λ

k
i ). (3)

One can notice that matrixLi is non-symmetric, hence when using an iterative method to solve (3),
it is advisable to accelerate the convergence with a non-symmetric Krylov method such as BiCGStab
or GMRes.

2.3. Interface operators
We introduce discrete Robin-to-Robin operatorsSiqi

in each subdomainΩi defined by:

Siqi
: λi ∈ Λi 7−→ µi = g(vi) ∈ Λi (4)

wherevi of the solution of theinner linear system

Livi = (qi, λi). (5)

For all neighborsΩi andΩj, (i, j) ∈ N, let Pi→j be theL2-projection operator fromL2(Σij)
onto Λ̃ij = Λji. For all subdomainΩi, i ∈ I, let Pi be the tensor product

⊗
j∈Ni

Pi→j. And letRi

(resp.R̃i) be the restriction operator fromΛ ontoΛi (resp. fromΛ̃ ontoΛ̃i).
Finally, we define the global operators

Sq =
∑
i∈I

R̃>
i Siqi

Ri : Λ −→ Λ and P =
∑
i∈I

R̃>
i PiRi : Λ −→ Λ̃ (6)

and we set

A = IdΛ − sPS0 and b = sPSq(0). (7)

With all these notations, solving the initial problem (1) is equivalent to findλ ∈ Λ solution to the
outer linear system

Aλ = b. (8)

Once again, since the matrixA is non-symmetric, it is advisable to accelerate the convergence of the
resolution of (8) with a non-symmetric Krylov method such as BiCGStab or GMRes.
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3. Skeleton Programming with OCamlP3l

Caml is a strongly-typed functional programming language from the ML (Meta Language) fam-
ily. OCaml (Objective Caml) is an open source implementation of Caml developed at INRIA1. P3L
(Pisa Parallel Programming Language) is a structured parallel programming language developed at
the Department of Computer Science of the University of Pisa. It is based upon skeleton/templates
and allows parallel programs to be developed composing a small set of primitive parallel forms2.
OCamlP3l is a parallel programming system based on OCaml and P3l languages, providing seam-
less integration of parallel programming and functional programming and advanced features like
sequential logical debugging of parallel programs and strong typing, useful both in teaching parallel
programming and in the building of full-scale applications3.

We briefly present now the OCamlP3l system, and the reader can refer to [2] for more details.

3.1. Three semantics
A distinctive feature of the OCamlP3l system, among all skeleton-based systems, is that the se-

mantics of the skeletons is not hard-wired: the system allows the user to compile his code without
any source modification using three possible semantics, i.e. three implementations of the skeletons.
Thesequential semanticsproduces an executable that can run on a single machine, as a single pro-
cess, and easily debugged using standard techniques and tools for sequential programs. Theparallel
semanticsproduces a generic SPMD program that can be deployed on a parallel machine, a cluster,
or a network of workstations. Thegraphical semanticsproduces a program that displays a picture
of the parallel computational network that is deployed when running the parallel version.

A key issue in the further development of OCamlP3l will be the proof of the adequation theorem
stating the agreement between sequential and parallel executions: under reasonable assumptions, for
any user program the two semantics should produce exactly the same result. Hence, the user has
only to debug the sequential version.

3.2. Skeletons combinators
The OCamlP3l skeletons are compositional: the skeletons are combinators that form an algebra of

functions and functionals called theskeleton languagethat define the parallel behavior of programs.
More precisely, a skeleton is astream processor, i.e. a function that transforms an input stream of
incoming data into an output stream of outgoing data.

In version 2.0 of OCamlP3l, the eight combinators pertain to five kinds:

• thetask parallelskeletonsfarm andpipelinemodel the parallelism of independent processing
activities relative to different input data.

• thedata parallelskeletonsmapvector andreducevector model the parallel computa-
tion of different parts of the same input data.

• thedata interfaceskeletonsseq andparfun provide (dual) injection and projection between
sequential and parallel worlds.

• the parallel execution scope delimiterskeletonpardo must encapsulate all the code that
invokesparfun ’s.

• thecontrolskeletonloop provides the repetitive execution of a given skeleton expression.

