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Abstract. This paper proposes a notion of reduction for pineof netsof Linear
Logic modulo an equivalence relation on tbentraction links that essentially
amounts to consider the contraction as an associative ctativaubinary opera-
tor that can float freely in and out of proof neixes The need for such a system
comes, on one side, from the desire to make proof nets an even parallel
syntax for Linear Logic, and on the other side from the agpiis) of proof nets
to A-calculus with or without explicit substitutions, whicheds a notion of re-
duction more flexible than those present in the literatutee Main result of the
paper is that this relaxed notion of rewriting is still stghpnormalizing.
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1 Introduction

In his seminal paper [6], Girard proposed proof nets gmullel syntaxfor Linear
Logic, where uninteresting permutations in the order of applicatiologital rules
are de-sequentialised and collapsed. Nevertheless, in the presence of &z leat
are necessary to translategerms into proof nets, the traditional presentation of proof
nets turns out to be inadequate: too many inessential details concerniagi#reof
application of independent structural rulesy, contraction) are still present.

When using proof nets to simulakecalculus, this redundancy already gets in the
way, so that it is necessary to consider an extended notion of reductiorspacal
version of proof nets with anary structural link and a brute force normalization proce-
dure. But if one tries to simulate the behavior of explicit substins, then one is really
forced to consider contraction links as a sort of associative-commutgrator.

Looking carefully at these difficulties, one can see that what is really needed is
extension of the notion of reduction on proof nets where the ordapplication of the
contraction rules, and the relative order of contraction rules and boxatamrules is
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abstracted away. This can be done by defining an equivalence relation ovar prgoff

nets that essentially amounts to consider the contraction as an associativetedive

binary operator that can float freely in and out of proof lbexes and define a notion

of reduction on the corresponding equivalence classes. Boticulus and systems of
explicit substitution can be very easily simulated in such a systeno, Miés system
allows to abstract away all the uninteresting permutations in the of@gpdication of
structural rules, which are de-sequentialised and collapsed into the same equivalence
class. Yet, up to now, it was unknown whether such an extension would trgesame

good properties as proof nets, and first of all, strong normalizatibe.riiain result of

the paper is that this relaxed notion of rewriting is still strongbymalizing.

In the following, we shall first recall the traditional definition afgpf nets and of
their reduction, as well as the systems proposed by Danos and Regnieis[#julate
A-calculus, and by Di Cosmo and Kesner [5] to simulate a calculus withaixglibsti-
tution. Then, we shall define our equivalence relation and prove our imadnem.

1.1 Linear Logic and Proof Nets

Let us recall some classical notions from Linear Logic. We shall considetipoétive
Exponential Linear Logic (MELL) without constanis., the fragment of Linear Logic
whose formulas aref :=a| F® F | FoF | 'F | ?F, wherea ranges over a non-
empty set ofitoms4 that is the sum of two disjoint subsefsand P+, corresponding

to thepositiveatomsp and to thenegativeatomsp™ respectively. In particulap’ is
named thdinear negatiorof p, and vice versa. Linear negation extends to every formula
A by means of the following De Morgan equatioff&® B)- = ALeBL, (?A)1 =

IAL, AXL = A The connective® (tensor) ands (par) are themultiplicatives the
connectives ! (of-course) and ? (why-not) ared¢ixponentialsFor the definition of the
sequent calculus of Linear Logic, we refer the reader to [6].

One of the advantages of MELL is the availability of a graph-like regmestion of
proofs that is highly non-sequential, that is, which is often ableotgdt the order in
which some rules are used in a sequent calculus derivation, when thisirdeleivant.
This representation is known as Proof Nets.

