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Abstract. This paper proposes a notion of reduction for theproof netsof Linear
Logic modulo an equivalence relation on thecontraction links, that essentially
amounts to consider the contraction as an associative commutative binary opera-
tor that can float freely in and out of proof netboxes. The need for such a system
comes, on one side, from the desire to make proof nets an even more parallel
syntax for Linear Logic, and on the other side from the application of proof nets
to λ-calculus with or without explicit substitutions, which needs a notion of re-
duction more flexible than those present in the literature. The main result of the
paper is that this relaxed notion of rewriting is still strongly normalizing.
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1 Introduction

In his seminal paper [6], Girard proposed proof nets as aparallel syntaxfor Linear
Logic, where uninteresting permutations in the order of application oflogical rules
are de-sequentialised and collapsed. Nevertheless, in the presence of exponentials, that
are necessary to translateλ-terms into proof nets, the traditional presentation of proof
nets turns out to be inadequate: too many inessential details concerning theorder of
application of independent structural rules (e.g., contraction) are still present.

When using proof nets to simulateλ-calculus, this redundancy already gets in the
way, so that it is necessary to consider an extended notion of reduction, or aspecial
version of proof nets with annary structural link and a brute force normalization proce-
dure. But if one tries to simulate the behavior of explicit substitutions, then one is really
forced to consider contraction links as a sort of associative-commutative operator.

Looking carefully at these difficulties, one can see that what is really needed isan
extension of the notion of reduction on proof nets where the order ofapplication of the
contraction rules, and the relative order of contraction rules and box formation rules is
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abstracted away. This can be done by defining an equivalence relation over regular proof
nets that essentially amounts to consider the contraction as an associative-commutative
binary operator that can float freely in and out of proof netboxes, and define a notion
of reduction on the corresponding equivalence classes. Bothλ-calculus and systems of
explicit substitution can be very easily simulated in such a system. Also, this system
allows to abstract away all the uninteresting permutations in the order of application of
structural rules, which are de-sequentialised and collapsed into the same equivalence
class. Yet, up to now, it was unknown whether such an extension would enjoy the same
good properties as proof nets, and first of all, strong normalization. The main result of
the paper is that this relaxed notion of rewriting is still stronglynormalizing.

In the following, we shall first recall the traditional definition of proof nets and of
their reduction, as well as the systems proposed by Danos and Regnier [4] to simulate
λ-calculus, and by Di Cosmo and Kesner [5] to simulate a calculus with explicit substi-
tution. Then, we shall define our equivalence relation and prove our main theorem.

1.1 Linear Logic and Proof Nets

Let us recall some classical notions from Linear Logic. We shall consider Multiplicative
Exponential Linear Logic (MELL) without constants,i.e., the fragment of Linear Logic
whose formulas are:F ::= a j F �F j F OF j !F j ?F , wherea ranges over a non-
empty set ofatomsA that is the sum of two disjoint subsetsP andP?, corresponding
to thepositiveatomsp and to thenegativeatomsp? respectively. In particular,p? is
named thelinear negationof p, and vice versa. Linear negation extends to every formula
A by means of the following De Morgan equations:(A�B)? = A?OB?, (?A)? =

!A?, A?? = A. The connectives� (tensor) andO (par) are themultiplicatives; the
connectives ! (of-course) and ? (why-not) are theexponentials. For the definition of the
sequent calculus of Linear Logic, we refer the reader to [6].

One of the advantages of MELL is the availability of a graph-like representation of
proofs that is highly non-sequential, that is, which is often able to forget the order in
which some rules are used in a sequent calculus derivation, when this order is irrelevant.
This representation is known as Proof Nets.

A (MELL) proof net is a finite (hyper)graph whose vertices are occurrences of
MELL formulas (in the following, we shall often write ‘formula’ for ‘occurrence of
formula’) and whose (hyper)edges, namedlinks, correspond to connections between
the active formulas of some rule of the sequent calculus of MELL. The formulas below
a link are theconclusionsof the link; the formulas above a link are itspremises.

