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Abstract

We present a calculus to formalize and give costs to parallel computations
over multidimensional dense arrays. The calculus extends a simple distribu-
tion calculus (proposed in some previous work) with computation and data
collection. We consider an SPMD programming model in which process in-
teraction can take place using point-to-point as well as collective operations,
much in the style of MPI. The idea is give rigorous description of all stages of
data parallel applications working over dense arrays: initial distribution (ie,
partition and replication) of arrays over a set of processors, parallel compu-
tation over distributed data, exchange of intermediate results and final data
gather. In the paper, beside defining the calculus, we give it a formal se-
mantics, prove equations between different combinations of operations, and
show how to associate a cost to operation combinations. This last feature
makes possible to make quantitative cost-driven choices between semantically
equivalent implementation strategies.

1 Introduction

Large number-crunching problems over multi-dimensional dense arrays have
always been an important application area for parallel computing and, over
the years, many libraries and tools have been built to ease the paralleliza-
tion such problems (see for instance [5, 3, 21]). However, surprisingly little
effort has been spent in trying to develop a systematic formal methodology
to assist the development of such applications in a systematic way. In partic-
ular, when designing the efficient implementation of an application working
on dense multi-dimensional arrays, a programmer needs to compare different
strategies for distributing/moving data across processors, take into account
many machine specific details and reason about the relative performance of a
usually large space of options. This is usually done in an ad-hoc way, drawing
complex data graphs on paper and trying to figure out the actual correctness
of the strategy at hand. The problem is even worse when one tries to provide
general and efficient implementations of high-level mechanisms describing in
a compact way large families of computations over dense arrays (with an ar-
bitrary number of dimensions), as we experienced when trying to incorporate
the powerful P3L Map skeleton in the OcampP3L library [7]. The actual effi-
cient implementation of the general Map requires us to compare different data
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distribution and recollection strategies, to evaluate their costs and to prove
their correctness in a formal way.

In this paper, we make a step towards the development of a formal frame-
work to reason about dense multimdimensional arrays, with unlimited number
of dimensions. In particular, we assume an SPMD model of computation, in
which process interaction can take place using point-to-point as well as a small
set of collective operations, much in the style of MPI and we define a calculus
which allows to formalize all the steps of application, from the initial data
distribution, to the final collection of results. The calculus is simple enough
to allow a readable semantics, yet powerful enough to allow us to compare
realistic implementation strategies.

The contributions and the structure of the paper are as follows. Section 2
motivates our work through a simple example. Then, Section 3 defines a model
for multidimensional dense arrays with unlimited number of dimensions and
for processors. In particular, we formalize the concept of communicator pro-
vided by MPI and use it to bound the scope of our collective array operations.
Then, Section 4 defines our calculus targeted at the description of parallel
computations for multidimensional dense arrays over a set of processors. We
give a formal semantics to it in the style of denotational semantics, that al-
lows to prove equations between implementation strategies. Then, we discuss
two cost models for the calculus, one adopting BSP style of iteraction and
one adopting MPI asynchronous style (Sec. 5). This will allow us to weight
different implementation strategies and perform informed choices between se-
mantically equivalent options. Finally, related work is reviewed in Section 7
and Section 8 concludes.

2 A motivating example

We now introduce some of the problems to be addressed through a simple
example, which will be used as a running example in the following sections.

Consider the problem of matrix multiplication, that is we compute C =
B ∗ A, where B and A are two dense matrices n × k and k × m respec-
tively. Devising a good algorithm for matrix multiplication involves devising a
good strategy for breaking-up the underlying data –initial and final matrices–
among processors, and distributing the computation load to each processor.

Matrix multiplication has been widely studied in the literature and many
efficient parallel algorithms have been proposed (see for instance [19]). How-
ever, as our goal is to demonstrate the problems to be addressed, we choose
a very simple algorithm which is illustrated in Figure 1. We assume a grid
of p × p (p = 3 in the picture) processors each one computing a block of the
result matrix C. Each processor computes a submatrix of the result C using
a group of rows of A and a group of columns of B. In particular, processor
(i, j) needs two columns (2j, 2j + 1) of A and two rows (2i, 2i + 1) of B and
produces a 2× 2 matrix of C (C[2i : 2i+ 1][2j : 2j + 1]).

The implementation of such an algorithm requires: (1) the distribution of
data to processors, (2) the computation of submatrixes by each processor and
(3) the gather of submatrices to build the result matrix C.

Each step can be implemented in several ways. We need to formalize all the
three steps in order to choose between alternative implementation strategies,
as well as to compare the performance expected form different choices.

For instance, the initial distribution requires two multicast operations,
where rows of B and columns of A are sent to subsets of the 9 processors.

There are several possible strategies to perform the initial multicast of A:

direct send data may be sent directly from the node holding A to all the
processors (which requires the same column to be sent several times, to
each processor needing it), or
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B C

A

processor (2,1)

Figure 1: Matrix Multiplication: data needed by processor (2, 1).

scatter&broadcast (Figure 2) we can first send each column (only once)
to some well chosen processor (eg, columns 2i and 2i + 1 to processor
(0, i)) via a scatter operation, and then broadcast in parallel each column
to each processor needing it (eg, processor (0, i) broadcasts A[][i] to all
processors (j, i)), or

scatter&gather (Figure 3) we can first scatter A on the processor grid (eg,
processor (i, j) gets A[4i : 4(i + 1) − 1][2j : 2(j + 1) − 1]) and then
perform a set of concurrent local gather to get all needed parts from
other processors on the same column.

(1) Scatter

(2) Broadcast

A

C

Figure 2: Scatter&broadcast multicast strategy.

Now, we would like to be able to formally compare these strategies, so we
need a way to:

1. write formally and concisely each strategy described informally in the
previous paragraph,

2. prove that they are in fact equivalent,

3. give costs to each strategy, and find out under which conditions one is
better than the other.

For this, we introduce a model for arrays and formalize operations for data
distribution, data collection and local data computation (Sec. 3), then we
define a language for composing operations (Sec. 4). Using these tools, we
will be able to make the strategies sketched in this example formal (Sec. 4.2),
to prove them equivalent, and to compare their costs (Sec. 5).
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(1) Scatter

(2) Gather

Figure 3: Scatter&gather multicast strategy.

3 A model for dense arrays

In this section, we extend the model for array distributions presented in [6]
adding intermediate data collection, independent computations over proces-
sors and result gathering. We first recall some basic definitions and then
introduce the operations.

3.1 Index domains and multidimensional arrays

We model arrays as functions from index domains to values.
We write [l : h] for the integer interval with lower bound l and upper bound

h, and we denote interval bounds as inf([l : h]) = l and sup([l : h]) = h.

Definition 1 (Index domain) An index domain I is a Cartesian product
of integer intervals

I =
n

Π
i=1

[li : hi]

also written [li : hi|i ∈ 1..n] . We call n the dimensionality of the index
domain I.

Definition 2 (Index) An index (i1, i2, . . . , in) is a sequence of integer, with
the value in each dimension im correspondingly falling into the interval [lm :
hm] of the index domain it belongs to. The n, dimensionalityof the index,
should agree with the dimensionalityof its index domain.

For convenience, an index (i1, i2, . . . , in) is often written in the form of
vector like ~i . Several vector operators are also imported.

• z ×~i = ~j (z ∈ Z)
~i,~j have the same dimensionality n and ∀m ∈ [1, n]. jm = z × im

• ~i+~j = ~k
~i,~j,~k have the same dimensionality n and ∀m ∈ [1, n]. km = im + jm

• ~i⊗~j = ~k
~i,~j,~k have the same dimensionality n and ∀m ∈ [1, n]. km = im × jm

Definition 3 (Shape of index domains) Given an index domain I = Π
n
i=1[li :

hi], function ibase returns its basic shift in each dimension from the origin ~0,
and function idims computes all its dimensions.

ibase(I) = (l1, l2, . . . , ln)

idims(I) = (h1 − l1 + 1, h2 − l2 + 1, . . . , hn − ln + 1)
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Outputs of both ibase and idims are integer sequences, so they can also be
taken as vectors.

Definition 4 (Shift of index domains) Given an index domain I = Π
n
i=1[li :

hi] and a shift vector ~s = (s1, s2, . . . , sn), the function ishift is defined as

ishift~s(I) =
n

Π
i=1

[si : si + hi − li]

which shifts the index domain I to a new position where its basic shift from
origin equals to ~s.

