
Proof Nets and Explicit Substitutions

Roberto Di Cosmo1, Delia Kesner2, and Emmanuel Polonovski1

1 Departement d’Informatique
Ecole Normale Supérieure

45, Rue d’Ulm
75230 Paris France

{dicosmo,polonovs}@ens.fr
2 LRI (CNRS URA 410)

Bât 490, Université de Paris-Sud
91405 Orsay Cedex, France

kesner@lri.fr

Abstract. In this paper we refine the simulation technique introduced in [10] to
show strong normalization of λ-calculi with explicit substitutions via termination of
cut elimination in proof nets [13]. We first propose a notion of equivalence relation for
proof nets that extends the one in [9], and we show that cut elimination modulo this
equivalence relation is terminating. We then show strong normalization of the typed
version of the λl-calculus with de Bruijn indices (a calculus with full composition
defined in [8]) using a translation from typed λl to proof nets. Finally, we propose
a version of typed λl with named variables which helps to better understand the
complex mechanism of explicit weakening notation introduced in the λl-calculus with
de Bruijn indices [8].

1 Introduction

This paper uses linear logic’s proof nets, equipped with an extended notion of reduction, to
provide several new results in the field of explicit substitutions. It is also an important step
forward in clarifying the connection between explicit substitutions and proof nets, two well
established formalisms that have been used to gain a better understanding of the λ-calculus
over the past decade. On one side, explicit substitutions provide an intermediate formalism
that - by decomposing the β rule into more atomic steps, more similar to what happens
in environment machines - allows a better understanding of the execution models. On the
other side, linear logic decomposes the intuitionistic logical connectives, like the arrow, into
more atomic, resource-aware connectives, like the linear arrow and the explicit erasure and
duplication operators given by the exponentials: this decomposition is reflected in proof nets,
which are the computational side of linear logic, and provide a more refined computational
model that the one given by the λ-calculus, which is the computational side of intuitionistic
logic1.
The pioneer calculus with explicit substitutions, λσ, was introduced in [1] as a bridge be-
tween the classical λ-calculus and concrete implementations of functional programming lan-
guages. An important property of calculi with explicit substitutions is nowadays known
as PSN, which stands for “Preservation of Strong Normalization”: a calculus with explicit
substitutions has PSN when all λ-terms that are strongly normalizing using the traditional
β-reduction rule are also strongly normalizing w.r.t. the more refined reduction system de-
fined using explicit substitutions.

1 Using various translations of the λ-calculus into proof nets, new abstract machines have been
proposed, exploiting the Geometry of Interaction and the Dynamic Algebras [14, 2, 5], leading to
the works on optimal reduction [15, 17].

But λσ does not preserve β-strong normalization as shown by Mellies, who exhibited a
well-typed term which, due to the substitution composition rules in λσ, is not λσ-strongly
normalizing [18].
Since then, a quest was started to find an “optimal” calculus having all of a wide range of
desired properties: it should preserve strong normalization, but also be confluent (in a very
large sense that implies the ability to compose substitutions), and its typed version should
be strongly normalizing.
Meanwhile, in the linear logic community, many studies focused of the connection between
λ-calculus (without explicit substitutions) and proof nets, trying to find the proper variant
or extension of proof nets that could be used to cleanly simulate β-reduction, like in [7].
Finally, in [10], the first two authors of this work showed for the first time that explicit
substitutions could be tightly related to linear logic’s proof nets, by providing a translation
into a variant of proof nets from λx [19, 4], a simple calculus with explicit substitutions and
named variables, but no composition.
This connection was promising because proof nets seem to have many of the properties
which are required of a “good” calculus of explicit substitutions, and especially the strong
normalization in the presence of a reduction rule which is reminiscent of the composition
rule at the heart of Mellies’ counterexample. But [10] only dealt with a calculus without
composition, and the translation was complex and obscure enough to make the task of ex-
tending it to the case of a calculus with composition quite a daunting one.
In this paper, we can finally present a notion of reduction for Girard’s proof nets which is
flexible enough to allow a natural and simple translation from David and Guillaume’s λl,
a complex calculus of explicit substitution with de Bruijn indices and full composition [8].
This translation allows us to prove that typed λl is strongly normalizing, which is a new
result confirming a conjecture in [8]. Also, the fact that in the translation all information
about variable order is lost suggests a version of typed λl with named variables whose typed
version is immediately proved to be strongly normalizing. This is due to the fact that only
the type information is used in the translation of both calculi. Also, the typed named version
of λl gives a better understanding of the mechanisms of labels existing in the calculus. In
particular, names allow to understand the fine manipulation of explicit weakenings in λl

without entering into the complicate details of renaming used in a de Bruijn setting.

The paper is organized as follows: we first recall the basic definitions on linear logic and
proof nets and we introduce our refined reduction system for proof nets (Section 2), then
prove that it is strongly normalizing (Section 3). In Section 4 we recall the definition of the
λl calculus with its type system, present the translation into proof nets, and show strong
normalization of typed λl. Finally, we introduce a version of typed λl with named variables
(Section 5), enjoying the same good properties, and we conclude with some remarks and
directions for future work (Section 6).

