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We refine the simulation technique introduced in (Di Cosmo and Kesner 1997) to show

strong normalization of λ-calculi with explicit substitutions via termination of cut

elimination in proof nets (Girard 1987). We first propose a notion of equivalence relation for

proof nets that extends the one in (Di Cosmo and Guerrini 1999), and we show that cut

elimination modulo this equivalence relation is terminating. We then show strong

normalization of the typed version of the λws-calculus with de Bruijn indices (a calculus

with full composition defined in (David and Guillaume 1999)) using a translation from

typed λws to proof nets. Finally, we propose a version of typed λws with named variables

which helps to better understand the complex mechanism of the explicit weakening notation

introduced in the λws-calculus with de Bruijn indices (David and Guillaume 1999).

1. Introduction

This paper uses linear logic’s proof nets, equipped with an extended notion of reduction, to

provide several new results in the field of explicit substitutions. It is also an important step

forward in clarifying the connection between explicit substitutions and proof nets, two well

established formalisms that have been used to gain a better understanding of the λ-calculus

over the past decade. On one side, explicit substitutions provide an intermediate formalism

that - by decomposing the β rule into more atomic steps - allows a better understanding of

the execution models. On the other side, linear logic decomposes the intuitionistic logical

connectives, like the arrow, into more atomic, resource-aware connectives, like the linear

arrow and the explicit erasure and duplication operators given by the exponentials: this

decomposition is reflected in proof nets, which are the computational side of linear logic,

and provides a more refined computational model than the one given by the λ-calculus,

which is the computational side of intuitionistic logic†.

The pioneer calculus with explicit substitutions, λσ, was introduced in (Abadi et al 1991,

) as a bridge between the classical λ-calculus and concrete implementations of function-

al programming languages. An important property of calculi with explicit substitutions is

† Using various translations of the λ-calculus into proof nets, new abstract machines have been proposed, ex-

ploiting the Geometry of Interaction and the Dynamic Algebras (Girard 1989; Abramsky and Jagadeesan
1992; Danos 1990), leading to the works on optimal reduction (Gonthier, Abadi Lévy 1992; Lamping
1990).
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nowadays known as PSN, which stands for “Preservation of Strong Normalization”: a cal-

culus with explicit substitutions has PSN when all λ-terms that are strongly normalizing

using the traditional β-reduction rule are also strongly normalizing w.r.t. the more refined

reduction system defined using explicit substitutions. But λσ does not preserve β-strong

normalization as shown by Mellies, who exhibited a well-typed term which, due to the sub-

stitution composition rules in λσ, is not λσ-strongly normalizing (Melliès 1995).

Since then, a quest was started to find an “optimal” calculus having all of a wide range of

desired properties: it should preserve strong normalization, but also be confluent (in a very

large sense that implies the ability to compose substitutions), and its typed version should

be strongly normalizing.

Meanwhile, in the linear logic community, many studies focused of the connection between

λ-calculus (without explicit substitutions) and proof nets, trying to find the proper variant

or extension of proof nets that could be used to cleanly simulate β-reduction, like in (Danos

and Regnier 1995).

Finally, in (Di Cosmo and Kesner 1997), the first two authors of this work showed for the

first time that explicit substitutions could be tightly related to linear logic’s proof nets, by

providing a translation into a variant of proof nets from λx (Rose 1992; Bloo and Rose 1995),

a simple calculus with explicit substitutions and named variables, but no composition.

This connection was promising because proof nets seem to have many of the properties

which are required of a “good” calculus of explicit substitutions, and especially the strong

normalization in the presence of a reduction rule which is reminiscent of the composition

rule at the heart of Mellies’ counterexample. But (Di Cosmo and Kesner 1997) only dealt

with a calculus without composition, and the translation was complex and obscure enough

to make the task of extending it to the case of a calculus with composition quite a daunting

one.

In this paper, we can finally present a notion of reduction for Girard’s proof nets which is

flexible enough to allow a natural and simple translation from David and Guillaume’s λws, a

complex calculus of explicit substitution with de Bruijn indices and full composition (David

and Guillaume 1999; David and Guillaume 2001). This translation allows us to prove that

typed λws is strongly normalizing, which is a new result confirming a conjecture in (David

and Guillaume 1999; David and Guillaume 2001). Also, the fact that in the translation all

information about variable order is lost suggests a version of typed λws with named variables

which is immediately proved to be strongly normalizing. This is due to the fact that only the

type information is used in the translation of both calculi. Also, we believe that the typed

named version of λws gives a better understanding of the mechanisms of labels existing

in the calculus. In particular, names allow to understand the fine manipulation of explicit

weakenings in λws without entering into the complicate details of renaming used in a de

Bruijn setting.

The paper is organized as follows: we first recall the basic definitions of linear logic and

proof nets and we introduce our refined reduction system for proof nets (Section 2), then

prove that it is strongly normalizing (Section 3). In Section 4 we recall the definition of

the λws calculus with its type system, present the translation into proof nets, and show

strong normalization of typed λws. Finally, we introduce a version of typed λws with named

variables (Section 5), enjoying the same good properties, and we conclude with some remarks

and directions for future work (Section 7).
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2. Linear logic, proof nets and extended reduction

We recall here some classical notions from linear logic, namely the linear sequent calculus

and proof nets, and some basic results concerning confluence and normalization.

MELL: Multiplicative Exponential Linear Logic

Let A be a set of atomic formulae equipped with an involutive ‡ function ⊥ : A → A, called

linear negation.

The set of formulae of the multiplicative exponential fragment of linear logic (called MEL-

L) is defined by the following grammar, where a ∈ A:

F ::= a | F ⊗ F (tensor) | F O F (par) | !F (of course) | ?F (why not)

We extend the notion of linear negation to formulae as follows:

(?A)⊥ = !(A⊥) (A ⊗ B)⊥ = A⊥
O B⊥

(!A)⊥ = ?(A⊥) (A O B)⊥ = A⊥ ⊗ B⊥

The name MELL comes from the connectors ⊗ and O which are called “multiplicatives”,

while ! and ? are called “exponentials”. While we refer the interested reader to (Girard

1987) for more details on linear logic, we give here a one-sided presentation of the sequent

calculus for MELL:

⊢ A,A⊥
Axiom

⊢ Γ, A ⊢ A⊥,∆

⊢ Γ,∆
Cut

⊢ Γ, A

⊢ Γ, ?A
Dereliction

⊢ Γ, ?A, ?A

⊢ Γ, ?A
Contraction

⊢ Γ, A,B

⊢ Γ, AOB
Par

⊢ Γ, A ⊢ B,Γ′

⊢ Γ, A⊗B,Γ′ T imes
⊢ Γ

⊢ Γ, ?A
Weakening

⊢ A, ?Γ

⊢!A, ?Γ
Box

MELL proof nets

To all sequent derivations in MELL it is possible to associate an object called a “proof

net”, which allows to abstract from many inessential details in a derivation, like the order of

application of independent logical rules: for example, there are many inessentially different

ways to obtain ⊢ A1OA2, . . . , An−1OAn from ⊢ A1, . . . An, while there is only one proof net

representing all these derivations.

Proof nets are defined inductively by rules that follow closely the ones of the one-sided

sequent calculus; they are given in Figure 2. The set of proof nets is denoted PN . To simplify

the drawing of a proof net, we use the following notation: a conclusion with a capital greek

letter Γ,∆, . . . really stands for a set of conclusions, each one with its own wire.

Each box has exactly one conclusion preceded by a !, which is named “principal” port (or

formula), while the other conclusions are named “auxiliary” ports (or formulae). In what

follows, we will sometimes write an axiom link as A A⊥.

Reduction of proof nets

Proof nets are the “computational object” behind linear logic, because there is a notion of

reduction on them (called also “cut elimination”) that corresponds to the cut-elimination

‡ A function f is involutive iff f(f(p)) = p
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Ax

A A⊥

(Axiom)

Γ Γ′A⊥A

(Cut)

Γ

D

?A

A

(Dereliction) ?A

C

Γ ?A ?A

(Contraction)

Γ A B

A O B

(Par)

Γ Γ′
A B

A⊗ B

(T imes)

W

?AΓ

(Weakening)

A ?Γ

!A ?Γ

(Box)

Fig. 1. MELL Proof Nets
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procedure on sequent derivations. The traditional reduction system for MELL is defined as

follows:

Reduction acting on a cut Ax− cut, removing an axiom :

Ax-cut

Ax

A A⊥ A

Cut

A

Reduction acting on a cut O −⊗ :

A B

A O B

A⊥ B⊥

A⊥ ⊗ B⊥

Cut

O −⊗

A B A⊥

Cut
Cut

B⊥

Reduction acting on a cut w − b, erasing a box :

W

?A

W

?ΓA⊥ ?Γ

!A⊥ ?Γ

Cut

w-b

Reduction acting on a cut d− b, opening a box :

D

?A

A

A⊥ ?Γ

!A⊥ ?Γ

Cut

d-b

A⊥ ?Γ

Cut

A

Reduction acting on a cut c− b, duplicating a box :

?A

A⊥ ?Γ

!A⊥ ?Γ

Cut

?A

C

A⊥

!A⊥ ?Γ?A

c-b?A

Cut
Cut

A⊥

?Γ

?Γ

!A⊥ ?Γ?A
C

?Γ
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Reduction acting on a cut b− b, absorbing a box into another :

?Γ′ ?AB

Cut

?Γ′

A⊥

?Γ!A⊥

?Γ

b-b ?Γ

?Γ

A⊥

Cut
!B

!A⊥

?Γ

?Γ′

?Γ′

?A

?A

B

!B

Extended reduction modulo an equivalence relation

Unfortunately, the original notion of reduction on PN is not well adapted to simulate neither

the β rule of λ-calculus, nor the rules dealing with propagation of substitution in explicit

substitution calculi: too many inessential details on the order of application of the rules are

still present, and to make abstraction from them, one is naturally led to define an equivalence

relation on PN , as is done in (Di Cosmo and Guerrini 1999), where the following two

equivalences are introduced:

C

C

?A

C

?A

C

?A

?A

?A1 ?A2

?A3

?A2 ?A3

?A1

∼A C

?A

?A

?A ?A

∼B

!B

C

?A

?A

?A ?A

?A

BB

!B

Equivalence A turns contraction into an associative operator, and corresponds to forget-

ting the order in which the contraction rule is used to build, for example, the derivation:

⊢?A, ?A, ?A

⊢?A, ?A
Contraction

⊢?A
Contraction

Equivalence B abstracts away the relative order of application of the rules of box-formation

and contraction on the premises of a box, like in the following example.