Projections extract subdomains of an index domain.

Definition 5 (Projection of index domains) Given a domain I = Π
n
i=1 Di,

and an injective mapping σ : k → n, with k < n, that pinpoints the dimensions
maintained by the projection, we define the projection of I according to σ as

projσ(I) =
k

Π
i=1

Dσ(i)

Now we are ready to define arrays and operations on arrays.

Definition 6 (Array) An array A is a partial map A : I → V⊥ defined on
an index domain I, returning either a value in V or the “undefined” element
⊥. For brevity, we will just write V instead of V⊥ in the following. Obviously
A(~i) returns the corresponding value of index ~i, given that ~i ∈ I.

On an array A : I → V we define the usual operations dom(A) = I and
codom(A) = V , and the dimensionalityof A is the dimensionalityof I.

Similarly, we can define the shape functions for arrays.

Definition 7 (Shape of arrays) Given an array A : I → V , function abase
returns the basic shift of the its index domain from the origin, and function
adims computes all the dimensions of its index domain. More precisely,

abase(A) = ibase(dom(A)) = ibase(I)

adims(A) = idims(dom(A)) = idims(I)

Definition 8 (Shift of arrays) Given an array A : I → V and a vector ~s
which has the same dimensionality, the function ashift~s(A) produces an array
defined on the index domain ishift~s(I) and for each ~i ∈ I

ashift~s(A)(~i+ ~s− abase(A)) = A(~i)

Notation 1 (Block Selection) We will use a block selection notation: if
A : I → V , with I = (Π

n
i=1 Di), then A′ = A[li : hi|i ∈ 1..n] is the array

defined by the restriction of A to the index domain I ′ = (Π
n
i=1[li : hi]). This

is a selection which preserves global indexes, as elements of A′ have the same
index they had in A.

Figure 4 shows domains and codomains of arrays A, B and C of our
running example. Block selection notation is used to denote groups of rows,
groups of columns and submatrices.

We often need to ’glue’ together two arrays that define different parts of an
index domain (eg, two rows of a matrix). This is captured by array pasting.

Definition 9 (Array Pasting) Given two conformant (ie, defined on the
same index domain) arrays A : I → V , B : I → V , the pasting A⊕B : I → V
of A and B is defined as

A⊕B(~i) =







A(~i) if A(~i) is defined and B(~i) = ⊥

B(~i) if B(~i) is defined and A(~i) = ⊥
⊥ otherwise

Notice that array pasting is a commutative operation, but it is not associa-
tive. This works well for our purposes, however, if associativity is needed, the
definition should be extended introducing an explicit error value to use on the
points where both arrays are defined.
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B C
A

index domI=[0:5][0:11]

V=integer values

index domI=[0:5][0:5]

index domI=[0:11][0:5]
A[0:11][2:3]

B[2:3][0:11] C[2:3][2:3]

Figure 4: Index domains, arrays and block selection.

3.2 Processors and communicators

We can now model a set of processors, indexed on a domain I, as an array,
which is the formal counterpart of an MPI (Cartesian) communicator.

Definition 10 (Cartesian communicator) On the set P of all processors,
one can define a Cartesian communicator C as a function C : IC → P , where
IC is an index domain. This allows to structure the processors as an array (we
will often just speak of processor arrays). A Cartesian communicator defines
an index function indexC : P → IC which assigns to each processor its index.

3.3 Array manipulation

We now define the basic operations on arrays we are interested in. These
operations are concerned with extracting subarrays, composing arrays and
injecting arrays into arrays of larger dimensionality.

3.3.1 Array projections

A projection is a mapping from an index domain to another of smaller dimen-
sionality, obtained by erasing some dimensions.

Notation 2 (Complement of an injective mapping) In what follows, given
an injective mapping σ : [1 : k] → [1 : n], we will write σ̄ for the injective map-
ping [1 : n − k] → [1 : n] enumerating in increasing order the complement of
the codomain of σ.

For instance, if we consider the injective mapping σ : [1 : 2] → [1 : 5] defined
as σ(1) = 2 and σ(2) = 3, then σ̄ : [1 : 3] → [1 : 5] and σ̄(1) = 1, σ̄(2) = 4,
σ̄(3) = 5.

Definition 11 (Array Projection) Given an array A : I → V , I = (Π
n
i=1 Di),

an injective mapping σ : k → n, with k < n, and a vector ~v ∈ Π
n−k
i=1 Dσ̄(i) we

define the projection of A along σ and ~v, projσ,~v(A) : projσ(I) → V as

projσ,~v(A)(i1, . . . , ik) = A(a1, . . . , an)

where aj = iσ−1(j) if σ
−1(j) is defined, and aj = ~v[σ̄−1(j)] if σ̄−1(j) is defined.

Notation 3 (Projections of domains) We write domσ(A) for projσ(dom(A))

In practice, σ pinpoints the dimensions that we want to maintain during
projection and ~v fixes the indexes for the dimensions which will be erased by
projection. Figure 5 shows the projection of array A in our running example,
where we have pinpointed the first dimension, and fixed the index of the
second one to 3.
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index domain I=[0:11]

x

A

v=3

Projection

index domain I=[0:11][0:5]

σ(1)=1

Figure 5: Projecting array A along x = projσ,~v(A), σ : 1 → 2, ~v = (3).

3.3.2 Array injections

The second operation we are interested in is injection which ‘inserts’ an array
into another one of larger dimensionality (which we will call the universe).

Definition 12 (Array Injection) Given an array A : I → V , where I =
(Π

k
i=1 Di), an injective mapping σ : k → n, with k < n, U = (Π

n
i=1 Ei) with

Eσ(i) = Di for i ∈ 1..k, and a vector ~v ∈ Π
n−k
i=1 Eσ̄(i), we define the injection

of A into U along σ and ~v as the function injUσ,~v(A) : U → V as

injUσ,~v(A)(e1, . . . , en) =

{

A(eσ(1), . . . , eσ(k)) if eσ̄(i) = ~v[i], i ∈ 1..n− k
⊥ otherwise

σ selects a projection of the universe U which is conformant (ie, has the same
index domain) of the array A to be injected. Then injection inserts A in this
projection, leaving the rest of U undefined. Figure 6 shows how to inject back
vector x (extracted in Figure 5) back into array A.

A

index domain I=[0:11][0:5]

index domain I=[0:11]

x

v=3

Injection

σ(1)=1

Figure 6: Injecting vector x into array A, injAσ,~v(x), σ : 1 → 2, ~v = (3)

Projection and injection are related operations, as they allow us to decom-
pose and recompose an array defined on an index domain via arrays defined
on domains of smaller dimensionality. More formally, the following theorem
easily holds.

Theorem 1 (Covers of A) For any array A : I → V , it is the case that

A =
⊕

~v∈domσ̄(A)

inj
dom(A)
σ,~v (projσ,~v(A)) (1)
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3.4 Array distribution

Now we turn to a more complex operation, which is the block distribution of an
array A over the values of another array B. This assigns a subrange of dom(A)
to each index of dom(B) and is modelled by an index domain mapping.

Definition 13 (Dependent index distribution)
Given an index domain I = (Π

m
i=1 Di), and an index domain J = (Π

n
i=1 Ei),

a dependent index distribution is a dependent function gs :: J → P (I) that
associates to each index in J a slice of indexes in I (an element of P (I), the
powerset of I). More precisely, using dependent type notation [25], one would
write

gs :: Π ~j ∈J.
m

Π
i=1

D′
i(~j)

to stress that to each index of J is assigned a subrange of the indexes in I.

This way of defining subranges of I produces subcubes of I that are of the
same dimensionality as I, even if it is quite possible that a subcube only con-
sists of a single datum (if all index ranges are reduced to a single point). This
suffices for modelling our block distribution strategies, but one may imagine
to allow changes in dimensions too, to model more complex distributions.

According to the definition, we have gs(~j) : Π
m
i=1 D

′
i(~j). It’s very clear

here that the function gs associates each ~j in J with a sub domain of another
index domain I. Practically, it is used to describe the association between
each processor index ~j and a corresponding sub domain from I on which a
original array is defined.