2 Linear logic, proof nets and extended reduction

We recall here some classical notions from linear logic, namely the linear sequent calculus
and proof nets, and some basic results concerning confluence and normalization.

MELL: Multiplicative Exponential linear logic Let A be a set of atomic formulae. We sup-
pose that A is partitioned in two disjoint subsets representing positive and negative atoms
respectively. For every p ∈ A, we assume that there is p′ ∈ A, called the linear negation of
the atom p.
The set of formulae of the Multiplicative Exponential fragment of linear logic (called MELL)
is defined by the following grammar, where a ∈ A:

F ::= a | F ⊗ F (tensor) | F O F (par) | !F (of course) | ?F (why not)

Linear negation is defined as follows

p⊥ = p′ p′
⊥
= p A⊥⊥ = A (?A)⊥ =!(A⊥) (A ⊗ B)⊥ = A⊥

O B⊥

From now on we will write p⊥ instead of p′.
The name of MELL comes from the connectors : ⊗ and O are called “multiplicatives”,

while ! and ? are called “exponentials”. We will also say that a formula is exponential
if it starts with an exponential connector. While we refer the interested reader to [13] for
more details on linear logic in general, we give here a one-sided presentation of the sequent
calculus for MELL:

⊢ A,A⊥
Axiom

⊢ Γ,A ⊢ A⊥, ∆

⊢ Γ,∆
Cut

⊢ Γ,A

⊢ Γ, ?A
Dereliction

⊢ Γ, ?A, ?A

⊢ Γ, ?A
Contraction

⊢ Γ,A,B

⊢ Γ,AOB
Par

⊢ Γ,A ⊢ B,Γ ′

⊢ Γ,A⊗B,Γ ′
T imes

⊢ Γ
⊢ Γ, ?A

Weakening
⊢ A, ?Γ

⊢!A, ?Γ
Box

MELL proof nets To all sequent derivations in MELL it is possible to associate an object
called a “proof net”, which allows to abstract from many inessential details in a derivation,
like the order of application of independent logical rules: for example, there are many i-
nessentially different ways to obtain ⊢ A1OA2, . . . , An−1OAn from ⊢ A1, . . . An, while there
is only one proof net representing all these derivations.
Proof nets are defined inductively by rules that follow closely the ones of the one-sided se-
quent calculus, and the set of proof nets is denoted PN . To simplify the drawing of a proof
net, we use the following notation: a conclusion with a capital greek letter Γ,∆, . . . really
stands for a set of conclusions, each one with its own wire.

Ax

A A⊥

(Axiom)

Γ Γ ′A⊥A

(Cut)

Γ

D

?A

A

(Dereliction) ?A

C

Γ ?A ?A

(Contraction)

Γ A B

A O B

(Par)

Γ Γ ′
A B

A⊗B

(T imes)

W

?AΓ

(Weakening)

A ?Γ

!A ?Γ

(Box)

Each box has exactly one conclusion preceded by a !, which is named “principal” port (or
formula), while the other conclusions are named “auxiliary” ports (or formulae). In what

follows, we will sometimes write an axiom link as A A⊥.

Reduction of proof nets Proof nets are the “computational object” behind linear logic, be-
cause there is a notion of reduction on them (called also “cut elimination”) that corresponds
to the cut-elimination procedure on sequent derivations. The traditional reduction system
for MELL is recalled in Appendix A.

Extended reduction modulo an equivalence relation Unfortunately, the original notion of re-
duction on PN is not well adapted to simulate neither the β rule of λ-calculus, nor the rules
dealing with propagation of substitution in explicit substitution calculi: too many inessential
details on the order of application of the rules are still present, and to make abstraction from
them, one is naturally led to define an equivalence relation on PN , as is done in [9], where
the following two equivalences are introduced:

C

C

?A

C

?A

C

?A

?A

?A1 ?A2

?A3

?A2 ?A3

?A1

∼A C

?A

?A

?A ?A

∼B

!B

C

?A

?A

?A ?A

?A

BB

!B

Equivalence A turns contraction into an associative operator, and corresponds to forget-
ting the order in which the contraction rule is used to build, for example, the derivation:

⊢?A, ?A, ?A

⊢?A, ?A
Contraction

⊢?A
Contraction

Equivalence B abstracts away the relative order of application of the rules of box-formation
and contraction on the premises of a box, like in the following example.

⊢?A, ?A,B

⊢?A,B
Contraction

⊢?A, !B
Box

⊢?A, ?A,B

⊢?A, ?A, !B
Box

⊢?A, !B
Contraction

Finally, besides the equivalence relation defined in [9], for the sake of simulating explicit sub-
stitutions, we will also need an extra reduction rule allowing to remove unneeded weakening
links:

wc

?A

?A?A

W

?A

C

.

.

.

.

.

.