1seehttp://caml.inria.fr/ .
2seehttp://www.di.unipi.it/ ˜susanna/p3l.html .
3seehttp://www.ocamlp3l.org/ .
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The mapvector combinator computes in parallel a function over all the components ofvector
data items of the input stream. The expressionmapvector (f ,k) computes(f(x1

i ), . . . , f(xn
i ))

over all (vector) data itemsxi = (x1
i , . . . , x

n
i ) by havingk independent processes that com-

putef over different components of the vector.
The seq combinator converts a sequential function into a node of the parallel computational net-

work.
The parfun combinator converts a parallel computational network into a sequential stream pro-

cessing function.

See [2] for the description of the other skeletons not used in the present application. All skeleton
combinators allow for global or local initialization, meaning that independent processes will share,
or not, their initialization data.

4. Implementation of the code coupling

4.1. Code to couple
The code to be (self-)coupled is theC++ solve on a subdomain code that inputs the name of

the file describing the 3D mesh associated with a subdomain, e.g.Ωi, for i ∈ I. It reads this file from
the disk and enters an infinite loop waiting for a keyword:
When given the keyword"init" , it computes a sparse LU factorization of the matrixLi used to

solve the inner linear systems (5), then computes and outputsSiqi
0i needed for the computation

of the right-hand sideb given by (7).
When given the keyword"loop" , it inputsλi, then computes and outputsSi0i

λi needed for the
computation of the matrix-vector product.

When given the keyword"final" , it inputsλ?
i , then computes and writes on the disk the solution

v?
i to the problem (5) associated withSiqiλ

?
i .

It needs redirection of both its standard input and standard output. Moreover, the"init" phase is
very costly and must be performed once and for all. Therefore, this code has to belocally initialized,
and needs also to have the ability to be recalled, by having its I/O channels stored.

The implementation of non-symmetric Krylov method, e.g. BiCGStab, only requires a matrix-free
matrix-vector product routineaa to compute the action of matrixA on any vectorλ. Theparfun
skeleton will allow us to make thisordinary routinebe a parallel computation network.

4.2. The coupling algorithm
Then, the coupling algorithm is the following.

Initialization

• defineaa that applies in parallel matrixA given by (7) to any vectorλ ∈ Λ.
• compute in parallel the inverse of the matricesLi of the inner linear systems for all

subdomains and the right-hand sideb given by (7).
• chooseλ0 = 0.

Iteration

• run BiCGStab with the parallel matrix-vector productaa, the right-hand sideb and the
initial guessλ0.

• name the solutionλ?.

Finalization

• solve in parallel the inner linear systems associated withSqλ
? and store thev?

i ’s for all
subdomains.
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4.3. The OCamlP3l coupling code
The coordination code itself is so short that it can be presented in extenso. The parallel annota-

tions, i.e. the OCamlP3l skeletons, are underlined.

let solve_on_all_subdomains =
let prog () =

let cin = ref None and cout = ref None in
(fun (i, task, li) ->

5 let command = Dd.make_solve_on_a_subdomain_command i in
let ic, oc = My_unix.spawn command cin cout in
Dd.send_task oc task;
Dd.send_boundary_values oc li;
flush oc;

10 Dd.receive_boundary_values ic) in
parfun (fun () -> mapvector (seq prog, Dd.number_of_processors));;

pardo (fun () ->
(* Initialization *)

15 let n = Dd.number_of_subdomains in
let f = fun l ->

Dd.permutation (Dd.projection (solve_on_all_subdomains l)) in
let aa = fun l -> Dd.axpy (-1.) (f (Dd.loop_vector l)) l in
let b = f (Dd.init_vector_of_size n) in

20 let l_0 = Dd.zero_vector_of_size n in
let algorithm = Bicgstab.algorithm Dd.axpy Dd.dot in
(* Iteration *)
let l_star = algorithm aa b l_0 in
(* Finalization *)

25 solve_on_all_subdomains (Dd.final_vector l_star));;

The Dd module is dedicated to domain decomposition. In particular, it delivers types for the
unknown vectorλ that ease the implementation of the operatorsRi andR̃T

i .
The functionsolve_on_all_subdomains (lines 1–11) correspond to the code to be coupled

of section 4.1. It is defined defined through an encapsulation of amapvector skeleton inside a
parfun skeleton to allows parallel computation of the function over all components of a vector
anywhere in the sequential code. It uses local initialization to reserve memory slots to store the I/O
channels.

