
Parallel programming with the OcamlP3l system,

with applications to coupling numerical codes.

�

Fran�cois Cl�ement, Arnaud Vodicka

Project Estime - INRIA Rocquencourt - France

Roberto Di Cosmo, Zheng Li

Project Cristal - INRIA Rocquencourt University of Paris 7 - France

Vincent Martin

Project Estime - INRIA Rocquencourt and ANDRA - France

Pierre Weis

Projet Cristal - INRIA Rocquencourt - France

November 20, 2003

Abstract

Writing parallel programs is not easy, and debugging them is usually a

nightmare. To cope with these di�culties, a structured approach to parallel

programming using skeletons and templates based compilation techniques has

been developed over the past years by several researchers, including the P3L

group in Pisa. The OcamlP3l system marries the Ocaml functional program-

ming language with the P3L skeletons, yielding a powerful parallel program-

ming system and methodology: OcamlP3l allows the programmer to write

and debug a sequential version of his program (which, if not easy, could be

considered as routine), and then the parallel version is automatically deduced

by recompilation of the source program. The invaluable advantage of this

approach is stagging: the programmer has just to concentrate on the easy

part, the sequential programming, relieving on the OcamlP3l system to obtain

the hard part, the parallel version. As an additional bene�t, the semantics

adequacy of the sequential and parallel versions of the program is no more

the programmer's concern: it is now the entire responsability of the OcamlP3l

compiler.

In this paper, we report on the successful application of OcamlP3l in the

�eld of scienti�c computing, where the system has been used to solve a problem

of coupling numerical codes, obtaining parallelization for free.

The interaction has been quite successful, as, in the process of solving

the coupling problem, a wealth of new ideas have emerged on the design of

the system, which are now incorporated in the current version of OcamlP3l:

coloring of virtual and physical computing network nodes to specify their

relative mapping, and the new notion of parfuns or parallel computing sub-

networks rei�ed as functions at the programmer's level. Those two notions

both increase e�ciency and ease the writing of programs, being a step to

smoother integration of parallel computing into the functional programming

paradigm.

�

The OcamlP3l system has been partially funded by a Galileo bilateral France-Italy project.

1

1 Introduction and Overview

In the �eld of Scienti�c Computing, one observes an increase in the complexity and

size of the problems to solve and it becomes of major importance to consider the

coupling of appropriate physical models. For instance, when dealing with under-

ground storage, the transport equation, that describes the movement of particles

in porous media, needs to be coupled with equations that model chemical reactions

that can occur. In most cases, there exists di�erent codes that treat separately the

transport and the chemistry. One major issue is then to couple these existing codes,

in order to avoid rewriting them from scratch.

In this paper, as a �rst step, we limit ourselves to a speci�c coupling: we couple

a code with itself in a domain decomposition fashion. For that purpose, several key

points have to be addressed: dealing with interface conditions of di�erent nature,

choice of a domain decomposition strategy, local re�nements of the discretization

in time and space, linking non-matching grids, . . . Furthermore one has to take into

account the design and implementation of the software interface. This latter prob-

lem could become cumbersome, especially when coupling codes written in various

languages and with di�erent kind of data structures. In addition, planning a parallel

version of the application is another tedious issue.

Focusing on the software aspect, our long term goal is the automation of the

implementation of the coupling interface between the di�erent codes, or at least

an help to write this interface, e.g., the design of a coupling library dedicated to

Scienti�c Computing applications.

We have chosen the Ocaml language for its state-of-the-art high-level capabilities

and the recently developed OcamlP3l system for automagically providing all the

piping necessary to the communications between the di�erent programs to couple.

This means that we were already interested by the sequential execution of the

application, and the parallel ability came for free!

We have �rst experienced the OcamlP3l environment on a very simple|easy-

to-code|example implementing Schwarz algorithm (overlapping domain decom-

position method with matching and structured grids based on simple Dirichlet

conditions) for a 2D Poisson solver, details can be found in [CVDW03]. In the

present paper, we consider a non-overlapping domain decomposition method with

non-matching and unstructured grids based on Robin interface conditions applied

to a problem of 3D
ow simulation in porous media.

The paper is organized as follows. In the next section, we describe in details the

current state of the OcamlP3l skeleton-based system. In particular, this includes

lately developed features as the possibility to locally initialize the data parallel

skeletons, the parfun construction that encapsulates any stream processor as an

ordinary function, and the color option that allows to balance the load. We give a

brief manual in section 3. The fourth section is dedicated to the presentation of a

scienti�c computing application, the simulation of
ow in 3D porous media, and its

implementation within the framework of the OcamlP3l environment. We give some

results that illustrate the new capabilities of the system in section 5. And then,

we conclude and propose further developments. More details about the technique

of domain decomposition are given in the appendix, as well as the interface of an

Ocaml module dedicated to it.

