
Remarks on Isomorphisms in Typed Lambda Calculi

with Empty and Sum Types∗†

Marcelo Fiore‡

Computer Laboratory
University of Cambridge

Roberto Di Cosmo
PPS - Université Paris 7

and
INRIA-Roquencourt

Vincent Balat
PPS - Université Paris 7

Abstract

Tarski asked whether the arithmetic identities taught in high school are complete for
showing all arithmetic equations valid for the natural numbers. The answer to this ques-
tion for the language of arithmetic expressions using a constant for the number one and
the operations of product and exponentiation is affirmative, and the complete equational
theory also characterises isomorphism in the typed lambda calculus, where the constant
for one and the operations of product and exponentiation respectively correspond to the
unit type and the product and arrow type constructors. This paper studies isomorphisms
in typed lambda calculi with empty and sum types from this viewpoint. Our main contri-
bution is to show that a family of so-called Wilkie-Gurevič identities, that plays a pivotal
role in the study of Tarski’s high school algebra problem, arises from type-theoretic iso-
morphisms. We thus close an open problem by establishing that the theory of type
isomorphisms in the presence of product, arrow, and sum types (with or without the unit
type) is not finitely axiomatisable. Further, we observe that for type theories with arrow,
empty and sum types the correspondence between isomorphism and arithmetic equality
generally breaks down, but that it still holds in some particular cases including that of
type isomorphism with the empty type and equality with zero.

Introduction

We study isomorphisms in typed lambda calculi with empty and sum types from the viewpoint
of programming-language and type theory, category theory, and mathematical logic.

Type isomorphism and programming languages. Two data types are isomorphic if
it is possible to convert data between them without loss of information. The equivalence
relation on types induced by the notion of isomorphism allows to abstract from inessential
details in the representation of data in programming languages.

In Functional Programming, type isomorphisms provide a means to search functions by
type (see [24, 25, 23, 26, 12, 11, 13]) and to match modules by specifications [1]. In proof
assistants they are used to find proofs in libraries up to irrelevant syntactical details [10, 4].

∗Preliminary version in Proceedings of the 17th Symposium on Logic in Computer Science (LICS), pages 147–
156. IEEE, Computer Society Press, 2002.

†Part of this work was done during a visit of Marcelo Fiore to PPS - Université Paris 7 in July 2001
supported by the CNRS.

‡Research supported by an EPSRC Advanced Research Fellowship.

1

A characterisation of type isomorphisms has been obtained for monomorphic type systems
with various combinations of the unit, product, and arrow type constructors [29, 6, 5], as well
as for ML-style [11] and second-order polymorphism [14], and for linear lambda calculus [30]
and multiplicative linear logic [2].

Type isomorphism and category theory. Type isomorphism in foundational theories
of functional programming languages, like typed lambda calculi, can be studied by their
associated categorical models. From this perspective, our investigations fall in the context
of Lawvere and Schanuel’s Objective Number Theory [27, 28], which is the study of addition,
multiplication, and exponentiation of objects in suitable categories (see also [21, § 2]). Indeed,
we will be considering the equational theory of arithmetic expressions in the objective number
theory of free bicartesian closed categories and relating it to that of the category of finite
sets, where numerical equalities acquire a combinatorial meaning given by isomorphisms that
provide so-called combinatorial or bijective proofs.

Type isomorphism and Tarski’s high school algebra problem. There is a connection
between the characterisation of type isomorphisms in typed lambda calculi and some results
in mathematical logic related to Tarski’s high school algebra problem [15]: for types built out
of type constructors chosen amongst the unit, product, and arrow, two types are isomorphic
if and only if their associated arithmetic expressions (obtained by interpreting the unit by the
number one, product by multiplication, and arrow by exponentiation) are equal in the stan-
dard model of natural numbers. In these cases, type isomorphism (and numerical equality)
is finitely axiomatisable and decidable; hence so is the equational theory of isomorphisms in
cartesian closed categories. In the same vein, Soloviev [30], gave a complete axiomatisation of
isomorphisms in symmetric monoidal closed categories, and Dosen and Petric [16] provided
the arithmetic structure that exactly corresponds to these isomorphisms.

The question has been open as to whether such correspondence was limited to the case of
the well-behaved unit, product, and arrow type constructors and, in particular, if it could be
extended to more problematic types involving the empty type and the sum type constructor.
(From a practical perspective, one is interested in knowing whether type isomorphisms in
the presence of sums are finitely axiomatisable, a definitive advantage when implementing
decision procedures in library search tools like those described in [24, 13].) To investigate
these problems we devised a method for establishing normal forms in the typed lambda
calculus with empty and sum types [17, 3] and used it to study type isomorphism in this
setting; this was crucial for establishing (a) below.

Summary of results and organisation of the paper.

(a) We show that a family of so-called Wilkie-Gurevič identities arise from type-theoretic
isomorphisms and subsequently establish that the equational theory of type isomor-
phisms in the presence of the product, arrow, and sum type constructors is not finitely
axiomatisable.

(b) We observe that in the presence of arrow, empty and sum types, type isomorphism and
arithmetic equality no longer coincide. However, the coincidence still holds for certain
classes of arithmetic equations.

2

Section 1 recalls the basic definitions. Section 2 establishes the non finite axiomatisability
and separation results (a) and (b). Section 3 concludes with remarks and directions for further
work.

1 The type theories

1.1 Product and sum types

Syntax. We present the type theory of product and sum types, including the empty ones.
The set of types contains two distinguished type constants 1 and 0, a countable set of base
types, and is closed under the product and sum type constructors. That is, types are defined
by the grammar

τ ::= θ | 1 | τ1 × τ2 | 0 | τ1 + τ2 (1)

where θ ranges over base types.
Raw terms are defined by the grammar

t ::= x | 〈〉 | 〈t1, t2〉 | π1(t) | π2(t) | ⊥τ (t) | ιτ1,τ2
1 (t) | ιτ1,τ2

2 (t) | δ(t, x1 : τ1. t1, x2 : τ2. t2) (2)

where x ranges over (a countable set of) variables, ιτ1,τ2
1 and ιτ1,τ2

2 are the left and right
injections into the sum type τ1 + τ2, and δ is the usual binary case analysis (discriminating
on the first argument and branching according to the second or third).

We write Γ ` t : τ for the judgement “the term t has type τ in context Γ”. As usual,
typing contexts, are lists of distinct type variables together with type declarations. A term t
is well typed in a context Γ if the judgement Γ ` t : τ is derivable from the standard rules
given in (the top part of) Figure 1. The associated equational theory is given in Figure 2.
(Note that the congruence rule

Γ ` t = t′ : 0
Γ ` ⊥τ (t) = ⊥τ (t′) : τ

is admissible.)