A (MELL) proof net is a finite (hyper)graph whose vertices are occurrentes o
MELL formulas (in the following, we shall often write ‘formulaof ‘occurrence of
formula’) and whose (hyper)edges, namgudks, correspond to connections between
the active formulas of some rule of the sequent calculus of MELL. Thadas below
a link are theconclusion®f the link; the formulas above a link are fisemises

Fig. 1 gives the inductive rules for the construction of proof natsusuall’, T
andA stand for sets of formulas—in this case, sets of conclusions of the ne¢ abo
them—in particular, ? denotes a set of ?-formulas. The raldomis the base case: a
proof net formed of a unique link of typex. The rulegar, contraction derelictionand
weakeningadd a new link of the corresponding type to a previously constryarteof
net. The rulesensorandcutadd a new link and merge two (distinct) proof nets. Finally,
the promotionrule promotes a formula to !A. In order to apply that rule, we need a
proof netM whose conclusions bk are of type ?. As a result, promotion encloses
M into aboxwhose conclusions are the promoted formu#leahd a copy of each ?-
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Fig. 1. Proof Nets.

conclusion oM. The conclusionA is theprincipal port of the box; the conclusions in
I are itsauxiliary ports

Boxes force a strong constraint on thequentializatiorf a proof net {(e., on the
construction of a proof net by application of rules in Fig. 1): in anggiole sequen-
tialization of a proof net that contains a b8xno rule corresponding to a link below
a conclusion oB can be applied before the complete sequentializatidh dfowever,
the notion of box is crucial for the definition of proof net cut-elimiion. In fact, be-
cause of the side condition on promotion (recall that all the auxiliegynises of a box
must be of type ?), we have to keep track of the context that allowed timegtion of
A (again, for a more detailed analysis, refer to [6]).

Remark 1.A proof netM is a (hyper)graph, so it does not contain any explicit infor-
mation on the ways in which it can be sequentialized (think at the strings of some
context free language; the strings do not contain any informationin dlerivations

in the context free grammar of the language). Therefore, let us assumeet@ ljay-
per)graphM formed of formulas and links—such (hyper)graphs are knowprasf
structures The problem ‘is the proof structuhd a proof net?’ is clearly decidable,g,

take the brute force approach that tries ordering links in all the plesaiays. The so
calledcorrectness criteriaharacterize proof nets with no explicit reference to the rules
in Fig. 1. For instance, the Danos-Regnier criterion statesMhiata proof net when all
theswitchesf M are trees (a switch is a graph obtained by collapsing some boxes and
by removing some edges). For a detailed discussion of correctness @itdrad their
complexity, see [3, 7].

The rewriting rules in Fig. 2 define the cut-elimination procedurgfoof nets. In fact,
each cut-elimination rule in Fig. 2 transforms a proof net into a pnabf(see [6]). In
Fig. 2, a link between instances of the same set of formulas means thatstlzeliak
between each pair/triple of corresponding formulas in that sets.

Definition 1 (PN). Proof Nets is the smallest set of (hyper)graphs closed by the rules
in Fig. 1. PN is the rewriting system defined on Proof Nets by the rules in Fig. 2.

In the following,M € PN will denote thatM is a proof net. Moreover, since we shall
consider several variants of proof net reduction, this will also meanMhetduces
according to the rules d¥N.
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Fig. 2. Proof net cut-elimination.

Theorem 1. PN is strongly normalizing and confluent (Church-Rosser). As a&ons
quencePN has the unique normal form property.

Strong normalization (SN) was proved by Girard in [6] (Girard’s frafoSN uses the
candidats de&ductibilite; a completely syntactical proof of SN can be found in Joinet’s
thesis [8]); the Church-Rosser property (CR) was proved by Dan@.in [

Henceforth, let us writef(N), for the normal form ofN € PN. More generally,
since all the reduction systems that we shall analyze will be derived Pfdrand will
be named by sub/superscripted variant®hf N € PNY will denote thatN reduces
according to the rules d¥N}, andnf¥(N) will denote its normal form (if any).

2 Survey and our proposal

2.1 Simulating theA-calculus: collapsed structural links

When simulating thg-reduction ofA-calculus inPN, the rigidity of the exponential
links makes things difficult: the net translation of a terdoes not always reduce exactly
to the translation of the reduct tesndue to the different shape of the contraction trees
in the translation. This is quite annoying, to the point that thet fieally satisfactory
proof of simulation can be found in [4], where Danos and Regnier dioite a system
where all exponential links are collapsed into one simgley link.