2

2 The OcamlP3l system

2.1 Overview of the system

In OcamlP3l, as in all skeleton-based systems, the user describes the parallel struc-

ture of the computation by means of a set of skeletons. One distinctive feature

of OcamlP3l, though, is that the semantics of these skeletons is not hard-wired:

the system allows the user to compile his code, without any source modi�cation

whatsoever, using a choice of various possible semantics.

2.2 Three strongly related semantics

In OcamlP3l, as described in the seminal paper [DDCLP98], we provides three

semantics, for any user program.

sequential semantics the user's program is compiled and linked against a sequen-

tial implementation of the skeletons, so the resulting executable can be run

on a single machine, as a single process, and easily debugged using standard

debugging techniques and tools for sequential programs,

parallel semantics the user's program is compiled and linked against a parallel

implementation of the skeletons, and the resulting executable is a generic

SPMD program that can be deployed on a parallel machine, a cluster, or a

network of workstations,

graphical semantics the user's program is compiled and linked against a graph-

ical implementation of the skeletons, so that the resulting program, when

executed, displays a picture of the parallel computational network that is

deployed when running the parallel version.

From the user's point of view, those three di�erent semantics are simply obtained

by compiling the program with three di�erent options of the compiler.

Of course, our goal is to guarantee that the sequential and the parallel execution

agree: for any user program the two semantics should produce exactly the same

results.

2.3 Skeletons as stream processors

The OcamlP3l skeletons are compositional : the skeletons are combinators that form

an algebra of functions and functionals that we call the skeleton language.

To be precise, a skeleton is a stream processor, i.e. a function that transforms

an input stream of incoming data into an output stream of outgoing data. Those

functions can then be composed arbitrarily, thus leading to trees of combinators

that de�ne the parallel behaviour of programs.

This mapping of skeletons to stream processors is evident at the type level, since

the skeletons are all assigned types that re
ect their stream processing functionality.

Of course, the compositional nature of skeletons is also clear in their implementation:

For the parallel semantics implementation, a skeleton is realized as a stream

processor parameterized by some other functions and/or other stream proces-

sors.

For the sequential semantics implementation, we provide an abstract data type

of streams (the polymorphic 'a stream data type constructor), and the se-

quential implementation of the skeletons is de�ned as a set of functions over

those streams.

3

2.4 The skeleton combinators in OcamlP3l

In the current release of OcamlP3l, the combinators (or basic building blocks) of the

skeleton language pertain to �ve kinds:

� the task parallel skeletons that model the parallelism of independent process-

ing activities relative to di�erent input data. In this set, we have pipe and

farm, that correspond to the usual task parallel skeletons appearing both in

p3l and in other skeleton models [Col89, DFH

+

93, DGTY95].

� the data parallel skeletons that model the parallel computation of di�er-

ent parts of the same input data. In this set, we provide mapvector and

reducevector. The mapvector skeleton models the parallel application of

a generic function f to all the items of a vector data structure, whereas the

reducevector skeleton models a parallel computation that folds the elements

of a vector with a commutative and associative binary operator (�).

Those two skeletons are simpli�ed versions of their respective map and reduce

analogues in p3l. They provide a functionality quite similar to the map(�) and

reduce (=) functionals of the Bird-Meertens formalism discussed in [Bir87] and

the map and fold skeletons of SCL [DGTY95].

� the data interface skeletons that provide injection and projection between the

sequential and parallel worlds: seq converts a sequential function into a node

of the parallel computational network, parfun converts a parallel computa-

tional network into a stream processing function.

� the parallel execution scope delimiter skeleton, the pardo combinator, that

must encapsulate all the code that invokes a parfun.

� the control skeleton, the loop combinator, that provides the necessary repet-

itive execution of a given skeleton expression (loop is not a parallel construct

per se).

2.5 Skeleton syntax, semantics, and types

We brie
y describe here the syntax, the informal semantics, and the types assigned

to each of the combinators of the skeleton language.

2.5.1 Combinators as skeleton generators

First of all, let's explain why the actual Ocaml types of our skeletons are a bit

more complex than a naive view would have guessed. In e�ect, those types seem

somewhat polluted by spurious additional unit types, compared to the types one

would consider as natural. Of course, this additional complexity is not purely

incidental: it has been forced by strong practical considerations to implement new

functionalities that where mandatory to e�ectively run the numerical applications

described below.

We now explain the rationality of these decisions for the simplest skeleton, the

seq combinator. As explained above, seq encapsulates any Ocaml function f into

a sequential process which applies f to all the inputs received in the input stream.

Writing seq f, any Ocaml function with type f : 'a -> 'b is wrapped into a

sequential process (this is reminiscent to the lift combinator used in many stream

processing libraries of functional programming languages). Hence, we would expect

seq to have the type

('a -> 'b) -> 'a stream -> 'b stream.