Semantics. A bicartesian category is a category with finite products (1, ×) and finite
coproducts (0, +). Bicartesian categories for which the canonical map

(A×B) + (A× C) −→ A× (B + C)

is an isomorphism for all objects A,B, C are called distributive categories [9, 8]. We remark
that in a distributive category the canonical map

0 −→ A× 0

is an isomorphism for every object A (see, e.g., [9]).

We let D[T] be the category with objects given by types over base types in T and mor-
phisms τ1 −→ τ2 given by equivalence classes [x : τ1 ` t : τ2] of well-typed terms un-
der the equivalence identifying (x : τ1 ` t : τ2) and (x′ : τ1 ` t′ : τ2) iff the judgement
x : τ1 ` t = t′[x/x′] : τ2 is derivable. Composition is by substitution

[x′ : τ2 ` t′ : τ3] ◦ [x : τ1 ` t : τ2] = [x : τ1 ` t′[t/x′] : τ3] (3)

3

Γ, x : τ, Γ′ ` x : τ Γ ` 〈〉 : 1

Γ ` ti : τi (i = 1, 2)
Γ ` 〈t1, t2〉 : τ1 × τ2

Γ ` t : τ1 × τ2

Γ ` πi(t) : τi
(i = 1, 2)

Γ ` t : 0
Γ ` ⊥τ (t) : τ

Γ ` t : τi

Γ ` ιτ1,τ2
i (t) : τ1 + τ2

(i = 1, 2)
Γ ` t : τ1 + τ2 Γ, xi : τi ` ti : τ (i = 1, 2)

Γ ` δ(t, x1 : τ1. t1, x2 : τ2. t2) : τ

· ·

Γ, x : τ1 ` t : τ

Γ ` λx : τ1. t : τ1 → τ

Γ ` t : τ1 → τ Γ ` t1 : τ1

Γ ` t(t1) : τ

Figure 1: Typing rules.

with identities given by
[x : τ ` x : τ] . (4)

The category D[T] is canonically a distributive category, with terminal object 1 and initial
object 0, and with products and sums respectively given by the projections

[x : τ1 × τ2 ` πi(x) : τi] : τ1 × τ2 −→ τi (i = 1, 2)

and the injections

[x : τi ` ιτ1,τ2
i (x) : τ1 + τ2] : τi −→ τ1 + τ2 (i = 1, 2) .

Further, D[T] is the free distributive category on the set of base types T in the sense that
for every distributive category S with distinguished products and sums and interpretation
I : T −→ S, there exists a unique functor I[[]] : D[T] −→ S preserving the product and sum
structures. Thus, the interpretation of the type theory in distributive categories is sound and
complete.

Note, in particular, that the interpretation of types induced by I : T −→ S is given by

I[[θ]] = I(θ) (θ ∈ T) , I[[1]] = 1 , I[[τ1 × τ2]] = I[[τ1]]× I[[τ2]]

I[[0]] = 0 , I[[τ1 + τ2]] = I[[τ1]] + I[[τ2]] .
(5)

1.2 Product, arrow, and sum types

Syntax. The typed lambda calculus with sums (see,e.g., [20]) has types as in (1) extended
as follows:

τ ::= · · · | τ1 → τ2 .

4

Γ ` t : τ

Γ ` t = t : τ

Γ ` t = t′ : τ

Γ ` t′ = t : τ

Γ ` t1 = t2 : τ Γ ` t2 = t3 : τ

Γ ` t1 = t3 : τ

· ·

Γ ` t : 1
Γ ` t = 〈〉 : 1

Γ ` ti = t′i : τi (i = 1, 2)
Γ ` 〈t1, t2〉 = 〈t′1, t′2〉 : τ1 × τ2

Γ ` t = t′ : τ1 × τ2

Γ ` πi(t) = πi(t′) : τi
(i = 1, 2)

Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` πi(〈t1, t2〉) = ti : τi
(i = 1, 2)

Γ ` t : τ1 × τ2

Γ ` t = 〈π1(t), π2(t)〉 : τ1 × τ2

· ·

Γ ` t = t′ : τi

Γ ` ιτ1,τ2
i (t) = ιτ1,τ2

i (t′) : τ1 + τ2
(i = 1, 2)

Γ ` t = t′ : τ1 + τ2 Γ, xi : τi ` ti = t′i : τ (i = 1, 2)
Γ ` δ(t, x1. t1, x2. t2) = δ(t′, x1. t

′
1, x2. t

′
2) : τ

Γ ` t : 0 Γ ` t′ : τ

Γ ` ⊥τ (t) = t′ : τ

Γ ` t : τj Γ, xi : τi ` ti : τ (i = 1, 2)
Γ ` δ(ιτ1,τ2

j (t), x1. t1, x2. t2) = tj [t/xj] : τ
(j = 1, 2)

Γ ` t : τ1 + τ2 Γ, x : τ1 + τ2 ` t′ : τ

Γ ` δ(t, x1. t
′[ι

τ1,τ2
1 (x1)/x], x2. t

′[ι
τ1,τ2
2 (x2)/x]) = t′[t/x] : τ

Figure 2: Equational rules of the type theory for product and sum types

5

Γ ` t : τ
Γ ` t = t : τ

Γ ` t = t′ : τ
Γ ` t′ = t : τ

Γ ` t1 = t2 : τ Γ ` t2 = t3 : τ
Γ ` t1 = t3 : τ

· ·

Γ ` t : 1
Γ ` t = 〈〉 : 1

Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` πi〈t1, t2〉 = ti : τi
(i = 1, 2)

Γ ` t : τ1 × τ2

Γ ` t = 〈π1(t), π2(t)〉 : τ1 × τ2

· ·

Γ, x : τ1 ` t : τ Γ ` t1 : τ1

Γ ` (λx : τ1.t)(t1) = t[t1/x] : τ

Γ ` t : τ1 → τ

Γ ` t = λx : τ1.t(x) : τ1 → τ
(x 6∈ FV(t))

Γ ` t : τ1 → τ Γ ` t1 = t′1 : τ1

Γ ` t(t1) = t(t′1) : τ

Γ, x : τ1 ` t = t′ : τ

Γ ` λx : τ1.t = λx : τ1.t
′ : τ1 → τ

· ·

Γ ` t : 0 Γ ` t′ : τ
Γ ` ⊥τ (t) = t′ : τ

Γ ` t : τj Γ, xi : τi ` ti : τ (i = 1, 2)

Γ ` δ(ιτ1,τ2
j (t), x1 : τ1.t1, x2 : τ2.t2) = tj [t/xj] : τ

(j = 1, 2)

Γ ` t : τ1 + τ2 Γ, x : τ1 + τ2 ` t′ : τ

Γ ` δ(t, x1 : τ1.t
′[ι

τ1,τ2
1 (x1)/x], x2 : τ2.t

′[ι
τ1,τ2
2 (x2)/x]) = t′[t/x] : τ

Figure 3: Equational rules of the typed lambda calculus with sum types.