⊢?A, ?A,B

⊢?A,B
Contraction

⊢?A, !B
Box

⊢?A, ?A,B

⊢?A, ?A, !B
Box

⊢?A, !B
Contraction

Finally, besides the equivalence relation defined in (Di Cosmo and Guerrini 1999), we

will also need an extra reduction rule allowing to remove unneeded weakening links when

simulating explicit substitutions:
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wc

?A

?A?A

W

?A

C

.

.

.

.

.

.

This rule allows to simplify the proof below on the left into the proof on the right

π
⊢?A

⊢?A, ?A
Weakening

⊢?A
Contraction

π
⊢?A

Notation: We will call in the following R the system made of rules Ax − cut, O − ⊗,

w−b, d−b,c−b, b−b and wc; we will name E the relation induced on PN by the contextual

closure of axioms A and B; we will write RE for the system made of the rules in R and the

equivalences in E; finally, R¬wc
E

will stand for system RE without rule wc.

Systems RE and R¬wc
E

, that contain E, are actually defining a notion of reduction modulo

an equivalence relation, so we write for example r −→RE
s if and only if there exist r′ and

s′ such that r =E r′ −→R s′ =E s, where the equality =E is the reflexive, symmetric and

transitive closure of the relation defined by A and B.

An example of reduction in RE is given here:

wc

w-b

∼B

?Γ
⊥

C

W

?Γ
⊥

?Γ
⊥

C

?Γ
⊥

W

C

W

C

?Γ
⊥

!B?B
⊥

?Γ
⊥

?Γ
⊥

B ?Γ
⊥

?Γ
⊥

?Γ
⊥

?B
⊥

B ?Γ
⊥

?Γ
⊥

?Γ
⊥

?Γ
⊥

!B

?Γ
⊥

C

?Γ
⊥

?Γ
⊥
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The reduction RE is flexible enough to allow an elegant simulation of β reduction and of

explicit substitutions, but for that, we first need to establish that RE is strongly normalizing.

Let us see this property in the next section.

3. Termination of RE

We know from (Di Cosmo and Guerrini 1999) that R¬wc
E

is terminating, and we can show

easily that wc is terminating too. In this section we show that the wc-rule can be postponed

with respect to all the other rules of R¬wc
E

, so that terminationof RE will follow from a

well-known abstract lemma.

Let us first remind the following result from (Di Cosmo and Guerrini 1999):

Lemma 3.1 (Termination of R¬wc
E

) The relation −→R¬wc

E
is terminating on PN .

Then, we establish the termination of wc.

Lemma 3.2 (Termination of wc) The relation −→wc is terminating on PN .

Proof. The wc-rule strictly decreases the number of nodes in a proof net so no infinite

wc-reduction sequence is possible.

Finally, we show that given any proof net, the wc-rule can be postponed with respect to

any rule of R¬wc
E

.

Lemma 3.3 (Postponement of wc w.r.t R¬wc
E

) Let t be a proof net. If t −→wc −→R¬wc

E

t′, then, there is a sequence t−→+
R¬wc

E
−→∗

wc t
′.

Proof. Let t −→wc −→R¬wc

E
t′ be a reduction sequence starting at t with a wc-reduction

step. Let us show that we can build an equivalent reduction t−→+
R¬wc

E
−→∗

wc t′ by

analyzing all the possible cases.

We do not detail here the cases of disjoint redexes: if we apply the wc- rule followed by a

rule R1 in R¬wc
E

and if the redexes occur at disjoint positions, then it is evident that R1 can

be applied first, followed by wc, and getting the same result. We study now all the remaining

cases:

1 The rule Ax− cut, first possibility :

?A⊥

wc ?A⊥!A

W

Ax-cutwc !A

Ax-cut

?A⊥
?A⊥

?A⊥

!A ?A⊥

!A

C

W

!A ?A⊥

C !A ?A⊥!A
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2 The rule Ax− cut, second possibility :

W

?Γ

?Γ

!A

A

!A

A

A

?Γ

?Γ

!A

?Γ

!A

A

?Γ

?Γ

?Γ
C

Ax-cut

wc

C

c-b

?A⊥!A

C

!A

A

?Γ

A ?Γ

!A

W

?Γ

A⊥

W

?Γ

!A

?Γ

?Γ

W

A

?Γ

C

?A⊥
w-b

!A

?Γ

!A

?A⊥!A

!A

?Γ

?ΓA

wc Ax-cut

?A⊥

BB
B

B

BB B

B
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3 The rule c− b, first possibility :

W

B

?A

B

?A

?Γ

C

C

?A ?A

C

?A ?A

W

B B

?Γ

C

c-b

C

?A ?A

W

?Γ

C

W

?Γ

B

C

C

?A ?A

?Γ

B

c-bwc

B

w-b

c-b

wc

B

?A

B

?A

C

?Γ

C

4 The rule c− b, second possibility :

C

?A ?A

C

?A ?A

B’

?A

B’

?A

?Γ

C

c-b?Γ

B

?Γ

wc

B’

B

?A

B

?A

?Γ

C

wc

wc

c-b
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5 The rule d− b, first possibility :

W

W

D

A

D

A

?Γ

B

W

W

D

A

D

A

?Γ

B

A

C

?Γ

B

wc

B

w-b

wc

?Γ

C

d-b

d-b

B B

?Γ

C

c-b

?Γ

C

B

A

6 The rule d− b, second possibility :

D

A

?Γ

B
D

A

?Γ

A

B’

wc d-b

?Γ

B’

?Γ

A

B
d-b wc

We notice that everything is happening as if the redexes were disjoint. This is due to the

fact that the d−b rule is non-duplicating and non-erasing w.r.t boxes. As a consequence,

the wc-redex is still preserved after the application of the d− b rule.
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7 The rule b− b, first possibility :

W

W

?Γ

B

B’
?A

B’
?A

?Γ

W

W

B’
?A

?Γ

B’

?A

B

wc

B’
?A

B

C

b-bwc

B

w-b

b-b

?Γ

C

B B

?Γ

C

c-b

?Γ

C

B’

?A

B

8 The rule b − b, second possibility : For the same reason as for d − b, the redexes are

considered as disjoint.

9 The rule w − b, first possibility :

W

W

W

W

W

wc

W

W WW

?Γ

B

C

?Γ

B

wc

B

w-b

w-b

?Γ

W

w-b

?Γ

C

B B

?Γ

C

c-b

?Γ

C
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10 The rule w − b, second possibility :

WW

?Γ

B’

?Γ

B

wc ?Γ

W

w-b

w-b

11 The rules O-⊗ cut : we just notice that in this case the redexes are disjoint.

Until now we have only worked with reduction rules of RE , but to complete our statement

we also need to show that the wc-rule can be delayed w.r.t one equivalence step. We proceed

as we did for the reduction rules. We do not study the cases where redexes are disjoint

because they are evident. The remaining cases are the following:

1 Associativity :

W

C

C

A

A3A2

A1

W

C

A

W

C

A

∼A

wc ∼A

∼A

wc

C

C

A3

C

A2A1

A

C

C

A2A1

C

C

A2A1

A

A3

A3

C

C

A3A2

A1
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2 Box passing, first case :

W

C

C

A2A1

A

C

A2A1

A

W

C

C

A1

A

A2

W

∼A

wc ∼B

∼B

wc

A

C

A1 A2

C

A1

A2

C

A

3 Box passing second case :

wc

A

C

A1 A2

A

C

A2A1

C

W

C

A1
A2

A

C

W

C

C

W

∼B

∼A

A1
A2

A

∼B
C

A2A1

A

wc

Lemma 3.4 (Extraction of R¬wc
E

) Let S be an infinite sequence of RE-reductions starting

at a proof net t. Then, there is a sequence of RE-reductions from the same proof net t which

starts by t −→R¬wc

E
t′, where t′ is also a proof net, and which continues with an infinite

sequence S′. We write this sequence as (t −→R¬wc

E
t′) · S′.

Proof. Let S be an infinite sequence of RE-reductions starting at t:

t −→RE
. . . −→RE

. . . −→RE
. . .

We know, by Lemmas 3.2 and 3.1, that the systems wc and R¬wc
E

are both terminating,

so it is not possible to have an infinite sequence only made of wc or R¬wc
E

. As a consequence,
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the infinite sequence of RE-reductions must be an infinite alternation of non-empty finite

sequences of wc and R¬wc
E

.