This rule allows to simplify the proof below on the left into the proof on the right

π
⊢?A

⊢?A, ?A
Weakening

⊢?A
Contraction

π
⊢?A

Notation We will call in the following R the system made of rules Ax− cut, O −⊗, w − b,
d − b,c − b, b − b and wc; we will name E the relation induced on PN by the contextual
closure of axioms A and B; we will write RE for the system made of the rules in R and the

equivalences in E; finally, R¬wc
E

will stand for system RE without rule wc.
Systems RE and R¬wc

E
, that contain E, are actually defining a notion of reduction modulo

an equivalence relation, so we write for example t −→RE
s if and only if there exist r′ and

s′ such that r =E r′ −→R s′ =E s, where the equality =E is the reflexive, symmetric and
transitive closure of the relation defined by A and B.

The reduction RE is flexible enough to allow a clean simulation of β reduction and of
explicit substitutions, but we first need to establish that RE is strongly normalizing. We
will do so in the next section by building on the strong normalization result for R¬wc

E
shown

in [9].

3 Termination of RE

We know from [9] that R¬wc
E

is terminating, and we can show easily that wc is terminating
too, so if we could show that the wc-rule can be postponed with respect to all the other
rules of R¬wc

E
, we would be easily done using a well-known abstract lemma. Unfortunately,

there is precisely one case in which we cannot postpone the wc-rule: when a wc reduction
creates an axiom-cut redex, which in turn can only happen if the axiom link in question
introduces an exponential formula. So we are forced to proceed in two steps: first, we prove
by postponement that RE is terminating on the set of proof nets without exponential axioms
(Theorem 1). Then, we show that termination of RE on all proof nets of PN is a consequence
of termination of RE on proof nets without exponential axioms (Theorem 2). To obtain this
last result, we show how to translate a proof net R with exponential axioms into a proof net
R′ without exponential axioms in such a way that a reduction out of R can be simulated by
a longer or equal reduction out of R′.

3.1 Termination of RE on proof nets without exponential axioms

We show in this section that all the RE-reduction sequences from a proof net without
exponential axioms terminate. We first remind the following result from [9]:

Lemma 1 (Termination of R¬wc
E

). The reduction relation −→R¬wc

E
is terminating on

PN .

Then, we establish the termination of wc.

Lemma 2 (Termination of wc). The reduction relation −→wc is terminating on PN .

Proof. The wc-rule strictly decreases the number of nodes in a proof net so no infinite
wc-reduction sequence is possible.

Finally, we show that given any proof net without exponential axioms, the wc-rule can
be postponed with respect to any rule of R¬wc

E
.

Lemma 3 (Postponement of wc w.r.t R¬wc
E

). Let t be a proof net without exponential
axioms. If t −→wc −→R¬wc

E
t′, then, there is a sequence t−→+

R¬wc

E
−→∗

wc t
′.

Proof. By analyzing all the possible cases. See [11] for details.

We can now put together the previous results to prove termination of RE on the set of
proof nets without exponential axioms.

Lemma 4 (Extraction of R¬wc
E

). Let S be an infinite sequence of RE-reductions starting
at a proof net t without exponential axioms. Then, there is a sequence of RE-reductions
from the same proof net t which starts by t −→R¬wc

E
t′, where t′ is also a proof net without

exponential axioms, and which continues with an infinite sequence S′. We write this sequence
as (t −→R¬wc

E
t′) · S′.

Now it is easy to establish the fundamental theorem of this section:

Theorem 1 (Termination of RE on proof nets without exponential axioms). The
reduction relation RE is terminating on the set of proof nets without exponential axioms.

Proof. We show it by contradiction. Let us suppose that RE is not terminating on those
nets. Then, there exist a proof net without exponential axioms t and an infinite sequence
S of RE starting at t. By applying Lemma 4 to this sequence S, we obtain a sequence
(t −→R¬wc

E
t′) · S′ such that S′ is infinite again. If we iterate this procedure an arbitrary

number times, we obtain a sequence of R¬wc
E

-reduction steps arbitrary long. This contradicts
the fact that R¬wc

E
is terminating.

3.2 Termination of RE on proof nets with exponential axioms

We know now that RE is terminating on every proof net without exponential axioms, but
we want now to show even more: termination of RE on all the proof nets. To achieve this
result, we show in this section how to associate to a proof net t, which can eventually contain
some exponential axioms, another proof net E(t) without exponential axioms, and such that
every reduction from t of length n can be “simulated” on E(t) by another reduction of length
at least n. This property will be enough to reduce termination of RE on proof nets with
exponential axioms to termination of RE on proof nets without exponential axioms.

We define in what follows a notion of complete expansion on axiom links that is able to
replace all exponential axiom by a correct net with the same conclusions, but containing no
exponential axiom, and then extend it to a full proof net in the natural way (replace each
exponential axiom by its complete expansion).

Definition 1 (Complete expansion of an axiom link). For each axiom link A A⊥

we can associate a net exp(A A⊥) with same conclusions, defined by induction on the
complexity of the formula A as follows:

– exp(A A⊥) = A A⊥, if A is not an exponential formula

– exp(!A ?A⊥) =

A⊥A

D

?A⊥

?A⊥!A

exp()

which is well defined, because the formula A is smaller than !A.

We can associate a complexity measure rk to a complete expansion.