The raw terms are as in (2) extended by abstractions and applications:

t ::= · · · | λx : τ. t | t1(t2) .

A term t is well typed in a context Γ if the judgement Γ ` t : τ is derivable from the
rules given in Figure 1. The associated equational theory is given in Figure 3. (Note that the
congruence rule

Γ, x : τ ` t : τ ′ Γ ` t1 = t2 : τ

Γ ` t[t1/x] = t[t2/x] : τ ′

is admissible.)

Semantics. A cartesian closed category (CCC) is a category with finite products and ex-
ponentials (⇒). Bicartesian closed categories are referred to as BiCCCs; they are, of course,

6

distributive (see, e.g., [20]).

We let F0,+[T] be the category with objects given by types over base types in T and
morphisms τ1 −→ τ2 given by equivalence classes [x : τ1 ` t : τ2] of well-typed terms un-
der the equivalence identifying (x : τ1 ` t : τ2) and (x′ : τ1 ` t′ : τ2) iff the judgement
x : τ1 ` t = t′[x/x′] : τ2 is derivable. Composition and identities are as in (3) and (4). Fur-
ther, we define F+[T] analogously by omitting the empty type together with its associated
constructor and equations throughout.

The category F0,+[T] is canonically a BiCCC, with terminal object 1 and initial object 0,
and with products, exponentials, and sums respectively given by the projections

[x : τ1 × τ2 ` πi(x) : τi] : τ1 × τ2 −→ τi (i = 1, 2) ,

the evaluation map

[x : (τ1 → τ2)× τ1 ` (π1(x))(π2(x)) : τ2] : (τ1 ⇒ τ2)× τ1 −→ τ2 ,

and the injections

[x : τi ` ιτ1,τ2
i (x) : τ1 + τ2] : τi −→ τ1 + τ2 (i = 1, 2) .

Further, F0,+[T] is the free BiCCC on the set of base types T in the sense that for every
BiCCC S with distinguished structure and interpretation I : T −→ S, there exists a unique
functor I[[]] : F0,+[T] −→ S preserving the BiCC structure. Thus, the interpretation of the
type theory in BiCCCs is sound and complete (see, e.g., [20]). Of course, an analogous result
holds for F+[T] with respect to CC structure with binary sums.

Note that the interpretation of types induced by I : T −→ S is as in (5) together with

I[[τ1 → τ2]] = I[[τ1]] ⇒ I[[τ2]] .

2 Tarski’s high school algebra problem and type isomorphisms

Tarski’s high school algebra problem. Tarski [15] asked if the equational theory E of
the usual arithmetic identities

(E1) 1 · x = x (E2) x · y = y · x (E3) (x · y) · z = x · (y · z)

(E4) x1 = x (E5) 1x = 1
(E6) xy·z = (xy)z (E7) (x · y)z = xz · yz

(E8) x + y = y + x (E9) (x + y) + z = x + (y + z)

(E10) x · (y + z) = x · y + x · z (E11) x(y+z) = xy · xz

that are taught in high school are complete for the standard model of positive natural num-
bers. He conjectured that they were, but was not able to prove the result. Martin [22]
showed that the equation (xy)z = (xz)y is complete for the standard model 〈N, ↑〉 of positive
natural numbers with exponentiation, and that the identities (E2), (E3), (E6), and (E7) are
complete for the standard model 〈N, ·, ↑〉 of positive natural numbers with multiplication and
exponentiation. Further, he exhibited the identity

(xu + xu)v · (yv + yv)u = (xv + xv)u · (yu + yu)v

7

that is not provable in the restriction of E to the language without the constant 1.
Wilkie [31] established Tarski’s conjecture in the negative. Indeed, by a proof-theoretic

analysis, he showed that the identity

(Ax + Bx)y · (Cy + Dy)x = (Ay + By)x · (Cx + Dx)y

where

A = 1 + x , B = 1 + x + x2 , C = 1 + x3 , D = 1 + x2 + x4

is not provable in E .
Gurevič later gave an argument by an ad hoc countermodel [18] and, more importantly,

showed that there is no finite axiomatisation for the valid equations in the standard model
〈N, 1, ·, ↑,+〉 of positive natural numbers with one, multiplication, exponentiation, and addi-
tion [19]. He did this by producing an infinite family of equations such that for every sound
finite set of axioms one of the equations can be shown not to follow. Gurevič’s identities are
the following

(Ax + Bn
x)2

x · (Cn
2x

+ Dn
2x

)x = (A2x
+ Bn

2x
)x · (Cn

x + Dn
x)2

x
(n ≥ 3 odd) (6)

where
A = 1 + x ,

Bn = 1 + x + · · ·+ xn−1 =
∑n−1

i=0 xi ,

Cn = 1 + xn ,

Dn = 1 + x2 + · · ·+ x2(n−1) =
∑n−1

i=0 x2i .

Type isomorphisms. The equations in E together with the following ones

(D1) x · 0 = 0 (D2) x + 0 = x

have a clear combinatorial interpretation which is made evident when interpreting them as
isomorphisms in the category of finite sets and functions F, or indeed in any BiCCC, under
the obvious translation given below:

x = x (x a variable) , 1 = 1 , e1 · e2 = e1 × e2 , e2
e1 = e1 → e2 ,

0 = 0 , e1 + e2 = e1 + e2 .

The isomorphisms realising the translations of the equations in E are well-known. For instance,
those associated with the equation (E11) are given by

f : τ1 + τ2 → τ ` 〈 λx1 : τ1. f(ιτ1,τ2
1 (x1)) , λx2 : τ2. f(ιτ1,τ2

2 (x2)) 〉 : (τ1 → τ)× (τ2 → τ)

and

p : (τ1 → τ)×(τ2 → τ) ` λx : τ1+τ2.δ(x , x1 : τ1.(π1(p))(x1) , x2 : τ2.(π2(p))(x2)) : τ1+τ2 → τ .

(Note that the equation
x · 0x = 0

8

corresponding to the type isomorphism

θ × (θ → 0) ∼= 0

has no obvious combinatorial meaning; though it corresponds logically to the intuitionistic
tautology (p ∧ ¬p) ↔⊥.)