Now, there are two cases: either the alternation of sequences starts with a R¬wc
E

-reduction

step, and then the result holds by taking the sequence S without its first reduction step as

S′; or the alternation starts with a wc-step:

t−→+
wc −→

+
R¬wc

E
−→+

wc −→
+
R¬wc

E
. . .

that is, written in other way

t−→+
wc −→R¬wc

E
t′′−→∗

R¬wc

E
−→+

wc −→
+
R¬wc

E
. . .

In this case, we consider the sub-sequence P = t−→+
wc −→R¬wc

E
t′′ of the sequence S

starting at t. This sub-sequence is composed by k reduction steps of wc and one reduction

of R¬wc
E

. Let call R the remaining sub-sequence of S.

By applying Lemma 3.3 k times on P , we can move the rule of R¬wc
E

at the head of the

sequence. We thus obtain a finite sequence P ′ which begins with a reduction t −→R¬wc

E
t′,

and ends on t′′. As a consequence, P ′ · R is the infinite sequence starting by a reduction

R¬wc
E

we were looking for.

Now it is easy to establish the fundamental theorem of this section:

Theorem 3.5 (Termination of RE on proof nets) The reduction relation RE is termi-

nating on the set of proof nets.

Proof. We show it by contradiction. Let us suppose that RE is not terminating. Then,

there exist a proof net t and an infinite sequence S of RE starting at t. By applying Lem-

ma 3.4 to this sequence S, we obtain a sequence (t −→R¬wc

E
t′) · S′ such that S′ is infinite

again. If we iterate this procedure an arbitrary number times, we obtain a sequence of

R¬wc
E

-reduction steps arbitrary long. This contradicts the fact that R¬wc
E

is terminating.

4. From λws with de Bruijn indices to PN

We now study the translation from typed terms of the λws-calculus (David and Guillaume

1999; David and Guillaume 2001) into proof nets. We start by introducing the calculus, then

we give the translation of types of λws into formulae of linear logic, and the translation of

terms of λws into linear logic proof nets PN . We verify that we can correctly simulate every

reduction step of λws via the notion of reduction RE . Finally, we use this simulation result

to show strong normalization of the λws-calculus.

4.1. The λws-calculus

The λws-calculus is a calculus with explicit substitutions where substitutions are unary

(and not multiple). The version studied in this section has variables encoded with de Bruijn

indices. The terms of λws are given by the following grammar:

M ::= n variable

| λM abstraction

| (MM) application

| 〈k〉M label

| [i/M, j]M substitution
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Intuitively, the term 〈k〉M means that the k − 1 first indices in M are not “free” (in the

sense of free variables of calculus with indices). The term [i/N, j]M means that the i − 1

first indices are not free in N and the j−1 following indices are not free in M . Those indices

are used to split the typing environment of [i/N, j]M in three parts: the first (resp. second)

one for free variables of M (resp. N), the third one for the free variables in M and N .

The de Bruijn indices we use start with 0 instead of 1. For example, the identity function

is written as I = λ0.

The reduction rules of λws are given in Figure 2 and the typing rules of λws are given in

Figure 3, where we suppose that |Γ| = i and |∆| = j.

(b1) (λMN) −→ [0/N, 0]M

(b2) (〈k〉(λM)N) −→ [0/N, k]M

(f) [i/N, j](λM) −→ λ[i+ 1/N, j]M

(a) [i/N, j](MP ) −→ ([i/N, j]M)([i/N, j]P )

(e1) [i/N, j]〈k〉M −→ 〈j + k − 1〉M if i < k

(e2) [i/N, j]〈k〉M −→ 〈k〉[i− k/N, j]M if i ≥ k

(n1) [i/N, j]k −→ k if i > k

(n2) [i/N, j]i −→ 〈i〉N

(n3) [i/N, j]k −→ j + k − 1 if i < k

(c1) [i/N, j][k/P, l]M −→ [k/[i− k/N, j]P, j + l − 1]M if k ≤ i < k + l

(c2) [i/N, j][k/P, l]M −→ [k/[i− k/N, j]P, l][i− l + 1/N, j]M if i ≥ k + l

(d) 〈i〉〈j〉M −→ 〈i+ j〉M

Fig. 2. Reduction rules of λws with de Bruijn indices

Γ, A,∆ ⊢ i : A Ax
∆ ⊢ M : B

Γ,∆ ⊢ 〈i〉M : B Weak

Γ ⊢ M : B → A Γ ⊢ N : B
Γ ⊢ (MN) : A App

B,Γ ⊢ M : C

Γ ⊢ λM : B → C
Lamb

∆,Π ⊢ N : A Γ, A,Π ⊢ M : B

Γ,∆,Π ⊢ [i/N, j]M : B Sub

Fig. 3. Typing rules for λws with de Bruijn indices

We notice that for each well-typed term of the λws-calculus, there is only one possible

typing judgment. This will simplify the proof of simulation of λws by easily considering the

unique typing judgment of terms.

As expected the λws-calculus enjoys the subject reduction property (Guillaume 1999).

Theorem 4.1 (Subject Reduction) If Ψ ⊢ M : C and M −→ M ′, then Ψ ⊢ M ′ : C.

4.2. Translation of types and terms of λws

We use the translation of types introduced in (Danos, Joinet and Schellinx 1995) given by :
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A∗ = A if A is an atomic type

(A → B)∗ = ?((A∗)⊥) O !B∗ (that is, !A∗
⊸!B∗) otherwise

Since wires are commutative in proof nets, we feel free to exchange them when we define

the translation of a term. The translation associates to every typed term M of λws, whose

typing judgment ends with the conclusion written below on the left, a proof net having the

shape sketched below on the right:

Γ ⊢ M : A

M

A∗?Γ∗⊥

Here is the formal definition of the translation T from λws-terms into proof nets.

— If the term is a variable and its typing judgement ends with the rule written below on

the left, then its translation is the proof net on the right

Γ, A,∆ ⊢ i : A
Ax

W

?∆∗⊥

W

?Γ∗⊥

D

?A∗⊥

A∗⊥

A∗

where i is the position of A in the typing environment,

— If the term is a λ-abstraction and its typing judgement ends with the rule written below

on the left, then its translation is the proof net on the right

B,Γ ⊢ M : C

Γ ⊢ λM : B → C
Lamb

?B∗⊥?Γ∗⊥ C∗

T(M)

?B∗⊥ O !C∗?Γ∗⊥

!C∗?B∗⊥

— If the term is an application and its typing judgement ends with the rule written below

on the left, then its translation is the proof net on the right

Γ ⊢ M : B → A Γ ⊢ N : B
Γ ⊢ (MN) : A

App

C

?Γ∗⊥

T(M)

B∗

?B∗⊥
O !A∗ ?Γ∗⊥

?Γ∗⊥

A∗

T(N)

?Γ∗⊥

D

!B∗ ?A∗⊥

!B∗ ⊗ ?A∗⊥

A∗⊥

— If the term is a substitution and its typing judgement ends with the rule written below

on the left, then its translation is the proof net on the right
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∆,Π ⊢ N : A Γ, A,Π ⊢ M : B

Γ,∆,Π ⊢ [i/N, j]M : B
Sub

?A
∗⊥

!A
∗

T(N)

T(M)

B
∗

?Π
∗⊥

?Γ
∗⊥

?∆
∗⊥

?∆
∗⊥

A
∗

?Π
∗⊥

?Π
∗⊥

C

?Π
∗⊥

where i is the length of the list Γ and j is the length of the list ∆, then its translation is

the proof net

— Finally, if the term is a label and its typing judgement ends with the rule written below

on the left, then its translation is the proof net on the right

∆ ⊢ M : B
Γ,∆ ⊢ 〈i〉M : B

Weak
?∆∗⊥ B∗ ?Γ∗⊥

W
T(M)

where i is the length of the list Γ, then its translation is the proof net

4.3. Simulating λws-reduction

We now verify that our notion of reduction RE on PN simulates the λws-reduction on typed

λws-terms. It is in this proof that we find the motivation for our choice of translation from

λ-terms into proof nets: with the more traditional translation sending the intuitionistic type

A → B into the linear !A ⊸ B, the simulation of the rewrite rule f would give rise to an

equality, not to a reduction step like in this paper.

Notation: In the proof of the following lemma, we will draw several complex proof nets,

where the translations ?Γ∗⊥, ?∆∗⊥, ?Π∗⊥, etc. of the environments Γ,∆,Π, etc. appear re-

peated many times. In order to make these pictures more readable, we will make a slight

abuse of notation, only in the following proof, by simply writing Γ in place of its correct

translation ?Γ∗⊥.

Lemma 4.2 (Simulation of λws) The relation RE simulates the λws-reduction on typed

terms: if t −→λws
t′, then T (t)−→+

RE
T (t′), excepted for the rules e2 and d for which we

have T (t) = T (t′).

Proof. The proof proceeds by cases on the reduction rule applied in the step t −→λws
t′.

Since reductions λws and RE are closed under all contexts, we only need to study the cases

where reduction takes place at the head position of t. In the proof, rule wc is used to

simulate b2, e1, n1, n2, n3, equivalence A is used to simulate a, c1, c2, and equivalence B is

used to simulate f, a, c1, c2.

