
Extensional Normalisation and Type-Directed Partial Evaluation
for Typed Lambda Calculus with Sums

Vincent Balat
PPS - Université Paris 7

Roberto Di Cosmo
PPS - Université Paris 7

and
INRIA-Roquencourt

Marcelo Fiore∗

Computer Laboratory
University of Cambridge

Abstract

We present a notion ofη-longβ-normal term for the typed lambda
calculus with sums and prove, using Grothendieck logical relations,
that every term is equivalent to one in normal form. Based on this
development we give the first type-directed partial evaluator that
constructs normal forms of terms in this calculus.

Categories and Subject Descriptors: F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—
partial evaluation; F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic—lambda calculus and related sys-
tems; D.3.1 [Programming Languages]: Formal Definitions and
Theory—semantics

General Terms: Languages, Theory, Algorithms.

Keywords: Typed lambda calculus, Strong sums, Grothendieck
logical relations, Normalisation, Type-Directed PartialEvaluation.

1 Introduction

Sum types and their associated case expressions are an essential
feature of any programming language. Taking into account the full
range of commuting conversions in performing program optimisa-
tions and partial evaluation in their presence is a difficult, but im-
portant, task. For example, consider theObjective Camlsum type

type (’a,’b) sum = Left of ’a | Right of ’b

and the program

fun f -> fun g -> fun z -> fun x ->
match (match x with

Left x1 -> Left z
| Right x2 -> Right (g z))

with
Left y1 -> f(g y1)

| Right y2 -> f y2

(1)

∗Research supported by an EPSRC Advanced Research Fel-
lowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’04 January 14–16, 2004, Venice, Italy.
Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00

of type

(’a -> ’b) -> (’c -> ’a) -> ’c -> (’d, ’e) sum -> ’b

This is a typical, hard to read, example of what automatically gen-
erated code looks like. Using commuting conversions, it canbe
transformed into the program

fun f -> fun g -> fun z -> fun x ->
match x with
Left x1 -> (match (Left z) with

Left y1 -> f(g y1)
| Right y2 -> f(y2))

| Right x2 -> (match Right(g z) with
Left y1 -> f(g y1)

| Right y2 -> f(y2))

which can be then optimised into the program

fun f -> fun g -> fun z -> fun x ->
match x with
Left x1 -> f(g z)

| Right x2 -> f(g z)

that, by extensionality, can be transformed into the more readable
and efficient

fun f -> fun g -> fun z -> fun x ->
f(g z)

(2)

The commuting conversions associated to case expressions are
derivable from the (strong)sum extensionalityaxiom; which iden-
tifies the programs

match e with
Left x1 -> t[Left x1/x]

| Right x2 -> t[Right x2/x]
and t[e/x]

Sum types satisfying this axiom are sometimes referred to asstrong
or categoricalsums.

In this paper we consider sum types in the most basic foundational
type theory for functional programming: the typed lambda calculus
with sums. In particular, we tackle the problem of defining and
computing normal forms in it; so that, for instance, the passage
from (1) to (2) can be done automatically. Besides the interest in the
typed lambda calculus with sums from the programming-language
viewpoint, there is also a type theoretic one, and the study of sum
types in this setting has proved challenging; see [17, 13, 16, 1].

The theory ofweak sums, either without the extensionality ax-
iom (see [11]) or with the extensionality axiom restricted to the
caset = x (see [10]), is well understood. However, there is as yet

no known confluent and strongly normalising reduction system for
strong sums. Thus, we consider below normalisation within the
whole calculus in the spirit ofNormalisation by Evaluation(NBE)
andType-Directed Partial Evaluation(TDPE).

NBE is a normalisation technique introduced by Berger and
Schwichtenberg [4] for the simply typed lambda calculus as an in-
verse to the evaluation function, mapping a semantic value into a
syntactic one in normal form. Since then, NBE has been the sub-
ject of investigation in many domains: logic, type theory, category
theory, partial evaluation (see,e.g., [7]).

Partial evaluation is a program transformation technique used to
specialise functions. TDPE is a partial evaluator for functional lan-
guages invented by Danvy [5]. It is based on the same principle
as NBE; it constructs code of compiled programs, acting as a de-
compiler.

An extension of NBE to the typed lambda calculus with binary
sums has been proposed by Altenkirch, Dybjer, Hofmann, and
Scott [1]. However, normalising calculi with strong sums inthe
style of TDPE was an open problem; to which this paper offers a
solution.

For the typed lambda calculus, Fiore [14] showed that we can ex-
tract the NBE algorithm as an intentional version of an extensional-
normalisation result (stating that every term equals one innormal
form). Here, in the context of the lambda calculus with sums,we
start by following this analysis and present a notion of normal form
with respect to which we establish an extensional-normalisation re-
sult. Afterwards, we proceed in a different direction and draw in-
sight from the proof of this result to develop a partial evaluator for
the typed lambda calculus with binary sums that constructs normal
forms; the extension to incorporate the empty type does not present
much difficulty. The partial evaluator, written inObjective Caml,
can be downloaded from the web.

Organisation of the paper. In Section 2, we recall the syntax and
semantics of the typed lambda calculus with sums. In Section3,
after recalling the construction of bicartesian closed categories of
Grothendieck relations, we present a basic lemma that provides
both guidelines for defining the notion of normal term given in
Section 4, and the proof-skeleton for establishing the extensional-
normalisation result of Section 5. In Section 6, we present the solu-
tion to normalisation via TDPE for the simply typed lambda calcu-
lus with binary sums. Concluding remarks are offered in Section 7.

2 Typed lambda calculus with sums

We recall the syntax and categorical semantics of the simplytyped
lambda calculus with (empty and binary) products and (emptyand
binary) sums. For details see [20].

2.1 Syntax

The set of types has a (countable) set of base types and two type
constants1 and0, the unit and empty type, and is closed under the
formation of product, function, and sum type constructors.For-
mally, types are defined by the following grammar:

τ ::= θ (Base types)
| 1 (Unit type)
| τ1 ×τ2 (Product types)
| τ1 → τ2 (Function types)

| 0 (Empty type)
| τ1 +τ2 (Sum types)

The raw terms of the calculus are defined by the following gram-
mar:

t ::= x (Variables)
| 〈〉 (Unit)
| 〈t1, t2〉 (Pairing)
| π1(t) (First projection)
| π2(t) (Second projection)
| λx : τ. t (Abstraction)
| t1(t2) (Application)
| ⊥τ (Absurd)
| ι

τ1,τ2

1 (t) (First injection)
| ι

τ1,τ2

2 (t) (Second injection)
| δ(t,x1. t1,x2. t2) (Discriminator)

wherex ranges over (a countable set of) variables.

The unit, pairing, and abstraction are respectively the term con-
structors for the unit, product, and function types; whilstthe pro-
jections and application are respectively the term destructors for
the product and function types.

The term constructors for sum types are given by the injections;
whilst the absurd and discriminator are respectively the term de-
structors for empty and sum types. In particular, discriminator
terms permit definitions by cases.

The abstraction and discriminator are binding operators;λx : τ. t
binds the free occurrences ofx in t, andδ(t,x1. t1,x2. t2) binds
the free occurrences ofxi in ti (i = 1,2). The notions of free
and bound variables are standard, and terms are identified upto
alpha conversion

Notice that we have adopted a non-standard (proof irrelevant) ver-
sion of absurd terms as⊥τ, rather than the standard one of the form
⊥τ(t). This is important in the treatment of normal forms.

As usual we consider typing contexts as lists of type declarations for
distinct variables, and say that a termt has typeτ in the contextΓ
if the judgementΓ ` t : τ is derivable from the rules of Figure 1.