Thus, for arithmetic expressions e1 and e2 in the language with the constant 1, the oper-
ations ·, ↑, +, and unknowns in a set U , we have the chain of implications

E ` e1 = e2 =⇒ e1
∼= e2 in F+[U]

=⇒ F |= e1 = e2

=⇒ N |= e1 = e2

(7)

where, for types τ1 and τ2 and a category S, we write S |= τ1 = τ2 whenever the identity
τ1 = τ2 holds as an isomorphism in S; that is, if for all interpretations I of base types in
S, it holds that I[[τ1]] ∼= I[[τ2]] in S. (Note that the statements τ1

∼= τ2 in F0,+[U] and
F0,+[U] |= τ1 = τ2 are equivalent, and that they amount to type isomorphism in the equational
theory of the typed lambda calculus with empty and sum types.) The last implication in (7)
is easily established by observing that two finite sets are isomorphic iff they have the same
cardinality, and that the type constructors on finite sets coincide with cardinal arithmetic.

The implications as in (7) for the cartesian closed case have been shown to be equiva-
lences [29, 5]. The rest of the paper is devoted to study the extent to which these implications
can be reversed in type theories with empty and sum types.

2.1 Product and sum types

We consider the case of distributive categories; the categorical counterpart of the type theory
with unit and empty types, and product and sum type constructors.

For D the equational theory consisting of the identities (E1), (E2), (E3), (E8), (E9), (E10)
and (D1), (D2), we have the following result.

Proposition 2.1 For arithmetic expressions e1 and e2 in the language given by 1, 0, ·, and
+ and with unknowns in a set U , the following statements are equivalent.

1. D ` e1 = e2.

2. e1
∼= e2 in D[U].

3. F |= e1 = e2.

4. N0 |= e1 = e2.

The chain of implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are straightforward, whilst the implication
(4) ⇒ (1) amounts to the completeness of D for the standard model of natural numbers. This
result is folklore (see, for instance, [7]) and we include it below.

Lemma 2.2 The equational theory D is complete for the standard model 〈N0, 1, 0, ·,+〉 of
natural numbers.

9

Proof: Any expression in the language of variables, 1, 0, ·, and + can be rewritten, using
the equations in D, into a canonical polynomial form, which can in fact be made unique.

Now, N0 |= e1 = e2 iff, for the corresponding canonical polynomial forms p1 and p2 of
e1 and e2 respectively, N0 |= p1 = p2, and this is equivalent to p1 and p2 being the same
polynomial (i.e., syntactically equal) as the polynomial p1 − p2 with coefficients in the field
of rational numbers has an infinite number of zeroes and hence it is null.

Thus, the lemma follows: if e1 = e2 holds in the standard model then, using D, the
expression e1 can be transformed into its canonical polynomial form which can in turn be
transformed into the expression e2. �

Notice that the argument in the above proof shows that D is decidable. As a further
corollary, we have the following multiplicative cancellation property.

Corollary 2.3 For every non-empty type τ (viz., τ 6∼= 0) in D[T], we have that

τ1 × τ ∼= τ2 × τ in D[T] =⇒ τ1
∼= τ2 in D[T]

for every pair of types τ1 and τ2 in D[T].

It is interesting to note that in the further presence of exponentials, the above multiplica-
tive cancellation property does not always hold. Indeed, for all types τ in F0,+[T], we have
the isomorphism

(τ → 0)× τ ∼= 0× τ in F0,+[T] ,

from which the cancellation of τ does not generally yield an isomorphism (for instance,
θ → 0 6∼= 0 for all θ ∈ T).

2.2 Product, arrow, and sum types

Aiming at understanding type isomorphism in the presence of product, arrow, and sum types,
it is natural to ask whether Gurevič’s equations are also type isomorphisms.

We first consider two ways of establishing the identities (6) for the natural numbers re-
spectively due to Wilkie and Gurevič.

Wilkie’s method. Use that Cn = A · En and Dn = Bn · En for En = 1 − x + · · · + xn−1 =∑n−1
i=0 (−1)ixi.

Gurevič’s method. Multiply the left hand side of (6) by (Dn
x)2

x
and using the equation

A · Dn = Bn · Cn twice establish the right hand side of (6) multiplied by (Dn
2x

)x;
conclude (6) by multiplicative cancellation of (Dn

x)2
x

= (Dn
2x

)x.

Since the above methods respectively use negative numbers (which do not have a type-
theoretic counterpart) and multiplicative cancellation (which is not known to be type theoret-
ically sound), we speculated that Gurevič’s identities did not hold as isomorphisms. Hence,
we set out to prove that no term between the types corresponding to Gurevič’s equations is
an isomorphism by a careful study and analysis of normal forms in the typed lambda calculus
with empty and sum types [17, 3].

10

Generalised Wilkie-Gurevič identities. To simplify the study of the normal forms be-
tween the types induced by the expressions in (6), we introduced the following generalised
Wilkie-Gurevič identities with no constants

(Au + Bn
u)v · (Cn

v + Dn
v)u = (Av + Bn

v)u · (Cn
u + Dn

u)v (n ≥ 3 odd) (8)

where
A = y + x

Bn = yn−1 + yn−2x + · · ·+ xn−1 =
∑n−1

i=0 yn−(i+1)xi

Cn = yn + xn

Dn = y2(n−1) + y2(n−2)x2 + · · ·+ x2(n−1) =
∑n−1

i=0 y2(n−(i+1))x2i

(9)

Notice that replacing y by 1, u by x, and v by 2x in (8) one obtains the equations (6). Hence
the non finite axiomatisability result does not depend on the presence of constants in the
language.

Corollary 2.4 The equational theory of 〈N, ·, ↑,+〉 is not finitely axiomatisable.

The generalised Wilkie-Gurevič identities are isomorphisms of types. Analysing
the normal forms between the types corresponding to the generalised Wilkie-Gurevič iden-
tities (8) for the case n = 3 we found an isomorphism. The lemma below gives a general
construction, which provides a type theoretic method for establishing the identities and that
further exhibits their combinatorial content. (Note that this construction is more general
than what is needed to establish that the Generalised Wilkie-Gurevič family of identities are
isomorphisms.)