However, in OcamlP3l, seq is declared as

4

seq : (unit -> 'a -> 'b) -> unit -> 'a stream -> 'b stream

meaning that the lifted function argument f gets an extra unit argument. In e�ect,

in real-world application, the user functions may need to hold a sizeable amount

of local data, like those huge matrices that have to be initialised in the numerical

application described further on, and we must allow the user to �nely describe where

and when those data have to be initialized and/or copied.

Reminiscent to partial evaluation and �-lifting, we reuse the classical techniques

of functional programming to initialize or allocate data globally and/or locally to a

function closure. This is just a bit complicated here, due to the higher-order nature

of the skeleton algebra, that in turn re
ects the inherent complexity of parallel

computing:

� global initialization: the data is initialised once and for all, and is then repli-

cated in every copy of the stream processor that a farm or a mapvector

skeleton may launch; this was already available in the previous versions of

OcamlP3l, since we could write

let f =

let localdata = do_huge_initialisation_step () in

fun x -> compute (localdata, x);;

...

farm (seq f, 10)

� local initialization: the data is initialised by each stream processor, after the

copy has been performed by a farm or a mapvector skeleton; this was just

impossible in the previous versions of OcamlP3l; with the new scheme it is

now easy:

let f () =

let localdata = do_huge_initialisation_step () in

fun x -> compute (localdata, x);;

...

farm (seq f, 10)

when the farm skeleton creates 10 copies of seq f, each copy is created by

passing () to the seq combinator, which in turn passes () to f , producing the

allocation of a di�erent copy of localdata for each instance

1

. Note also that

the old behaviour, namely, a unique initialization shared by all copies, is still

easy (and can be freely combined to further local initializations if needed):

let f =

let localdata = do_huge_initialisation_step () in

fun () -> fun x -> compute (localdata, x);;

...

farm (seq f, 10)

To sum up, the extra unit parameters give the programmer the hability to decide

whether local initialisation data in his functions are shared among all copies or not.

In other words, we can regard the skeleton combinators in the current version of

OcamlP3l as \delayed skeletons", or \skeleton factories", that produce an instance

of a skeleton every time they are passed an () argument.

1

In practice, the initialization step may do weird, non referentially transparent things, like

opening �le descriptors or negociating a network connection to other services: it is then crucial

to allow the di�erent instances of the user's function to have their own local descriptors or local

connections to simply avoid the chaos.

5

2.5.2 Typing and semantics of skeletons

We can now detail the other skeletons:

The farm skeleton computes in parallel a function f over di�erent data items

appearing in its input stream.

From a functional viewpoint, given a stream of data items x

1

; : : : ; x

n

, and a

function f , the expression farm(f; k) computes f(x

1

); : : : ; f(x

n

). Parallelism

is gained by having k independent processes that compute f on di�erent items

of the input stream.

If f has type (unit -> 'b stream -> 'c stream), and k has type int, then

farm(f; k) has type unit -> 'b stream -> 'c stream.

The pipeline skeleton is denoted by the in�x operator |||; it performs in par-

allel the computations relative to di�erent stages of a function composition

over di�erent data items of the input stream.

Functionally, f

1

|||f

2

: : :|||f

n

computes f

n

(: : : f

2

(f

1

(x

i

)) : : :) over all the

data items x

i

in the input stream. Parallelism is now gained by having n

independent parallel processes. Each process computes a function f

i

over the

data items produced by the process computing f

i�1

and delivers its results to

the process computing f

i+1

.

If f

1

has type (unit -> 'a stream -> 'b stream),

and f

2

has type (unit -> 'b stream -> 'c stream),

then f

1

jjjf

2

has type unit -> 'a stream -> 'c stream.

The map skeleton is named mapvector; it computes in parallel a function over

all the data items of a vector, generating the (new) vector of the results.

Therefore, for each vector X in the input data stream, mapvector(f; n) com-

putes the function f over all the items of X , using n distinct parallel processes

that compute f over distinct vector items.

If f has type (unit -> 'a stream -> 'b stream), and n has type int, then

mapvector(f; n) has type unit -> 'a array stream -> 'b array stream.

The reduce skeleton is denoted reducevector; it folds a function over all the

data items of a vector.

Therefore, reducevector(f; n) computes x

1

fx

2

f : : : fx

n

out of the vector

x

1

; : : : ; x

n

, for each vector in the input data stream. The computation is

performed using n di�erent parallel processes that compute f .

If f has type (unit -> 'a * 'a stream -> 'a stream), and n has type

int, then

reducevector(f; n) has type unit -> 'a array stream -> 'a stream.