Definition 2 (Measure of a complete expansion). We define the measure rk of a
complete expansion of an axiom by cases:

– rk(exp(A A⊥)) = 0, if A is not an exponential formula

– rk(exp(?A⊥ !A)) = 1 + rk(exp(A A⊥))

We can now define the notion of expanded net E(t) for every net t:

Definition 3 (Expanded net). Let t be a MELL net. We call expanded net of t, written
E(t), the proof net obtained from t by replacing each occurrence of an exponential axiom a
by exp(a).

Remark 1. The only difference between a proof net t and its expanded net E(t) is on the
set of their axioms. So, for every reduction t −→RE

t′ which does not affect the axioms of
t, there is a reduction E(t) −→RE

E(t′).

We have now to show that there is no problem for the axioms either, and to do so we
need the following measure:

Definition 4 (Maximal distance of a cut). Given a proof net t and a cut link on a
completely expanded axiom a in t, the measure d(a, t) is the maximal distance, in the proof
net t, between this cut and the first weakening or dereliction node encountered in the way
which leaves the cut, by the opposite extremity from the expanded axiom a, and go throw
the nodes from down to up (here up and down are used formally for the orientation of the
nodes presented in the introduction). More precisely, each node encountered and each box
passed on the way values 1, including the final dereliction or weakening node. This measure
is always finite on a finite proof net because there are no arbitrary long ascendant ways.

Example 1. In the following net, the maximal distance of the cut is 4.

W

C

W
C

W3

4

1

2
2

3
Fully

expanded

axiom

Lemma 5 (Cut elimination on an expanded net). Let t be an expanded net. A cut in
t with a completely expanded axiom exp(a) reduces in t like in an ordinary axiom cut. In
other words,

!A
?A⊥!A

!A RE

+

Ax

Cut

exp()

Proof. We prove the property by induction on the lexicographic order (rk(exp(a)), d(exp(a), t))
where exp(a) is the completely expanded axiom in the proof net t.

All the cases such that rk(exp(a)) = 0 (including the base case) correspond to a proof
net in which exp(a) is just an axiom link, so that we can apply the same reduction rule and
the property then trivially holds. For the cases with rk(exp(a)) > 0, we refer the interested
reader to [11].

This allows us to establish the final result of this section :

Theorem 2 (Termination of RE). The reduction RE is terminating on every proof net
t.

Proof. We establish this result by proving that each reduction step t −→RE
t′ can be

simulated by at least one reduction step E(t)−→+
RE

E(t′).
If the reduction step t −→RE

t′ does not reduce any exponential axiom with a cut, then
we obtain the result immediately because the only difference between t and E(t) is on their
axioms. Indeed, we can reproduce the same reduction on E(t) in order to obtain E(t′) and
this concludes this case.

Otherwise, if t −→RE
t′ reduces an exponential axiom a with a cut then by Lem-

ma 5 there exist a non-empty sequence of reductions starting at E(t) which eliminates the
complete expansion of the axiom a, and gives the proof net E(t′).

Now, to conclude the proof, suppose that there is a proof net t such that the reduction
RE is not terminating on t, that is, there is an infinite RE-reduction sequence starting at
t. By the previous remark we can simulate this infinite reduction sequence by another RE-
reduction sequence on expanded proof nets not containing exponential axioms. This leads
to a contradiction with Theorem 1 so that we can conclude that RE is terminating on the
set of all proof nets.

4 From λl with de Bruijn indices to PN

In this section we study the translation of the typed terms in the λl-calculus [8] into proof
nets in PN . We start by introducing the calculus, then we give the translation of types of
λl into formulae of linear logic, and the translation of terms of λl into linear logic proof
nets PN . We verify that we can correctly simulate every reduction step of λl via the notion
of reduction RE . Finally, we use this simulation result to show strong normalization of the
λl-calculus.

4.1 The λl-calculus

The λl-calculus is a calculus with explicit substitutions where substitutions are unary (and
not multiple). The version studied in this section has variables encoded with de Bruijn
indices. The terms of λl are given by the following grammar:

M ::= n | λM | (MM) | 〈k〉M | [i/M, j]M

The term n is called a variable, λM an abstraction, (MM) an application, 〈k〉M a labeled
term and [i/M, j]M a substitution.

Intuitively, the term 〈k〉M means that the k− 1 first indices in M are not “free” (in the
sense of free variables of calculus with indices). The term [i/N, j]M means that the i−1 first
indices are not free in N and that the j−1 following indices are not free in M . Those indices
are used to split the typing environment in three parts : the first one for free variables of
M , the second one for free variables of N and the third one for free variables which are in
both terms.

The de Bruijn indices we use start with 0 instead of 1. For example, the identity function
is written as I = λ0.

The reduction rules of λl are given in Figure 1:
The typing rules of λl are given in Figure 2, where we suppose that |Γ | = i and |∆| = j.
We notice that for each well-typed term of the λl-calculus, there is only one possible

typing judgment. This will simplify the proof of simulation of λl by easily considering the
unique typing judgment of terms.

As expected the λl-calculus enjoys the subject reduction property (see [16] for a detailed
proof).

Theorem 3 (Subject Reduction). If Ψ ⊢ M : C and M −→ M ′, then Ψ ⊢ M ′ : C.