Fig. 1 gives the inductive rules for the construction of proof nets.As usualΓ, ?Γ
and ∆ stand for sets of formulas—in this case, sets of conclusions of the net above
them—in particular, ?Γ denotes a set of ?-formulas. The ruleaxiomis the base case: a
proof net formed of a unique link of typeax. The rulespar, contraction, derelictionand
weakeningadd a new link of the corresponding type to a previously constructedproof
net. The rulestensorandcutadd a new link and merge two (distinct) proof nets. Finally,
thepromotionrule promotes a formulaA to !A. In order to apply that rule, we need a
proof netM whose conclusions butA are of type ?. As a result, promotion encloses
M into a box whose conclusions are the promoted formula !A and a copy of each ?-
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Fig. 1. Proof Nets.

conclusion ofM. The conclusion !A is theprincipal port of the box; the conclusions in
?Γ are itsauxiliary ports.

Boxes force a strong constraint on thesequentializationof a proof net (i.e., on the
construction of a proof net by application of rules in Fig. 1): in any possible sequen-
tialization of a proof net that contains a boxB, no rule corresponding to a link below
a conclusion ofB can be applied before the complete sequentialization ofB. However,
the notion of box is crucial for the definition of proof net cut-elimination. In fact, be-
cause of the side condition on promotion (recall that all the auxiliary premises of a box
must be of type ?), we have to keep track of the context that allowed the promotion of
A (again, for a more detailed analysis, refer to [6]).

Remark 1.A proof netM is a (hyper)graph, so it does not contain any explicit infor-
mation on the ways in which it can be sequentialized (e.g., think at the strings of some
context free language; the strings do not contain any information on their derivations
in the context free grammar of the language). Therefore, let us assume to have a (hy-
per)graphM formed of formulas and links—such (hyper)graphs are known asproof
structures. The problem ‘is the proof structureM a proof net?’ is clearly decidable,e.g.,
take the brute force approach that tries ordering links in all the possible ways. The so
calledcorrectness criteriacharacterize proof nets with no explicit reference to the rules
in Fig. 1. For instance, the Danos-Regnier criterion states thatM is a proof net when all
theswitchesof M are trees (a switch is a graph obtained by collapsing some boxes and
by removing some edges). For a detailed discussion of correctness criteriaand of their
complexity, see [3, 7].

The rewriting rules in Fig. 2 define the cut-elimination procedure for proof nets. In fact,
each cut-elimination rule in Fig. 2 transforms a proof net into a proofnet (see [6]). In
Fig. 2, a link between instances of the same set of formulas means that there is a link
between each pair/triple of corresponding formulas in that sets.

Definition 1 (PN). Proof Nets is the smallest set of (hyper)graphs closed by the rules
in Fig. 1.PN is the rewriting system defined on Proof Nets by the rules in Fig. 2.

In the following,M 2 PN will denote thatM is a proof net. Moreover, since we shall
consider several variants of proof net reduction, this will also mean thatM reduces
according to the rules ofPN.
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Fig. 2.Proof net cut-elimination.

Theorem 1. PN is strongly normalizing and confluent (Church-Rosser). As a conse-
quence,PN has the unique normal form property.

Strong normalization (SN) was proved by Girard in [6] (Girard’s proof of SN uses the
candidats de ŕeductibilit́e; a completely syntactical proof of SN can be found in Joinet’s
thesis [8]); the Church-Rosser property (CR) was proved by Danos in [2].

Henceforth, let us writenf(N), for the normal form ofN 2 PN. More generally,
since all the reduction systems that we shall analyze will be derived fromPN and will
be named by sub/superscripted variants ofPN, N 2 PN

y
x will denote thatN reduces

according to the rules ofPNy
x andnfyx(N) will denote its normal form (if any).

2 Survey and our proposal

2.1 Simulating theλ-calculus: collapsed structural links

When simulating theβ-reduction ofλ-calculus inPN, the rigidity of the exponential
links makes things difficult: the net translation of a termt does not always reduce exactly
to the translation of the reduct terms, due to the different shape of the contraction trees
in the translation. This is quite annoying, to the point that the first really satisfactory
proof of simulation can be found in [4], where Danos and Regnier introduce a system
where all exponential links are collapsed into one singlenary link.