— Rule b1 : (λMN) −→ [0/N, 0]M

The typing judgment of (λMN) ends with

B,Γ ⊢ M : A

Γ ⊢ λM : B → A
Lamb

Γ ⊢ N : B
Γ ⊢ ((λM)N) : A

App

and its translation is the proof net
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A
∗

D

Γ

C

?B
∗⊥

Γ

T(M)

B
∗

?B
∗⊥

O !A
∗ Γ

Γ

T(N)

Γ ?B
∗⊥

!A
∗

!B
∗
?A

∗⊥

!B
∗ ⊗ ?A

∗⊥

A
∗⊥

A
∗

The typing judgment of [0/N, 0]M must end with:

B,Γ ⊢ M : A Γ ⊢ N : B

Γ ⊢ [0/N, 0]M : A
Sub

and its translation is the proof net

T(M)

B
∗

Γ

!B
∗

Γ

Γ

C

T(N)

Γ

?B
∗⊥

A
∗

Starting from the first proof net, we eliminate the O-⊗ cut, then the d− b cut and finally

the Ax− cut cut to obtain the final proof net.

— Rule b2 : ((〈k〉λM)N) −→ [0/N, k]M

The typing environment can be split in two parts Γ and ∆, where k is the length of Γ.

The typing judgment of ((〈k〉λM)N) ends with

B,∆ ⊢ M : A

∆ ⊢ λM : B → A
Γ,∆ ⊢ 〈k〉λM : B → A Γ,∆ ⊢ N : B

Γ,∆ ⊢ ((〈k〉λM)N) : A

and its translation is the proof net
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D

∆

T(M)

?B
∗⊥

O !A
∗

T(N)

∆ ?B
∗⊥

!A
∗

W

Γ

∆ ?B
∗⊥

A
∗

∆

∆

B
∗

Γ

Γ

C

!B
∗
?A

∗⊥

!B
∗ ⊗ ?A

∗⊥

A
∗⊥

A
∗

C

Γ

The typing judgment of [0/N, k]M must end with:

Γ,∆ ⊢ N : B B,∆ ⊢ M : A

Γ,∆ ⊢ [0/N, k]M : A
Sub

and its translation is the proof net

T(M)

B
∗

!B
∗

T(N)

∆

?B
∗⊥

A
∗

∆

∆

∆

C

Γ

Γ

Γ

As for the b1 rule, we eliminate the O-⊗ cut, then the d− b cut, and the Ax− cut cut.

Finally, we apply the wc rule to achieve the desired result.

— Rule f : [i/N, j]λM −→ λ[i+ 1/N, j]M

The typing environment can be split in three parts Γ, ∆, Π, where i is the length of Γ

and j is the length of ∆. The typing judgment of [i/N, j]λM ends with

∆,Π ⊢ N : C

B,Γ, C,Π ⊢ M : A

Γ, C,Π ⊢ λM : B → A
Lamb

Γ,∆,Π ⊢ [i/N, j]λM : B → A
Sub

and its translation is the proof net
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T(M)

?C
∗⊥

?B
∗⊥

!A
∗

?B
∗⊥

O !A
∗

?B
∗⊥

A
∗

?C
∗⊥

Γ

Γ

Π

Π

Π

C

T(N)

C
∗

!C
∗

∆

∆

Π

Π

The typing judgment of λ[i+ 1/N, j]M must end with:

∆,Π ⊢ N : C B,Γ, C,Π ⊢ M : A

B,Γ,∆,Π ⊢ [i+ 1/N, j]M : A
Sub

Γ,∆,Π ⊢ λ[i+ 1/N, j]M : B → A
Lamb

and its translation is the proof net

T(M)

T(N)

C
∗

!C
∗

?C
∗⊥

?B
∗⊥

!A
∗

?B
∗⊥

O !A
∗

?B
∗⊥

A
∗

ΠΓ

Γ

∆

∆

∆

Π

Π

C

Π

To reduce the first proof net into the second one, we must eliminate the b− b cut, then

use the equivalence relation B (we will exactly show how to use the equivalence relations

in the case of the rule a).

— Rule a : [i/N, j](MP ) −→ (([i/N, j]M)([i/N, j]P ))

The typing environment can be split in three parts Γ, ∆, Π, where i is the length of Γ

and j is the length of ∆. The typing judgment of [i/N, j](MP ) ends with

∆,Π ⊢ N : C

Γ, C,Π ⊢ M : B → A Γ, C,Π ⊢ P : B

Γ, C,Π ⊢ MP : A
App

Γ,∆,Π ⊢ [i/N, j](MP ) : A
Sub

and its translation is the proof net
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Γ

D

Π

C

C

Π

T(M)

T(P)

?B
∗⊥

O !A
∗

T(N)

?C
∗⊥

C

C
∗

!C
∗

C

A
∗ Π

!B
∗

⊗ ?A
∗⊥

∆

∆

Π

Π

Γ ?C
∗⊥

?A
∗⊥

!B
∗

B
∗

Π Γ ?C
∗⊥

Π Γ ?C
∗⊥

A
∗⊥

The typing judgment of (([i/N, j]M)([i/N, j]P )) must end with:

∆,Π ⊢ N : C Γ, C,Π ⊢ M : B → A

Γ,∆,Π ⊢ ([i/N, j]M) : B → A
Sub

∆,Π ⊢ N : C Γ, C,Π ⊢ P : B

Γ,∆,Π ⊢ ([i/N, j]P ) : B
Sub

Γ,∆,Π ⊢ (([i/N, j]M)([i/N, j]P )) : A
App

and its translation is the proof net

C

Γ

C

∆Π

C

C

C

T(M)
T(N)

C
∗

!C
∗

B
∗

T(P)

?C
∗⊥

T(N)

C
∗

!C
∗

?B
∗⊥

O !A
∗

∆

∆

Π

Π

Π

Π

∆

∆

ΓΠ

Γ ?C
∗⊥

Π

ΠΓ ∆

A
∗

!B
∗

⊗ ?A
∗⊥

D

?A
∗⊥

!B
∗

A
∗⊥

We eliminate the c− b cut, then the b− b cut, and thus we get the following proof net:
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D

Π

C

C

T(M)
T(N)

C
∗

!C
∗

B
∗

T(P)

?C
∗⊥

T(N)

C
∗

!C
∗

C

?B
∗⊥

O !A
∗

A
∗

!B
∗

⊗ ?A
∗⊥

C

∆

∆

∆

Π

Π

Π

Π

Π

∆

∆

∆

Γ

Γ

Π

Π

Γ ?C
∗⊥

Π

C

Γ

?A
∗⊥

!B
∗

A
∗⊥

To get to the desired proof net we need to use the equivalence relations A and B which

were introduced in Section 2. To better understand how to use them, we focus on the

crucial informations, i.e. the contraction nodes and their connections with the nets T (M),

T (N) and T (P ). Here is the net corresponding to the above net :

Π

C C

Π

Π

T(M)
T(N)

T(P) T(N)

Π
Π

Π

Π Π

C

Π

We use the associativity axiom A to obtain :
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Π

C

C

Π

Π

T(M)
T(N)

T(P) T(N)

Π
Π

Π

Π Π

C

Π

Again by associativity we get

Π

C

C

Π

Π

T(M)
T(N)

T(P) T(N)

Π
Π

Π

Π Π

C

Π

Using the B axiom we can put the contraction inside the box :

Π

C

C

Π

Π

T(M)
T(N)

T(P) T(N)

Π
Π

Π

C

Π

Π

Π
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And finally we use the A axiom again to obtain the desired proof net :

Π

C

C

Π

C

Π

Π

T(M)
T(N)

T(P) T(N)

Π
Π

Π

Π

Π

— Rule e1 : [i/N, j]〈k〉M −→ 〈j + k − 1〉M if i < k

The typing environment can be split in four parts Γ, ∆, Π, and Π′, where i is the length

of Γ, j is the length of ∆, and k (k > i) is the length of Γ plus the length of Π plus 1.

The typing judgment of [i/N, j]〈k〉M ends with

∆,Π,Π′ ⊢ N : B
Π′ ⊢ M : A

Γ, B,Π,Π′ ⊢ 〈k〉M : A
Weak

Γ,∆,Π,Π′ ⊢ [i/N, j]〈k〉M : A
Sub

and its translation is the proof net

C C

Π′ A∗

T(M)

Π

W

Γ

W

?B∗⊥

W

!B∗

B∗

∆

∆

Π

Π

Π′

Π′

Π′ Π

T(N)

The typing judgment of 〈j + k − 1〉M must end with:

Π′ ⊢ M : A
Γ,∆,Π,Π′ ⊢ 〈j + k − 1〉M : A

Weak

and its translation is the net

W W

∆Π′ A∗

T(M)

Π

W

Γ

Starting from the first proof net, we eliminate the w − b cut, then we apply the wc rule

and we finally obtain the desired proof net.
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— Rule e2 : [i/N, j]〈k〉M −→ 〈k〉[i− k/N, j]M if i ≥ k

The typing environment can be split in four parts Γ, Γ′, ∆, Π, where i is the length of

Γ plus the length of Γ′, j is the length of ∆ and k (k ≤ i) is the length of Γ. The typing

judgment of [i/N, j]〈k〉M ends with

∆,Π ⊢ N : B

Γ′, B,Π ⊢ M : A

Γ,Γ′, B,Π ⊢ 〈k〉M : A
Weak

Γ,Γ′,∆,Π ⊢ [i/N, j]〈k〉M : A
Sub

and its translation is the proof net

C

Π A∗

T(M)

W

Γ′ ?B∗⊥

!B∗

B∗

∆

∆

Π

Π

Π

T(N)

Γ

The typing judgment of 〈k〉[i− k/N, j]M must end with:

∆,Π ⊢ N : B Γ′, B,Π ⊢ M : A

Γ′,∆,Π ⊢ [i− k/N, j]M : A
Sub

Γ,Γ′,∆,Π ⊢ 〈k〉[i− k/N, j]M : A
Weak

and its translation is the proof net

C

Π A∗

T(M)

Γ

W

Γ′ ?B∗⊥

!B∗

B∗

∆

∆

Π

Π

Π

T(N)

We notice that the two nets are already the same. This is the first of the exception cases

of the lemma.