Example 1 (Mappings underlying some distribution strategies)

broadcast The broadcast of an array A : I → V is modeled by the constant
index distribution gsbcst : λ~j.I.

block scatter The block scatter of A over J is modeled as follows. Given
I = (Π

m
i=1 Di) of the same dimensionality as the index domain J =

(Π
m
i=1 Ei), and given a vector of block sizes [h1, . . . , hm], the block-scatter

strategy for I over J is the function

gsbs(j1, . . . , jm) = [inf(Ik)+jk ∗hk : inf(Ik)+(jk+1)∗hk−1|k ∈ 1..m]

Note that gs, the dependent index distribution function, describes merely
a map relation between processor indexes and sub domains of array. The
function itself does not specify any operational actions. So it could be used to
describe not only the relation between processor indexes and the sub domain to
be distributed on them (which usually concerns with distribution operations),
but also the association between processor indexes and the sub domains al-
ready distributed on them (which usually concerns with distribution states).
It depends on the definitions of the operator functions which it is exploited.

We can now model the distribution operation of an array A on a commu-
nicator C using a given index distribution gs.

Definition 14 (Distribution over a communicator) Given an array A :
I → V , a communicator C : J → P and an index distribution gs : J →
P (I), we define the distribution of A over C according to gs (written in form
distrgsC (A)), as an array defined over J in which each element of index ~j is a

sub-array of A restricted to the sub index domain gs(~j) : Π
m
i=1 D

′
i(~j), if C(~j)

is defined, and ⊥ otherwise. More formally:

distrgsC (A)(j1, . . . , jn) =

{

A[gs(j1, . . . , jn)] if C(j1, . . . , jn) 6= ⊥
⊥ otherwise

Example 2 (Some well known distributions) Given an array A : I →
V and a communicator C : J → P , we formalize the following distributions.
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broadcast The broadcast of A over C is described by distrλ
~j.I

C (A).

block scatter If the index domain I = (Π
m
i=1 Di) has the same dimension-

ality as the index domain J = (Π
m
i=1 Ei), and [h1, . . . , hm] is a vector of

block sizes, the block-scatter distribution of A over C is the function

distr
λ(j1,...,jm).[inf(Ik)+jk∗hk:inf(Ik)+(jk+1)∗hk−1|k∈1..m]
C (A)

array multicast Finally, we can formalize an array multicast operation,
which sends the same data to a group of processors. As an example,
to say we send row i of a matrix A[lk : hk|k ∈ 1..2] to each processor
in row i of a communicator C defined on the same index set, we would
write distr

λi,j.[i:i][l2:h2]
C (A) .

Example 3 (Distributions in our running example) Back to our run-
ning example. If R is our 3× 3 communicator of processors, the multicast of
B over R is

distr
λi,j.[2i:2i+1][0:11]
R (B)

the multicast of A over R is

distr
λi,j.[0:11][2j:2j+1]
R (A)

and block scatter of C over R is distr
λi,j.[2i:2i+1][2j:2j+1]
R (C)

In what follows, we will often use the term global array to denote an array
in the usual sense (so, a function from an index domain to a set of values),
while we will use the term distributed array to mean an array that has been
spread blockwise across a set of processors. Such a distributed array has the
same name on all the processors, but each processor only owns a piece of the
array, whose dimensions depend on the processor itself. To access a member
of distributed array, we must specify a processor index ~j first, then an array
index ~i inside the sub domain distributed on this processor, and then we get
the final value. More formally

Definition 15 (Distributed array) Given an index domain I = (Π
m
i=1 Di),

an index domain J = (Π
n
i=1 Ei) and a dependent index distribution gs :: J →

P (I), a distributed array A is defined as a dependent function

A : Π ~j ∈J. gs(~j) → V

so that for each index ~j ∈ J , A(~j) : gs(~j) → V returns a function from an
index domain gs(~j) (sub domain of I) to value domain V . Note that, A(~j) is
in fact a global array again.

Coming back to the definition of distribution operation, a distribution op-
eration distr takes a global array (A : I → V ) as input and produces a
distributed array (distrgscomm(A) : Π ~j ∈J. gs(~j) → V ) with the arguments gs
and C specified. This fits well to our common sense.

3.4.1 Remarkable identities over distributions

We identify now a few remarkable identities on generic array distributions
(remember Notation 3).

Proposition 2 (Distributivity of distr and ⊕)

⊕

i∈I

distrgsCi
(A) = distrgs⊕

i∈I Ci
(A) (2)

if all the dom(Ci) are conformant (ie, have the same index domain, Def. 9)
and

⊕

i∈I Ci is well defined (no superposition, all Ci are defined on different
indexes).
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Proposition 3 (Absorption of injections)

projσ,~v(distr
gs

inj
dom(C)
σ,~v

(D)
(A)) = distr

projσ,~v(gs)

D (A) (3)

distrgs
inj

dom(C)
σ,~v

(D)
(A) = inj

dom(C)
σ,~v (distr

projσ,~v(gs)

D (A)) (4)

Both propositions are established by an easy case analysis on the domain of
definition of the two members of equations. Finally, we establish that if a
communicator C is decomposed in non overlapping parts, distribution over
parts can be done independently using an appropriate restriction of mapping
gs.

Proposition 4 (Partition) For C : (Π
n
i=1 Di) → P , σ : m → n (m ≤ n)

distrgsC (A) =
⊕

~v∈domσ̄(C)

inj
dom(C)
σ,~v (distr

projσ,~v(gs)

projσ,~v(C) (A)) (5)

where projσ,~v(gs)(i1, . . . , im) = gs(a1, . . . , an) with aσ(k) = ik, aσ̄(k) = ~v[k]

Proof.

distrgsC (A) = distrgs⊕
~v∈domσ̄(C) inj

dom(C)
σ,~v

(projσ,~v(C))
(A) by Eq. 1

=
⊕

~v∈domσ̄(C)

distrgs
inj

dom(C)
σ,~v

(projσ,~v(C))
(A) by Prop. 2

=
⊕

~v∈domσ̄(C)

inj
dom(C)
σ,~v (distr

projσ,~v(gs)

projσ,~v(C) (A)) by Prop. 3 .

3.5 Array gathering

Data distributed over processors can be collected back by the gather operation:

Definition 16 (Gather over a communicator) Given a communicator C :
J → P , an index domain I and an distributed array A defined over J , such
that for each ~j ∈J , A(~j) : gs(~j) → V is a global array defined over a subset of
I. We define the gather of A over C and I as gathI

C(A) : I → V , such that
for ~i ∈ I

gathI
C(A)(~i) =

{

A(~j)(~i) if ∃ only one ~j ∈J for which A(~j)(~i) is defined
⊥ otherwise

It’s quite clear that gather operation takes an input of distributed array
(A : Π ~j ∈ J. gs(~j) → V ) and produces a global array (gathI

C(A) : I → V ).
Note that, gs here doesn’t means the distributed array is generated by a
concrete distribution operation distrgsC (A) (it is quite possible to be formed
though a sequence of different distribution and gathering operations). As we
mentioned in previous section, gs is just an pure function describing the asso-
ciation between each processor index and certain index domain corresponding,
no matter such association is to be generated by some operation or somehow
already formed.

3.5.1 Remarkable identities over gathering

We identify a few remarkable identities on distribution and gathering.
If we scatter an array A : I → V over a communicator C (ie, we partition

A on processors without replications) and then gather it again on the same
index domain we obtain the same array. That is

gathI
C(distr

gs
C (A)) = A (6)

if cod(gs) ⊆ P (I) is a partition of I.
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3.6 Block computations

Now that we have the combinators necessary to distribute and gather data to
and from a processor grid, we turn in this section, to the specialized combi-
nators that we provide in our calculus to perform computations on the blocks
of data that have already been distributed on the processor grid. This set
contains the usual map, reduce and scan operations, now working over blocks
of data, together with a special combinator btran that allows to perform
operations that actually change the dimensions of the blocks.

Definition 17 (Block map over a communicator) Given a communica-
tor C : J → P , a distributed array A : Π ~j ∈ J. gs(~j) → V and a function
f : (L → V ) → (L → S), and ∀~j ∈J. adims(A(~j)) = idims(L), we define the
block map of A over C as bmapf

C(A) : Π ~j ∈J. gs(~j) → S

bmapf
C(A)(~j) = ashiftabase(A(~j))( f( ashiftibase(L)(A(~j))) )

The bmap operation takes an input of distributed array over a communica-
tor and produces another distributed array. It’s quite similar to the common
map function, but the basic unit given to the function f is now a full block,
so it allows to write programs that need access to all the element of the block
to compute the result (like in the case of the Life game).