(b1) (λMN) −→ [0/N, 0]M
(b2) (〈k〉(λM)N) −→ [0/N, k]M
(f) [i/N, j](λM) −→ λ[i+ 1/N, j]M
(a) [i/N, j](MP) −→ ([i/N, j]M)([i/N, j]P)
(e1) [i/N, j]〈k〉M −→ 〈j + k − 1〉M if i < k
(e2) [i/N, j]〈k〉M −→ 〈k〉[i− k/N, j]M if i ≥ k
(n1) [i/N, j]k −→ k if i > k
(n2) [i/N, j]i −→ 〈i〉N
(n3) [i/N, j]k −→ j+k-1 if i < k
(c1) [i/N, j][k/P, l]M −→ [k/[i− k/N, j]P, j + l − 1]M if k ≤ i < k + l
(c2) [i/N, j][k/P, l]M −→ [k/[i− k/N, j]P, l][i− l + 1/N, j]M if i ≥ k + l
(d) 〈i〉〈j〉M −→ 〈i+ j〉M

Fig. 1. Reduction rules of λl with de Bruijn indices

Γ,A,∆ ⊢ i : A
Axiom

∆ ⊢ M : B
Γ,∆ ⊢ 〈i〉M : B

Weak

Γ ⊢ M : B → A Γ ⊢ N : B
Γ ⊢ (MN) : A

App
B, Γ ⊢ M : C

Γ ⊢ λM : B → C
Lambda

∆,Π ⊢ N : A Γ,A,Π ⊢ M : B

Γ,∆,Π ⊢ [i/N, j]M : B
Subst

Fig. 2. Typing rules for λl with de Bruijn indices

4.2 Translation of types and terms of λl

We use the translation of types introduced in [6] given by :

A∗ = A if A is an atomic type
(A → B)∗ = ?((A∗)⊥) O !B∗ (that is, !A∗

⊸!B∗) otherwise

Since wires are commutative in proof nets, we feel free to exchange them when we define
the translation of a term. The translation associates to every typed term M of λl, whose
type judgment ends with the conclusion written below on the left, a proof net having the
shape sketched below on the right:

Γ ⊢ M : A

M

A∗?Γ ∗⊥

Here is the formal definition of the translation T from λl-terms into proof nets.

– If the term is a variable and its type judgment ends with the rule written below on the
left, then its translation is the proof net on the right

Γ,A,∆ ⊢ i : A
Axiome

W

?∆∗⊥

W

?Γ ∗⊥

D

?A∗⊥

A∗⊥

A∗

where i is the position of A in the typing environment,
– If the term is a λ-abstraction and its type judgment ends with the rule written below

on the left, then its translation is the proof net on the right

B,Γ ⊢ M : C

Γ ⊢ λM : B → C
Lambda

?B∗⊥?Γ ∗⊥ C∗

T(M)

?B∗⊥ O !C∗?Γ ∗⊥

!C∗?B∗⊥

– If the term is an application and its type judgment ends with the rule written below on
the left, then its translation is the proof net on the right

Γ ⊢ M : B → A Γ ⊢ N : B
Γ ⊢ (MN) : A

App
C

T(M)

B∗

?B∗⊥
O !A∗ ?Γ ∗⊥

?Γ ∗⊥

A∗ ?Γ ∗⊥

T(N)

?Γ ∗⊥

D

!B∗ ?A∗⊥

!B∗ ⊗ ?A∗⊥

– If the term is a substitution and its type judgment ends with the rule written below on
the left, then its translation is the proof net on the right

∆,Π ⊢ N : A Γ,A,Π ⊢ M : B

Γ,∆,Π ⊢ [i/N, j]M : B
Subst

?A
∗⊥

!A
∗

T(N)

T(M)

B
∗

?Π
∗⊥

?Γ
∗⊥

?∆
∗⊥

?∆
∗⊥

A
∗

?Π
∗⊥

?Π
∗⊥

C

?Π
∗⊥

where i is the length of the list Γ and j is the length of the list ∆, then its translation
is the proof net

– Finally, if the term is a label and its type judgment ends withthe rule written below on
the left, then its translation is the proof net on the right

∆ ⊢ M : B
Γ,∆ ⊢ 〈i〉M : B

Weak
?∆∗⊥ B∗ ?Γ ∗⊥

W
T(M)

where i is the length of the list Γ , then its translation is the proof net

4.3 Simulating λl-reduction

We now verify that our notion of reduction RE on PN simulates the λl-reduction on typed
λl-terms. It is in this proof that we find the motivation for our choice of translation from
λ-terms into proof nets: with the more traditional translation sending the intuitionistic type
A → B into the linear !A ⊸ B, the simulation of the rewrite rule f would give rise to an
equality, not to a reduction step like in this paper.

Lemma 6 (Simulation of λl). The relation RE simulates the λl-reduction on typed terms:
if t −→λl

t′, then T (t)−→+
RE

T (t′), excepted for the rules e2 and d for which we have
T (t) = T (t′).

Proof. The proof procedes by cases on the reduction rule applied in the step t −→λl
t′. Since

reductions λl and RE are closed under all contexts, we only need to study the cases where
reduction takes place at the head position of t. In the proof, rule wc is used to simulate
b2, e1, n1, n2, n3, equivalence A is used to simulate a, c1, c2, and equivalence B is used to
simulate f, a, c1, c2.