Usual proof nets are mapped into those proposed in [4] by a transformation µ that
pushes contraction and dereliction out of all boxes and contracts them together. Fig. 3
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describesµ by applying it to an example; see the mapping on the left. The root of the
exponential tree in the example is not the premise of a contraction and is not above the
auxiliary port of a box. The collapsed link of type ? that replaces the treepreserves the
branches of the tree and the number of boxes that they cross. Every weakeninglink is re-
placed by a new link of type� that introduces a special (crossed) occurrenceA� of the
formulaA. Every formulaA� marks aweakening branchof the ?-link. A ?-weakening
tree is a ?-link connected to weakening branches only; it is the translation of an expo-
nential tree whose leaves are all weakening links. A ?-weakeningis a ?-weakening tree
formed of one weakening branch only; it corresponds to the translation of an exponen-
tial tree formed of a weakening link only (e.g., see the mapping on the right in Fig. 3).
The introduction of the weakening branches is due to technical reasons; therationale is
that we want to keep track of all the erasing rules required by the reduction. The�-link
is not present in [4], where weakening branches are simply erased.
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Fig. 3. Collapsing an exponential tree into a ?-link.

Definition 2 (PNC). LetPNC be the set of the proof nets where contractions and expo-
nential crossings at the auxiliary doors of boxes collapse into a unique nary link of type
?, and all the exponential reductions but erasing are collapsed into auniqueexponen-
tial reduction step that performs unboxing, duplication and box inclusion, as shown by
the example in Fig. 4.
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Fig. 4. The exponential rule ofPNC.
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The exponential rule ofPNC introduces a ?-weakening cut for every weakening branch
of the ?-link in the redex. In order to erase the corresponding boxes, that cuts must be
explicitly eliminated by means of an erasing rule. The erasing rule ofPNC is the obvious
translation of the erasing rule ofPN: on the left-hand side, replace the weakening link
by a ?-weakening and the auxiliary port crossings by ?-link branches; on the right-hand
side, transform each branch into a weakening branch by putting a�-link above its leaf.
When the ?-link in the redex is a ?-weakening tree withn branches, the exponential rule
degenerates into aweakening duplicationthat createsn copies of the box in the redex
and splits the cut inton ?-weakening cuts. In particular, when the tree is a ?-weakening
(i.e., n= 1), the left-hand side and right-hand side would coincide; therefore, in order
to not introduce trivial reduction loops, the exponential rule doesnot apply to a ?-
weakening cut; the only rule that applies to that cuts is erasing. In [4], the absence of
weakening branches corresponds to an exponential rule in which the ?-weakening cuts
introduced by our version of the rule are automatically eliminated.

Remark 2 (No exponential axioms).The transformationµ is not defined for the proof
nets that contain exponential axioms (i.e., !A;?A? axioms). From the point of view of
provability, this is not a problem, for it is well-known that each proof net can beη-
expanded into another one with the same conclusions that contains atomicaxioms only
(i.e., p; p? axioms only). But, for a detailed analysis of proof net reduction and of its
relations withλ-calculus, that unrestrictedη-expansion is unacceptable. Therefore, let
us constrainη-expansion to exponential axioms. Namely, theηe-expansion replaces
each !A;?A? axiom with a box containing the axiomA;A? and a dereliction link from
A? to ?A?. Every reduction ofM 2 PN is simulated by a reduction of itsηe-expansion,
and similarly forM 2 PNC. Therefore and w.l.o.g., in the following, we shall restrict
PN to the case without exponential axioms. In this way,µ : PN! PNC is total.

Proposition 1. Let M2 PN. For every r: µ(M)

C
�!P, there is a non-emptyρ : M �!

� N
s.t. P= µ(N). Therefore,PNC is SN and CR, andnfC(µ(M)) = µ(nf(M)).

The obvious limitation of this approach is that its reduction is too coarse grained: it
really performs in one single step all the duplication, erasure and unboxing operations
involved in aβ-reduction step for theλ-calculus. For this reason, if one wants to study
finer reductions on theλ-terms, like the ones involved in handling explicit substitutions,
this system turns out to be inadequate: it throws out the baby with the bath water.

2.2 Simulating explicit substitutions: fusion and splittingof contraction links

In [5], the limitations of bothPN andPNC are recognised, and another system is pro-
posed, where it is possible to fuse twonary contraction links together (see thefusion
rule in Fig. 5) and where the irrelevance of the order of contraction and box formation
is taken into account via a reduction rule that allows to push some contractions inside a
box (see the push rule in Fig. 5).