There are cases where we need not only to access the full block, but also to
produce as a result a block of different dimensions. A typical example where
this need arises is the taks of performing a reduce over a distributed array (for
example, sum-up all the elements of the distributed array): in that case, one
wants to first perform locally the reduction, that changes the dimension of the
data, as it takes an array and produces an integer (the sum of the elements),
and then a reduction among the processors to get the final result.

We introduce now the btran (block transformation) combinator, that al-
lows to perform this first phase of a reduction.

Definition 18 (Block transform over a communicator) Given a com-
municator C : J → P , a distributed array A : Π ~j ∈J. gs(~j) → V , a function
f : (L → V ) → (K → S), ∀~j ∈ J. adims(A(~j)) = idims(L), we define the
block transform operation of A over C as btranf

C(A) : Π ~j ∈J. gs′(~j) → S

btranf
C(A)(~j) = f( ashiftibase(L)(A(~j)))

After a btran, we can finalyze the reduce operation by means of a bred
combinator.

Definition 19 (Block reduce over a communicator) Given a communi-
cator C : J → P , an distributed array A : Π ~j ∈ J. gs(~j) → V and an
associative binary operator ⊙ : (L → V ) → (L → V ) → (L → V ), and
∀~j ∈J. adims(A) = idims(L), we define the block reduce operation of A over
C with operator ⊙ as bred⊙

C(A) : L → V such that

bred⊙
C(A) =

⊙

~j∈J,A(~j) 6=⊥

ashiftibase(L)(A(~j))

The bred function takes an input of distributed array and produces a global
array. It’s very similar to the common reduce function on elements except the
basic unit is block.

Definition 20 (Block scan over a communicator) Given a communica-
tor C : J → P , an distributed array A : Π ~j ∈ J. gs(~j) → V and an
associative binary operator ⊙ : (L → V ) → (L → V ) → (L → V ), and
∀~j ∈ J. adims(A) = idims(L), we define the block scan operation of A over
C with operator ⊙ as bscan⊙

C(A) : Π ~j ∈J. gs(~j) → V such that

bscan⊙
C(A)(~k) = ashiftabase(A(~k))(

⊙

~j∈J,A(~j) 6=⊥,~j⊑~k

ashiftibase(L)(A(~j)))

where ⊑ is the lexicographic order on indexes.
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The input of bscan operation is a distributed array and the result is also
a distributed array of the same type.

3.6.1 Remarkable identities

Most well known equalities for map, reduce and scan [2, 11] hold in our setting.
For instance, if A : Π ~j ∈ J. gs(~j) → V , f : (I → V ) → (I → S) and
g : (I → S) → (I → T ), we can formulate bmap() fusion as

bmapg
C(bmapf

C(A)) = bmapf◦g
C (A) (7)

3.7 Formalizing multicast in our running example

3.7.1 Multicast = scatter&broadcast

We can now use our model to express the collective operations composing
second multicast strategy introduced for our running example.

Intuitively, a multicast operation induces an equivalence class on a com-
municator, two processors being equivalent if they receive the same data.
Then, we can decompose it into a scatter operation to some representative
processor in the equivalence class, followed by a set of broadcasts from the
representative to the whole class. Let’s start describing a columnwise multi-
cast distribution of a matrix A : [l1 : h1][l2 : h2] → V onto a communicator
C : [l′1 : h′

1][l
′
2 : h′

2] → P of the same dimensionality, with a block-size of s,
expressed as the following distribution:

distr
λi,j.[l1:h1][l2+j∗s:l2+(j+1)∗s−1]
C (A)

We see clearly from the expression of the distribution that there is a constant
part [l1 : h1] that may give raise to a broadcast operation (all processors in
the same column get the same slice of the original matrix). To make this
explicit, we choose as the restriction function σ : 1 → 2, defined as σ(1) = 1
(in general, we would chose a restriction function removing every index not
used in the index expression of the multicast). Then, by definition, σ̄ : 1 → 2
and σ̄(1) = 2. Now, we can apply the partition identity, using σ and σ̄, to
obtain mechanically

distr
λi,j.[l1:h1][j∗s:(j+1)∗s−1]
C (A) =

⊕

v∈[l′2:h
′

2]

injdom(C)
σ,v (distr

λi.[l1:h1][v∗s:(v+1)∗s−1]

λi∈[l′1:h
′

1].C[i][v]
(A))

The equality produces a superposition of distributions whose index function is
constant, so we have decomposed the block scatter operation of A over C into
a superposition of independent broadcast operations of disjoint subsets of the
argument array A onto the independent communicators λi ∈ [l′1 : h′

1].C[i][v].
Now, we can easily pick a representative processor in each communicator by
choosing a canonical index, for example the minimum, and write a block scat-
ter distribution that would assign to each representative processor a different
portion of A:

distr
projσ̄,inf(domσC)(λi,j.[l1:h1][j∗s:(j+1)∗s−1])

projσ̄,inf(domσC)(C) (A)

= distr
proj

σ̄,l′1
(λi,j.[l1:h1][j∗s:(j+1)∗s−1])

proj
σ̄,l′1

(C) (A)

= distr
λj.[l1:h1][j∗s:(j+1)∗s−1]

λj.C[l′1][j]
(A)

and this last one is clearly a scatter operation (all communicator indexes are
used in the index expression, and they select independent blocks of A). Now
that we can describe scatter and broadcasts we need a calculus to compose
them in a more complex strategy.
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3.7.2 Multicast = scatter&gather

We now model the third multicast strategy introduced for our running exam-
ple. We want to multicast columnwise the matrix A : [l1 : h1][l2 : h2] → V
onto a communicator C : [l′1 : h′

1][l
′
2 : h′

2] → P of the same dimensionality.
The idea here is

• scatter the matrix A on C using a block scatter strategy with block-size
s1 × s2 :

distr
λi,j.[l1+i∗s1:l1+(i+1)∗s1−1][l2+j∗s2:l2(j+1)∗s2−1]
C (A)

• on each processor C[i][j], gather all the blocks of A scattered on proces-
sors on the same column (ie, on communicator λi ∈ [l′1 : h′

1].C[i][j]) in
order to have locally all the columns A[l1 : h1][l2+j∗s2 : l2(j+1)∗s2−1],
which is formalized by the following gather

gath
[l1:h1][l2+j∗s2:l2+(j+1)∗s2−1]

λi∈[l′1:h
′

1].C[i][j]
(A′)

where A′ (defined over [l′1 : h′
1][l

′
2 : h′

2]) is the array of arrays resulting
from the block scatter operation.

Then the overall column multicast will require one gather for each proces-
sor. The following points are worth noticing.

gatherall all processors on the same column need to perform exactly the
same gather (it does not depend on i), resulting in the same array A[l1 :
h1][l2 + j ∗ s2 : l2 +(j+1) ∗ s2 − 1]. In this case we can use a generalized
version of gather (ie, allgather provided in MPI) which accounts for
cases in which all processors in the communicator need to gather the
same value. It’s the same for another case in which all processors in the
communicator need to do the same reduce. We will introduce suitable
operations allgI

C(A) and allrIC(A) in our calculus to account for this
common optimization.

parallelism gather operations involving processors on different columns need
not to be serialized. Thus, all gathers on different columns can be exe-
cuted in parallel.

We will formalize all the steps after introducing our calculus in the following
section.

4 A calculus for dense arrays

Using as semantical model the array operations introduced in Sec 3, we can
now introduce a simple calculus that can describe formally the evolution over
time of a distributed dense array. For the sake of brevity, we do not give the
formal semantics of the full language (notably, to the standard functional part
of it), but only of the special features modeling distributed data.

Definition 21 (Dense array calculus) The language of the dense array
calculus is composed of the following syntactic categories:

Index Domains

idom ::= a cartesian product of integer intervals
Communicators

processors ::= a set of processors
comm ::= functions from indexes to processors

Array expressions

name ::= a string
index ::= a sequence of integers
aexp ::= name@(index,comm) | [e|l1 ≤ i1 ≤ h1, . . . , ln ≤ in ≤ hn]

Index distributions

13



gs ::= functions from indexes to index domains | projσ,index(gs)
Array operations

d ::= distrgscomm(aexp, name) |

gathidom
comm(name, index) |

bmapfunction
comm (name) |

bredbinop
comm(name, index) |

bscanbinop
comm(name) |

btranfunction
comm (name) |

allgidom
comm(name) |

allrbinop
comm(name) |

d;d |
||(d1, . . . , dn)

The aexp, which stands for a global array, can be expressed in two styles.
The first style name@(index, comm) presents the distributed part of name
array on index processor under certain communicator comm; the second style
directly gives a array function e : Index → V alue with its domain defined as
(or restricted to) l1 ≤ i1 ≤ h1, . . . , ln ≤ in ≤ hn.