— Rule n1 : [i/N, j]k −→ k if i > k

The typing environment can be split in five parts Γ, A, Γ′, ∆, Π, where i is the length

of Γ plus the length of Γ′ plus 1, j is the length of ∆ and k (k < i) is the length of Γ.

The typing judgment of [i/N, j]k ends with

∆,Π ⊢ N : B Γ, A,Γ′, B,Π ⊢ k : A
Ax

Γ, A,Γ′,∆,Π ⊢ [i/N, j]k : A
Sub

and its translation is the proof net
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C

Π

W

?B∗⊥

W

!B∗

B∗

∆

∆

Π

Π

Π

T(N)

Γ

W

Γ′

W

?A∗⊥

D

A∗⊥

A∗

The typing judgment of k must end with:

Γ, A,Γ′,∆,Π ⊢ k : A

and its translation is the proof net

Π

W

∆

W

Γ

W

Γ′

W

?A∗⊥

D

A∗⊥

A∗

To reduce the first proof net into the second one it is enough to eliminate the w − b cut

and to apply the wc rule.

— Rule n2 : [i/N, j]i −→ 〈i〉N

The typing environment can be split in three parts Γ, ∆, Π, where i is the length of Γ

and j is the length of ∆. The typing judgment of [i/N, j]i ends with

∆,Π ⊢ N : A Γ, A,Π ⊢ i : A
Ax

Γ,∆,Π ⊢ [i/N, j]i : A
Sub

and its translation is the proof net

C

Π

W

!A∗

A∗

∆

∆

Π

Π

Π

T(N)

Γ

W

?A∗⊥

D

A∗⊥

A∗

The typing judgment of 〈i〉N must end with:

∆,Π ⊢ N : A

Γ,∆,Π ⊢ 〈i〉N : A
Weak

and its translation is the proof net
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Γ

W

A∗ ∆ Π

T(N)

Starting from the first proof net, we eliminate the d− b cut, then the Ax− cut cut, and

we apply the wc rule to obtain the desired proof net.

— Rule n3 : [i/N, j]k −→ j + k − 1 if i < k

The typing environment can be split in five parts Γ, ∆, Π, A, Π′, where i is the length

of Γ, j is the length of ∆ and k (k > i) is the length of Γ plus the length of Π plus 1.

The typing judgment of [i/N, j]k ends with

∆,Π, A,Π′ ⊢ N : B Γ, B,Π, A,Π′ ⊢ k : A
Ax

Γ,∆,Π, A,Π′ ⊢ [i/N, j]k : A
Sub

and its translation is the proof net

?A∗⊥ Π′Π

C CC

Π

W

?B∗⊥

W

!B∗

B∗

∆

∆Γ

W

Π′

W

?A∗⊥

D

A∗⊥

A∗

T(N)

Π

Π

?A∗⊥

?A∗⊥

Π′

Π′

The typing judgment of j + k − 1 must end with:

Γ,∆,Π, A,Π′ ⊢ j + k − 1 : A
Ax

and its translation is the proof net

Π

W

∆

W

Γ

W

Π′

W

?A∗⊥

D

A∗⊥

A∗

As for the n1 rule, we eliminate the w − b cut, then we apply three times the wc rule to

achieve the desired result.

— Rule c1 : [i/N, j][k/P, l]M −→ [k/[i− k/N, j]P, j + l − 1]M if k ≤ i < k + l

The typing environment can be split into five parts Γ, Γ′, ∆, Π, Π′, where i is the length

of Γ plus the length of Γ′, j is the length of ∆, k (k ≤ i) is the length of Γ and l (k+l > i)

is the length of Γ′ plus the length of Π plus 1. The typing judgment of [i/N, j][k/P, l]M

ends with
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∆,Π,Π′ ⊢ N : B

Γ′, B,Π,Π′ ⊢ P : C Γ, C,Π′ ⊢ M : A

Γ,Γ′, B,Π,Π′ ⊢ [k/P, l]M : A
Sub

Γ,Γ′,∆,Π,Π′ ⊢ [i/N, j][k/P, l]M : A
Sub

and its translation is the proof net

Π′

C

Π′

C

C

Π′ A∗

T(M)

Γ ?C∗⊥

!C∗

C∗

Π′

Π′

T(P)

Γ′

Γ′

Π

Π

?B∗⊥

?B∗⊥

!B∗

B∗

∆

∆

T(N)

Π′

Π′

Π

Π

Π

The typing judgment of [k/[i− k/N, j]P, j + l − 1]M must end with:

∆,Π,Π′ ⊢ N : B Γ′, B,Π,Π′ ⊢ P : C

Γ′,∆,Π,Π′ ⊢ [i− k/N, j]P : C
Sub

Γ, C,Π′ ⊢ M : A

Γ,Γ′,∆,Π,Π′ ⊢ [k/[i− k/N, j]P, j + l − 1]M : A
Sub

and its translation is the proof net

Π′

C

CC

Π′ A∗

T(M)

Γ ?C∗⊥ C∗ Γ′

T(P)

Π′Π ?B∗⊥

!B∗

B∗

∆

∆

T(N)

Π′

Π′

Π

Π

Γ′!C∗ ∆Π

Π Π′

Π′

To reduce the first proof net into the second one, we must eliminate the b− b cut, then

apply the equivalence relations A and B.

— Rule c2 : [i/N, j][k/P, l]M −→ [k/[i− k/N, j]P, l][i− l + 1/N, j]M if k + l ≤ i

The typing environment can be split in five parts Γ, Γ′, Γ′′, ∆, Π, where i is the length

of Γ plus the length of Γ′ plus the length of Γ′′, j is the length of ∆, k (k + l ≤ i) is the
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length of Γ and l is the length of Γ′. The typing judgment of [i/N, j][k/P, l]M ends with

∆,Π ⊢ N : B

Γ′,Γ′′, B,Π ⊢ P : C Γ, C,Γ′′, B,Π ⊢ M : A

Γ,Γ′,Γ′′, B,Π ⊢ [k/P, l]M : A
Sub

Γ,Γ′,Γ′′,∆,Π ⊢ [i/N, j][k/P, l]M : A
Sub

and its translation is the proof net

C

Π

C

C

C

T(M)

Γ Γ′′A∗ ?B∗⊥ ?C∗⊥Π

!C∗

C∗

Π

Π

T(P)

Γ′′

Γ′′

Γ′

Γ′

?B∗⊥

?B∗⊥

!B∗

B∗

∆

∆

T(N)

Π

Π

Π

?B∗⊥

Γ′′

The typing judgment of [k/[i− k/N, j]P, l][i− l + 1/N, j]M must end with:

∆,Π ⊢ N : B Γ′,Γ′′, B,Π ⊢ P : C

Γ′,Γ′′,∆,Π ⊢ [i− k/N, j]P : C
Sub

∆,Π ⊢ N : B Γ, C,Γ′′, B,Π ⊢ M : A

Γ, C,Γ′′,∆,Π ⊢ [i− l + 1/N, j]M : A
Sub

Γ,Γ′,Γ′′,∆,Π ⊢ [k/[i− k/N, j]P, l][i− l + 1/N, j]M : A
Sub

and its translation is the proof net

C CC

Π

C

C

T(M)

Γ Γ
′′

A
∗

?B
∗⊥

?C
∗⊥

Π

!B
∗

B
∗

∆

∆

T(N)

Π

Π C
∗

Γ
′

T(P)

ΠΓ
′′

?B
∗⊥

!B
∗

B
∗

∆

∆

T(N)

Π

Π

Π

Π!C
∗

Γ
′

Γ
′′

∆

Π ∆Γ
′′

Starting from the first proof net, we eliminate the c− b cut, then the b− b cut, and we

apply the equivalence rules A and B to obtain the desired proof net.



Proof Nets and Explicit Substitutions 31

— Rule d : 〈i〉〈j〉M −→ 〈i+ j〉M

The typing environment can be split in three parts Γ, ∆, Π, where i is the length of Γ

and j is the length of ∆. The typing judgment of 〈i〉〈j〉M ends with

Π ⊢ M : A
∆,Π ⊢ 〈j〉M : A

Weak

Γ,∆,Π ⊢ 〈i〉〈j〉M : A
Weak

and its translation is the proof net

Γ

W

∆

W

T(N)

A∗ Π

The typing judgment of 〈i+ j〉M must end with:

Π ⊢ M : A
Γ,∆,Π ⊢ 〈i+ j〉M : A

Weak

and its translation is the proof net

Γ

W

∆

W

T(N)

A∗ Π

We notice that the two proof nets are already the same. This is the second of the exception

cases of the lemma.

4.4. The proof of strong normalization of λws

We are now able to show strong normalization of λws. To achieve this result, we use the

following abstract theorem (see for example (Ferreira, Kesner and Puel 1999)) :

Theorem 4.3 Let R = 〈O, R1 ∪R2〉 be an abstract reduction system such that R2 is strong-

ly normalizing and there exist a reduction system S = 〈O′, R′〉, with a translation T of O

into O′ such that a −→R1
b implies T (a)−→+

R′ T (b); a −→R2
b implies T (a) = T (b).