Due to space limitations, we cannot give the proof here, that the interested reader can
find fully developed in [11], but we show anyway the case of rule c1, one of the composition
rules:

[i/N, j][k/P, l]M −→ [k/[i− k/N, j]P, j + l − 1]M if k ≤ i < k + l

Here, the typing judgment of [i/N, j][k/P, l]M must end with

∆,Π,Π ′ ⊢ N : B

Γ ′, B,Π,Π ′ ⊢ P : C Γ,C,Π ′ ⊢ M : A

Γ, Γ ′, B,Π,Π ′ ⊢ [k/P, l]M : A
Subst

Γ, Γ ′, ∆,Π,Π ′ ⊢ [i/N, j][k/P, l]M : A
Subst

while the typing judgment of [k/[i− k/N, j]P, j + l − 1]M must end with

∆,Π,Π ′ ⊢ N : B Γ ′, B,Π,Π ′ ⊢ P : C

Γ ′, ∆,Π,Π ′ ⊢ [i− k/N, j]P : C
Subst

Γ,C,Π ′ ⊢ M : A

Γ, Γ ′, ∆,Π,Π ′ ⊢ [k/[i− k/N, j]P, j + l − 1]M : A
Subst

So, the translation of the type derivation of the first term is

Π′

C

Π′

C

C

Π′ A∗

T(M)

Γ ?C∗⊥

!C∗

C∗

Π′

Π′

T(P)

Γ ′

Γ ′

Π

Π

?B∗⊥

?B∗⊥

!B∗

B∗

∆

∆

T(N)

Π′

Π′

Π

Π

Π

while the translation of the second derivation is

Π′

C

CC

Π′ A∗

T(M)

Γ ?C∗⊥ C∗ Γ ′

T(P)

Π′Π ?B∗⊥

!B∗

B∗

∆

∆

T(N)

Π′

Π′

Π

Π

Γ ′!C∗ ∆Π

Π Π′

Π′

To reduce the first proof net into the second one, we must eliminate the b−b cut, then apply
the equivalence relations A and B.

We are now able to show strong normalization of λl. To achieve this result, we use the
following abstract theorem (see for example [12]) :

Theorem 4. Let R = 〈O, R1 ∪R2〉 be an abstract reduction system such that R2 is strongly
normalizing and there exist a reduction system S = 〈O′, R′〉, with a translation T of O into
O′ such that a −→R1

b implies T (a)−→+
R′ T (b); a −→R2

b implies T (a) = T (b). Then if
R′ is strongly normalizing, R1 ∪R2 is also strongly normalizing.

If we take O as the set of typed λl-terms, R1 as λl − {e2, d}, R2 as {e2, d}, O
′ as the set of

proof nets and R′ as the reduction RE , then, by the Theorem 4 and the fact that the system
including the rules {e2, d} is strongly normalizing [8], we can conclude :

Theorem 5 (Strong normalization of λl). The typed λl-calculus is strongly normalizing.

5 The λl-calculus with names

In this section we present a version of typed λl with named variables. We first introduce the
grammar of terms, then the typing and reduction rules and finally we will briefly discuss
the translation of this syntax to PN in order to show strong normalization of the associated
reduction.

The terms of this calculus are given by the following grammar:

M ::= x | λx.M | (MM) | ∆M | M [x,M, Γ,∆]

The term x is called a variable, λx.M an abstraction, (MM) an application, ∆M a labeled
term and M [x,M, Γ,∆] a substitution. Intuitively, the term ∆M means that the variables
in ∆ are not in M , and the term M [x,N, Γ,∆] means that the variables in Γ do not appear
in N (they only belong to the type environment of M) and the variables ∆ do not appear
in M (they only belong to the type environment of N).

Variables are bound by the abstraction and substitution operators, so that for example
x is bound in λx.x and in x[x,N, Γ,∆].

Terms are identified modulo α-conversion so that bound variables can be systemati-
cally renamed. Indeed, we have λy.y[x, z, ∅, ∅] =α λy′.y′[x, z, ∅, ∅] and λy.y[x, z, ∅, ∅] =α

λy.y[x′, z, ∅, ∅] and λl.y[x, z, {l}, ∅] =α λl′.y[x, z, {l′}, ∅]. We remark that the conditions on
indices used in the typing rules given in Section 4.1 are now conditions on sets of variables.
The typing rules are given in Figure 3.

Γ, x : A ⊢ x : A
Axiom

Γ ⊢ M : A Γ ∩∆ = ∅
Γ,∆ ⊢ ∆M : A

Weak

Γ ⊢ M : B → A Γ ⊢ N : B
Γ ⊢ (MN) : A

App
Γ, x : A ⊢ M : B

Γ ⊢ λx : A.M : B → A
Lambda

∆,Π ⊢ N : A Γ, x : A,Π ⊢ M : B (Γ, x : A) ∩∆ = ∅

∆,Γ,Π ⊢ M [x,N, Γ,∆] : B
Subst

Fig. 3. Typing rules for the λl-calculus with named variables

We remark that whenever Γ ⊢ M [x,N,∆,Π] is derivable, then Γ necessarily contains ∆
and Π.