Also notice that we purposely left unspecified the base functional language
used to write functions like gs, comm or binop. The choice of this language
is not essential for our purposes; we just assume some such language (with
appropriate semantics) is given.

This calculus is given semantics in a denotational style [18] using the struc-
tures we have introduced in the previous section.

Definition 22 (Semantic domains) We take as base semantic domains a
set of processor, array names and integer index ranges. Then our state is
simply a function associating an array to each processor and array name.

Proc = flat domain of processors
Names = flat domain of names

Index =
⋃

k N
k

State = Proc → Names → Index → V alue
We assume the usual auxiliary function ext : S → S → S to extend a state

with new bindings.

Note that we do not use the processor index but the processor itself as
the element of a state, because it is possible to have more than one commu-
nicator in a system and under different communicators a processor usually
has different indexes. For instance, we can do a gather operation to get an
array under communicator A and then distribute it with another communi-
cator B — It’s obviously more powerful and convenient to have this style. So
Proc is independent but ProcIndex is dependent (on communicator). The
State can only be modelled as Proc → Names → Index → V alue, not
ProcIndex → Names → Index → V alue. Meanwhile in all mathematical
array manipulation defined in previous section, we use the ProcIndex not the
Proc, because only the index is operable while processor not. This doesn’t
matter because there holds a basic precondition that for each operation there
is one and only one communicator for it, and in each communicator(Comm)
the processor index (ProcIndex ) could be uniquely mapped to one processor
(Proc). So we have Proc = Comm(ProcIndex). To access array values with
processor index under a certain communicator, we can just apply State : Exp
sequently to Comm(ProcIndex) and Name :. In short, to describe(define) a
state we use Proc, to access array we use ProcIndex with current communica-
tor.

Definition 23 (Semantic interpretation functions) The semantic inter-
pretation functions (Fig. 7) come in two flavors: E [[e]]s associates a value to
an expression e in a given state s (this value may be an integer, a function,
etc.), while C[[d]]s computes the new state s′ which is s as modified by the
execution of the operation d.
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E[[name@(index, comm)]]s = s (E[[comm]]s index) name (1)
E[[[e|l1 ≤ i1 ≤ h1, . . . , ln ≤ in ≤ hn]]]s (2)

= λi1 . . . in.(E[[e]]s)(i1)(i2) . . . (in)
E[[projσ,index(gs)]]s = projE[[σ]]s,index(E[[gs]]s) (3)

C[[distrgscomm(aexp, name)]]s = let a, g, c = E[[aexp]]s,E[[gs]]s,E[[comm]]s (4)
in let d = distr

g
c (a)

in let diff = λ p, n.

if (∃j.(c(j) = p)) ∧ (n = name)
then d (c p) else ⊥

in (ext s diff, diff)

C[[gathidom
comm(name, index)]]s = let i, c = E[[idom]]s,E[[comm]]s (5)

in let a = λj. s (c j) name

in let g = gathi
c(a)

in let diff = λ p, n.

if (p = c index) ∧ (n = name) then g else ⊥
in (ext s diff, diff)

C[[bmap
function
comm (name)]]s = let f, c = E[[function]]s,E[[comm]]s (6)

in let a = λj. s (c j) name

in let b = bmap
f
c (a)

in let diff = λ p, n.

if (∃j.(c(j) = p)) ∧ (n = name)
then b (c p) else ⊥

in (ext s diff, diff)

C[[bredbinop
comm(name, index)]]s = let b, c = E[[binop]]s,E[[comm]]s (7)

in let a = λj. s(c j) name

in let r = bredb
c(a)

in let diff = λ p, n.

if (p = c index) ∧ (n = name) then r else ⊥
in (ext s diff, diff)

C[[bscanbinop
comm(name)]]s = let b, c = E[[binop]]s,E[[comm]]s (8)

in let a = λj. s (c j) name

in let sc = bscanb
c(a)

in let diff = λ p, n.

if (∃j.(c(j) = p)) ∧ (n = name)
then sc (c p) else ⊥

in (ext s diff, diff)

C[[btranfunction
comm (name)]]s = let f, c = E[[function]]s,E[[comm]]s (9)

in let a = λj. s (c j) name

in let t = btran
f
c (a)

in let diff = λ p, n.

if (∃j.(c(j) = p)) ∧ (n = name)
then t (c p) else ⊥

in (ext s diff, diff)

C[[allgidom
comm(name)]]s = let i, c = E[[idom]]s,E[[comm]]s (5a)

in let a = λj. s (c j) name

in let g = gathi
c(a)

in let diff = λ p, n.

if (∃j.(c(j) = p)) ∧ (n = name) then g else ⊥
in (ext s diff, diff)

C[[allrbinop
comm(name)]]s = let b, c = E[[binop]]s,E[[comm]]s (7a)

in let a = λj. s (c j) name

in let r = bredb
c(a)

in let diff = λ p, n.

if (∃j.(c(j) = p)) ∧ (n = name) then r else ⊥
in (ext s diff, diff)

C[[d1; d2]]s = let s′, diff ′ = C[[d1]]s (10)
in let s′′, diff ′′ = C[[d2]]s’
in (s′′, ext diff ′ diff ′′)

C[[||(d1, . . . , dn)]]s = let si, diffi = C[[di]]s (11)
in (ext s

⊕
1≤i≤n diffi,

⊕
1≤i≤n diffi)

Figure 7: Semantic rules
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We now discuss briefly the meaning of each rule. Rule (1) gives the dis-
tributed part of array name on the index processor under certain commu-
nicator comm. Rule (2) extracts subarrays using block selection (remember
Notation 1). projσ,index(gs) “restricts” function gs to a subarray of the defi-
nition domain (Rule (3)).

The semantics of a distribution distrgscomm(aexp, name) (Rule (4)) modifies
the state by distributing global array aexp to all processors in communicator
comm according to distribution function gs. All the distributed parts will be
stored on respective processors under the same array name name. A gather
gathidom

comm(name, index) collects all distributed parts of array name from pro-
cessors in the communicator comm and then stores the comprised result to
the processor of index under the same array name (Rule (5)). A block re-
duce bredbinop

comm(name, index) assigns the result of reducing distributed array
of name via binop to array name on index (Rule (7)). bmapfunction

comm (name),
bscanbinop

comm(name) and btranfunction
comm (name) assign to array of name on all

processors in communicator comm the result of respective computation (Rules
(6)(8)(9)).

There are many cases in which the result of a gather/reduce operation
on a communicator C is needed by all processors in C. In this case, we
can perform a gather followed by a broadcast operation on C. However,
this is not the best solution, as it is usually possible to leave the result of a
gather/reduce operation on all the nodes in C paying a small extra overhead
in the implementation. Thus it is convenient to have two extra operations for
collection: allgather and allreduce, which is exactly what MPI does. In our
calculus, we introduce the two operations allg() and allr() (Rules (5a)(7a))
to account for this particular optimizations.

Finally, the composition of two operations (;) executes the two operations
one after the other, while the parallel composition (||) simultaneously super-
poses the effect of operations (Rules (10)(11)).

4.1 Identities

Now we have the means of describing a state associated to the processors, and
we can model the evolution over time of this state, so we can write identities
involving the sequential composition of operations manipulating dense arrays.