Finally, we impose the standard notion of equality on terms,includ-
ing the sum extensionality axiom, as detailed in Figure 2.

2.2 Semantics

Bicartesian closed categories(BiCCCs) are categories with finite
products (1, ×), exponentials (⇒), and finite coproducts (0, +).

The typed lambda calculus with sums is the internal language
of BiCCCs and as such has sound and complete interpretations
in them. With respect to an interpretationI of base types in a
BiCCC S , we write I [[τ]] for the interpretation of the typeτ in-
duced by the bicartesian closed structure. That is,

I [[θ]] = I (θ) (θ a base type)
I [[1]] = 1

I [[τ×τ ′]] = I [[τ]]× I [[τ ′]]

I [[τ→ τ ′]] = I [[τ]] ⇒ I [[τ ′]]

Γ, x : τ, Γ ′ ` x : τ

Γ ` 〈〉 : 1

Γ ` ti : τi (i = 1,2)

Γ ` 〈t1, t2〉 : τ1 ×τ2

Γ ` t : τ1 ×τ2

Γ ` πi(t) : τi

(i = 1,2)

Γ, x : τ1 ` t : τ

Γ ` λx : τ1. t : τ1 → τ

Γ ` t : τ1 → τ Γ ` t1 : τ1

Γ ` t(t1) : τ

Γ ` t : 0
Γ ` ⊥τ : τ

Γ ` t : τi

Γ ` ιτ1,τ2

i (t) : τ1 +τ2

(i = 1,2)
Γ ` t : τ1 +τ2 Γ, xi : τi ` ti : τ (i = 1,2)

Γ ` δ(t,x1. t1,x2. t2) : τ

Figure 1. Typing rules.

Γ ` t : τ

Γ ` t= t : τ

Γ ` t= t ′ : τ

Γ ` t ′ = t : τ

Γ ` t1 = t2 : τ Γ ` t2 = t3 : τ

Γ ` t1 = t3 : τ

Γ ` t : 1
Γ ` t = 〈〉 : 1

Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` πi〈t1, t2〉 = ti : τi

(i = 1,2)
Γ ` t : τ1×τ2

Γ ` t = 〈π1(t),π2(t)〉 : τ1×τ2

Γ,x : τ1 ` t : τ Γ ` t1 : τ1

Γ ` (λx : τ1. t)(t1) = t[t1/x] : τ

Γ ` t : τ1 → τ

Γ ` t = λx : τ1. t(x) : τ1 → τ
(x 6∈ FV(t))

Γ ` t : τ1 → τ Γ ` t1 = t ′1 : τ1

Γ ` t(t1) = t(t ′1) : τ

Γ,x : τ1 ` t = t ′ : τ

Γ ` λx : τ1. t = λx : τ1. t
′ : τ1 → τ

Γ ` ⊥0 : 0 Γ ` t : τ

Γ ` ⊥τ = t : τ

Γ ` t : τj Γ,xi : τi ` ti : τ (i = 1,2)

Γ ` δ(ιj(t),x1.t1,x2.t2) = tj[t/xj] : τ
(j = 1,2)

Γ ` t : τ1 +τ2 Γ,x : τ1 +τ2 ` t ′ : τ

Γ ` δ(t,x1.t
′[ι1(x1)/x],x2.t

′[ι2(x2)/x]) = t ′[t/x] : τ

Figure 2. Equational theory of the typed lambda calculus with sums.

I [[0]] = 0

I [[τ+τ ′]] = I [[τ]]+ I [[τ ′]]

This interpretation extends to contexts in the usual manner:

I [[x1 : τ1, . . . ,xn : τn]] = I [[τ1]]× . . .× I [[τn]]

We write I [[Γ ` t : τ]] for the morphismI [[Γ]] → I [[τ]] in S inter-
preting the judgementΓ ` t : τ.

Syntactic BiCCC. The syntactic BiCCC induced by the type the-
ory has objects given by types and morphismsτ1 → τ2 given by
equivalence classes[x : τ1 ` t : τ2] of derivable judgements under
the equivalence identifying(x : τ1 ` t : τ2) and(x ′ : τ1 ` t ′ : τ2)

iff the judgementx : τ1 ` t= t ′[x/x ′] : τ2 is derivable in the equa-
tional theory. Composition is by substitution

[x ′ : τ2 ` t ′ : τ3]◦ [x : τ1 ` t : τ2] = [x : τ1 ` t ′[t/x ′] : τ3]

with identities given by[x : τ ` x : τ].

3 BiCCCs of Grothendieck relations

The class of categorical models of the typed lambda calculuswith
sums needed for establishing the extensional normalisation result
is that given by BiCCCs of Grothendieck relations [16]. These
are categories defined over a site, a small categoryC with a
Grothendieck topologyK, equipped with an arity functors : C → S
into a BiCCC. They consist of objects(A,R) whereA is an object
of S andR is a Grothendieck relation of aritys, and have morphisms
(A,R) → (A ′,R ′) given by morphismsA→ A ′ in S that preserve
the relations.

We recall the formal definitions.

DEFINITION 3.1. Given a small categoryC, a (basis for) a
Grothendieck topologyK on C, is given by associating to each ob-
jecta of C a collectionK(a) of covers ofa (a family of morphisms
in C with codomaina), satisfying the following conditions:

(Identity) For everya ∈ | C |, K(a) contains the family consisting
of the identity morphism ona.

(Stability) For every {φi : ai → a}i∈I ∈ K(a), and morphism
ψ : b→ a, there exists a family{φ ′

j : bi → b}j∈J ∈K(b) such

that everyψ ◦φ ′
j : bj → a factors through someφi (i.e., for

every j ∈ J there existi ∈ I and γij : bj → ai such that
ψ ◦φ ′

j = φi ◦γij).

(Transitivity) For every {φi : ai → a}i∈I ∈ K(a), and for ev-
ery {γij}j∈Ji

∈ K(ai) (i ∈ I), the family{φi ◦γij}i∈I,j∈Ji
∈

K(a).

A small category together with a Grothendieck topology on itis
called asite.

DEFINITION 3.2. For a site (C,K) and a functor s: C → S , a
(C,K)-Grothendieck relationR of arity s overA ∈ | S | is a family
{ R(c) ⊆ S(s(c),A) }c∈|C| with the following two properties.

(Monotonicity) For everyψ : c ′ → c in C, and everyx : s(c) →A
in S , if x ∈ R(c), thenx◦s(ψ) ∈ R(c ′).

(Local character) For every cover{ φi : ci → c }i∈I ∈ K(c) and
for everyx : s(c) → A in S , if x ◦s(φi) ∈ R(ci) for all i ∈ I,
thenx ∈ R(c).

DEFINITION 3.3. For a site(C,K) and a functor s: C → S , the
category of Grothendieck relations G(C,K,s) is defined as fol-
lows: objects are pairs(A,R) consisting of an objectA in S and
a (C,K)-Grothendieck relationR of arity s overA; morphisms
(A,R) → (A ′,R ′) are morphismsf :A→ A ′ in S such that for all
objectsc in C and morphismsx : s(c) → A in R(c), the composite
f◦x is in R ′(c).

We have the following important result; see [16] for details.

PROPOSITION 3.4. For a site (C,K) and a functor s: C → S
into a bicartesian closed category, the category of Grothendieck
relationsG(C,K,s) is bicartesian closed and the forgetful functor
G(C,K,s) → S preserves the bicartesian closed structure.

The FUNDAMENTAL LEMMA OF GROTHENDIECKLOGICAL RE-
LATIONS follows as a corollary.