As expected the λl-calculus with names enjoys the subject reduction property (See [11]
for a detailed proof).

Theorem 6 (Subject Reduction). If Ψ ⊢ M : C and M −→ M ′, then Ψ ⊢ M ′ : C.

We define the reduction rules only on typed terms, since we are focusing here on a
named version of the typed λl calculus with indices. These rules already give the flavor of
what a general notion of reduction for non-typed terms with names should be, but a precise
formalization of the untyped case is left for further work.

The reduction rules of the typed λl-calculus with names are given in Figure 4 (notice
that rule b1 is a particular case of rule b2 with ∆ = ∅).

(b1) (λx : A.M)N −→ M [x,N, ∅, ∅]
(b2) (∆(λx : A.M))N −→ M [x,N, ∅, ∆]
(f) (λy : A.M)[x,N, Γ,∆] −→ λy : A.M [x,N, Γ + y,∆] if y 6∈ FV (N)
(a) (MP)[x,N, Γ,∆] −→ (M [x, P, Γ,∆]P [x,N, Γ,∆])
(e1) ΛM [x,N, Γ,∆] −→ (∆ ∪ (Λ \ x))M x ∈ Λ
(e2) ΛM [x,N, Γ,∆] −→ (Γ ∩ Λ)M [x,N, Γ \ Λ,∆ ∪ (Λ \ Γ)] x 6∈ Λ
(n1) y[x,N, Γ,∆] −→ y y 6= x
(n2) x[x,N, Γ,∆] −→ ΓN
(c1) M [y, P, Λ, Φ][x,N, Γ,∆] −→ M [y, P [x,N, Γ \ Λ,∆], Λ,∆ ∪ (Φ \ x)] x ∈ Φ \ Λ
(c2) M [y, P, Λ, Φ][x,N, Γ,∆] −→ M [x,N, (Γ \ Φ) + y,∆]

[y, P [x,N, Γ \ Λ,∆], Λ, Γ ∩ Φ] x 6∈ Φ ∪ Λ
(d) Γ∆M −→ (Γ ∪∆)M

Fig. 4. Reduction Rules of the λl-calculus with named variables

As customary in explicit substitutions calculi with names [3], we work modulo α-conversion,
so that we can suppose that in the rule Weak the set ∆ does not contain variables that are
bound in M . Also, this allows us to restrict rule f , without loss of generality, to the case
where no variable capture arise.

In order to translate a term of λl into a proof net, we use exactly the same translation
of types that we used in Section 4.2 and we then define the translation of a term M using
the type derivation of M .

Since in proof nets there is no trace left of the order which is implicit in the formalism
of de Bruijn indices, it comes as no surprise that the translation of λl with names into the
nets is really the same than the one for λl (see [11] for full details).

The simulation of the reduction rules of the λl-calculus with names by the reduction RE

is identical to that given in Section 4.2 for the λl-calculus with indices. We just remark that
rule n3 has no sense in the formalism with names so that the proof has one less case. We
just state the result without repeating a boring verification:

Lemma 7 (Simulation of λl with names). If t λl-reduces to t′ in the formalism with
names, then T (t)−→+

RE
T (t′), except for the rules e2 and d for which we have T (t) = T (t′).

We can then conclude the following:

Theorem 7 (Strong Normalization of λl with names). The typed λl-calculus with
names is strongly normalizing.

6 Conclusion and future works

In this paper we enriched the standard notion of cut elimination in proof nets in order to
obtain a system RE which is flexible enough to provide an interpretation of λ-calculi with
explicit substitutions and which is much simpler than the one proposed in [10]. We have
proved that this system is strongly normalizing.

We have then proposed a natural translation from λl into proof nets that immediately
provides strong normalization of the typed version of λl, a calculus featuring full composi-
tion of substitutions. The proof is extremely simple w.r.t the proof of PSN of λl given in [8]
and shows in some sense that λl, which was designed independently of proof nets, is really
tightly related to reduction in proof nets.

Finally, the fact that the relative order of variables is lost in the proof-net representation
of a term lead us to discover a version of typed λl with named variables, instead of de Bruijn
indices. This typed named version of λl gives a better understanding of the mechanisms of
the calculus. In particular, names allow to understand the manipulation of explicit weak-
enings in λl without entering into the details of renaming of de Bruijn indices. However,
the definition of a general notion of reduction for non-typed terms with names remains as
further work.

This work suggests several interesting directions for future investigation: on the linear
logic side, one should wonder whether RE is the definitive system able to interpret β reduc-
tion, or whether we need some more equivalences to be added. Indeed, there are still a few
cases in which the details of a sequent calculus derivation are inessential, even if we did not
need to consider them for the purpose of our work, like for example

⊢ Γ,B

⊢?A,Γ,B
Weakening

⊢?A,Γ, !B
Box

⊢ Γ,B

⊢ Γ, !B
Box

⊢?A,Γ, !B
Weakening

On the explicit substitutions side, we look forward to the discovery of a calculus with
multiple substitutions with the same properties as λl, in the spirit of λσ.

Acknowledgments

We would like to thank Bruno Guillaume and Pierre-Louis Curien for their interesting remarks.