Then if R′ is strongly normalizing, R1 ∪R2 is also strongly normalizing.

If we take O as the set of typed λws-terms, R1 as λws − {e2, d}, R2 as {e2, d}, O
′ as

the set of proof nets, T the translation given in Section 4.2 and R′ as the reduction RE ,

then, by the Theorem 4.3 and the fact that the system including the rules {e2, d} is strongly

normalizing (David and Guillaume 1999; David and Guillaume 2001), we can conclude :

Theorem 4.4 (Strong normalization of λws) The typed λws-calculus is strongly nor-

malizing.
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5. A named version of the λws-calculus

In this section we present a version of typed λws with named variables à la Church§. We

first introduce the grammar of terms, then the typing and reduction rules, and finally, we

will briefly discuss the translation of this syntax to PN .

The terms of this calculus are given by the following grammar, where A denotes a type

and Γ and ∆ denote sets of variables:

M ::= x variable

| λx : A.M abstraction

| (MM) application

| ∆M label

| M [x,M,Γ,∆] substitution

Intuitively, the term ∆M means that the variables in ∆ are not in M , and the term

M [x,N,Γ,∆] means that the variables in Γ do not appear in N (Γ is a subset of the type

environment of M , not containing x) and the variables ∆ do not appear in M (∆ is a subset

of the type environment of N).

Variables are bound by the abstraction and substitution operators, so that for example x

is bound in λx : A.x and in x[x,N,Γ,∆].

Terms are identified modulo α-conversion so that bound variables can be systematically

renamed. Indeed, we have λy : A.y[x, z, ∅, ∅] =α λy′ : A.y′[x, z, ∅, ∅] and λy : A.y[x, z, ∅, ∅] =α

λy : A.y[x′, z, ∅, ∅] and λl : A.y[x, z, {l}, ∅] =α λl′ : A.y[x, z, {l′}, ∅].

The reduction rules of the calculus with names are given in Figure 4 (notice that rule b1
is a particular case of rule b2 with ∆ = ∅). Remark that these rules may be applied to any

term generated by the grammar, and they do not make use of any type information, which

is only present in the terms due to their presentation à la Church.

The rule f should not be seen as a conditional reduction rule: as we work modulo α-

conversion, we can always find a term α-equivalent to an abstraction λy : A.M such that

the condition imposed to the rule is true and thus no variable capture arises.

We remark that the conditions on indices used in the typing rules given in Section 4.1

are now conditions on sets of variables. The typing rules are given in Figure 5. Remark that

typing environments are managed here as sets (the relative order of variables in the envi-

ronments does not matter). To make the proofs more readable, we will make a slight abuse

of notation by not distinguishing explicitly between type environments (the capital greek

letters on the left hand sides of the entailment relation) and sets of variables without type

annotations (appearing in the labels of terms and in the explicit substitution constructors).

As we work modulo α-conversion, we can suppose that in the rule Weak the set ∆ does

not contain variables that are bound in M . We remark that whenever Γ ⊢ M [x,N,∆,Π] is

derivable, then Γ necessarily contains ∆ and Π, which are two disjoint sets of variables.

§ It is of course possible to give a presentation à la Curry without type annotations on the abstracted
variables.
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(b1) (λx : A.M)N −→ M [x,N, ∅, ∅]

(b2) (∆(λx : A.M))N −→ M [x,N, ∅,∆]

(f) (λy : A.M)[x,N,Γ,∆] −→ λy : A.M [x,N,Γ ∪ y,∆] if y /∈ FV (N)

(a) (MP )[x,N,Γ,∆] −→ (M [x,N,Γ,∆]P [x,N,Γ,∆])

(e1) ΛM [x,N,Γ,∆] −→ (∆ ∪ (Λ \ x))M x ∈ Λ

(e2) ΛM [x,N,Γ,∆] −→ (Γ ∩ Λ)M [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)] x 6∈ Λ

(n1) y[x,N,Γ,∆] −→ y y 6= x

(n2) x[x,N,Γ,∆] −→ ΓN

(c1) M [y, P,Λ,Φ][x,N,Γ,∆] −→ x ∈ Φ

M [y, P [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)],Λ ∩ Γ,∆ ∪ (Φ \ x)]

(c2) M [y, P,Λ,Φ][x,N,Γ,∆] −→ M [x,N, (Γ \ Φ) ∪ y,∆ ∪ (Φ \ Γ)]

[y, P [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)],Λ ∩ Γ,Φ ∩ Γ] x 6∈ Φ ∪ Λ

(d) Γ∆M −→ (Γ ∪∆)M

Fig. 4. Reduction Rules of the λws-calculus with named variables

Γ, x : A ⊢ x : A Ax
Γ ⊢ M : A Γ ∩∆ = ∅

Γ,∆ ⊢ ∆M : A Weak

Γ ⊢ M : B → A Γ ⊢ N : B
Γ ⊢ (MN) : A App

Γ, x : A ⊢ M : B

Γ ⊢ λx : A.M : A → B
Lamb

∆,Π ⊢ N : A Γ, x : A,Π ⊢ M : B (Γ, x : A) ∩∆ = ∅

∆,Γ,Π ⊢ M [x,N,Γ,∆] : B Sub

Fig. 5. Typing rules for the λws-calculus with named variables

As expected the λws-calculus with names enjoys the subject reduction property.

Theorem 5.1 (Subject Reduction) If Ψ ⊢ R : C and R −→ R′, then Ψ ⊢ R′ : C.

Proof. The proof proceeds by induction on the structure of the term R.

If the reduction takes place at an internal position of R, it is easy to see that one gets the

expected result by applying the induction hypothesis to the reduced subterm.

Otherwise, the reduction takes place at the root of the term R, and we must consider all

the possible cases. The pattern of the proof is quite simple: from the shape of R and the

fact that Ψ ⊢ R : C, we determine the last rules applied in the typing derivation, and isolate

some subderivations π1,. . .πn from which it is easy to reconstruct a typing derivation of

Ψ ⊢ R′ : C.

— Rule b1: R = (λx : A.M)N reduces to M [x,N, ∅, ∅] = R′.

Since R = (λx : A.M)N the typing derivation must necessarily be of the form

π1

Ψ, x : A ⊢ M : C

Ψ ⊢ λx : A.M : A → C
(Lamb)

π2

Ψ ⊢ N : A
Ψ ⊢ (λx : A.M)N : C

(App)
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Now, we can easily build a valid typing derivation for M [x,N, ∅, ∅] = R′ as follows:

π1

Ψ, x : A ⊢ M : C

π2

Ψ ⊢ N : A

Ψ ⊢ M [x,N, ∅, ∅] : C
(Sub)

— Rule b2: R = (∆(λx : A.M))N reduces to M [x,N, ∅,∆] = R′. Now, due to the shape of

R, the typing derivation must necessarily be of the form

π1

Γ, x : A ⊢ M : C

Γ ⊢ λx : A.M : A → C
(Lamb)

Γ ∩∆ = ∅
Γ,∆ ⊢ ∆(λx : A.M) : A → C

(Weak)
π2

Γ,∆ ⊢ N : A

Γ,∆ ⊢ (∆(λx : A.M))N : C
(App)

where Ψ is actually split into Γ and ∆. Since x is bound in λx : A.M we can suppose

that ∆ does not contain x, so that we can construct the derivation

π1

Γ, x : A ⊢ M : C

π2

Γ,∆ ⊢ N : A x : A 6∈ ∆

Γ,∆ ⊢ M [x,N, ∅,∆] : C
(Sub)

— Rule f : R = (λy : A.M)[x,N,Γ,∆] reduces to M [x,N, (Γ, x : B),∆] = R′, where

y /∈ FV (N). Due to the shape of R, the typing derivation must necessarily be of the

form

π1

∆,Π ⊢ N : B

π2

Γ,Π, x : B, y : A ⊢ M : C

Γ,Π, x : B ⊢ λy : A.M : A → C
(Lamb)

(Γ, x : B) ∩∆ = ∅

Γ,∆,Π ⊢ (λy : A.M)[x,N,Γ,∆] : A → C
(Sub)

where Ψ is actually split into Γ, ∆ and Π. Since y is bound in λy : A.M we can suppose

that ∆ does not contain y, so that we can construct the derivation

π1

∆,Π ⊢ N : B

π2

Γ,Π, x : B, y : A ⊢ M : C (Γ, x : B, y : A) ∩∆ = ∅

Γ,∆,Π, y : A ⊢ M [x,N, (Γ, y : A),∆] : C
(Sub)

Γ,∆,Π ⊢ λy : A.M [x,N, (Γ, y : A),∆] : A → C
(Lamb)

— Rule a: R = (MP )[x,N,Γ,∆] rewrites to (M [x,N,Γ,∆]P [x,N,Γ,∆]) = R′ and the

typing derivation for R has the shape

π1

∆,Π ⊢ N : B

π2

Γ,Π, x : B ⊢ M : A → C

π3

Γ,Π, x : B ⊢ P : A

Γ,Π, x : B ⊢ (MP ) : C
(App)

(Γ, x : B) ∩∆ = ∅

Γ,∆,Π ⊢ (MP )[x,N,Γ,∆] : C
(Sub)

where Ψ is decomposed into Γ,∆ and Π. Now we can easily construct a derivation π′