LEMMA 3.5 (FUNDAMENTAL LEMMA). For a family of
Grothendieck relations〈(I [[θ]],Rθ)〉θ in G(C,K,s : C → S) in-
dexed by base types, let〈(I [[τ]],Rτ)〉τ (resp.〈(I [[Γ]],RΓ)〉Γ) be the
family of Grothendieck relations indexed by types(resp. contexts)
induced by the bicartesian closed structure ofG(C,K,s). Then, the
interpretation of termsI [[Γ ` t : τ]] : I [[Γ]] → I [[τ]] in S are mor-
phisms(I [[Γ]],RΓ) → (I [[τ]],Rτ) in G(C,K,s).

3.1 Basic lemma

Following the analysis of [14] we give a BASIC LEMMA that pro-
vides the proof-skeleton for both the definability result of[16] and
the extensional normalisation result (Theorem 5.1) of thispaper.

LEMMA 3.6 (BASIC LEMMA). Consider a site(C,K), a functor
s : C → S into a BiCCC, and an interpretationI of base types inS .

Let 〈(I [[τ]],Lτ)〉τ and 〈(I [[τ]],Uτ)〉τ be two families of
Grothendieck relations inG(C,K,s) indexed by types such that

L0 = ⊥ U1 = >
Lσ×τ ⊆ Lσ ∧ Lτ Uσ ∧ Uτ ⊆ Uσ×τ

Lσ+τ ⊆ Lσ ∨ Lτ Uσ ∨ Uτ ⊆ Uσ+τ

Lσ→τ ⊆ Uσ ⊃ Lτ Lσ ⊃ Uτ ⊆ Uσ→τ

For a family of Grothendieck relations〈(I [[θ]],Rθ)〉θ in G(C,K,s)
indexed by base types, let〈(I [[τ]],Rτ)〉τ be the family of
Grothendieck relations indexed by types induced by the bicartesian
closed structure ofG(C,K,s).

If Lθ ⊆ Rθ ⊆ Uθ for all base typesθ, then

1. Lτ ⊆ Rτ ⊆ Uτ for all typesτ, and thus

2. for all termsΓ ` t : τ (Γ = x1 : τ1, . . . ,xn : τn) and tuples
ai : s(c) → I [[τi]] in Lτi

(c) (1 ≤ i ≤ n,c ∈ | C |), we have
that I [[Γ ` t : τ]]◦〈a1, . . . ,an〉 : s(c) → I [[τ]] is in Uτ(c).

The first part of the lemma follows by induction on types using
the closure properties of the hypothesis and the functoriality of the
categorical type constructors; the second part is a consequence of
the first and the FUNDAMENTAL LEMMA .

4 Normal forms

We present a notion ofη-longβ-normal form for the typed lambda
calculus with sums. The overall definition, which is given inFig-
ure 3, depends on four mutual inductively defined entailmentsys-
tems: `M0

(pure neutral terms),̀ M (neutral terms),̀ N0
(pure

normal terms), and̀ N (normal terms). The pure neutral terms are
essentially given as in the typed lambda calculus; whilst the neu-
tral terms are obtained from these by closing under discriminators.
The pure normal terms are essentially given as in the typed lambda
calculus with the addition of the sum injections, and normalterms
are obtained by closing under discriminators with respect to pure
neutral terms. The unique neutral and normal term in an inconsis-
tent context (viz., a contextΓ in which the judgementΓ ` ⊥0 : 0 is
derivable) of typeτ is ⊥τ.

The definition of normal forms has been designed guided by that
of [1] (of which the ones here are syntactic counterparts) and by
making sure that the interpretations of neutral and normal terms
provide Grothendieck relations satisfying the hypothesisof the BA-
SIC LEMMA (see Section 3).

Note that there are syntactically different, but semantically equiva-
lent normal forms; like the following ones:

λg : θ→ θ1 +θ2. λh : θ→ θ3 +θ4. λx : θ.
δ(gx , x1. ι1〈〉 , x2.δ(hx,y1. ι2〈〉,y2. ι1〈〉))

(3)

and

λg : θ→ θ1 +θ2. λh : θ→ θ3 +θ4. λx : θ.
δ(hx , y1.δ(gx,x1. ι1〈〉,x2. ι2〈〉) , y2. ι1〈〉)

(4)

which differ only in the order in which the case analysis is per-
formed. This situation is formalised by the relation≈ in the defini-
tion below; on which the side conditions(B) and(C) of Figure 3,
allowing the closure under discriminators of normal terms,depend.

DEFINITION 4.1. We let≈ be the least congruence such that

δ(M, x.δ(M1,x1.N1,x2.N2) , y.N)

≈ δ(M1 , x1.δ(M,x.N1 ,y.N) , x2.δ(M,x.N2,y.N))

δ(M, y.N, x.δ(M1,x1.N1,x2.N2))

≈ δ(M1 , x1.δ(M,y.N,x.N1) , x2.δ(M,y.N,x.N2))

wherex 6∈ FV(M1) andxi 6∈ FV(M) (i = 1,2), and

Γ,x : τ,Γ ′ `M0
x : τ

Γ `M0
M : τ1×τ2

Γ `M0
πi(M) : τi

(i = 1,2)

Γ `M0
M : τ1 → τ Γ `N0

N : τ1

Γ `M0
M(N) : τ

Γ `M0
M : τ

Γ `M M : τ

Γ `M ⊥τ : τ
(Γ inconsistent)

Γ `M0
M : τ1 +τ2 Γ, xi : τi `M Mi : τ (i = 1,2)

Γ `M δ(M,x1. M1,x2. M2) : τ

· ·

Γ `M0
M : θ

Γ `N0
M : θ

(θ a base type)

Γ `N0
〈〉 : 1

Γ `N0
Ni : τi (i = 1,2)

Γ `N0
〈N1,N2〉 : τ1 ×τ2

Γ `N0
N : τi

Γ `N0
ι
τ1,τ2

i (N) : τ1 +τ2

(i = 1,2)

Γ `N0
N : τ

Γ `N N : τ

Γ, x : τ1 `N N : τ

Γ `N0
λx : τ1.N : τ1 → τ

(
x ∈ FV(C) for all C ∈ Guards(N)

)
(A)

Γ `N ⊥τ : τ
(Γ inconsistent)

Γ `M0
M : τ1 +τ2 Γ, xi : τi `N Ni : τ (i = 1,2)

Γ `N δ(M,x1. N1,x2. N2) : τ

(
M 6≈ C for all C ∈

S

i=1,2 Guards(xi. Ni)
N1 6≈N2 wheneverx1 6∈ FV(N1) andx2 6∈ FV(N2)

)
(B)
(C)

· ·

Guards(N)
def
=

{M }∪
S

i=1,2 Guards(xi. Ni) , if N = δ(M,x1. N1,x2. N2)

/0 , otherwise

Guards(xi. Ni)
def
=

{
C ∈ Guards(Ni) | xi 6∈ FV(C)

}

Figure 3. Neutral and normal terms.
(The context is assumed consistent unless stated otherwise.)

N ≈N ′

δ(M,x.N,y.N ′) ≈N

wherex 6∈ FV(N) andy 6∈ FV(N ′).

If desired, unique representatives for normal terms can be chosen.
Indeed, in [1] this is done by considering a generalised formof
discriminator construct allowing simultaneous case analysis. Al-
ternatively, one could proceed by both fixing a canonical notation
for binders and a linear order on pure neutral terms to be respected
in nested discriminators. This, we believe, yields unique normal
forms. For instance, adopting the canonical notation for binders
provided by de Bruijn levels, the normal form for the terms (3)
and (4) under the linear order in which`0(`2) precedes̀1(`2) is

λ`0 : θ→ θ1 +θ2. λ `1 : θ→ θ3 +θ4. λ `2 : θ.