Using the identities on arrays and distributions proven in the previous
sections, we establish:

Theorem 5 (Distribution decomposition)

distrgsC (A′@(index′, C′), A) =

distr
projσ̄, ~w(gs)

projσ̄, ~w(C) (A
′@(index′, C′), A); ||

~v∈domσ̄(C)

distr
projσ,~v(gs)

projσ,~v(C) (A@(~v ↑
σ

~w,C), A)

(8)

where ~w is a vector of values used, as described in the previous section, to
pinpoint the set of canonical representative processors in the equivalence class,
and ~v ↑σ ~w gives the index in C of the canonical representative processor having
index ~v in projσ,~v(C)

The following identities can be easily proved from definitions:

• an allgather can be always seen as gather followed by a broadcast
for any index that C index 6= ⊥

allgI
C(A) = gathI

C(A, index);distrλ
~j.I

C (A@(index, C), A) (9)

• an allgather is equivalent to a set of parallel gather
for array A : I → V ,

||
p∈codom(C)

gathI
C(A) = allgI

C(A) (10)
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which follows trivially from definition

• a scatter followed by an allgather on a given communicator is equivalent
to a broadcast on the same communicator
for array A : I → V ,

distrgsC (A′(index′, C′), A);allgI
C(A) = distrλ

~j.I
C (A′(index′, C′), A)

(11)

which follow directly from Eq. 10 and Eq. 6, if codom(gs) ⊆ P (I) is a
partition of I.

• parallel and sequential composition can be exchanged as follows (par-seq
exchange)
for any d1, d2, d3, d4 we have that

||{(d1; d2), (d3; d4)]}

has the same semantics as

||{d1, d3}; ||{d2, d4]}

Notice that the second case adds extra-synchronization in the implemen-
tation as both activities in the second parallel composition should wait
until the first two have finished. Thus, we can always transform

||{(d1; d2), (d3; d4)} ⇒ ||{d1, d3}; ||{d2, d4]} (12)

converse transformation can only be done if pairs (d1,d4) and (d2,d3)
affect disjoint parts of the status.

4.2 Running example: proving equivalences

We can now formalize distributions in our running example (Sec. 3.7.1) and
prove their semantic equivalence.

4.2.1 Multicast = scatter&broadcast

We can now state formally that the multicast operation can be expressed as
the sequence of the scatter operations computed there and a set of broadcasts,
originating from the canonical representative of each equivalence class, sending
out the local slice of A received from the scatter operation:

distr
λi,j.[l1:h1][l2+j∗s:l2+(j+1)∗s−1]
C (A′@(index′, C′), A) =

distr
λj.[l1:h1][l2+j∗s:l2+(j+1)∗s−1]

λj∈[l′2:h
′

2].C[l1][j]
(A′@(index′, C′), A);

||
v∈[l′2:h

′

2]

distr
λi.[l1:h1][l2+v∗s:l2+(v+1)∗s−1]

λi∈[l′1:h
′

1].C[i][v]
(A@([l1][v], C), A)

Thus, the equivalence between this strategy and direct send follows directly
from Theorem 5.

4.2.2 Multicast = scatter&allgather

We can now state formally that the multicast operation can be expressed as
the sequence of a scatter block distribution plus a set of parallel allgather:

distr
λi,j.[l1+i∗s1:l1+(i+1)∗s1−1][l2+j∗s2:l2+(j+1)∗s2−1]
C (A′@(index′, C′), A);

||
j∈[l′2:h

′

2]

allg
[l1:h1][l2+j∗s2:l2+(j+1)∗s2−1]

λi∈[l′1:h
′

1].C[i][j]
(A)

We now prove the equivalence of this strategy with the scatter plus broad-
cast strategy. Distribution function λi, j.[l1+i∗s1 : l1+(i+1)∗s1−1][l2+j∗s2 :
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l2+(j+1)∗s2−1] is a partition of index domain [l1 : h1][l2 : h2]. So this distri-
bution is a scatter operation. We can decompose a scatter operation in a group
of scatters on disjoint parts of the communicator. Let us consider communi-
cators λi ∈ [l′1 : h′

1].C[i][v], v ∈ [l′2 : h′
2] which group all processors in the same

column. These form a partition of communicator C. For each v ∈ [l′2 : h′
2],

projσ,v(λi, j.[l1 + i ∗ s1 : l1 + (i+ 1) ∗ s1 − 1][l2 + j ∗ s2 : l2 + (j + 1) ∗ s2 − 1]),
σ : 1 → 2, σ(1) = 1 is a partition of communicator λi ∈ [l′1 : h′

1].C[i][v], so we
can decompose our scatter operation as a first scatter on a subset of the com-
municator followed by a set of parallel scatter on the rest [16]. In particular,
we can first scatter our matrix onto the same set of canonical representative
used by scatter&broadcast distribution (that is on row λj.C[l′1][j]) and then
a set of parallel scatter along the columns, formally

distr
λj.[l1:h1][l2+j∗s2:l2+(j+1)∗s2−1]

λj.C[l′1][j]
(A′@(index′, C′), A);

||
j∈[l′2:h

′

2]

distr
λi.[l1+i∗s1:l1+(i+1)∗s1−1][l2+j∗s2:l2+(j+1)∗s2−1]]

λi∈[l′1:h
′

1].C[i][j]
(A@([l′1][j], C), A);

||
j∈[l′2:h

′
2]

allg
[l1:h1][l2+j∗s2:l2(j+1)∗s2−1]

λi∈[l′1:h
′
1].C[i][j]

(A)

we can then apply par-seq exchange

distr
λj.[l1:h1][l2+j∗s2:l2+(j+1)∗s2−1]

λj.C[l′1][j]
(A′@(index′, C′), A);

||
j∈[l′2:h

′

2]

{distr
λi.[l1+i∗s1:l1+(i+1)∗s1−1][l2+j∗s2:l2+(j+1)∗s2−1]]

λi∈[l′1:h
′

1].C[i][j]
(A@([l′1][j], C), A);

allg
[l1:h1][l2+j∗s2:l2+(j+1)∗s2−1]

λi∈[l′1:h
′
1].C[i][j]

(A)}

and from Eq. 11 we obtain a set of parallel broadcast as in the previous
distribution.

Thus, we have formalized our three strategies and proved they are all
equivalent from a semantic point of view.

After deriving costs for operations in the following section, we will compare
their properties with respect to performance.

5 Cost models

We want now to to associate a cost to array operations, so we first fix some
details on the execution model. We assume a set of processors arranged as
a Cartesian communicator and communicating via message passing. We con-
sider two message passing styles: bulk synchronous (such as in BSP[22]) and
asynchronous, (such as in MPI). Since the interaction style influences the cost
model, we discuss the two cases in two separate subsections. In particular,
Section 5.1 discusses the costs in BSP and Section 5.2 discusses the costs in
the asynchronous case.

In both cases we first cost single operations, then discuss how to combine
costs to evaluate composition of operations via the sequential/parallel opera-
tors. Finally, we apply costs to our running example and give a quantitative
comparison of multicast strategies.

5.1 A cost model based on BSP

In BSP, computation is organized in supersteps in which processors first per-
form local computation and then exchange data in a global communication
step. BSP’s cost model assumes that the bottleneck in communication per-
formance is at the processors, rather than in the network itself. If processor
i transmits hi words during a communication phase, the total time for the
phase is close to g ∗maxi hi. To give the cost of a whole superstep, two more
parameters are used: s which models the computation units executed by a
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distribution fan-out source node max fan-in
broadcast |A| ∗N |A|

block scatter |A|
∏

k hk

multicast |A| ∗M |A|/(N/M)

Table 1: Where N is the number of processors, M is the cardinality of the group
of processors which get the same data.

processor in the unit of time, and l which models the cost of a global synchro-
nization barrier to inform all the processors that the superstep has ended. A
superstep costs s ∗ maxi ci + g ∗ maxi hi + l, where ci are the computation
units executed at processor i. The BSP model has been investigated experi-
mentally and has been proved accurate to within a few percent across a range
of architectures and applications [20, 12].

The value of hi depends on the communication ability at each processor.
During a communication step, we call fan-in f in

i the number of words received
by processor i and fan-out fout

i the number of words sent. If i can both send
and receive simultaneously hi = max{f in

i , fout
i }, otherwise hi = f in

i + fout
i .

Here, we assume bidirectional communication ability.

5.1.1 Costing distributions

The cost of executing a BSP superstep which consists of a single distribution
operation distrgsC (A) can be computed from the fan-in and the fan-out of each
processor in C according to gs. For the sake of simplicity, we assume the size
of each element in A to be one word. If this is not the case, it suffices to
multiply the fan-in, and fan-out for the size in words of each element. Since A
usually resides on a single processor P, the maximum fan-out is always given
by the fan-out at P. fout

P is given by the number of elements the domain of
A (#dom(A)) multiplied by the replication factor that is the number of data
sent to more than one processor.