References

1. M. Abadi, L. Cardelli, P. L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Functional
Programming, 4(1):375–416, 1991.

2. S. Abramsky and R. Jagadeesan. New foundations for the geometry of interaction. In LICS,
pages 211–222, Santa Cruz, California, 22–25 June 1992.

3. R. Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven Univer-
sity of Technology, 1997.

4. R. Bloo and K. Rose. Preservation of strong normalization in named lambda calculi with
explicit substitution and garbage collection. In Computing Science in the Netherlands, pages
62–72. Netherlands Computer Science Research Foundation, 1995.

5. V. Danos. La logique linéaire appliquée à l’étude de divers processus de normalisation (et
principalement du λ-calcul). PhD thesis, Université de Paris VII, 1990. Thèse de doctorat de
mathématiques.

6. V. Danos, J.-B. Joinet, and H. Schellinx. Sequent calculi for second order logic. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors, Advances in Linear Logic. Cambridge University Press, 1995.

7. V. Danos and L. Regnier. Proof-nets and the Hilbert space. In J.-Y. Girard, Y. Lafont, and
L. Regnier, editors, Advances in Linear Logic, pages 307–328. Cambridge University Press,
London Mathematical Society Lecture Notes, 1995.

8. R. David and B. Guillaume. The λl-calculus. In Proceedigs of the Second International Work-
shop on Explicit Substitutions: Theory and Applications to Programs and Proofs, pages 2–13,
Trento, Italy, 1999.

9. R. Di Cosmo and S. Guerrini. Strong normalization of proof nets modulo structural congruences.
In P. Narendran and M. Rusinowitch, editors, 10th International Conference on Rewriting
Techniques and Applications (RTA), volume 1631 of Lecture Notes in Computer Science, pages
75–89, Trento, Italy, 1999. Springer Verlag.

10. R. Di Cosmo and D. Kesner. Strong normalization of explicit substitutions via cut elimination
in proof nets. In Twelfth Annual IEEE Symposium on Logic in Computer Science (LICS), pages
35–46, Warsaw, Poland, 1997.

11. R. Di Cosmo, D. Kesner, and E. Polonovski. Proof nets and explicit substitutions, 1999.
Available as ftp://ftp.lri.fr/LRI/articles/kesner/es-pn.ps.gz.

12. M. C. Ferreira, D. Kesner, and L. Puel. Lambda-calculi with explicit substitutions preserv-
ing strong normalization. Applicable Algebra in Engineering Communication and Computing,
9(4):333–371, 1999.

13. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.

14. J.-Y. Girard. Geometry of interaction I: interpretation of system F. In R. Ferro, C. Bonotto,
S. Valentini, and A. Zanardo, editors, Logic colloquium 1988, pages 221–260. North Holland,
1989.

15. G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduction. In 19thAnn.
ACM Symp. on Principles of Programming Languages (POPL), pages 15–26, Albuquerque, New
Mexico, 1992. ACM Press.

16. B. Guillaume. Un calcul de substitution avec tiquettes. PhD thesis, Universit de Savoie, 1999.

17. J. Lamping. An algorithm for optimal lambda calculus reduction. In 19thAnn. ACM Symp. on
Principles of Programming Languages (POPL), pages 16–30, San Francisco, California, 1990.
ACM Press.

18. P.-A. Mellies. Typed λ-calculi with explicit substitutions may not terminate. In M. Dezani-
Ciancaglini and G. Plotkin, editors, Typed Lambda Calculus and Applications, volume 902 of
Lecture Notes in Computer Science, April 1995.

19. K. Rose. Explicit cyclic substitutions. In Rusinowitch and Rémy, editors, Proc. of the Third
International Workshop on Conditional Term Rewriting Systems (CTRS), number 656 in LNCS,
pages 36–50, 1992.

A Reduction of proof nets

Reduction acting on a cut Ax− cut, removing an axiom :

Ax-cut

Ax

A A⊥ A

Cut

A

Reduction acting on a cut O −⊗ :

A B

A O B

A⊥ B⊥

A⊥ ⊗ B⊥

Cut

O −⊗

A B A⊥

Cut
Cut

B⊥

Reduction acting on a cut w − b, erasing a box :

W

?A

W

?ΓA⊥ ?Γ

!A⊥ ?Γ

Cut

w-b

Reduction acting on a cut d− b, opening a box :

D

?A

A

A⊥ ?Γ

!A⊥ ?Γ

Cut

d-b

A⊥ ?Γ

Cut

A

Reduction acting on a cut c− b, duplicating a box :

?A

A⊥ ?Γ

!A⊥ ?Γ

Cut

?A

C

A⊥

!A⊥ ?Γ?A

c-b?A

Cut
Cut

A⊥

?Γ

?Γ

!A⊥ ?Γ?A
C

?Γ

Reduction acting on a cut b− b, absorbing a box into another :

?Γ ′ ?AB

Cut

?Γ ′

A⊥

?Γ!A⊥

?Γ

b-b
?Γ

?Γ

A⊥

Cut
!B

!A⊥

?Γ

?Γ ′

?Γ ′

?A

?A

B

!B