δ(`0(`2) , `3. ι1〈〉 , `3.δ(`1(`2), `4. ι2〈〉, `4. ι1〈〉))

Examples. We conclude the section with examples of terms and
their normal forms that will help to elucidate the notion.

To grasp the role of the side conditions in Figure 3 note that:con-
dition (A) fixes the relative position of abstractions and discrimina-
tors; condition(B) forbids dead branches (that is, when the same
case analysis is performed more than once, and hence becomesre-
dundant); and condition(C) forbids the two branches of a discrimi-
nator to be the same (as in such case the discriminator is redundant).

EXAMPLE 4.2. 1. The identity termλx : θ. x of typeθ→ θ is
a normal term.

2. The identity termλx : θ1 +θ2. x of type

(θ1 +θ2) → (θ1 +θ2)

is not a normal term; its normal form is

λx : θ1 +θ2. δ(x , x1. ι1(x1) , x2. ι2(x2)).

3. The identity termλx : (θ1 +θ2)× (θ ′1 +θ ′2). x of type
(θ1 +θ2)× (θ ′1 +θ ′2) → (θ1 +θ2)× (θ ′1 +θ ′2) has two
equivalent normal terms:

λx : (θ1 +θ2)× (θ ′1 +θ ′2).

δ(π1(x) ,
x1.δ(π2(x) ,

x ′1.〈ι1(x1), ι1(x ′1)〉 ,

x ′2.〈ι1(x1), ι2(x ′2)〉)

x2.δ(π2(x) ,
x ′1.〈ι2(x2), ι1(x ′1)〉 ,

x ′2.〈ι2(x2), ι2(x ′2)〉)

and

λx : (θ1 +θ2)× (θ ′1 +θ ′2).

δ(π2(x) ,
x ′1.δ(π1(x) ,

x1.〈ι1(x1), ι1(x ′1)〉 ,

x2.〈ι2(x2), ι1(x ′1)〉)
x ′2.δ(π1(x) ,

x1.〈ι1(x1), ι2(x ′2)〉 ,

x2.〈ι2(x2), ι2(x ′2)〉)

4. The curried identity termλx : θ1 +θ2.λy : θ ′1 +θ ′2. 〈x,y〉 of
type(θ1 +θ2) → (θ ′1 +θ ′2) → (θ1 +θ2)× (θ ′1+θ ′2) has as

unique normal form the term

λx : θ1 +θ2.

δ(x ,
x1. λy : θ ′1 +θ ′2.

δ(y ,
y1.〈ι1(x1), ι1(y1)〉 ,
y2.〈ι1(x1), ι2(y2)〉)

x2. λy : θ ′1 +θ ′2.

δ(y ,
y1.〈ι2(x2), ι1(y1)〉 ,
y2.〈ι2(x2), ι2(y2)〉)

EXAMPLE 4.3. LetA = ι1(ι1〈〉), B = ι1(ι2〈〉), C = ι2(ι1〈〉), and
D = ι2(ι2〈〉) of type(1+ 1)+ (1+ 1).

1. The term

λx : θ1 +θ2. δ(δ(x,x1.A,x2.D) , y1. ι2(y1) , y2. ι1(y2))

is not a normal term because

x : θ1 +θ2 6 `M0
δ(x,x1.A,x2.D) : (1+ 1)+ (1+ 1)

Its normal form is the term

λx : θ1 +θ2. δ(x,x1.C,x2.B)

2. The term

λf : θ→ (θ1 +θ2). λx : θ.λg : θ→ (θ ′1 +θ ′2). λy : θ.

δ(gy , x1.δ(fx,y1.A,y2.B) , x2.δ(gx,z1.C,z2.D))

is not a normal term because condition(A) is not satisfied.
Its normal form is the term

λf : θ→ (θ1 +θ2). λx : θ.

δ(fx ,
y1. λg : θ→ (θ ′1 +θ ′2).

δ(gx ,
z1.λy : θ.δ(gy,x1.A,x2.C) ,
z2.λy : θ.δ(gy,x1.A,x2.D)) ,

y2. λg : θ→ (θ ′1 +θ ′2).
δ(gx ,
z1.λy : θ.δ(gy,x1.B,x2.C) ,
z2.λy : θ.δ(gy,x1.B,x2.D)))

3. The term

λf : ((θ→ θ1 +θ2) → (θ→ θ3 +θ4) → θ→ (1+ 1))
→ θ5 +θ6.

δ(f(λg : θ→ θ1 +θ2. λh : θ→ θ3 +θ4. λx : θ.
δ(gx ,
x1. ι1〈〉 ,

x2.δ(hx , y1. ι2〈〉 , y2. ι1〈〉))) ,
z1.A ,

z2.δ(f(λg : θ→ θ1 +θ2. λh : θ→ θ3 +θ4. λx : θ.
δ(hx ,
y1.δ(gx , x1. ι1〈〉 , x2. ι2〈〉),

y2. ι1〈〉)) ,
z1.B ,
z2.C))

does not satisfies condition(B) and so is not a normal term.

Its normal forms are

λf : ((θ→ θ1 +θ2) → (θ→ θ3 +θ4) → θ→ (1+ 1))
→ θ5 +θ6.

δ(f(λg : θ→ θ1 +θ2. λh : θ→ θ3 +θ4. λx : θ.
δ(gx ,
x1. ι1〈〉,

x2.δ(hx , y1. ι2〈〉 , y2. ι1〈〉))) ,
z1.A ,
z2.C)

and

λf : ((θ→ θ1 +θ2) → (θ→ θ3 +θ4) → θ→ (1+ 1))
→ θ5 +θ6.

δ(f(λg : θ→ θ1 +θ2. λh : θ→ θ3 +θ4. λx : θ.
δ(hx ,
y1.δ(gx , x1. ι1〈〉 , x2. ι2〈〉),

y2. ι1〈〉)) ,
z1.A ,
z2.C)

4. The term

λf : θ→ 0. λx : θ+ 0. δ(x , x1.x1 , x2.⊥θ)

is not normal, as

f : θ→ 0,x : θ+ 0,x1 : θ 6 `N x1 : θ

because the context is inconsistent. The equivalent term

λf : θ→ 0. λx : θ+ 0. δ(x , x1.⊥θ , x2.⊥θ)

is not normal either because condition(C) is not satisfied.
The normal form of these two terms is

λf : θ→ 0. λx : θ+ 0.⊥θ

EXAMPLE 4.4. The normal form of the term

λf : θ1 → 0. λx : θ1 +θ2. λg : θ2 → θ1. λy : θ.

δ(x , x1.⊥θ1
, x2.g(x2))

is

λf : θ1 → 0. λx : θ1 +θ2.

δ(x , x1.⊥(θ2→θ1)→θ→θ1
, x2.λg : θ2 → θ1.⊥θ→θ1

)

5 Extensional normalisation

Following [14], we establish the following extensional-
normalisation result.

THEOREM 5.1 (EXTENSIONAL NORMALISATION). For every
term of the typed lambda calculus with sumsΓ ` t : τ there exists a
normal termΓ `N N : τ such thatΓ ` t = N : τ is provable in the
equational theory of the calculus.

The proof is along the following lines.

• We define an appropriate syntactic site(C,K) together with
an arity functorI : C → S into a BiCCC canonically induced
by astableinterpretationI of base types. (See Section 5.1.)

• We establish that the interpretation of neutral and normal
terms define Grothendieck relations in G(C,K,I) satisfying
the hypothesis of the BASIC LEMMA . (See Section 5.2.)

• As a direct consequence we have the semantic result that for
every termΓ ` t : τ there exists a normal termΓ `N N : τ such
thatI [[Γ ` t : τ]] = I [[Γ `N : τ]] : I [[Γ]] → I [[τ]] in S .