π1

∆,Π ⊢ N : B

π2

Γ,Π, x : B ⊢ M : A → C (Γ, x : B) ∩∆ = ∅

Γ,∆,Π ⊢ M [x,N,Γ,∆] : A → C
(Sub)

and a derivation π′′

π1

∆,Π ⊢ N : B

π3

Γ,Π, x : B ⊢ P : A (Γ, x : B) ∩∆ = ∅

Γ,∆,Π ⊢ P [x,N,Γ,∆] : A
(Sub)
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from which we obtain finally

π′

Γ,∆,Π ⊢ M [x,N,Γ,∆] : A → C
π′′

Γ,∆,Π ⊢ P [x,N,Γ,∆] : A

Γ,∆,Π ⊢ (M [x,N,Γ,∆]P [x,N,Γ,∆]) : C
(App)

— Rule e1: R = ΛM [x,N,Γ,∆] rewrites to (∆ ∪ (Λ \ x))M = R′, where x ∈ Λ. Due to the

structure of R, the derivation necessarily has the form

π1

∆,Π ⊢ N : B

π2

Γ′,Π′ ⊢ M : C Λ ∩ (Γ′,Π′) = ∅

Γ,Π, x : B ⊢ ΛM : C
(Weak)

(Γ, x : B) ∩∆ = ∅

Γ,∆,Π ⊢ ΛM [x,N,Γ,∆] : C
(Sub)

where Ψ decomposes into Γ,∆ and Π. We know also, by the definition of rule e1, that

x ∈ Λ, so that Λ is actually composed of x plus some other variables coming in part from

Γ and in part from Π, that is, Λ = (x : B,Γ′′,Π′′) whith Γ = Γ′,Γ′′, Π = Π′,Π′′ and

such that the set difference Γ \ Λ is Γ′ and Π \ Λ is Π′.

Since Π′ ⊆ Π, then it is evident that ∆∩Π′ = ∅, and since Γ′ ⊆ Γ, then ∆∩Γ′ = ∅ comes

from the fact that (Γ, x : B) ∩∆ = ∅. Indeed, (Λ \ x) ∩ (Γ′,Π′) = ∅ is a consequence of

the constraint Λ ∩ (Γ′,Π′) = ∅ in the above typing derivation. We thus obtain

π1

Γ′,Π′ ⊢ M : C (∆ ∪ (Λ \ x)) ∩ (Γ′,Π′) = ∅

Γ,∆,Π ⊢ (∆ ∪ (Λ \ x))M : C
(Weak)

— Rule e2: R = ΛM [x,N,Γ,∆] rewrites to (Γ ∩ Λ)M [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)] = R′, where

x /∈ Λ.

Due to the structure of R, the typing derivation has necessarily the form

π1

∆,Π ⊢ N : B

π2

Γ′,Π′, x : B ⊢ M : C (Γ′,Π′, x : B) ∩ Λ = ∅

Γ,Π, x : B ⊢ ΛM : C
(Weak)

(Γ, x : B) ∩∆ = ∅

Γ,∆,Π ⊢ ΛM [x,N,Γ,∆] : C
(Sub)

where Ψ decomposes into Γ, ∆ and Π. Furthermore, by the definition of rule e2, we have

that x 6∈ Λ, so that Λ can be written as Γ′′,Π′′, where Γ = Γ′,Γ′′, Π = Π′,Π′′, and this

means that Γ′ = Γ \ Λ, Π′′ = Λ \ Γ and Γ′,Π′,Λ = Γ,Π and (Γ ∩ Λ) ∪ Γ′ = Γ′′ ∪ Γ′ = Γ.

We can then build the required derivation

π1

∆,Π ⊢ N : B

π2

Γ′,Π′, x : B ⊢ M : C

∆,Π,Γ′ ⊢ M [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)] : C
(Sub)

Γ,∆,Π ⊢ (Γ ∩ Λ)M [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)] : C
(Weak)

Notice that one has to check the side conditions of the typing rules. For (Weak), we need

(Γ∩Λ)∩(∆,Π,Γ′) = ∅, but (Γ∩Λ) = Γ′′, and Γ′′∩(∆,Π,Γ′) = ∅ because Γ = Γ′,Γ′′ and

(Γ,∆,Π) are well-formed environments. For (Sub), we need (Γ′, x : B) ∩ (∆,Π′′) = ∅.

First of all we notice that (Γ, x : B) ∩∆ = ∅ holds because of the side condition of the

(Sub) rule in the typing derivation for R. Secondly, Γ′ ∩Π′′ = ∅ holds because (Γ,∆,Π)

is a well formed environment. Last, x : B 6∈ Π′′ holds because x : B 6∈ Λ (definition of

rule e2) and Π′′ = Λ \ Γ.

— Rule n1: R = y[x,N,Γ,∆] rewrites to y = R′. From the structure of R, we know that

the derivation must be of the form
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π1

∆,Π ⊢ N : B Γ,Π, x : B ⊢ y : C
(Ax)

(Γ, x : B) ∩∆ = ∅

Γ,∆,Π ⊢ y[x,N,Γ,∆] : C
(Sub)

where Ψ decomposes into Γ, ∆ and Π. The seeked derivation is then simply

Γ,∆,Π ⊢ y : C
(Ax)

— Rule n2: R = y[x,N,Γ,∆] rewrites to ΓN = R′

π1

∆,Π ⊢ N : C Γ,Π, x : C ⊢ x : C
(Ax)

(Γ, x : C) ∩∆ = ∅

Γ,∆,Π ⊢ y[x,N,Γ,∆] : C
(Sub)

where Ψ decomposes into Γ, ∆ and Π. Now, the side condition for (Sub) tells us that

Γ ∩∆ = ∅, and Γ,Π is well formed, so we can conclude that Γ ∩ (∆,Π) = ∅, so we can

build the required derivation as follows

π1

∆,Π ⊢ N : C Γ ∩ (∆,Π) = ∅

Γ,∆,Π ⊢ ΓN : C
(Weak)

— Rule c1: R = M [y, P,Λ,Φ][x,N,Γ,∆] rewrites to M [y, P [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)],Λ ∩

Γ,∆ ∪ (Φ \ x)] = R′, where x ∈ Φ.

From the structure of R, we know that the derivation must be of the form

π1

∆,Π ⊢ N : B
π′

Γ, x : B,Π ⊢ M [y, P,Λ,Φ] : C (Γ, x : B) ∩∆ = ∅

Γ,∆,Π ⊢ M [y, P,Λ,Φ][x,N,Γ,∆] : C
(Sub)

where Ψ decomposes into Γ, ∆ and Π. Now, π′ is a derivation that necessarily ends

with an application of the (Sub) rule, so that the environment Γ, x : B,Π gets split into

several subparts that are used to type the terms M and P . Looking at the shape of the

(Sub) rule, we see that in general this splitting divides Π into three pairwise disjoint

components (each of which possibly empty): ΠΛ, that is part of Λ, ΠΦ, which is part

of Φ, and a Π′ which is common to the typing environments used to type M and P .

Similarly, Γ decomposes into pairwise disjoint ΓΛ, ΓΦ and Γ′. And then Λ = ΓΛ ∪ ΠΛ

and Φ = ΓΦ ∪ ΠΦ ∪ x : B. We also know that x is in the typing environment of P since

x ∈ Φ, so it must appear in the typing environment of P .

To sum all this up, the derivation π′ must be of the form

π2

Γ′,ΓΦ, x : B,Π′,ΠΦ ⊢ P : A

π3

Γ′,ΓΛ, y : A,Π′,ΠΛ ⊢ M : C (Λ, y : A) ∩ Φ = ∅

Γ, x : B,Π ⊢ M [y, P,Λ,Φ] : C
(Sub)

Now, from π1 and π2 we can first of all build the derivation π′′, where we use the fact

that, since Π and Γ are disjoint, and Λ = ΓΛ ∪ ΠΛ, we know that ΠΛ can be written as

Λ \ Γ

π1

∆,Π ⊢ N : B

π2

Γ′,ΓΦ, x : B,Π′,ΠΦ ⊢ P : A (Γ′,ΓΦ, x : B) ∩ (∆ ∪ (Λ \ Γ)) = ∅

∆,ΠΛ,Γ
′,ΓΦ,Π

′,ΠΦ ⊢ P [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)] : A
(Sub)

Notice that the side condition holds because, on one side, Π and Γ are disjoint, on the

other side x /∈ Π since Γ, x : B,Π is well-formed, and finally because we know from the
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side conditions of the typing derivation for R that ∆ is disjoint from Γ, x : B.

Now, since y is bound in M [y, P,Λ,Φ], we can also suppose that ∆ does not contain y,

so that we can build the following derivation π′′′

π′′

∆,ΠΛ,Γ
′,ΓΦ,Π

′,ΠΦ ⊢ P [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)] : A

π3

Γ′,ΓΛ, y : A,Π′,ΠΛ ⊢ M : C

∆,Γ′,ΓΛ,ΓΦ,Π
′,ΠΛ,ΠΦ ⊢ M [y, P [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)],ΓΛ,∆ ∪ (ΓΦ ∪ΠΦ)] : C

(Sub)

Where the side condition reads

(y : A,ΓΛ) ∩ (∆,ΓΦ,ΠΦ) = ∅

This holds because, on one side, ΓΛ is disjoint from ΓΦ by definition, disjoint from ΠΦ

because Γ ∩ Π = ∅ and disjoint from ∆ because Γ ∩∆ = ∅ by the side conditions of the

typing derivation for R; on the other side, we have already seen that we can assume y is

not in ∆ and we know from the side conditions in the typing derivation of R that y is

not in Φ, which is precisely ΓΦ ∪ΠΦ.