Usual proof nets are mapped into those proposed in [4] by a transiompethat
pushes contraction and dereliction out of all boxes and contracts them todéth&
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describesu by applying it to an example; see the mapping on the left. The rooteof th
exponential tree in the example is not the premise of a contractiorsarat above the
auxiliary port of a box. The collapsed link of type ? that replaces thepireserves the
branches of the tree and the number of boxes that they cross. Every wedkeqis ge-
placed by a new link of type& that introduces a special (crossed) occurreékitef the
formulaA. Every formulaA* marks awveakening branclof the ?-link. A ?weakening
treeis a ?-link connected to weakening branches only; it is the translation ofpr e
nential tree whose leaves are all weakening links. We&kenings a ?-weakening tree
formed of one weakening branch only; it corresponds to the translatt@m exponen-
tial tree formed of a weakening link onlg.@, see the mapping on the right in Fig. 3).
The introduction of the weakening branches is due to technical reasomatitivele is
that we want to keep track of all the erasing rules required by the reductien -Tink

is not present in [4], where weakening branches are simply erased.

AI
@ @ AU/
A a A dp
@ @ ')A AX A/ AII AU/ @
A 2A 2A 8
o o 7
7A 7A LA
\@/ PN (BN
2 oA 2

Fig. 3. Collapsing an exponential tree into a ?-link.

Definition 2 (PNc). Let PN¢ be the set of the proof nets where contractions and expo-
nential crossings at the auxiliary doors of boxes collapse intoigusnary link of type

?, and all the exponential reductions but erasing are collapsed intaigueexponen-

tial reduction step that performs unboxing, duplication and box inolysks shown by
the example in Fig. 4.

@ @
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cut

Fig. 4. The exponential rule dPNc.
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The exponential rule d?N¢ introduces a ?-weakening cut for every weakening branch
of the ?-link in the redex. In order to erase the corresponding bdxaisgctits must be
explicitly eliminated by means of an erasing rule. The erasing rubefis the obvious
translation of the erasing rule 8N: on the left-hand side, replace the weakening link
by a ?-weakening and the auxiliary port crossings by ?-link brancheseaigtit-hand
side, transform each branch into a weakening branch by puttingjrek above its leaf.
When the ?-link in the redex is a ?-weakening tree witlianches, the exponential rule
degenerates intoweakening duplicatiothat creates copies of the box in the redex
and splits the cut inta ?-weakening cuts. In particular, when the tree is a ?-weakening
(i.e, n= 1), the left-hand side and right-hand side would coincide; thereforesder

to not introduce trivial reduction loops, the exponential rule deesapply to a ?-
weakening cut; the only rule that applies to that cuts is erasing. InHd]absence of
weakening branches corresponds to an exponential rule in which the ?-wepketsin
introduced by our version of the rule are automatically eliminated.

Remark 2 (No exponential axiom3he transformatiomp is not defined for the proof
nets that contain exponential axiom( !A, ?2A+ axioms). From the point of view of
provability, this is not a problem, for it is well-known that each @roet can ba)-
expanded into another one with the same conclusions that contains atdorits only
(i.e. p, pt axioms only). But, for a detailed analysis of proof net reduction andsof i
relations withA-calculus, that unrestrictagtexpansion is unacceptable. Therefore, let
us constraim-expansion to exponential axioms. Namely, theexpansion replaces
each A, ?2At axiom with a box containing the axiom A' and a dereliction link from
A' to ?2AL. Every reduction oM € PN is simulated by a reduction of itg-expansion,
and similarly forM € PN¢c. Therefore and w.l.0.g., in the following, we shall restrict
PN to the case without exponential axioms. In this wayPN — PNc is total.

Proposition 1. Let M€ PN. For every r: u(M) < P, there is a non-empty: M —* N
s.t. P=p(N). ThereforePN¢ is SN and CR, andfc(i(M)) = u(nf(M)).

The obvious limitation of this approach is that its reduction is toarse grained: it
really performs in one single step all the duplication, erasure andximipoperations
involved in af3-reduction step for th&-calculus. For this reason, if one wants to study
finer reductions on the-terms, like the ones involved in handling explicit substitusion
this system turns out to be inadequate: it throws out the baby wathath water.

2.2 Simulating explicit substitutions: fusion and splitting of contraction links

In [5], the limitations of botiPN andPN¢ are recognised, and another system is pro-
posed, where it is possible to fuse twary contraction links together (see thesion
rule in Fig. 5) and where the irrelevance of the order of contraction arddrmation

is taken into account via a reduction rule that allows to push some caotraatside a
box (see the push rule in Fig. 5).