• The syntactic result of Theorem 5.1 follows from the semantic
one by embedding the syntactic BiCCC induced by the type
theory into a BiCCC in which the sums become stable.

5.1 The syntactic site and its arity functor

The syntactic site. Following [16] in the light of [1], we will use
a site of constrained contextsΓ |Ξ; the intuition is that we consider
the contextΓ under the constraintsΞ.

DEFINITION 5.2. Constrained contextsare defined by the follow-
ing rules

〈〉|〈〉

Γ |Ξ

Γ,x : τ|Ξ,x =τ x

Γ |Ξ Γ `M0
M : τ1 +τ2

Γ,x : τi|Ξ,ιi(x) =τ1+τ2
M

(i = 1,2)

Γ |Ξ Γ ` t : τ1 +τ2

Γ,x : τi|Ξ,ιi(x) =τ1+τ2
t

(Γ inconsistent) (i=1,2)

wherex 6∈ dom(Γ).

DEFINITION 5.3. The categoryC has objects given by con-
strained contexts and morphismsΓ ′ |Ξ ′ → Γ |Ξ given by injective
renamingsρ : dom(Γ) // // dom(Γ ′) that preserve typing(i.e. if
(x : τ)∈ Γ , then(ρ(x) : τ)∈ Γ ′) and constraints(i.e. if t=τ t

′ ∈ Ξ,
thent[ρ] =τ t

′[ρ] ∈ Ξ ′).

DEFINITION 5.4. The family of coversK(Γ |Ξ) of a constrained
contextΓ |Ξ is defined by the following rules:

/0 ∈ K(Γ |Ξ)
(Γ inconsistent)

{ iddom(Γ) } ∈ K(Γ |Ξ)

{ ρj }j∈J ∪ { ρ : Γ ′|Ξ ′ → Γ |Ξ } ∈ K(Γ |Ξ)

{ ρj }j∈J ∪ { ρ◦ρi : Γ ′i |Ξ
′
i → Γ |Ξ }i=1,2

where, fori = 1,2, the constrained contextsΓ ′i |Ξ
′
i are of the form

〈Γ ′,x ′i : τi|Ξ
′, ιi(x

′
i) =τ1+τ2

t〉 and the renamingsρi are the in-
clusionsΓ ′i |Ξ

′
i

// // Γ ′|Ξ ′.

PROPOSITION 5.5. The pair(C,K) is a site.

The arity functor. We restrict attention tostable interpretationsof
types;i.e., interpretationsI of base types in a BiCCC such that, for
all pair of typesτ1 andτ2, the coproductI [[τ1]]+ I [[τ2]] is stable
under pullbacks.

For a stable interpretation, we define the semantic interpretation of
the constrained contextΓ |Ξ as a subobject of the semantic interpre-
tation of the contextΓ .

DEFINITION 5.6. With respect to a stable interpretationI of base
types in a BiCCC, we associate to every constrained contextΓ |Ξ
its interpretationI [[Γ |Ξ]] given by the domain of a monomorphism
mΓ |Ξ : I [[Γ |Ξ]] // // I [[Γ]] inductively defined as follows.

• m〈〉|〈〉 : 1 // // 1 is defined asid1.

• mΓ,x:τ|Ξ,x=τx : I [[Γ |Ξ]]× I [[τ]] // // I [[Γ]]× I [[τ]] is defined
asmΓ |Ξ × idI [[τ]].

• mΓ,x:τi|Ξ,ιi(x)=τ1+τ2
t :

I [[Γ,x : τi|Ξ,ιi(x) =τ1+τ2
t]] // // I [[Γ]]× I [[τi]]

is defined as〈mΓ |Ξ ◦pi,qi〉 where the following square

I [[Γ,x : τi|Ξ,ιi(x) =τ1+τ2
t]]

pi //

qi

��

I [[Γ |Ξ]]��
mΓ|Ξ

��
I [[Γ]]

I [[Γ`t:τ1+τ2]]

��
I [[τi]] ∐

i

// I [[τ1]]+ I [[τ2]]

is a pullback.

By stability, the family

{ I [[Γ,xi : τi|Ξ,ιi(xi) =τ1+τ2
t]]

pi // I [[Γ |Ξ]] }i=1,2

is a coproduct, and for every

Γ |Ξ = 〈x1 : τ1, . . . ,xn : τn|t1 =τ ′
1
t ′1, . . . , tn =τ ′

n
t ′n〉

we have an equaliser diagram

I [[Γ |Ξ]] //
mΓ|Ξ// I [[Γ]]

〈I [[Γ`ti:τ ′
i]]〉1≤i≤n//

〈I [[Γ`t ′
i:τ ′

i]]〉1≤i≤n

// I [[τ ′1]]× . . . × I [[τ ′n]]

The definition of the arity functor induced by a stable interpretation
follows.

DEFINITION 5.7. With respect to a stable interpretationI of base
types in a BiCCCS , the arity functorI : C → S is defined as fol-
lows.

On objects:I (Γ |Ξ)
def
= I [[Γ |Ξ]].

On morphisms: forρ : Γ ′|Ξ ′ → Γ |Ξ, we defineI (ρ) as the unique
mapI [[Γ ′|Ξ ′]] → I [[Γ |Ξ]] such that

I [[Γ |Ξ]] //
mΓ|Ξ // I [[Γ]] = Πx∈dom(Γ)I [[Γ (x)]]

I [[Γ ′|Ξ ′]]

I (ρ)

OO

//
mΓ ′|Ξ ′

// I [[Γ ′]] = Πx ′∈dom(Γ ′)I [[Γ ′(x ′)]]

〈πρ(x)〉x∈dom(Γ)

OO

5.2 Extensional-normalisation result

For a stable interpretationI of base types in a BiCCCS the defini-
tions

Mτ(Γ |Ξ) = { I [[Γ `M : τ]]◦mΓ |Ξ | Γ `M M : τ }

Nτ(Γ |Ξ) = { I [[Γ `N : τ]]◦mΓ |Ξ | Γ `N N : τ }

respectively identify the sets of neutral and normal morphisms in
S(I [[Γ |Ξ]],I [[τ]]).

PROPOSITION 5.8. Let I be a stable interpretation of base types
in a BiCCC. For all typesτ, (I [[τ]],Mτ) and (I [[τ]],Nτ) are
Grothendieck relations inG(C,K,I).

THEOREM 5.9. The Grothendieck relations of neutral and normal
morphisms satisfy the following closure properties.

M0 = ⊥ N1 = >

Mσ×τ ⊆ Mσ ∧ Mτ Nσ ∧ Nτ ⊆ Nσ×τ

Mσ+τ ⊆ Mσ ∨ Mτ Nσ ∨ Nτ ⊆ Nσ+τ

Mσ→τ ⊆ Nσ ⊃ Mτ Mσ ⊃ Nτ ⊆ Nσ→τ

and

Mθ ⊆ Nθ (θ a base type)

The proof of the theorem relies on the next two lemmas; whose
proofs embody the algorithmic idea underlying the normalisation
program of Section 6.

LEMMA 5.10. 1. For every neutral termΓ `M M : τ1 × τ2

there exist neutral termsΓ `M M1 : τ1 and Γ `M M2 : τ2

such thatΓ ` πi(M) =Mi : τi (i = 1,2).

2. For every neutral termΓ `M M : τ1 → τ and normal term
Γ `N N : τ1, there exists a neutral termΓ `M M ′ : τ such
that Γ `M(N) =M ′ : τ.