This approach is less coarse grained, and it was the first solution for interpreting
explicit substitutions inPN, but it still suffers from a certain rigidity of the extended
reductions, that makes the translation fromλ-calculus with explicit substitutions into
PN cumbersome (while the propagation of the substitutions is faithfully mirrored, the
translation of a cut forces all the duplications to be performed at once).
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Fig. 5. Fusion and push.

2.3 Our approach: rewriting modulo an equivalence relation

If one looks carefully at the previous approaches, one really finds out that they are both
trying to handle contraction links as associative-commutative operatorsfreely floating
in and out of boxes: Danos and Regnier work on a representative of theAC (associative-
commutative) equivalence class which is obtained by collapsing all the trees ofexpo-
nential links and pushing them outside of all boxes; Di Cosmo and Kesnerallow a finer
control on how to collapse and push in or out of boxes the contraction links.

The limitations of the previous approaches clearly point out the need ofa more flex-
ible system, which accepts explicitly the associative-commutative natureof the contrac-
tion operator, allowing a finer control of duplication and propagation of substitutions in
the nets. For this reason, we introduce an equivalence relation� on Proof Nets and
define reduction on the corresponding equivalence classes.

Definition 3 (PNAC). The equivalence relation�, named AC, is the context closure of
the graph equivalences in Fig. 6. Let us extend the reduction ofPN to the equivalence
classes of Proof Nets as MAC

�! N iff 9M0

;N0 : M � M0

�!N0

�N. We shall writePNAC

for Proof Nets equipped with this new reduction.
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Fig. 6. AC congruence.

That extension ofPN preserves the normal forms, as shown by the next proposition,
which proves indeed thatPNAC is a fine analysis ofPNC.

Proposition 2. For every M;N 2 PNAC, M �N iff µ(M) = µ(N). Then, let MAC
�!

� N.

1. There are µ(M)

C
�!

� P and µ(N) C
�!

� P.
2. nfC(µ(M)) = nfC(µ(N)) andnf(M)� nf(N).



8 Roberto Di Cosmo and Stefano Guerrini

3 Main results

The main result of the paper is thatPNAC is strongly normalizing and has the unique
normal form property (moduloAC).

Theorem 2. Let M2 PNC.

1. Let M C
�!

� N with N cut-free. Then N� nf(M).
2. Every reduction of M is finite.

The first item is a trivial consequence of Proposition 2 (a particular caseof it). The
proof of strong normalization is by reduction to termination ofPNC.

3.1 Overview of the proof technique

The key point in relatingPNAC to PNC is the study of the so-calledpersistent paths,
an invariant introduced by Geometry of Interaction. Persistent paths capture the intu-
itive idea that every connection (path) between the nodes of a reductN of M is the
deformation of some connection (path) between the nodes ofM (see [4]). In fact, along
the reduction ofM certain connections are broken (e.g., take the path betweenA and
B? in the multiplicative rule), while otherspersist; in particular, the paths that persist
after every reduction yield the normal form. Geometry of Interaction is an algebraic
formulation of the previous notion of path deformation, even if the idea ‘reduction as
path composition’ was already implicit in Lévy labelledλ-calculus. For a survey on the
relations between persistent paths, Lévy’s labels and Geometry of Interaction regular
pathssee [1].

Persistent paths will be defined and studied in section 4. There, we shall assign a
norm to everyM 2 PNAC in terms of the persistent paths ofµ(M) (actually, in terms
of the persistent paths that do not collapse). That norm is decreased by the reductions
of PNAC with a correspondence inPNC, while it is left unchanged by duplication and
commutative conversion. In section 5, we shall analyze the transformations that sim-
ulate duplication and commutative conversion inPNC. That analysis will lead us to
define a second norm (section 5.4) that is decreased by every one-step reduction.

Unfortunately, the previous proof schema does not work if directly applied toPNC

andPNAC. In fact, in order to fully exploit it, we must tackle two technical difficulties.
The first problem is connected with duplication: we need a way to count the number

of box duplications in a reduction. For that purpose, instead of resorting to some mea-
sure defined on the whole reduction, we exploit the presence of weakening. Namely,
using weakening, we define a proof structureTX, a tick (see section 5.3), that reduces
to the empty net and s.t. the proof structureMX obtained by inserting a tick into each
box of M is a proof net. Since each box duplication duplicates a tick, the number of
boxes duplicated in a reduction is equal to the number of new ticks in the result.