Lemma 2.5 For types A, B, C, D, U , V, X , Y and mutually inverse closed terms
ϕ : A×D → C × B, φ : C × B → A × D, and ε : U × V → X × Y, ε : X × Y → U × V
in the typed lambda calculus with empty and sum types, the following terms (where we write
τσ for σ → τ)

tA,B,C,D,U ,V,X ,Y [ϕ, φ, ε, ε] : (AU + BU)V × (CX +DX)Y → (AX + BX)Y × (CU +DU)V

and

tA,B,C,D,X ,Y,U ,V [ϕ, φ, ε, ε] : (AX + BX)Y × (CU +DU)V → (AU + BU)V × (CX +DX)Y

given by

tA,B,C,D,U ,V,X ,Y [ϕ, φ, ε, ε]
def= λh : (AU + BU)V × (CX +DX)Y . 〈 pA,B,C,D,U ,V,X ,Y [ϕ, φ, ε, π1h, π2h] ,

pC,D,A,B,X ,Y,U ,V [φ, ϕ, ε, π2h, π1h] 〉

11

where

pA,B,C,D,U ,V,X ,Y [ϕ, φ, γ, f, g]
def= λy : Y. δ(g(y) ,

g1 : CX . ιA
X ,BX

1 (λx : X . δ(f(π2(γ〈x, y〉)) ,

f1 : AU . f1(π1(γ〈x, y〉)) ,

f2 : BU . π1(φ〈g1(x), f2(π1(γ〈x, y〉))〉))) ,

g2 : DX . ιA
X ,BX

2 (λx : X . δ(f(π2(γ〈x, y〉)) ,

f1 : AU . π2(ϕ〈f1(π1(γ〈x, y〉)), g2(x)〉) ,

f2 : BU . f2(π1(γ〈x, y〉)))))

are mutually inverse.

Proof: See Appendix A. �

For the expressions (9) the identity A · Dn = Cn · Bn can be proved from the stan-
dard axioms. Thus, there are mutually inverse closed terms ϕn : A × Dn → Cn × Bn and
φn : Cn × Bn → A×Dn, where we write A for A, Bn for Bn, Cn for Cn, and Dn for Dn. It
follows that,

tA,Bn,Cn,Dn,U ,V,V,U [ϕn, φn, λx : U × V. 〈π2x, π1x〉, λx : V × U . 〈π2x, π1x〉]

is an isomorphism with inverse

tA,Bn,Cn,Dn,V,U ,U ,V [ϕn, φn, λx : V × U . 〈π2x, π1x〉, λx : U × V. 〈π2x, π1x〉] .

Hence we have the following result.

Corollary 2.6 The equational theory of type isomorphism in cartesian closed categories with
binary coproducts is not finitely axiomatisable.

2.3 Empty and sum types

In the presence of arrow and both empty and sum types we observe that not all equations
that hold as isos in the category of finite sets hold in the type theory. Indeed, writing ¬τ for
τ → 0, we have that

F |= ¬¬θ → θ = θ + ¬θ

but as the formula (¬¬p → p) → (¬p∨p) is a classical tautology which is not intuitionistically
valid there is no term of type (¬¬θ → θ) → (¬θ + θ). Another such equation, derived from
the above by taking the base type to be negated and using that 1 ∼= ¬¬¬θ → ¬θ, is

F |= 1 = ¬θ + ¬¬θ . (10)

Thus, in general, F |= τ1 = τ2 does not imply τ1
∼= τ2 in F0,+[T]. However, we have the

following result.

Proposition 2.7 For every pair of types τ1 and τ2 in the typed lambda calculus with empty
and sum types over a set of base types T , the following statements are equivalent.

12

1. ¬τ1
∼= ¬τ2 in F0,+[T].

2. The formula ¬τ1 ↔ ¬τ2 is an intuitionistic tautology, where

θ = θ (θ ∈ T) , 1 = > , τ1 × τ2 = τ1 ∧ τ2 , τ1 → τ2 = τ1 → τ2 ,

0 = ⊥ , τ1 + τ2 = τ1 ∨ τ2 .

3. For every interpretation I of base types in the category of finite sets F, I[[τ1]] = 0 iff
I[[τ2]] = 0.

4. F |= ¬τ1 = ¬τ2.

5. N0 |= 0e1 = 0e2, where e1 = τ1 and e2 = τ2.

Proof: The equivalences (1)⇔(2) and (3)⇔(4)⇔(5), and the implication (1) ⇒ (4) are
straightforward.

To establish the implication (3) ⇒ (2) we will use the (Gödel-Gentzen) negative translation
τ? of types τ given by

θ? = ¬¬θ (θ ∈ T) , 1? = 1 , (τ1 × τ2)? = τ1
? × τ2

? , (τ1 → τ2)? = τ1
? → τ2

? ,

0? = 0 , (τ1 + τ2)? = ¬(¬τ1
? × ¬τ2

?)

and the following facts:

(i) For every type τ and every interpretation I of base types in F, the following hold

I[[τ?]] ∼= 0 or I[[τ?]] ∼= 1

and
I[[τ?]] ∼= 1 ⇐⇒ τ? is a classical tautology

⇐⇒ τ? is an intuitionistic tautology .

(ii) For every type τ , the formula τ?↔¬¬τ is an intuitionistic tautology.

Indeed, assuming (3) it follows using (i) that (τ?
1 → τ?

2) = (τ1 → τ2)? is an intuitionistic
tautology. Thus, we have from (ii) that ¬¬τ1 → ¬¬τ2 is an intuitionistic tautology, from
which we conclude that so is ¬τ2 → ¬τ1. Analogously, one sees that ¬τ1 → ¬τ2 is also an
intuitionistic tautology, and we are done. �

It follows that the problem of whether two negated types are isomorphic in the theory of
BiCCCs is decidable.

Corollary 2.8 For all types τ in F0,+[T] and arithmetic expressions e with e = τ ,

τ ∼= 0 in F0,+[T] ⇐⇒ F |= τ = 0 ⇐⇒ N0 |= e = 0 .

13

3 Concluding remarks

The results of this paper are the first significant advance in the study of type isomorphisms
in the presence of empty and sum types. Many questions still remain open, as for instance
whether there are arithmetic equations in the language of 1, ·, ↑, 0 or of 1, ·, ↑, + that do not
correspond to type isomorphisms. We conjecture that Gurevič’s result [19] for establishing the
non-finite axiomatisability of the equational theory of the model of positive natural numbers
〈N, 1, ·, ↑,+〉 can be generalised to the case of the model of natural numbers 〈N0, 1, 0, ·, ↑,+〉,
and hence, by the results of this paper, that the equational theory of type isomorphism
in bicartesian closed categories is not finitely axiomatisable. Decidability questions of the
equational theory of type isomorphisms in the extensions of the typed lambda calculus with
empty and/or sum types should be addressed. Finally, the observations in Subsection 2.3
suggest that the appropriate framework for characterising the type isomorphisms that hold in
the category of finite sets for types with arrow, empty and sum constructors may be calculi
for classical or intermediate logics.

Acknowledgements. We are grateful to Claude Kirchner and Sergei Soloviev for interest-
ing discussions on the subject, and to Alex Simpson for pointing out (10).

References

[1] M.-V. Aponte and R. Di Cosmo. Type isomorphisms for module signatures. In Pro-
gramming Languages Implementation and Logic Programming (PLILP), volume 1140 of
Lecture Notes in Computer Science, pages 334–346. Springer-Verlag, 1996.