If gs : J → P(I), each processor corresponds to an index in J . Given an
index domain I = (Π

m
i=1 Di), and an index domain J = (Π

n
i=1 Ei),

gs(j1, . . . , jn) =
m

Π
k=1

Ik ⊆ I

the replication factor is given by the size of the disjoint union of the index
domains spanned by the distribution (restricted to the domain of definition of
A), and dividing it by the effective size of (the domain of definition of) A

rgs =
#

⊎

j∈J(gs(j) ∩ dom(A))

#dom(A)

thus the maximum fan-out is |A| ∗ rgs. On the other hand, the fan-in at
processor j depends on the set gs(j) ⊆ I and in particular it is equal the
number of A elements in gs(j). In Table 1, we give fan-in/out for some
common distributions.

Thus, the cost of a superstep only distributing data according to distrgsC (A)
is

T (distrgsC (A)) = max {max
i

{#(gs(i) ∩ dom(A)}, |A| ∗ rgs} ∗ g + l (13)

we take the max between the fan-out at P and the max fan-in at destinations.

5.1.2 Costing collections

The cost of a gather operation (gathI
C(A)) is given by the fan-in at destination

node, which is the number of elements of A with index in I (|#dom(A) ∩ I|).
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Thus,

T (gathI
C(A)) = |#dom(A) ∩ I| ∗ g + l

Notice that gather and allgather have the very same cost as gathering in
parallel on all nodes does not increase the maximum fan-in at destination.

Consider now reduce and allreduce operations. Let t⊙(n) be the cost of
computing ⊙ on an array of size n on a single processor. There are several
strategies to compute reduce in the literature. Two of the most common are:

binary tree we can emulate a binary tree in log p supersteps (where C : J →
P , p = |J | is the number of processors available in communicator C),
and at each step half of the processes receive data from the other half
and reduce them locally.

gather and bmap we can gather all data in a single processor and reduce
all of them locally

In our calculus, the second strategy corresponds to a different combination
of operations and can be costed in a different way. Thus, we give costs to block
reduce assuming a binary tree execution strategy:

T (bred⊙
C(A)) = log p ∗ (t⊙(n) + n ∗ g + l)

where n is the size of operands of ⊙ (if A : Π ~j ∈ J. gs(~j) → V , then
n = max~j∈J #dom(A(~j)) ≤ |I|). Since at each step the number of active
processors halves, we can exploit idle processors and compute all reduce on
all processors. Thus, costs of reduce and allreduce are again the same.

Notice that libraries for collective communications built on top of BSP
usually provide several implementations of reduce and scan. They choose
among them according to p, g and l. If this is the case, the cost formula above
should be changed to reflect the different cases[13].

5.1.3 Costing computations

bmap() requires a single superstep as it involves only local communications.
tf (n) is the cost of computing f on a local array of size n, and if we assume
tf non decreasing, the cost is given by

T (bmapf
C(A)) = tf (max

~j∈J
#dom(A(~j)))

bscan() requires both communication and computations. As happened
with reduce, there are several strategies to compute scan operation over BSP,
we assume the scan implementation emulates the binary tree built by a usual
parallel prefix computation in log p supersteps. The cost is:

T (bscan⊙
C(A)) = log p ∗ (3 ∗ t⊙(n) + n ∗ g + l)

where, as usual, n is the size of operands of ⊙ (if A : Π ~j ∈J. gs(~j) → V , then
n = max~j∈J #dom(A(~j)) ≤ |I|).

5.1.4 Costing composed operations

We can compose operations using the sequence operator ; and the parallel
operator || (Sec. 6). In our BSP model, executing d1; d2 needs two separate
supersteps, thus T (d1; d2) = T (d1) + T (d2). Parallel composition, d1||d2,
requires a single superstep. If some processors participate to both d1 and d2,
we should sum fan-ins and fan-outs of both operations, as follows:

T (d1||d2) = max
i

max{f in
i (d1) + f in

i (d2), f
out
i (d1) + fout

i (d2)} ∗ g + l (14)

Actually, if processors participating to d1 and d2 are disjoint, this corresponds
simply to take the maximum of the two costs T (d1||d2) = max{T (d1), T (d2)}.
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5.1.5 Running example: costing multicasts

We can now compare the cost of the three distribution strategies of the ex-
ample in (Sec. 3.7.1). We assume we are multicasting an array A on N ×N
processors with size of replication groups equal to N .

direct send implements the multicast with N2 separate sends each one send-
ing out |A|/N elements. Cost is |A| ∗N ∗ g + l

scatter&broadcast first scatters A on N processors and then broadcasts in
parallel each block on N groups of N processors. Cost is

|A| ∗ g + l +
|A|

N
∗N ∗ g + l = 2 ∗ |A| ∗ g + 2 ∗ l

scatter&allgather first scatters A on all available processors and the per-
forms N concurrent allgather each gathering |A|/N data. Cost is

|A| ∗ g + l +
|A|

N
∗ g + l

so we can conclude that scatter&broadcast is better than direct send when-
ever (N − 2) ∗ |A| ∗ g ≥ l, while scatter&allgather always performs better
than scatter&broadcast. Thus, we have managed to reason on semantically
equivalent strategies in the BSP cost scenario.

5.2 A cost model using MPI communication style

Here, we assume a processor network in which any two processors can send
messages of size m to each other simultaneously in time ts +m ∗ tw, where ts
is the time to start-up a communication and tw is the per-word transfer time.
A processor is allowed to send/receive messages on only one of its links at a
time. We also assume that local copies take negligible time.

In this model, processors can exchange information any time, possibly
blocking if the partner is not ready. This model, although quite simplistic,
it has been widely used to compute costs for programs using communication
libraries such as MPI/PVM on a wide range of parallel machines[10]. It must
be noted, however, that assuming fixed values for ts and tw it is not realistic
in extremely dynamic contexts such as heterogenous, non dedicated platforms
(such us those used for GRiD computing).

5.2.1 Costing distributions

Consider the cost of a single distribution distrgsC (A). From gs we compute the
replication factor rgs as in Eq. 13. Then, the source node sends a sequence of
p− 1 messages (p is the number of processors in the communicator, including
the source), thus cost is

T (distrgsC (A)) = (p− 1) ∗ ts + (|A| ∗ rgs) ∗ tw

as we need to startup p − 1 communications, and need to transfer globally
|A| ∗ rgs words of data.

5.2.2 Costing collections

The cost of a gather is:

T (gathI
C(A)) = |#dom(A) ∩ I| ∗ n ∗ tw + (p− 1) ∗ ts

as we need to establish p− 1 communications to transfer |#dom(A)∩ I| data
of n words each. The cost of allgather is the same as a gather operation,
because we need to exchange (p− 1) ∗ (p− 1) messages and at each step p/2
pairs of processors can exchange data in a bidirectional way. Regarding block
reduce, the cost is:

T (bred⊙
C(A)) = log p ∗ (t⊙(n) + n ∗ tw)

21



5.2.3 Costing computations

The cost of bmap is the same computed for BSP (it does not include commu-
nications!)

T (bmapf
C(A)) = tf (max

~j∈J
#dom(A(~j)))

while bscan is

T (bscan⊙
C(A)) = log p ∗ (3 ∗ t⊙(n) + n ∗ tw)

5.2.4 Costing compositions

The cost of a sequential composition d1; d2 is T (d1) + T (d2), if we assume
d1 must be completed before starting d2. If for specific pairs of operations,
part of the computation of d2 can start before d1 has finished, we should add
appropriate cost rules to our model. The cost of a parallel composition d1||d2
is max{T (d1), T (d2)}, as our simple model assumes communications never
collide.

5.2.5 Running example: costing multicasts

Again, we compare the costs of the three distribution strategies in Section 3.7.1
assuming we are multicasting an array A on N × N processors with size of
replication groups equal to N .

direct send implements the multicast with N2 separate sends each one send-
ing out |A|/N elements. Cost is N2 ∗ ts + |A| ∗N ∗ tw

scatter&broadcast first scatters A on N processors and then broadcasts in
parallel each block on N groups of N processors. Cost is

2 ∗ (N − 1) ∗ ts +
|A|

N
(2 ∗N − 1) ∗ tw

scatter&allgather first scatters A on all available processors and the per-
forms N concurrent allgather each gathering |A|/N data. Cost is

(N2 +N − 1) ∗ ts +
|A|

N
(N + 1) ∗ tw

so under this cost model scatter&allgather is worse than scatter&broadcast
when ts is sufficiently larger than tw. Direct send in turn is worse than the
other two in any case.