The second problem is that ticks might disappear along the reduction becauseof an
erasing rule. Thus, in order to preserve our counting device, we have todelay garbage
collection until the end of the computation (indeed, this approach simplifies other tech-
nical parts also). Namely, let us denote byM AC

�!

:w

� N a reduction that does not contain

erasing rules and byPN:wAC the restriction ofPNAC to that non-erasing reduction.
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Lemma 1. For every M2 PNAC, if M AC
�!

� N then M AC
�!

:w

� P AC
�!

�

w

N. Therefore,PNAC is

terminating iffPN:wAC is terminating.

Henceforth, we shall restrict to the study ofPN

:w

AC and of the corresponding system
PN

:w

C , i.e.,PNC restricted to the non-erasing reductionAC
�!

:w

. That analysis will conclude

with the proof of strong normalization ofPN:wAC (Lemma 13) that, by Lemma 1, proves
the strong normalization ofPNAC as well.

4 Paths inPN:wC

A path in a proof netM is an undirected path in the graph ofM that, crossing any
link but axiom and cut, moves from a premise to the conclusion of the link and that,
crossing an axiom/cut, moves from one conclusion/premise of the axiom/cut to the
other conclusion/premise.

Let M be a proof net. We shall denote byΦ(M) the set of its paths and we shall
write ψv φ to denote thatψ is a subpath ofφ. Remarkably, whenM is in normal form,
Φ(M) is finite and is the set of theelementary pathsof M (a path is elementary when
it does not cross any cut); instead, whenM contains cuts, the paths ofM may loop and
Φ(M) may be infinite.

4.1 Persistent and permanent paths

After a reduction step, paths deform or even vanish, so there is a natural notion of
residualof a path along a proof net reduction: as in [4], this notion can be captured
by associating to everyr : M C

�!

:w

N, a functionr : Φ(N) C
�!

:w

Φ(M) that maps a path of

N to its ancestorin M. The notion of residual extends to a reductionρ = r0r1 : : : rk by
function composition,i.e., ρ = r0 � r1 � : : : � rk.

We remark thatρ is total; that is, forρ : M C
�!

:w

� N, every pathφ 2 Φ(N) is the

deformation of some path inM. Moreover, every deformed pathφ results from the
contraction to a node of some subpath ofρ(φ); therefore, eitherφ is essentially the
same asρ(φ), or jφj< jρ(φ)j. However,ρ is not onto. In fact, a path ofM disappears in
the following cases:

1. The path contracts to a connection between the premises of a cut that is then reduced
alongρ (e.g., the path betweenAOB andA?�B? in Fig. 7).

2. The execution of a multiplicative or exponential cut disconnects thepath. For in-
stance, take the dashed path in the right-hand side of Fig. 7.

The two cases above correspond to two completely different phenomena. In thefirst
case, the path disappears enclosed into a longer path that eventually contracts to a for-
mula. In the second case, the reductionsplitsthe path. Thus, in the first case, we can say
that the pathpersistsalong the reduction, as a trace of it is still present in the resulting
proof net; in the second case, the path has no image in the result.
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Fig. 7. Paths.

Definition 4 (persistent paths).Let ρ : M C
�!

:w

� N. A pathφ 2 Φ(M) is ρ-persistent

when there isψ 2 Φ(N) s.t. φ v ρ(ψ). Theρ-persistent pathφ is said ρ-permanent
whenφ = ρ(ψ) for someψ 2 Φ(N). A path of M ispersistent, or permanent, when it is
ρ-persistent, orρ-permanent, for every reductionρ of M.

Henceforth,Ψ(M) will denote the set of the permanent paths ofM andΨ
v

(M) will
denote the set of its persistent paths. By definition,Ψ

v

(M) is a superset of the closure
by subpaths ofΨ(M); further, we shall prove thatΨ

v

(M) is that closure, see Lemma 4.

Lemma 2. Let M2 PN

:w

C . Every occurrence of formula in M is persistent.

Therefore, the set of the persistent paths is not empty. Indeed, it is readily seen that
every path corresponding to a redex (i.e., every cut pairA, A?) is persistent. Moreover,
everyvirtual redex, i.e., every path that along some reduction will eventually reduce to
a cut pair, is persistent, see [4] and [1].