This approach is less coarse grained, and it was the first solution &piating
explicit substitutions irPN, but it still suffers from a certain rigidity of the extended
reductions, that makes the translation frarsalculus with explicit substitutions into
PN cumbersome (while the propagation of the substitutions is falthinirrored, the
translation of a cut forces all the duplications to be performed at once).
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Fig. 5. Fusion and push.

2.3 Our approach: rewriting modulo an equivalence relation

If one looks carefully at the previous approaches, one really finds atititby are both
trying to handle contraction links as associative-commutative operasely floating
in and out of boxes: Danos and Regnier work on a representative AQtfessociative-
commutative) equivalence class which is obtained by collapsing all the treegpof
nential links and pushing them outside of all boxes; Di Cosmo and Kexdlogr a finer
control on how to collapse and push in or out of boxes the contracti&s.li

The limitations of the previous approaches clearly point out the neadmifre flex-
ible system, which accepts explicitly the associative-commutative nattite contrac-
tion operator, allowing a finer control of duplication and propagatisubstitutions in
the nets. For this reason, we introduce an equivalence relation Proof Nets and
define reduction on the corresponding equivalence classes.

Definition 3 (PNac). The equivalence relatior, named AC, is the context closure of
the graph equivalences in Fig. 6. Let us extend the reductiéNato the equivalence
classes of Proof Nets as K N iff IM',N’ : M ~ M’ — N’ ~ N. We shall writePNac
for Proof Nets equipped with this new reduction.

WA M A W W WM
\@/ E)/ TN
MW~ A A A~ @
© o A &
2 2

Fig. 6. AC congruence.

That extension oPN preserves the normal forms, as shown by the next proposition,
which proves indeed th&Nac is a fine analysis dPNc.

Proposition 2. For every MN € PNac, M ~ N iff u(M) = u(N). Then, let M2$* N.

1. There are (M) 5* P and UN) S* P.
2. nfc(UM)) = nfc(U(N)) andnf(M) ~ nf(N).
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3 Main results

The main result of the paper is thRANac is strongly normalizing and has the unique
normal form property (modul8C).

Theorem 2. Let M e PNc.

1. Let M-S N with N cut-free. Then N nf(M).
2. Every reduction of M is finite.

The first item is a trivial consequence of Proposition 2 (a particular oagg. The
proof of strong normalization is by reduction to terminatiorPdfc.

3.1 Overview of the proof technique

The key point in relatind®Nac to PNc is the study of the so-callepersistent paths
an invariant introduced by Geometry of Interaction. Persistent paths eapeitintu-
itive idea that every connection (path) between the nodes of a rétlo¢tM is the
deformation of some connection (path) between the nodkk(ske [4]). In fact, along
the reduction oM certain connections are brokead, take the path betweeh and
B in the multiplicative rule), while othergersist in particular, the paths that persist
after every reduction yield the normal form. Geometry of Interaction is gabahic
formulation of the previous notion of path deformation, even  ithea ‘reduction as
path composition’ was already implicit in Lévy labellgetalculus. For a survey on the
relations between persistent paths, Lévy’s labels and Geometry of Intersegidar
pathssee [1].

Persistent paths will be defined and studied in section 4. There, we shigh ass
norm to everyM € PNac in terms of the persistent paths jofM) (actually, in terms
of the persistent paths that do not collapse). That norm is decreased ledtittions
of PNac with a correspondence iPNc, while it is left unchanged by duplication and
commutative conversion. In section 5, we shall analyze the transformsatiat sim-
ulate duplication and commutative conversionPiNc. That analysis will lead us to
define a second norm (section 5.4) that is decreased by every one-step reduction

Unfortunately, the previous proof schema does not work if directplia@ to PN¢
andPNac. In fact, in order to fully exploit it, we must tackle two technical difflties.