6 More examples: broadcast and scatter

In this section, we apply our calculus to study how a broadcast on a com-
municator C can be decomposed in a sequence of broadcast on ’smaller’ (ie,
lower size) communicators forming a partition of C. A similar result is then
discussed for the scatter operation. For both decompositions we prove the
semantic equivalence and compare performance costs according to the BSP
model.

6.1 Broadcast = broadcast + broadcast

Consider a communicator C and a partition C1, . . . , Ck of C. A broadcast
operation on C can be decomposed in a first broadcast from the root to a set
of representative processors P = {p1, . . . , pk} (pi ∈ Ci) and then from each
representative pi to the Ci it belongs to (see Figure 8 for an example in two
dimensions).
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(1) Broadcast

(2) Broadcast

A

C

Figure 8: Decomposition of a broadcast in ‘broadcast + broadcast’

Similar to the proof of multicast strategy in section 3.7.1, we can formalize
this strategy in two dimensions according to proposition 4 as follows:

distr
λi,j.[l1:h1][l2:h2]
C (A) =

⊕

v∈[l′2:h
′

2]

injdom(C)
σ,v (distr

λi.[l1:h1][l2:h2]

λi∈[l′1:h
′

1].C[i][v]
(A))

We partition the initial communicator by columns(σ : 1 → 2 and σ(1) = 1),
inside of which is obviously a set of independent broadcasts of the whole array
A. Choosing a canonical index to get the distribution for representatives of
each equivalent class, we get

distr
projσ̄,inf(domσC)(λi,j.[l1:h1][l2:h2])

projσ̄,inf(domσC)(C) (A)

= distr
proj

σ̄,l′1
(λi,j.[l1:h1][l2:h2])

proj
σ̄,l′1

(C) (A)

= distr
λj.[l1:h1][l2:h2]

λj.C[l′1][j]
(A)

Clearly, this one is also a broadcast operation of full array A, which proves
the semantic equivalence of the two strategies.

Discussing BSP costs Implementing a broadcast of array A on N ×N
processors : (1) a one step array broadcast and (2) a two step strategy which
first broadcast A on N processors and then broadcast in parallel each block
on N groups of N processors. The cost of (1) is |A| ∗N ∗N ∗ g + l, and the
cost of (2) is |A| ∗N ∗ g + l + |A| ∗N ∗ g + l = 2 ∗ |A| ∗N ∗ g + 2 ∗ l So when
(N − 2) ∗ N ∗ |A| ∗ g ≥ l, the two step strategy is more economic, which is
obviously the most common case.

6.2 Scatter = scatter + scatter

We can apply the same strategy discussed in the previous section to the de-
composition of a scatter operation on partition of a communicator C (see
Figure 9).

The same array A with a scatter distribution would be written as

distr
λi,j.[i∗p:(i+1)∗p−1][j∗s:(j+1)∗s−1]
C (A)

Then we have

distr
λi,j.[i∗p:(i+1)∗p−1][j∗s:(j+1)∗s−1]
C (A)

=
⊕

v∈[l′2:h
′

2]

injdom(C)
σ,v (distr

λi.[i∗p:(i+1)∗p−1][v∗s:(v+1)∗s−1]

λi∈[l′1:h
′

1].C[i][v]
(A))
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(1) Scatter

A

C

(2) Scatter

Figure 9: Decomposition of a scatter in ‘scatter + scatter’

According to the indexes expression λi.[i∗p : (i+1)∗p−1][v∗s : (v+1)∗s−1] we
know, each distribution (for each value of v) is a independent scatter operation
on disjoint subset of array A. Now we simply pick the minimum index in each
communicator C[i][v] and suppose all data distributed to C[i][v](i ∈ [l′1 : h′

1])
is distributed to the representative first. Now we can get this distribution as

distr
projσ̄,inf(domσC)(λi,j.[l

′

1∗p:h
′

1∗p−1][j∗s:(j+1)∗s−1])

projσ̄,inf(domσC)(C) (A)

= distr
proj

σ̄,l′1
(λi,j.[l1:h1][j∗s:(j+1)∗s−1])

proj
σ̄,l′1

(C) (A)

= distr
λj.[l1:h1][j∗s:(j+1)∗s−1]

λj.C[l′1][j]
(A)

From the indexes we can see it is also a disjoint scatter. Practically, the
array scatters data partitions to a set of representatives, then each represen-
tative scatters to the whole subclass.

Discussing BSP costs Implementing a scatter of array A on N × N
processors : (1) a one step array scatter and (2) a two step strategy which
first scatter A on N processors and then scatter in parallel each block on N
groups of N processors. The cost of (1) is |A| ∗ g + l, and the cost of (2) is

|A| ∗ g + l +
|A|

N
∗ g + l = |A| ∗ g ∗ (1 +

1

N
) + 2 ∗ l

Obviously, the two step strategy always costs more than the one step scatter.

7 Related work

The goal of our calculus is to give a sound basis to experienced program devel-
opers for their design choices in implementing applications or supports working
on multidimensional dense arrays, with an arbitrary number of dimensions.
Thus, we do not consider automatic optimization of programs working on
dense arrays nor we want to derive such programs automatically from some
sequential/functional description.

This is why, we believe, we did not really find a suitable calculus ready for
us in the vast literature dedicated to the problem of modeling the geometry of
data, which has been addressed by several researchers in the field of automatic
parallelization techniques[1], optimization and transformation of data parallel
programs[24, 23, 4, 15].
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On the other hand, formalisms aimed at a the systematic development
of parallel programs using arrays, tend to limit the dimensionality (usually
to 1,2) and/or do not address the problem of associating costs to operations
[2, 17, 14].

In the following, we briefly recall a few previous works which are more
closely related to ours. The PEI formalism [24] extends the model proposed in
Crystal [4] and models multidimensional arrays using data fields. A data field
is a function defined on a subcube in Zn (its index domain). Data distribu-
tions can be expressed using three operations: change of base, which modifies
the index domain of a data field (leaving the multiset of values unchanged),
geometrical operations, which rearrange data, and functional operations, which
apply the same function to all elements in a data field. The authors introduce
a set of notable equivalences among combinations of operations. The idea is
to develop parallel programs starting from an initial (possibly inefficient) rep-
resentation, and rewriting it using semantic-preserving transformation rules
until a ‘satisfactory’ implementation of the original idea is found. Although
geometric operations of PEI are rather similar to our distributions, the se-
mantic model we propose allows a more accurate representation of data dis-
tribution on actual processors. In particular, we are able to model hierarchical
subsets of processors (communicators) much in the style of actual communi-
cation libraries such as MPI. This makes feasible to compute accurate costs
for distributions and to take quantitative decisions.

Data distribution algebras [23] address the same kind of computations as
we do and allow the most common distributions (block, cyclic, tiling etc) to
be expressed using covers. Covers formalize how data can be partitioned to
obtain a required distribution and how distributed data can be glued again to
build a single data structure. However, their work does not propose a simple
and effective semantic model able to formally prove properties and to derive
costs.

KelP [9] proposes a quite general model for data layout and data move-
ment for hierarchical and irregular applications. Its goal is to define data
distribution strategies in a very flexible way and to generate all the needed
low level communications in an automatic way. Also in this case, costs and
semantic model are not provided.

Finally, much work exists on distribution models tied to automatic par-
allelization of imperative/functional code [1, 8], however, these models have
generally goals much larger than ours and appear much more complex.

8 Conclusions and future work

We introduces a calculus to describe parallel computations over dense array
with an arbitrary number of dimensions. The calculus comes with a denota-
tional semantics, which allowed us to formally prove the equivalence of differ-
ent strategies for implementing a multicast operation, and with an operational
semantics which ties each computation with a cost, allowing us to choose the
most effective among semantically equivalent strategies.
This result is quite satisfactory for us, as it allows to set in a formal, yet sim-
ple, framework the analysis of dense array computations expressed according
to an SPDM style very similar to the one supported by MPI. We plan to
further validate the calculus by using it to model implementation strategies
of non trivial applications working on more than two dimensions and to use it
to formalize the complete compilation strategy for the Map skeleton of P3L.
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