[2] V. Balat and R. Di Cosmo. A linear logical view of linear type isomorphisms. In
Computer Science Logic, volume 1683 of Lecture Notes in Computer Science, pages 250–
265. Springer-Verlag, 1999.

[3] V. Balat, R. Di Cosmo, and M. Fiore. Extensional normalisation and type-directed
partial evaluation for typed lambda calculus with sums. In 31st Ann. ACM Symp. on
Principles of Programming Languages (POPL), pages 64–76. ACM, 2004.

[4] G. Barthes and O. Pons. Type isomorphisms and proof reuse in dependent type theory.
In F. Honsell and M. Miculan, editors, FOSSACS, number 2030 in LNCS, pages 57–71.
Springer-Verlag, 2001.

[5] K. Bruce, R. Di Cosmo, and G. Longo. Provable isomorphisms of types. Mathematical
Structures in Computer Science, 2(2):231–247, 1992.

[6] K. Bruce and G. Longo. Provable isomorphisms and domain equations in models of
typed languages. ACM Symposium on Theory of Computing (STOC 85), 1985.

[7] S. Burris and S. Lee. Tarski’s high school identities. American Mathematical Monthly,
100(3):231–236, 1993.

[8] A. Carboni, S. Lack, and R. F. C. Walters. Introduction to extensive and distributive
categories. Journal of Pure and Applied Algebra, 84:145–158, 1993.

14

[9] J. R. B. Cockett. Introduction to distributive categories. Mathematical Structures in
Computer Science, 3:277–307, 1993.

[10] D. Delahaye, R. Di Cosmo, and B. Werner. Recherche dans une bibliothèque de preuves
Coq en utilisant le type et modulo isomorphismes. In PRC/GDR de programmation,
Pôle Preuves et Spécifications Algébriques, 1997.

[11] R. Di Cosmo. Type isomorphisms in a type assignment framework. In 19th Ann. ACM
Symp. on Principles of Programming Languages (POPL), pages 200–210. ACM, 1992.

[12] R. Di Cosmo. Deciding type isomorphisms in a type assignment framework. Journal of
Functional Programming, 3(3):485–525, 1993. (Special Issue on ML).

[13] R. Di Cosmo. Isomorphisms of types: from λ-calculus to information retrieval and lan-
guage design. Birkhauser, 1995.

[14] R. Di Cosmo. Second order isomorphic types. A proof theoretic study on second order
λ-calculus with surjective pairing and terminal object. Information and Computation,
pages 176–201, 1995.

[15] J. Doner and A. Tarski. An extended arithmetic of ordinal numbers. Fundamenta
Mathematica, 65:95–127, 1969.

[16] K. Dosen and Z. Petric. Isomorphic objects in symmetric monoidal closed categories.
Mathematical Structures in Computer Science, 7(6):639–662, 1997.

[17] M. Fiore, R. Di Cosmo, and V. Balat. Extensional normalisation for typed lambda
calculus with sums via Grothendieck logical relations. Manuscript, 2002.

[18] R. Gurevič. Equational theory of positive numbers with exponentiation. Proceedings of
the American Mathematical Society, 94(1):135–141, 1985.

[19] R. Gurevič. Equational theory of positive numbers with exponentiation is not finitely
axiomatizable. Annals of Pure and Applied Logic, 49:1–30, 1990.

[20] J. Lambek and P. Scott. Introduction to higher order categorical logic, volume 7 of
Cambridge studies in advanced mathematics. Cambridge University Press, 1986.

[21] F. W. Lawvere. Left and right adjoint operations on spaces and data types. Theoretical
Computer Science, 316:105–111, 2004.

[22] C. F. Martin. Axiomatic bases for equational theories of natural numbers. Notices of the
Am. Math. Soc., 19(7):778, 1972.

[23] M. Rittri. Retrieving library identifiers by equational matching of types. In 10th

Int. Conf. on Automated Deduction, volume 449 of Lecture Notes in Computer Science.
Springer-Verlag, 1990.

[24] M. Rittri. Searching program libraries by type and proving compiler correctness by bisim-
ulation. PhD thesis, University of Göteborg, Göteborg, Sweden, 1990.

[25] M. Rittri. Using types as search keys in function libraries. Journal of Functional Pro-
gramming, 1(1):71–89, 1991.

15

[26] C. Runciman and I. Toyn. Retrieving re-usable software components by polymorphic
type. Journal of Functional Programming, 1(2):191–211, 1991.

[27] S. H. Schanuel. Objective number theory and the retract chain condition. Journal of
Pure and Applied Algebra, 154:295–298, 2000.

[28] S. H. Schanuel. Transcendence in objective number theory. Rendiconti del Circolo Matem-
atico di Palermo, Serie II, Suppl. 64:43–48, 2000.

[29] S. V. Soloviev. The category of finite sets and cartesian closed categories. Journal of
Soviet Mathematics, 22(3):1387–1400, 1983.

[30] S. V. Soloviev. A complete axiom system for isomorphism of types in closed categories.
In A. Voronkov, editor, Logic Programming and Automated Reasoning, 4th Interna-
tional Conference, volume 698 of Lecture Notes in Artificial Intelligence, pages 360–371.
Springer-Verlag, 1993.

[31] A. J. Wilkie. On exponentiation — A solution to Tarski’s high school algebra problem.
Math. Inst. Oxford University (preprint), 1981.

A Proof of Lemma 2.5

For the following definitions (where, to improve readability, all type information has been
omitted)

t[ϕ, φ, ε, ε] def= λh. 〈 p[ϕ, φ, ε, π1h, π2h] , p[φ, ϕ, ε, π2h, π1h] 〉

p[ϕ, φ, γ, f, g] def= λy. δ(g(y) ,

g1. ι1(λx. F [φ, γ, f, g1, x, y]) ,

g2. ι2(λx.G[ϕ, γ, f, g2, x, y])

F [φ, γ, f, g, x, y] def= δ(f(π2(γ〈x, y〉)) ,

f1. f1(π1(γ〈x, y〉)) ,

f2. π1(φ〈 g(x) , f2(π1(γ〈x, y〉)) 〉))

G[ϕ, γ, f, g, x, y] def= δ(f(π2(γ〈x, y〉)) ,

f1. π2(ϕ〈 f1(π1(γ〈x, y〉)) , g(x) 〉) ,

f2. f2(π1(γ〈x, y〉))))

we will establish the identity

λh. t[ϕ, φ, ε, ε](t[ϕ, φ, ε, ε](h)) = λh. h

in the equational theory of the typed lambda calculus with empty and sum types (see Fig-
ure 3).