4.2 Folding and unfolding of permanent paths

The permanent paths of a proof netM are the connections ofM that are invariant under
any reduction. So we expect thatΨ(M) be an image ofnf:wC (M); that is, we expect
Ψ(M) =ρ(Φ(nf:wC (M))), for any normalizing reductionρ. However, that equivalence is
not immediate. In fact, thoughPN:wC has the unique normal form property, two distinct
reductions might build the same path ofnf

:w

C (M) by combining different paths ofM.

Lemma 3. Let M 2 PN

:w

C . For every r1 : M C
�!

:w

M1 and r2 : M C
�!

:w

M1, there exist

ρ1 : M1
C
�!

:w

� N andρ2 : M2
C
�!

:w

� N, s.t.r1ρ1 = r2ρ2.

Proposition 3. Let N= nf

:w

C (M). There is a canonical mapfoldM : Φ(N)!Φ(M) s.t.
foldM = ρ, for everyρ : M C

�!

:w

� N. Moreover,Ψ(M) = foldM(Φ(N)).

The previous proposition proves the soundness of the definitionof permanent paths.
Moreover, letρ : M C

�!

:w

� N; it proves that the restriction ofρ to permanent paths is

an onto mapbρ : Ψ(N) C
�!

:w

� Ψ(M) (this is a consequence ofΨ(M) = foldM(Φ(P)) =
ρ � foldN(Φ(P)), whereP= nf

:w

C (M) = nf

:w

C (N)). We stress thatρ(Ψ(N)) = Ψ(M) is
not a trivial consequence of the definition of permanent paths, as that definition trivially
implies ρ(Ψ(N)) � Ψ(M) only. Finally, as a corollary of Proposition 3, we get that
every persistent path can be prolongated to a permanent path.
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Lemma 4. For everyφ 2 Ψ
v

(M), there isψ 2 Ψ(M) s.t.φ v ψ.

Theunfoldingof φ 2Φ(M) is the set of its residuals in the normal form,i.e.,

unfoldM(φ) = fψ 2 Φ(nf:wC (M)) j foldM(ψ) = φg= fold

�1
M (φ)

Thecardinalityof a path is the cardinality of its unfolding,i.e.,

#(φ) = junfoldM(φ)j

By definition, #(φ) > 0 iff φ 2 Ψ(M). Thus,∑f#(φ) j φ 2 Φ(M)g = ∑f#(φ) j φ 2

Ψ(M)g = jΦ(nf:wC (M)j; that is another way to express the combinatorial fact that no
finite reduction creates an infinite number of residuals (i.e., #(φ) is always finite).

4.3 The norm ofPN:wC

In the reduction ofPN:wC we have two distinct phenomena. On one side, exponential
reductions tend to unfold permanent paths, increasing their number; on the other side,
every reduction reduces the length of some permanent path. The previous considerations
summarize in the following lemma (as usual,jφj denotes the length of the pathφ, while
ρ�1

(φ) = fψ j ρ(ψ) = φg).

Lemma 5. Letρ : M C
�!

:w

� N. For everyφ 2Ψ(M),

1. #(φ) = ∑f#(ψ) j ψ 2 ρ�1
(φ)g;

2. jφj> jψj, for everyψ 2 ρ�1
(φ).

3. Moreover, ifρ is not empty and is not a sequence of weakening duplications, then
jφj> jψj for someφ 2 Ψ(M).

Let us equipPN:wC with the following norm:

jjMjj

φ
C =∑f#(φ) � jφj j φ 2 Φ(M)g=∑f#(φ) � jφj j φ 2Ψ(M)g

We remark that, sinceΨ(M) is finite, jjMjj

φ
C is well-defined (i.e., it is finite).

Lemma 6. For everyρ : M C
�!

:w

� N, jjNjjφC 6 jjMjj

φ
C. Moreover, whenρ is not empty and

is not a sequence of weakening duplications,jjNjjφC < jjMjj

φ
C.

5 RelatingPN:wAC to PN:wC

The grain of the reduction inPN:wAC is finer than inPN:wC . In particular, the commutative
conversion and the duplication rule have no correspondence inPN

:w

C ; moreover, in
PN

:w

AC we reduce moduloAC. For the part ofPN:wAC with a direct correspondence in
PNC the situation is clear: sinceM AC

�!