LEMMA 5.11. 1. For every termΓ `N1
C : τ derivable accord-

ing to the following rules

Γ `N0
N : τ

Γ `N1
N : τ

(Γ consistent)

Γ `M0
M : τ1 +τ2

Γ,xi : τi `N1
Ci : τ (i = 1,2)

Γ `N1
δ(M,x1.C1,x2,C2) : τ

(Γ consistent)

Γ `N1
⊥τ : τ

(Γ inconsistent)

there exists a normal termΓ `N N : τ such thatΓ ` C =N : τ.

2. For every pair of normal termsΓ `N Ni : τi (i = 1,2),
there exists a normal termΓ `N N : τ1 × τ2 such that
Γ ` 〈N1,N2〉 =N : τ1 ×τ2.

3. For every normal termΓ `N N : τi (i ∈ {1,2}), there exists a
normal termΓ `N N ′ : τ1 + τ2 such thatΓ ` ιi(N) = N ′ :
τ1 +τ2.

4. For every normal termΓ,x : τ1 `N N1 : τ, there exists a nor-
mal termΓ `N N : τ1 → τ such thatΓ ` λx : τ1.N1 = N :
τ1 → τ.

Since forΓ = 〈x1 : τ1, . . . ,xn : τn〉 we have that the projection
I [[Γ ` xi : τi]] (1≤ i≤n), is a neutral morphismI [[Γ]] → I [[τi]] in
Mτi

(Γ |∆Γ) where∆Γ = 〈x1 =τ1
x1, . . . ,xn =τn

xn〉, it follows
from Theorem 5.9 and the BASIC LEMMA that the interpretation

I [[Γ ` t : τ]] = I [[Γ ` t : τ]]◦〈I [[Γ ` x1 : τ1]], . . . ,I [[Γ ` xn : τn]]〉

of the term Γ ` t : τ is a normal morphismI [[Γ]] → I [[τ]] in
Nτ(Γ |∆Γ). Thus we have the following corollary.

COROLLARY 5.12. Let I be a stable interpretation of base types
in a BiCCCS . For every termΓ ` t : τ, there exists a normal term
Γ `N N : τ such thatI [[Γ ` t : τ]] = I [[Γ ` N : τ]] : I [[Γ]] → I [[τ]]
in S .

Theorem 5.2 is obtained from this corollary by producing a BiCCC
embeddingT ↪→ T̃ , of the syntactic BiCCCT into a BiCCCT̃ ,
mapping sums to stable sums, and considering the canonical inter-
pretation of types iñT .

6 Type-Directed Partial Evaluation with sums

We show how to build a normalisation algorithm based on Type-
Directed Partial Evaluation that puts terms in the normal form of
Section 4. In fact, we use a version of TDPE written for the lan-
guageObjective Caml(see [2]) slightly modified to allow the use
of certain powerful control operators.

An interesting point of this work is that the optimisations we in-
troduce will be usable in some other cases of partial evaluation.
Here, however, we are only concerned in normalising functional
programs corresponding to terms in the typed lambda calculus with
binary sums with respect to the equational theory of the calculus. In
particular, note that the normalisation of a program may have a dif-
ferent observational semantics (within the programming language
that is) than the original program; as, for instance, the evaluation
order may not be preserved.

6.1 The original TDPE

We recall the basic elements of the original TDPE algorithm.For
details see [5, 6].

NBE is based on anη-expansion of the term using a two-level lan-
guage, which in our case is defined as follows:

t ::= s (Static terms)
| d (Dynamic terms)

s ::= x

| 〈〉 | pair〈t1, t2〉 | π1(t) | π2(t)

| λx. t | t1 @t2

| ι1(t) | ι2(t) | δ (t, x1. t1, x2. t2)

d ::= x

〈〉 | pair〈t1, t2〉 | π1(t) | π2(t)

| λx. t | t1 @t2

| ι1(t) | ι2(t) | δ (t, x1. t1, x2. t2)

wherex (resp.x) ranges over (a countable set of)static (resp.dy-
namic) variables. Thes-terms are said to bestaticand thed-terms
to bedynamic. In implementations, dynamic terms are often rep-
resented by data structures, whereas static terms are values of the
language itself.

The TDPE algorithm without let insertion is presented in Figure 4.
It inductively defines two functions for each type. One, written↓ ,
is calledreify and the other one, written↑ , is calledreflect.
The functions↓ and↑ are basically two-levelη-expansions.

To normalise a static valueV of typeτ, first apply the function↓τ

toV , and then reduce the static part, obtaining a fully dynamic term

in normal form. The reduction of static parts is performed automat-
ically by the abstract machine of the programming language.The
control operatorsshift andreset are used to placeδ in the right place
in the final result.

Shift and reset. We briefly explain the way in whichshift andreset
work with an example. For details see [8, 9].

The operatorreset is used to delimit a context of evaluation, and
shift abstracts this context in a function. Thus the term

1+ reset (2 + shift c. (3 + (c 4) + (c 5)))

reduces to1 + 3 + (2 + 4)+ (2 + 5). Indeed, the operatorreset
delimits the context2 + �, which is abstracted into the functionc;
the values 4 and 5 are successively inserted in this context and the
resulting expression is evaluated.

6.2 Producing normal terms

The original TDPE algorithm without let insertion producesterms
following the inference system of Figure 3 without taking into ac-
count the side conditions(A), (B), (C) there in.

For example, the evaluation of the term

λz.λx.λf. δ ((f@x) , x1. (λy. ι1(y)) , x2. (λy. f@z))

of type

θ→ θ→ (θ→ θ1 +θ2) → θ1 → (θ1 +θ2)

yields the term

λz.λx.λ f.

δ((f@x) ,
x1. (λy. ι1(y)) ,

x2. (λy.δ
(
(f@z), y

1
. ι1(y

1
), y

2
. ι2(y

2
)
)
))

(5)

which does not satisfy condition(A) sincef @ z does not contain
the variabley.

In the following, we propose three modifications of TDPE to take
the conditions(A), (B), (C) into account.

6.2.1 Remove dead branches

To ensure the condition(B) we will use the following derivable
equations:

δ(t, x. δ(t, x1. t1, x2. t2), y. t0) = δ(t, x. t1[x/x1] , y. t0)

δ(t, x. t0, y. δ(t, x1. t1, x2. t2)) = δ(t, x. t0, y. t2[y/x2])

To apply these transformations, notice that the residual program is
an abstract syntax tree built in depth-first manner, from left to right,
the evaluation being done in call by value. The idea consistsin
maintaining a global table accounting for the conditional branches
in the path from the root of the residual program to the current point
of construction. This table associates a flag (L or R) and a variable

↓θ V = V (θ a base type)

↓1 V = 〈〉

↓σ→τ V = let x be a fresh variablein λx. reset(↓τ (V @↑σ x))

↓τ1×τ2 V = pair〈↓τ1 (π1(V)), ↓τ2 (π2(V))〉

↓τ1+τ2 V = δ
(
V, x1. ι1(↓τ1 x1), x2. ι2(↓τ2 x2)

)

↑θ M = M (θ a base type)

↑1M = 〈〉

↑τ→σ M = λx.↑σ (M@↓τ x)

↑σ1×σ2 M = pair〈↑σ1 (π1(M)), ↑σ2 (π2(M))〉

↑σ1+σ2 M = let x1 andx2 be fresh variables

in shift c. δ (M , x1. reset(c@ ι1(↑σ1 x1)) , x2. reset(c@ ι2(↑σ2 x2)))

Figure 4. Type-directed partial evaluation without let insertion.

to an expression in the following way:

↑σ1+σ2 M =

ifM is globally associated to (L,z) modulo≈
then ι1(↑σ1 z)

else ifM is globally associated to (R,z) modulo≈
then ι2(↑σ2 z)

else shift c.
let x1 andx2 be fresh variables,

associateM to (L,x1) while computing
n1 = reset(ι1(↑σ1 x1)),

associateM to (R,x2) while computing
n2 = reset(ι2(↑σ2 x2)),

in δ (M , x1. n1, x2. n2)

(Note that the test of global association is done modulo≈; this is
explained in the next section.)