The first problem is connected with duplication: we need a way to counutimer
of box duplications in a reduction. For that purpose, instead of iagdd some mea-
sure defined on the whole reduction, we exploit the presence of weakéangely,
using weakening, we define a proof structiliré, atick (see section 5.3), that reduces
to the empty net and s.t. the proof structivé obtained by inserting a tick into each
box of M is a proof net. Since each box duplication duplicates a tick, the number of
boxes duplicated in a reduction is equal to the number of new ticks iretustr

The second problem is that ticks might disappear along the reduction bexdaurse
erasing rule. Thus, in order to preserve our counting device, we haleddayg garbage
collection until the end of the computation (indeed, this approach giegpbther tech-
nical parts also). Namely, let us denoteMy%* N a reduction that does not contain

erasing rules and byN,# the restriction oPNac to that non-erasing reduction.
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Lemma 1. For every Me PNac, if M 25* N then M2+ p 25 N. ThereforePNac is
terminating iffPNx¢ is terminating.

Henceforth, we shall restrict to the study BR,® and of the corresponding system
PN¢c",i.e., PNc restricted to the non-erasing reductiév%. That analysis will conclude

with the proof of strong normalization &N~ (Lemma 13) that, by Lemma 1, proves
the strong normalization d¥tNac as well.

4 Paths inPNZ"

A pathin a proof netM is an undirected path in the graph M that, crossing any
link but axiom and cut, moves from a premise to the conclusion of tilednd that,
crossing an axiom/cut, moves from one conclusion/premise of the #&ubrno the
other conclusion/premise.

Let M be a proof net. We shall denote M) the set of its paths and we shall
write Q) C @to denote thaty is a subpath ofp. Remarkably, wheM is in normal form,
®(M) is finite and is the set of thelementary pathef M (a path is elementary when
it does not cross any cut); instead, whdrcontains cuts, the paths bf may loop and
®(M) may be infinite.

4.1 Persistent and permanent paths

After a reduction step, paths deform or even vanish, so there is a natiiah rof
residualof a path along a proof net reduction: as in [4], this notion can be captured
by associating to eveny: M - N, a functionr : ®(N) < ®(M) that maps a path of

N to its ancestorin M. The notion of residual extends to a reducts ror;...rg by
function compositioni.e, p=Tg-T1-...-Tk.

We remark thap is total; that is, forp : M <" N, every pathp € ®(N) is the
deformation of some path iM. Moreover, every deformed pathresults from the
contraction to a node of some subpathpd); therefore, eitherp is essentially the
same ap(), or |g| < [p(9)|. Howeverp is not onto. In fact, a path & disappears in
the following cases:

1. The path contractsto a connection between the premises of a cut that sdheed
alongp (e.g, the path betweeArsB andA* ® B+ in Fig. 7).

2. The execution of a multiplicative or exponential cut disconnectp#tle. For in-
stance, take the dashed path in the right-hand side of Fig. 7.

The two cases above correspond to two completely different phenomena. firsthe
case, the path disappears enclosed into a longer path that eventually conteafds t
mula. In the second case, the reducspiitsthe path. Thus, in the first case, we can say
that the pattpersistsalong the reduction, as a trace of it is still present in the resulting
proof net; in the second case, the path has no image in the result.
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Fig. 7. Paths.

Definition 4 (persistent paths).Letp : M -%* N. A pathg € ®(M) is p-persistent

when there igp € P(N) s.t.  C p(W). The p-persistent pathp is said p-permanent

wheng=p(Y) for somey € ®(N). A path of M ispersistentor permanentwhen it is
p-persistent, op-permanent, for every reductignof M.

Henceforth, W (M) will denote the set of the permanent pathdvbfand W (M) will
denote the set of its persistent paths. By definitidn(M) is a superset of the closure
by subpaths o#(M); further, we shall prove th& (M) is that closure, see Lemma 4.

Lemma 2. Let M € PN¢G". Every occurrence of formula in M is persistent.

Therefore, the set of the persistent paths is not empty. Indeed, it idyreaén that
every path corresponding to a redér( every cut paih, A') is persistent. Moreover,
everyvirtual redex i.e., every path that along some reduction will eventually reduce to
a cut pair, is persistent, see [4] and [1].

4.2 Folding and unfolding of permanent paths

The permanent paths of a proof tare the connections & that are invariant under
any reduction. So we expect th#fM) be an image ohf2"(M); that is, we expect
Y(M) =p(d(nfd"(M))), for any normalizing reductiop. However, that equivalence is
not immediate. In fact, thougPN:" has the unique normal form property, two distinct
reductions might build the same pathrdg” (M) by combining different paths dfl.