The identities (A)–(G) below, all of which are valid in the equational theory, will be used
throughout the proof.

(A) δ(δ(t0, x1. t1, x2.t2) , y1. u1 , y2. u2)
= δ(t0 , x1. δ(t1, y1. u1, y2. u2) , x2. δ(t2, y1. u1, y2. u2))

16

(B) δ(t0, x1. δ(t0, y1. t1, y2. t2), x2. t) = δ(t0, x1. t1[x1/y1], x2. t)

δ(t0, x1. t, x2. δ(t0, y1. t1, y2. t2)) = δ(t0, x1. t1, x2. t2[x2/y2])

(C) δ(t0 , x1. δ(u0, y1. u1, y2. u2) , x2. t2)
= δ(u0 , y1. δ(t0, x1. u1, x2. t2) , y2. δ(t0, x1. u2, x2. t2))

δ(t0 , x1. t1 , x2. δ(u0, y1. u1, y2. u2))
= δ(u0 , y1. δ(t0, x1. t1, x2. u1) , y2. δ(t0, x1. t1, x2. u2))

(D) λx. δ(t0, x1. t1, x2. t2) = δ(t0, x1. λx. t1, x2. λx. t2) (x 6∈ FV(t0) ∪ { x1, x2 })

(E) t(δ(t0, x1. t1, x2. t2)) = δ(t0, x1. t(t1), x2. t(t2)) (x1, x2 6∈ FV(t))

(F) 〈 δ(t0, x1. t1, x2. t2) , t 〉 = δ(t0 , x1. 〈t1, t〉 , x2. 〈t2, t〉)
〈 t , δ(t0, x1. t1, x2. t2) 〉 = δ(t0 , x1. 〈t, t1〉 , x2. 〈t, t2〉)

(x1, x2 6∈ FV(t))

(G) δ(t0, x1. t, x2. t) = t (x1, x2 6∈ FV(t))

We start the proof by observing that

t[ϕ, φ, ε, ε](t[ϕ, φ, ε, ε](h)) = 〈 p[ϕ, φ, ε, p[ϕ, φ, ε, π1h, π2h], p[φ, ϕ, ε, π2h, π1h]] ,

p[φ, ϕ, ε, p[φ, ϕ, ε, π2h, π1h], p[ϕ, φ, ε, π1h, π2h]] 〉

and show that the first and second components of the above pair are the respective projections
of h; i.e., that

p[ϕ, φ, ε, p[ϕ, φ, ε, π1h, π2h], p[φ, ϕ, ε, π2h, π1h]] = π1h ,

p[φ, ϕ, ε, p[φ, ϕ, ε, π2h, π1h], p[ϕ, φ, ε, π1h, π2h]] = π2h .

To this end it will be enough to establish

(1) p[ϕ, φ, ε, p[ϕ, φ, ε, f, g], p[φ, ϕ, ε, g, f]] = f .

The left hand side of (1) equals

(2) λy. δ(p[φ, ϕ, ε, g, f](y) ,

g1. ι1(λx. F [φ, ε, p[ϕ, φ, ε, f, g], g1, x, y]) ,

g2. ι2(λx.G[ϕ, ε, p[ϕ, φ, ε, f, g], g2, x, y]))

and, as the discriminator of (2) equals

(3) δ(f(y) ,

g′1. ι1(λx′. F [ϕ, ε, g, g′1, x
′, y]) ,

g′2. ι2(λx′. G[φ, ε, g, g′2, x
′, y])) ,

we have, from (2) and (3) using (A), that the left hand side of (1) equals

(4) λy. δ(f(y) ,

g′1. ι1(λx. F [φ, ε, p[ϕ, φ, ε, f, g], λx′. F [ϕ, ε, g, g′1, x
′, y], x, y]) ,

g′2. ι2(λx.G[ϕ, ε, p[ϕ, φ, ε, f, g], λx′. G[φ, ε, g, g′2, x
′, y], x, y])) .

17

We now calculate, in turn, the following terms appearing in the conditional branches
of (4):

(5) F [φ, ε, p[ϕ, φ, ε, f, g], λx′. F [ϕ, ε, g, g′1, x
′, y], x, y] ,

(6) G[ϕ, ε, p[ϕ, φ, ε, f, g], λx′. G[φ, ε, g, g′2, x
′, y], x, y] .

The term (5) equals

(7) δ(p[ϕ, φ, ε, f, g](π2(ε〈x, y〉)) ,

f1. f1(π1(ε〈x, y〉)) ,

f2. π1(φ〈 F [ϕ, ε, g, g′1, x, y] , f2(π1(ε〈x, y〉)) 〉))

and, as the discriminator of (7) equals

(8) δ(g(π2(ε〈x, y〉)) ,

g′′1 . ι1(λx′′. F [φ, ε, f, g′′1 , x′′, π2(ε〈x, y〉)]) ,

g′′2 . ι2(λx′′. G[ϕ, ε, f, g′′2 , x′′, π2(ε〈x, y〉)]))

we have, from (7) and (8) using (A), that (5) equals

(9) δ(g(π2(ε〈x, y〉)) ,

g′′1 . F [φ, ε, f, g′′1 , π1(ε〈x, y〉), π2(ε〈x, y〉)] ,

g′′2 . π1(φ〈 F [ϕ, ε, g, g′1, x, y] , G[ϕ, ε, f, g′′2 , π1(ε〈x, y〉), π2(ε〈x, y〉)] 〉)) .

We calculate, in turn, the following terms appearing in the conditional branches of (9):

(10) F [φ, ε, f, g′′1 , π1(ε〈x, y〉), π2(ε〈x, y〉)] ,

(11) G[ϕ, ε, f, g′′2 , π1(ε〈x, y〉), π2(ε〈x, y〉)] .

The term (10) equals

δ(f(π2(ε〈 π1(ε〈x, y〉) , π2(ε〈x, y〉) 〉)) ,

f1. f1(π1(ε〈 π1(ε〈x, y〉) , π2(ε〈x, y〉) 〉)) ,

f2. π1(φ〈 g′′1(π1(ε〈x, y〉)) , f2(π1(ε〈 π1(ε〈x, y〉) , π2(ε〈x, y〉) 〉)) 〉))

from which, applying the surjective-pairing law 〈π1(z), π2(z)〉 = z three times, we obtain

δ(f(π2(ε ε〈x, y〉)) ,

f1. f1(π1(ε ε〈x, y〉)) ,

f2. π1(φ〈 g′′1(π1(ε〈x, y〉)) , f2(π1(ε ε〈x, y〉))) 〉)) .