This optimisation, associated with let insertion and othermemo-
ization techniques, has been used for building a fully lazy partial
evaluator from TDPE; see [3].

6.2.2 Forbid redundant discriminators

To enforce the condition(C), we write a test of membership of free
variables and implement a test of the congruence≈ of two normal
terms. There are different ways in which to implement this lat-
ter test. One method is to define, in a mutually recursive fashion,
three tests≈M0

, ≈N0
, and≈N that respectively test the equiva-

lence between pure neutral terms, pure normal terms, and normal
terms along the following lines.

• The test≈M0
is done by structural recursion, using the test

≈N in the case of applications.

• The test≈N0
is done by structural recursion, using the test

≈N in the case of abstractions.

• The testN ≈N N ′ inspects the set of pathsp given by all
possible branchings in discriminators containing the guards
of N, and collects the sequence of guards together with the
end pure normal formNp. For each of these pathsp, it

proceeds according to the following sub-test: ifN ′ is a pure
normal term then check whetherNp ≈N0

N ′, otherwise, for
N ′ of the formδ(M ′,x.N ′

1,y.N
′
2), there are three possibil-

ities: ifM ′ is in the pathp up to≈M0
and the path branches

left (resp. right) the sub-test is repeated forN ′
1 (resp.N ′

2) in-
stead ofN ′, however, ifM ′ is not in the pathp up to≈M0

,
the sub-test is repeated for bothN ′

1 andN ′
2 instead ofN ′,

succeeding if both of these sub-tests do.

Note that condition(C) does not need to be checked recursively
within the branches of the discriminator; since, as TDPE builds the
normal form in depth-first manner, it is known that each branch
satisfies it.

6.2.3 Fix the relative positions of abstractions and
discriminators

To obtain terms in normal form, we must also check the condi-
tion (A) concerning the guards of abstractions.

For that, let us look at the example in (5). We want to introduce
the δ(g @ t, . . .) aboveλy . . . However ashift always returns to
the precedingreset. Thus, it would be necessary to be able to name
eachreset and to choose the best one at the time of introducing the
δ. This is what the control operatorscupto/set, introduced in [19],
allow us to do.

Set and cupto. The control operatorsset andcupto are very pow-
erful, and generalise exceptions and continuations. Here we give
the idea of how they work on an example. For details see [19, 18].

The operatorsset/cupto rely on the concept ofprompt, that allows
marking the occurrences ofset. New prompts can be created upon
request. For two promptsp1 andp2, one can write an expression
like the following one

1+ set p1 in 2 + set p2 in 3 + cupto p1 as c in (4 + (c 5))

which evaluates to1 + 4 + (2 + 3 + 5).

Application to TDPE. To useset/cupto to address the problem of

fixing the relative position of abstractions and discriminators, we
must create a new prompt with each created dynamicλ. Further,
we maintain a global list associating to each prompt a set of vari-
ables. To introduce a newδ, we look for all the free variables of
its condition, and look in this list for the last prompt introduced to
which one of these variables is associated. Since the term isbuilt in
depth first manner and from left to right, one obtains a closedterm.

We thus modify the algorithm of TDPE in the following way:

↓σ→τ V = let x be a fresh variable andp be a new prompt
in λx. set p in ↓τ (V @↑σ x)

↑σ1+σ2 M = let m be the best prompt for M
in cuptom as c

in let x1 andx2 be fresh variables,
n1 = setm in (c@ ι1(↑σ1 x1)),
n2 = setm in (c@ ι2(↑σ2 x2)),

in δ(M , x1. n1, x2. n2)

The complete algorithm is presented in Figure 5.

6.2.4 Two examples

1. We show the application of the optimised partial evaluator to the
example of the introduction.

let example f g z x =
match (match x with

Left x1 -> Left z
| Right x2 -> Right (g z))

with
Left y1 -> (f (g y1))

| Right y2 -> (f y2);;

val example :
(’a -> ’b) -> (’c -> ’a) ->
’c -> (’d, ’e) sum -> ’b = <fun>

To use a type directed partial evaluator, one has to pass to the eval-
uator a representation of the type of the term to be evaluated. There
are different approaches to representing types. Here we usethe
approach pioneered by Filinski, who represents types via combina-
tors, so that

(’a -> ’b) -> (’c -> ’a) -> ’c -> (’d, ’e) sum -> ’b

becomes

((base **-> base) **->
((base **-> base) **->

(base **-> ((sum (base, base)) **-> base))))

which we abbreviate below ascombinatortype.

The application of the partial evaluator based onshift/reset yields:

tdpesr combinatortype example;;
- : Shiftreset.ans =

(fun v0 v1 v2 v3 ->
(match v3 with
| Left v4 -> (v0 (v1 v2))
| Right v4 -> (v0 (v1 v2))))

whilst the partial evaluator based on cupto produces the desired

result:

tdpecupto combinatortype example;;
- : Normal.normal =

(fun f g z x -> (f (g z)))

2. We now test the partial evaluator on an example suggested to us
by Filinski.

For every endofunctionf on a two-element set, the identityf3 = f
holds. We give a proof of this fact in the equational theory ofthe
typed lambda calculus with sums by establishing the identity

λf : (1+ 1) → (1+ 1). λx : 1+ 1. f(f(fx))

= λf : (1+ 1) → (1+ 1). f

in the equational theory using the partial evaluator.

Defining

let fff f x = f (f (f x));;
val fff : (’a -> ’a) -> ’a -> ’a = <fun>

and

let bool = sum (unit,unit);;

we want that the normalisation offff of type

(bool -> bool) -> bool -> bool

is (the normal form of) the identity.

Normalisingfff by the TDPE withshift/reset gives the following
(uninformative) result.

tdpesr
((bool **-> bool) **-> (bool **-> bool)) fff;;

- : Shiftreset.ans = (fun v0 v1 ->
(match v1 with
| Left v2 ->
(match (v0 (Left ())) with
| Left v10 ->

(match (v0 (Left ())) with
| Left v14 -> (match (v0 (Left ())) with

| Left v16 -> (Left ())
| Right v16 -> (Right ()))

| Right v14 -> (match (v0 (Right ())) with
| Left v15 -> (Left ())
| Right v15 -> (Right ())))

| Right v10 ->
(match (v0 (Right ())) with
| Left v11 -> (match (v0 (Left ())) with

| Left v13 -> (Left ())
| Right v13 -> (Right ()))

| Right v11 -> (match (v0 (Right ())) with
| Left v12 -> (Left ())
| Right v12 -> (Right ()))))

| Right v2 ->
(match (v0 (Right ())) with
| Left v3 ->

(match (v0 (Left ())) with
| Left v7 -> (match (v0 (Left ())) with

| Left v9 -> (Left ())
| Right v9 -> (Right ()))

| Right v7 -> (match (v0 (Right ())) with
| Left v8 -> (Left ())

↓θ V = V

↓1 V = 〈〉

↓σ→τ V = let x be a fresh variable andp a new promptin λx. set p in ↓τ (V @↑σ x)

↓τ1×τ2 V = pair〈↓τ1 (π1(V)), ↓τ2 (π2(V))〉

↓τ1+τ2 V = δ
(
V, x1. ι1(↓τ1 x1), x2. ι2(↓τ2 x2)

)