Now, the conclusion of this derivation, once we apply all the equalities of environments

that we have established up to now, actually becomes

∆,Γ,Π ⊢ M [y, P [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)],Λ ∩ Γ,∆ ∪ (Φ \ x)] : C

so that π′′′ is the seeked derivation.

— Rule c2: the term R = M [y, P,Λ,Φ][x,N,Γ,∆] rewrites to the term

M [x,N, (Γ \ Φ) ∪ y,∆ ∪ (Λ \ Γ)][y, P [x,N,Γ \ Λ,∆ ∪ (Φ \ Γ)],Λ ∩ Γ,Γ ∩ Φ] = R′, where

x /∈ Φ ∪ Λ.

From the structure of R, we know that the derivation must be of the form

π1

∆,Π ⊢ N : B
π′

Γ, x : B,Π ⊢ M [y, P,Λ,Φ] : C (Γ, x : B) ∩∆ = ∅

Γ,∆,Π ⊢ M [y, P,Λ,Φ][x,N,Γ,∆] : C
(Sub)

where Ψ decomposes as Γ,∆,Π. As for the rule c1 the environment Γ decomposes as

ΓΛ,ΓΦ,Γ
′; the environment Π decomposes as ΠΛ,ΠΦ,Π

′; Λ = ΓΛ∪ΠΛ and Φ = ΓΦ∪ΠΦ.

We also know that x /∈ Φ ∪ Λ, so it must appear in the common typing environment of

P and M .

The derivation π′ must be of the form

π2

Γ′,ΓΦ, x : B,Π′,ΠΦ ⊢ P : A

π3

Γ′,ΓΛ, y : A, x : B,Π′,ΠΛ ⊢ M : C (Λ, y : A) ∩ Φ = ∅

Γ, x : B,Π ⊢ M [y, P,Λ,Φ] : C
(Sub)

We know that ΠΛ can be written as Λ \ Γ and ΠΦ can be written as Φ \ Γ. Now, we can

first of all build the derivation π′′

π1

∆,Π ⊢ N : B

π2

Γ′,ΓΦ, x : B,Π′,ΠΦ ⊢ P : A (Γ′,ΓΦ, x : B) ∩ (∆ ∪ (Λ \ Γ)) = ∅

∆,ΠΛ,Γ
′,ΓΦ,Π

′,ΠΦ ⊢ P [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)] : C
(Sub)

As in c1, the side condition holds.

Since y is bound in M [y, P,Λ,Φ], then we can suppose by α-conversion that ∆ does not

contain y, and we also obtain the derivation π′′′
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π1

∆,Π ⊢ N : B

π3

Γ′,ΓΛ, y : A, x : B,Π′,ΠΛ ⊢ M : C ((Γ \ Φ) ∪ y : A ∪ x : B) ∩ (∆ ∪ (Φ \ Γ)) = ∅

Γ′,ΓΛ, y : A,∆,Π ⊢ M [x,N, (Γ \ Φ) ∪ y,∆ ∪ (Φ \ Γ)] : C
(Sub)

Also here the side conditions holds: on one hand Γ and ∆ are disjoint and (Γ \ Φ) and

(Φ \ Γ) are trivially disjoint, on the other hand y is not in ∆, by α-conversion and x is

not in ∆ by hypothesis on the side condition of the type derivation of R, finally y is not

in Φ by the side condition of derivation π′ and x is not in Φ by hypothesis of the rule c2.

Now, since (Λ, y : A) ∩ Φ = ∅, by the side condition of the (Sub) rule in the derivation

π′, we can finally build

π′′

Γ′,ΓΦ,∆,Π ⊢ P [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)] : A
π′′′

Γ′,ΓΛ, y : A,∆,Π ⊢ M [x,N, (Γ \ Φ) ∪ y,∆ ∪ (Φ \ Γ)] : C

Γ,∆,Π ⊢ M [x,N, (Γ \ Φ) ∪ y,∆ ∪ (Φ \ Γ)][y, P [x,N,Γ \ Λ,∆ ∪ (Λ \ Γ)],Λ ∩ Γ,Φ ∩ Γ] : C
(Sub)

which is the required derivation.

— Rule d: R = Γ∆M rewrites to (Γ ∪∆)M = R′ The derivation of R must be of the form

π1

Π ⊢ M : C ∆ ∩Π = ∅
∆,Π ⊢ ∆M : C

(Weak)
Γ ∩ (∆,Π) = ∅

Γ,∆,Π ⊢ Γ∆M : C
(Weak)

with Ψ that decomposes into Γ, ∆ and Π.

It is easy to rebuild the required derivation

π1

Π ⊢ M : C (Γ ∪∆) ∩Π = ∅

Γ,∆,Π ⊢ (Γ ∪∆)M : C (Weak)

6. Strong normalization of the λws calculus with names

We now give the translation of the terms of λws with names into proof nets in PN , and the

proof of strong normalization of λws.

In order to translate a term of λws into a proof net, we use exactly the same translation

of types that we used in Section 4.2 and we then define the translation of a term M using

the type derivation of M .

— If the term is a variable and its typing judgement ends with the rule written below on

the left, then its translation is the proof net on the right

Γ, x : A ⊢ x : A
Ax

D

?A∗⊥

A∗⊥

A∗

W

?Γ∗⊥

— If the term is a λ-abstraction and its typing judgement ends with the rule written below

on the left, then its translation is the proof net on the right
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Γ, x : B ⊢ M : C

Γ ⊢ λx : B.M : B → C
Lamb

?B∗⊥?Γ∗⊥ C∗

T(M)

?B∗⊥ O !C∗?Γ∗⊥

!C∗?B∗⊥

— If the term is an application and its typing judgement ends with the rule written below

on the left, then its translation is the proof net on the right

Γ ⊢ M : B → A Γ ⊢ N : B
Γ ⊢ (MN) : A

App

C

?Γ∗⊥

T(M)

B∗

?B∗⊥
O !A∗ ?Γ∗⊥

?Γ∗⊥

A∗

T(N)

?Γ∗⊥

D

!B∗ ?A∗⊥

!B∗ ⊗ ?A∗⊥

A∗⊥

— If the term is a substitution and its typing judgement ends with the rule written below

on the left, then its translation is the proof net on the right

∆,Π ⊢ N : A Γ, x : A,Π ⊢ M : B

∆,Γ,Π ⊢ M [x,N,Γ,∆] : B
Sub

?A
∗⊥

!A
∗

T(N)

T(M)

B
∗

?Π
∗⊥

?Γ
∗⊥

?∆
∗⊥

?∆
∗⊥

A
∗

?Π
∗⊥

?Π
∗⊥

C

?Π
∗⊥

— Finally, if the term is a label and its typing judgement ends with the rule written below

on the left, then its translation is the proof net on the right

∆ ⊢ M : B
Γ,∆ ⊢ ΓM : B

Weak
?∆∗⊥ B∗ ?Γ∗⊥

W
T(M)

We can clearly verify that the translation is identical to that given for λws with de Bruijn

indices. This is not surprising since the type derivations are similar in both formalisms.

The simulation of the reduction rules of the λws-calculus with names by the reduction RE

is identical to that given in Section 4.2 for the λws-calculus with indices. We just remark
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that rule n3 has no sense in the formalism with names so that the proof has one less case.

We just state the result without repeating a boring verification:

Lemma 6.1 (Simulation of λws with names) If t λws-reduces to t′ in the formalism

with names, then T (t)−→+
RE

T (t′), except for the rules e2 and d for which we have

T (t) = T (t′).

We can then conclude the following:

Theorem 6.2 (Strong Normalization of λws with names) The typed λws-calculus with

names is strongly normalizing.

7. Conclusion and future works

In this paper we enriched the standard notion of cut elimination in proof nets in order to

obtain a system RE which is flexible enough to provide an interpretation of λ-calculi with

explicit substitutions and which is much simpler than the one proposed in (Di Cosmo and

Kesner 1997). We have proved that this system is strongly normalizing.

We have then proposed a natural translation from λws into proof nets that immediately

provides strong normalization of the typed version of λws, a calculus featuring full compo-

sition of substitutions. The proof is extremely simple w.r.t the proof of PSN of λws given

in (David and Guillaume 1999; David and Guillaume 2001) and shows in some sense that

λws, which was designed independently of proof nets, is really tightly related to reduction

in proof nets.

Finally, the fact that the relative order of variables is lost in the proof-net representation

of a term lead us to discover a version of typed λws with named variables, instead of de

Bruijn indices. This typed named version of λws gives a better understanding of the mecha-

nisms of the calculus. In particular, names allow to understand the manipulation of explicit

weakenings in λws without entering into the details of renaming of de Bruijn indices. How-

ever, the study of the properties of reduction, such as confluence and PSN, for non-typed or

non well-formed terms with names remains as further work.

This work suggests several interesting directions for future investigation: on the linear logic

side, one should wonder whether RE is the definitive system able to interpret β reduction,

or whether we need some more equivalences to be added. Indeed, there are still a few cases

in which the details of a sequent calculus derivation are inessential, even if we did not need

to consider them for the purpose of our work, like for example

⊢ Γ, B

⊢?A,Γ, B
Weakening

⊢?A,Γ, !B
Box

⊢ Γ, B

⊢ Γ, !B
Box

⊢?A,Γ, !B
Weakening

On the explicit substitutions side, we look forward to the discovery of a calculus with

multiple substitutions with the same properties as λws, in the spirit of λσ.
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