:w

N impliesµ(M)

C
�!

:w

µ(N), this part of the system

is strongly normalizing and

jjMjj

φ
AC = jjµ(M)jj

φ
C for M 2 PN

:w

AC

seems the natural candidate for expressing that property. For the remaining part of
PN

:w

AC , let us analyze each rule separately.



12 Roberto Di Cosmo and Stefano Guerrini

5.1 Commutative conversion

Whenr : M AC
�!

com

N, µ(N) andµ(M) are equal but for some boxes ofµ(M) that have
been moved inside some other box ofµ(N), see Fig. 8.

A A A

?

?A !A?
A? Γ

?

?Γ
cut

A A A

?

?A !A?
A? Γ

?

?Γ

cut

C
�!

com

Fig. 8. Commutative conversion inPNC.

Lemma 7. Let r : M AC
�!

com

N.

1. nf

:w

C (µ(M)) = nf

:w

C (µ(N));
2. foldµ(M)

= foldµ(N)

andΨ(µ(M)) =Ψ(µ(N));

3. jjMjj

φ
AC = jjNjjφAC.

Therefore, the commutative conversion induced onPNC preserves normal forms and
persistent paths. Moreover, though it does not decrease the norm on paths, it is readily
seen that we cannot have an infinite sequence of commutative conversions.

Definition 5 (depth). The depth of an!-link, and then of the corresponding box, is the
number of boxes that encapsulate it. Thedepth∂(M) of a proof net M is the sum of the
depths of its!-links.

Let n!
(M) be the number of !-links inM. We define

jjMjj

!
= n

!
(M)

2
�∂(M)

Lemma 8. For any M2 PN

:w

AC .

1. jjMjj

!
> 0.

2. If r : M AC
�!

com

N, thenjjNjj! < jjMjj

!.

5.2 Duplication

This is the trickiest case. Fig. 9 illustrates by means of an example the transformation
δr : µ(M)

AC
�!

dup

µ(N) corresponding tor : M C
�!

dup

N. In that example, we assume that
the contractionc in the redexr join two exponential subtrees whose leaves areA0 and
A00;A000, respectively; that two sets of leaves are the premises of the two new instances
of c in µ(N). As every rule inPNC, δr defines a mapδr : Φ(µ(N))!Φ(µ(M)).
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A0 A00 A000

?

?A !A?

A? Γ

cut

?

?Γ

A0 A00 A000

? ?

?A ?A !A?

A? Γ

cut

!A?

A? Γ

cut

?

?Γ

C
�!

dup

Fig. 9.Duplication inPNC.

Lemma 9. Let r : M AC
�!

dup

N.

1. nf

:w

C (µ(M)) = nf

:w

C (µ(N));

2. foldµ(M)

= δr � foldµ(N)

andΨ(µ(M)) = δr(Ψ(µ(N)));

3. jjMjj

φ
AC = jjNjjφAC.

5.3 Ticked proof nets

Usually, the proof that duplication is terminating exploits the factthat, in a sequence
of duplications, no box is duplicated twice by the same contraction link—this is the
intuitive idea; formally, we should reason in terms of residuals. However, since we
assume to know thatPN:wC is strongly normalizing, we can resort to a technical trick.

Duplication does not decrease the length of any permanent path. So, in order to
prove that it is terminating, we need a measure of the unfolding that itcauses. The re-
mark that duplication tends to increase the number of persistent paths seemsunfruitful:
unfortunately, there areM AC

�!

dup

N for which jΨ(µ(M))j= jΨ(µ(N))j. For instance, the
proof netM in Fig. 10 reduces to an axiom; so the pathφ drawn in the figure is the only
non-empty permanent path ofM. The pathφ contains two occurrences of the pathψ
(rooted at !(AOA?)) that loops inside the box,i.e., φ = φ0ψφ1ψφ2. After M C

�!

com

N,
the residual ofφ is φ0= φ00ψ0φ01ψ00φ02, whereψ0 andψ00 are residuals ofψ that loop inside
two distinct boxes ofN. In other words, instead of duplicating some permanent path,
the duplication inM unfolds the loop described by the unique permanent path in the
proof net. The situation would be different if the boxB in M would contain a permanent
path: that path would be duplicated by the duplication ofB.