↑θ M = M

↑1M = 〈〉

↑τ→σ M = λx.↑σ (M@↓τ x)

↑σ1×σ2 M = pair〈↑σ1 (π1(M)), ↑σ2 (π2(M))〉

↑σ1+σ2 M = ifM is globally associated to (L,z) modulo≈
then ι1(↑σ1 z)
else ifM is globally associated to (R,z) modulo≈

then ι2(↑σ2 z)
else let m be the best prompt for M

in cuptom as c
in let x1 andx2 be fresh variables

associateM to (L, x1) while computingn1 = setm in (c@ ι1(↑σ1 x1))
associateM to (R, x2) while computingn2 = setm in (c@ ι2(↑σ2 x2))

in if x1 6∈ FV(n1), x2 6∈ FV(n2), andn1 ≈ n2

then n1

else δ (M, x1. n1, x2. n2)

Figure 5. Optimised type-directed normalisation.

| Right v8 -> (Right ())))
| Right v3 ->

(match (v0 (Right ())) with
| Left v4 -> (match (v0 (Left ())) with

| Left v6 -> (Left ())
| Right v6 -> (Right ()))

| Right v4 -> (match (v0 (Right ())) with
| Left v5 -> (Left ())
| Right v5 -> (Right ()))))))

The result of normalisingfff with the partial evaluator based on
cupto is the residualisation of the identity:

tdpecupto
((bool **-> bool) **-> (bool **-> bool)) fff;;

- : Normal.normal =
(fun v0 ->
(match (v0 (Left ())) with
| Left v4 ->
(match (v0 (Right ())) with
| Left v6 -> (fun v1 -> (Left ()))
| Right v7 ->

(fun v1 -> (match v1 with
| Left v2 -> (Left ())
| Right v3 -> (Right ()))))

| Right v5 ->
(match (v0 (Right ())) with
| Left v10 ->

(fun v1 -> (match v1 with
| Left v2 -> (Right ())
| Right v3 -> (Left ())))

| Right v11 -> (fun v1 -> (Right ())))))

7 Concluding remarks

We have presented a notion of normal term for the typed lambda
calculus with sums and proved that every term of the calculusis
equivalent to one in normal form. Further, we have used this the-
oretical development as the basis to implement a partial evaluator
that provides a reductionless normalisation procedure forthe typed
lambda calculus with binary sums.

Our partial evaluator is in the style of TDPE. Thus, it can be grafted
on any suitable interpreter, and does not need to examine thestruc-
ture of the compiled code during normalisation. Its main original-
ity is the use of the control operatorsset/cupto to fix the relative
position of abstractions and discriminators. This is the first non-
trivial exploitation of the extra expressive power ofset/cupto over
shift/reset. The effectiveness of the partial evaluator has been tested
on the very sophisticated terms that come from the study of iso-
morphisms in the typed lambda calculus with sums [15], that make
previously existing partial evaluators explode.

The new algorithm does not use all the power of the operators
set/cupto. In particular we do not use their ability to code excep-
tions. One could thus use only a restricted version of these opera-
tors. There is, for example, a hierarchical version ofshift/reset [8],
that allows several, but fixed, levels of control. An implementation
with shift/reset (hierarchical or not) is not obvious.

Acknowledgements. Thanks are due to Xavier Leroy for the
call/cc for Objective Caml, and to Olivier Danvy, Andrzej Fil-
inski, and Didier Rémy for interesting discussions about control
operators.

8 References

[1] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Nor-
malization by evaluation for typed lambda calculus with co-
products. InSixteenth Annual IEEE Symposium on Logic in
Computer Science, pages 203–210. IEEE Computer Society
Press, 2001.

[2] V. Balat and O. Danvy. Strong normalization by type-directed
partial evaluation and run-time code generation. InSecond
International Workshop on Types in Compilation, number
1473 in Lecture Notes in Computer Science, pages 240–252.
Springer-Verlag, 1998.

[3] V. Balat and O. Danvy. Memoization in type-directed par-
tial evaluation. InACM SIGPLAN/SIGSOFT Conference
on Generative Programming and Component Engineering
(GCSE/SAIG), number 2487 in Lecture Notes in Computer
Science, 2002.

[4] U. Berger and H. Schwichtenberg. An inverse of the evalu-
ation functional for typedλ-calculus. InSixth Annual IEEE
Symposium on Logic in Computer Science, pages 203–211.
IEEE Computer Society Press, 1991.

[5] O. Danvy. Type-directed partial evaluation. InTwenty-Third
Annual ACM Symposium on Principles of Programming Lan-
guages, pages 242–257. ACM Press, 1996.

[6] O. Danvy. Type-directed partial evaluation. InPartial Evalu-
ation – Practice and Theory; Proceedings of the 1998 DIKU
Summer School, number 1706 in Lecture Notes in Computer
Science, pages 367–411. Springer-Verlag, 1998.

[7] O. Danvy and P. Dybjer, editors.Preliminary Proceedings
of the APPSEM Workshop on Normalization by Evaluation,
BRICS Note NS-98-1. Department of Computer Science,
University of Aarhus, 1998.

[8] O. Danvy and A. Filinski. Abstracting control. InACM Con-
ference on Lisp and Functional Programming, pages 151–
160. ACM Press, 1990.

[9] O. Danvy and A. Filinski. Representing control, a study of the
CPS transformation.MSCS, 4(2):361–191, December 1992.

[10] R. Di Cosmo and D. Kesner. Simulating expansions without
expansions.Mathematical Structures in Computer Science,
4:1–48, 1994.

[11] D. Dougherty. Some lambda calculi with categorical sums
and products. In5th International Conference on Rewriting
Techniques and Applications (RTA-93), volume 690 ofLec-
ture Notes in Computer Science, pages 137–151. Springer-
Verlag, 1993.

[12] D. Dougherty and R. Subrahmanyam. Equality between func-
tionals in the presence of coproducts. InTenth Annual IEEE
Symposium on Logic in Computer Science, pages 282–291.
IEEE Computer Society Press, 1995.

[13] D. Dougherty and R. Subrahmanyam. Equality between func-
tionals in the presence of coproducts.Information and Com-
putation, 157:52–83, 2000. (An earlier version appeared
as [12]).

[14] M. Fiore. Semantic analysis of normalisation by evalua-
tion for typed lambda calculus. In4th International Confer-
ence on Principles and Practice of Declarative Programming
(PPDP 2002). ACM Press, 2002.

[15] M. Fiore, R. Di Cosmo, and V. Balat. Remarks on isomor-
phisms in typed lambda calculi with empty and sum types. In
Seventeenth Annual IEEE Symposium on Logic in Computer
Science, pages 147–156. IEEE Computer Society Press, 2002.

[16] M. Fiore and A. Simpson. Lambda-definability with sums via
Grothendieck logical relations. InTyped Lambda Calculus
and Applications, number 1581 in Lecture Notes in Computer
Science, pages 147–161. Springer-Verlag, 1999.

[17] N. Ghani.βη-equality for coproducts. InTyped Lambda Cal-
culus and Applications, number 902 in Lecture Notes in Com-
puter Science, pages 171–185. Springer-Verlag, 1995.

[18] C. A. Gunter, D. Rémy, and J. G. Riecke. Return types for
functional continuations. 1998. (An earlier version appeared
as [19]).

[19] C. A. Gunter, D. Rémy, and J. G. Riecke. A generalization of
exceptions and control in ML. InACM Conference on Func-
tional Programming and Computer Architecture, 1995.

[20] J. Lambek and P. Scott.Introduction to higher order categor-
ical logic, volume 7 ofCambridge studies in advanced math-
ematics. Cambridge University Press, 1986.