2.6 The parfun construction

In the original p3l system, a program is clearly strati�ed into two levels: there is a

skeleton cap, that can be composed of an arbitrary number of skeleton combinators,

but as soon as one goes outside this cap, passing into the sequential code through

the seq combinator, there is no way for the sequential code to call a skeleton. To

say it brie
y, the entry point of a p3l program must be a skeleton expression, and

no skeleton expression is allowed anywhere else in the code.

This strati�cation is quite reasonable in the p3l system, as the goal is to build a

single stream processing network described by the skeleton cap. However, it has

several drawbacks:

� it breaks uniformity, since even if the skeletons look like ordinary functionals,

they cannot be used as ordinary functions, in particular inside sequential code,

6

� as exampli�ed in the application of section 4, many numerical algorithms

boil down to simple nested loops, some of which can be easily parallelised,

and some cannot; forcing the programmer to push all the parallelism in the

skeleton cap could lead to rewriting the algorithm in a very unnatural way,

� as in our numerical application, a parallelizable operation can be used at

several stages in the algorithm: the p3l skeleton cap does not allow the user

to specify that parts of the stream processing network can be shared among

di�erent phases of the computation, which is an essential requirement to avoid

wasting computational resources.

To overcome all these di�culties and limitations, the 1.9 version of OcamlP3l

introduces the new parfun skeleton, the very dual of the seq skeleton. In simple

words, one can wrap a full skeleton expression inside a parfun, and obtain a reg-

ular stream processing function, usable with no limitations in any sequential piece

of code: a parfun encapsulated skeleton behaves exactly as a normal function that

receives a stream as input, and returns a stream as output. However, in the par-

allel semantics, the parfun combinator gets a parallel interpretation, so that the

encapsulated function is actually implemented as a parallel network (the network

to which the parfun combinator provides an interface).

Since many parfun expressions may occur in a OcamlP3l program, there may be

several disjoint parallel processing networks at runtime. This implies that, to con-

strast with p3l, the OcamlP3l model of computation requiers a main sequential

program: this main program is responsible for information interchange with the

various parfun encapsulated skeletons.

One would expect parfun to have type (unit -> 'a stream -> 'b stream)

-> 'a stream -> 'b stream: given a skeleton expression with type (unit -> 'a

stream -> 'b stream), parfun returns a stream processing function of type 'a

stream -> 'b stream.

parfun's actual type introduces an extra level of functionality: the argument is

no more a skeleton expression but a functional that returns a skeleton:

val parfun :

(unit -> unit -> 'a stream -> 'b stream) -> 'a stream -> 'b stream

This is necessary to guarantee that the skeleton wrapped in a parfun expression

will only be launched and instanciated by the main program, not by any of the

multiple running copies of the SPMD binary, even though thoses copies may evaluate

the parfun skeletons; the main program will actually create the needed skeletons

by applying its functional argument, while the generic copies will just throw the

functional away, carefully avoiding to instanciate the skeletons.

2.7 The pardo parallel scope delimiter

pardo typing

Finally, the pardo combinator de�nes the scope of the expressions that may use the

parfun encapsulated expressions.

val pardo : (unit -> 'a) -> 'a

pardo takes a thunk as argument, and gives back the result of its evaluation.

As for the parfun combinator, this extra delay is necessary to ensure that the

initialization of the code will take place exclusively in the main program and not in

the generic SPMD copies that participate to the parallel computation.

7

Parallel scoping rule

The scoping rule has three requisits:

� functions de�ned via the parfun combinator must be de�ned before the oc-

currence of the pardo combinator,

� those parfun de�ned functions can only be executed within the body of the

functional parameter of the pardo combinator,

� no parfun can occur as a sub tree of a pardo combinator.

2.7.1 Structure of an OcamlP3l program

Due to this scoping rule, the general structure of an OcamlP3l program looks like

the following:

(* (1) Functions defined using parfun *)

let f = parfun(skeleton expression)

let g = parfun(skeleton expression)

(* (2) code referencing these functions under abstractions *)

let h x = ... (f ...) ... (g ...) ...

...

(* NO evaluation of code containing a parfun

is allowed outside pardo *)

(* (3) The pardo occurrence where parfun encapsulated

functions can be called. *)

pardo

(fun () ->

(* NO parfun combinators allowed here *)

(* code evaluating parfun defined functions *)

...

let a = f ...

let b = h ...

...

)

(* finalization of sequential code here *)

At run time, in the sequential model, each generic copy just waits for instruc-

tions from the main node; the main node �rst evaluates the arguments of the parfun

combinators to build a representation of the needed skeletons; then, upon encoun-

tering the pardo combinator, the main node initializes all the parallel computation

networks, specialising the generic copies (as described in details in [DDCLP98]),

connects these networks to the sequential interfaces de�ned in the parfun's, and

then runs the sequential code in its scope by applying its function parameter to

():unit. The whole picture is illustrated in Figure 1. The skeleton networks are

initiated only once but could be invoked many times during the execution of pardo.

8