A? A A? A

ax

AA?

A?�A

ax

ax

A?�A

?

?(A?�A) !(AOA?)

AOA?
A A?

ax

cut

Fig. 10.Unfolding the loop of a permanent path.
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Lep p be any atomic formula. Atick of PNC is a proof structureTX as that in
Fig. 11; andµ(TX) is a tick ofPNAC. A tick is not a proof net but, for everyN 2 PNC,
the proof structureM = N[ TX obtained by attaching the tickTX to N is a proof
net (i.e., M 2 PNC); moreover,M AC

�!

w

N, by contraction of the weakening cut inTX.
Therefore, letN be the interior of the most external box of some proof net; by replacing
M for N, we get a ticked boxB2 PNC. Then, by recursive application of this ticking
procedure to the boxes inB, we eventually get a proof net whose boxes are all ticked.

w

?(p?� p) !(pOp?)

pOp?
p p?

ax

cut

Fig. 11.A tick.

Definition 6 (PNXAC). A box contains (at least) a tick when its interior is a proof net
B[TX and TX is a tick. A proof net ofPNAC is tickedwhen each of its boxes contains
a tick. Let us denote byPNXAC the set of the ticked proof nets ofPNAC. We say that
MX 2 PN

X

AC is a ticking of M 2 PNAC when M can be obtained from MX by erasing
some of its ticks.

The set of the ticked proof netsPNXAC is closed by reduction,i.e., for anyMX 2 PN

X

AC
and anyρ : MX AC

�!

:w

� NX, NX 2 PN

X

AC. In the following,MX will always denote some

ticking ofM 2PNC (by the way, there exists at least oneMX for everyM). By definition,
MX AC

�!

�

w

M, for anyMX.

Lemma 10. The AC
�!

:w

-reduction of M2 PNAC is terminating iff theAC
�!

:w

-reduction of any

MX is terminating.

By Lemma 10, strong normalization ofPNAC reduces to that ofPNXAC. Moreover, as the
ticks ofMX are permanent, duplication is not a problem inPN

X

AC. In fact, letnX(M) be
the number of ticks inM. For anyM 2 PN

:w

AC , we define

jjMjj

X

AC = jjµ(M)jj

X

C where jjPjjXC = n

X

(nf

:w

C (P))�n

X

(P) for P2 PN

:w

C

Lemma 11. For any MX 2 PN

X

AC.

1. jjMXjjXAC> 0.

2. If r : MX AC
�!

:w

NX, thenjjNXjjXAC6 jjMXjjXAC; moreover,jjNXjjXAC< jjMXjjXAC, when r

is a duplication.
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5.4 The norm ofPNXAC

Let M 2 PN

:w

AC , we take

hhMiiAC = h jjMjj

φ
AC+ jjMjj

X

AC ; jjMjj

!
i

with the lexicographic ordering,i.e.,4 is the reflexive closure ofha1;b1i � ha2;b2;i iff
(a1 < a2) or (a1 = a2^b1 < b2). By definition,h0;0i4 hhMiiAC.

We remark that, for anyM;N 2 PN

:w

AC , M �N implieshhMiiAC = hhNiiAC.

Lemma 12. Let MX 2 PN

X

AC. For every r: MX AC
�!

:w

NX, hhNXiiAC� hhMXiiAC.

Lemma 13. PN:wAC is strongly normalizing.

6 Conclusions and future work

We have presented here for the first time a proof of strong normalization for Multiplica-
tive Exponential Linear Logic’s Proof Nets with an associative-commutative contrac-
tion free to float in and out of proof boxes. This is interesting for several reasons.

First, this is another significative application of thenormalization by persistent
pathsslogan which can be found in Girard’s Geometry of Interaction. But also, now
that we know that we can rearrange contraction trees as we like during a reduction of
a proof net, and still have the strong normalization property, we can go back to analyse
how the classicalβ-reduction of the lambda calculus, or the more refined reductions of
calculi with explicit substitutions are simulated in our system. We expect not only to
be able to provide a much simpler simulation than the ones in the literature, but also to
extract fromPNAC a calculus of explicit substitutions with good properties.
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