Further, since ε and ε are mutual inverses, after an application of the first-projection law π1(〈z1, z2〉) =
z1, we get that this term equals the following one

(12) δ(f(y) ,

f1. f1(x) ,

f2. π1(φ〈 g′′1(π1(ε〈x, y〉)) , f2(x) 〉)) .

On the other hand, the term (11) equals

18

δ(f(π2(ε〈 π1(ε〈x, y〉) , π2(ε〈x, y〉) 〉)) ,

f1. π2(ϕ〈 f1(π1(ε〈 π1(ε〈x, y〉) , π2(ε〈x, y〉) 〉)) , g′′2(π1(ε〈x, y〉)) 〉) ,

f2. f2(π1(ε〈 π1(ε〈x, y〉) , π2(ε〈x, y〉) 〉)))

which equals

(13) δ(f(y) ,

f1. π2(ϕ〈 f1(x) , g′′2(π1(ε〈x, y〉)) 〉) ,

f2. f2(x)) .

Thus, from (4), (9), (12), and (13), the left hand side of (1) equals

λy. δ(f(y) ,

g′1. ι1(λx. δ(g(π2(ε〈x, y〉)) ,

g′′1 . δ(f(y) ,

f1. f1(x) ,

f2. π1(φ〈 g′′1(π1(ε〈x, y〉)) , f2(x) 〉)) ,

g′′2 . π1(φ〈 δ(g(π2(ε〈x, y〉)) ,

f1. f1(π1(ε〈x, y〉)) ,

f2. π1(ϕ〈 g′1(x) , f2(π1(ε〈x, y〉)) 〉)) ,

δ(f(y) ,

f1. π2(ϕ〈 f1(x) , g′′2(π1(ε〈x, y〉)) 〉) ,

f2. f2(x)) 〉))) ,

g′2. ι2(λx.G[ϕ, ε, p[ϕ, φ, ε, f, g], λx′. G[φ, ε, g, g′2, x
′, y], x, y]))

which, using (B)–(F), equals

λy. δ(f(y) ,

g′1. ι1(λx. δ(g(π2(ε〈x, y〉)) ,

g′′1 . g′1(x) ,

g′′2 . π1(φ〈 π1(ϕ〈 g′1(x) , g′′2(π1(ε〈x, y〉)) 〉) ,

π2(ϕ〈 g′1(x) , g′′2(π1(ε〈x, y〉)) 〉) 〉))) ,

g′2. ι2(λx.G[ϕ, ε, p[ϕ, φ, ε, f, g], λx′. G[φ, ε, g, g′2, x
′, y], x, y]))

and that, using surjective pairing, the fact that ϕ and φ are mutual inverses, the first-
projection law, the equation (G), and the extensionality law λx. t(x) = t (x 6∈ FV(t)), further
equals

(14) λy. δ(f(y) ,

g′1. ι1(g′1) ,

g′2. ι2(λx.G[ϕ, ε, p[ϕ, φ, ε, f, g], λx′. G[φ, ε, g, g′2, x
′, y], x, y])) .

We now calculate (6), which appears in the second branch above. This term equals

19

δ(p[ϕ, φ, ε, f, g](π2(ε〈x, y〉)) ,

f ′1. π2(ϕ〈 f ′1(π1(ε〈x, y〉)) , G[φ, ε, g, g′2, x, y] 〉) ,

f ′2. f ′2(π1(ε〈x, y〉)))

and from this and (8), using (A), it further equals

δ(g(π2(ε〈x, y〉)) ,

g′′1 . π2(ϕ〈 F [φ, ε, f, g′′1 , π1(ε〈x, y〉), π2(ε〈x, y〉)] ,

G[φ, ε, g, g′2, x, y] 〉) ,
g′′2 . G[ϕ, ε, f, g′′2 , π1(ε〈x, y〉), π2(ε〈x, y〉)])

which, from (12) and (13), equals

(15) δ(g(π2(ε〈x, y〉)) ,

g′′1 . π2(ϕ〈 δ(f(y) ,

f1. f1(x) ,

f2. π1(φ〈 g′′1(π1(ε〈x, y〉)) , f2(x) 〉)) ,

δ(g(π2(ε〈x, y〉)) ,

f1. π2(φ〈 f1(π1(ε〈x, y〉)) , g′2(x) 〉) ,

f2. f2(π1(ε〈x, y〉))) 〉) ,

g′′2 . δ(f(y) ,

f1. π2(ϕ〈 f1(x) , g′′2(π1(ε〈x, y〉)) 〉) ,

f2. f2(x))) .

Thus, from (14) and (15), the left hand side of (1) equals

λy. δ(f(y) ,

g′1. ι1(g′1) ,

g′2. ι2(λx. δ(g(π2(ε〈x, y〉)) ,

g′′1 . π2(ϕ〈 δ(f(y) ,

f1. f1(x) ,

f2. π1(φ〈 g′′1(π1(ε〈x, y〉)) , f2(x) 〉)) ,

δ(g(π2(ε〈x, y〉)) ,

f1. π2(φ〈 f1(π1(ε〈x, y〉)) , g′2(x) 〉) ,

f2. f2(π1(ε〈x, y〉))) 〉) ,

g′′2 . δ(f(y) ,

f1. π2(ϕ〈 f1(x) , g′′2(π1(ε〈x, y〉)) 〉) ,

f2. f2(x)))))

which, using (B)–(F), equals

20

λy. δ(f(y) ,

g′1. ι1(g′1) ,

g′2. ι2(λx. δ(g(π2(ε〈x, y〉)) ,

g′′1 . π2(ϕ〈 π1(φ〈 g′′1(π1(ε〈x, y〉)) , g′2(x) 〉) ,

π2(φ〈 g′′1(π1(ε〈x, y〉)) , g′2(x) 〉) 〉) ,

g′′2 . g′2(x)))) .

By surjective pairing, this is equal to

λy. δ(f(y) ,

g′1. ι1(g′1) ,

g′2. ι2(λx. δ(g(π2(ε〈x, y〉)) ,

g′′1 . π2(ϕ(φ〈 g′′1(π1(ε〈x, y〉)) , g′2(x) 〉))
g′′2 . g′2(x)))) .

Moreover, as φ and ϕ are mutual inverses, an application of the second-projection law on the
second branch yields

λy. δ(f(y) ,

g′1. ι1(g′1) ,

g′2. ι2(λx. δ(g(π2(ε〈x, y〉)), g′′1 . g′2(x), g′′2 . g′2(x))))

which, by (G) and the extensionality law, equals

λy. δ(f(y) , g′1. ι1(g′1) , g′2. ι2(g′2)) .

Finally, by the weak sum-extensionality law δ(t, z1. ι1(z1), z2. ι2(z2)) = t and the extension-
ality law, this is equal to f as required.

Hence, the identity (1) is established.

21