The domain decomposition algorithm is implemented inside thepardo scope delimiter (lines 13–
25). It uses repeatedly the previously defined stream processing network. The functionf (lines 16–
17) defines the functionf = sPSq for which we are searching the fixed point. It is used in both
the body of the matrix-vector productaa (line 18) and the computation of the right-hand sideb
(line 19).

5. Numerical Tests

Numerical tests have been run on the Cristal Cluster deployed at INRIA-Rocquencourt. It is made
of sixteen 2.8 GHz Intel Xeon bi-processors with 2 Gb of RAM each interconnected on a dedicated
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Gigabit network. More details can be found in [4].

5.1. Extensibility results
We associated one processor to each subdomain, and we increased the number of processors while

keeping a constant load per processor. All subdomains were made of about 50000 cells, in order to
avoid swapping problems during the initialization phase of the local subproblems. The efficiency of
the coupling algorithm is related to the way the global domain is decomposed, but this always led to
a flat 30%-overhead in the conforming case, and no more than twice the time in the nonconforming
case, which is not bad for up to 16 subdomains, i.e. up to 800000 cells.

The main drawback of the current version of OCamlP3l is the existence of a bottleneck since all
communications are centralized in themapvector skeleton. Obviously, this point was not crucial
in our tests, but this may become an issue for larger tests. So a specific skeleton accounting for direct
communication driven by a connectivity table is under development.

5.2. A realistic 3D flow simulation
We consider now the problem of a 3D flow simulation in a realistic porous media designed by

ANDRA (the French National Agency for Radioactive Waste Management) to study the feasibility
of an underground nuclear waste disposal, see [5]. We have simplified the model by making all the
subdomains homogeneous, but the numerical difficulty remains the flat aspect of the domain, and the
high heterogeneity between the subdomains as the permeability jumps by a factor of several orders
of magnitude from a geological layer to the other.

The domain is defined by a global mesh provided by ANDRA containing about 400000 hexahedric
cells. It is decomposed following the geology into 12 subdomains with matching meshes at the
interfaces, see Figure 2a where the unit on the vertical axis is multiplied by a factor of 100 (the
domain is actually flat). The pressure solution is displayed on Figure 2b.

(a) (b)

Figure 2. A realistic 3D flow simulation. (a) The domain. (b) A split view of the pressure.

The main difficulty here was to fine tune the Robin coefficients on each interface to insure con-
vergence of the coupling algorithm. Our empirical tests based on the physics of the porous medium
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and the geometry of the domain led us to take into account the aspect ratio of the subdomains and
the permeability jumps by choosing

αij = αji =
2KiKj

(Ki + Kj)LΩ
ij

i, j ∈ I (9)

whereLΩ
ij is the characteristic length of the domainΩ along the normal direction to the interfaceΣij.

6. Conclusions

We have presented a non-overlapping domain decomposition method for non-matching meshes
based on Robin interface conditions for the computation of 3D flow in porous media.

The main contribution of this paper is the way this algorithm is implemented. We have used
the OCamlP3l parallel programming system that comes from the functional programming world.
This system provides a structured approach to parallel programming obtained from skeletons and
template based compilation techniques. The user describe its parallel algorithm by combining basic
building blocks, then the (same) source code can be compiled either for sequential execution or for
parallel execution, and both modes should always produce the same result. In short, this means that
the user has never to take care of bugs specific to parallelism. 3D numerical results have shown the
interest of the approach.

We are now working on both numerical and programming aspects: on one side, we are imple-
menting another domain decomposition method based on Neumann-Neumann preconditioning with
balancing, and on the other side, we are developing a newmapvector skeleton with communica-
tion capabilities based on a connectivity table that will reduce the bottleneck problem.
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