Lemma 3. Let M € PNZ". For every i : M = My and 1, : M < My, there exist
p1: M1 5" N andpz : Mz =% N, s.t.T1p1 = T2p2.

Proposition 3. Let N= nf3"(M). There is a canonical mafpldy : ®(N) — ®(M) s.t.
foldw = p, for everyp : M <" N. MoreoverW(M) = foldy (®(N)).

The previous proposition proves the soundness of the defirgfiggermanent paths.
Moreover, letp : M %* N; it proves that the restriction ¥ to permanent paths is

an onto magp : W(N) <* W(M) (this is a consequence 84(M) = foldu (P(P)) =
p-foldn(P(P)), whereP = nf2" (M) = nfg"(N)). We stress thgi(W(N)) = W(M) is
not a trivial consequence of the definition of permanent paths, as thatidefinivially

implies p(WY(N)) 2 WY(M) only. Finally, as a corollary of Proposition 3, we get that
every persistent path can be prolongated to a permanent path.
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Lemma 4. For everyp € W (M), thereisp € W(M) s.t. o C .
Theunfoldingof @ € (M) is the set of its residuals in the normal forie,,
unfoldu (@) = {Y € P(nf"(M)) | foldm () = @} = foldy*(¢)
Thecardinality of a path is the cardinality of its unfoldinge.,
#(@) = [unfoldw (@)

By definition, #¢) > 0 iff @ € W(M). Thus,S{#(@) | € d(M)} = S{#) | @€
W(M)} = |P(nfd¥(M)[; that is another way to express the combinatorial fact that no
finite reduction creates an infinite number of residuids, () is always finite).

4.3 The norm of PNg"

In the reduction oPNZ" we have two distinct phenomena. On one side, exponential
reductions tend to unfold permanent paths, increasing their numbereathér side,
every reduction reduces the length of some permanent path. The previsitrations
summarize in the following lemma (as usugl,denotes the length of the paghwhile

PO = {W[pW) =o}).

Lemma5. Letp: M -5* N. For everyp € W(M),
1 #@) =3{#y)|ve 5__1(?)}:
2. |@ > W], for everyp € p*(¢).

3. Moreover, ifp is not empty and is not a sequence of weakening duplications, then
|| > |@| for somepe W(M).

Let us equigPN:" with the following norm:
IMIE =Y {#@) -9l | g M)} = {#(9) -9l | 9 W(M)}
We remark that, sinc#(M) is finite, M| & is well-defined ice., it is finite).
Lemma 6. For everyp: M <* N, [N||& < [[M||&. Moreover, wherp is not empty and

is not a sequence of weakening duplicatidig| s < M| &.

5 Relating PN,¢E to PNG™

The grain of the reduction iRN ¢ is finer than infPNG". In particular, the commutative
conversion and the duplication rule have no corresponden@dgl’; moreover, in

PNA& we reduce modul@C. For the part ofPN ¢ with a direct correspondence in
PN the situation is clear: sindd £ N impliesp(M) = p(N), this part of the system

is strongly normalizing and
IM[[Zc = I(M)[§ for M € PNRE

seems the natural candidate for expressing that property. For the regaauit of
PNRZ, let us analyze each rule separately.
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5.1 Commutative conversion

Whenr : M 25 ... N, u(N) andpu(M) are equal but for some boxes afM) that have
been moved inside some other boxiN), see Fig. 8.

A A A A A A
AL T ) \é)/ AL T
2 AL reom A AL
cut cut
x

30

Fig. 8. Commutative conversion iANc.

Lemma 7. Letr: M 25 N.
1. nfc"(U(M)) = nfc" (K(N));
2. fold,my = fold,ny andW(u(M)) = W(u(N));
3. [IM[2c = IN[IZc-
Therefore, the commutative conversion inducedPdit preserves normal forms and

persistent paths. Moreover, though it does not decrease the norm onipiathsadily
seen that we cannot have an infinite sequence of commutative conversions.

Definition 5 (depth). The depth of ai-link, and then of the corresponding box, is the
number of boxes that encapsulate it. Treptho(M) of a proof net M is the sum of the
depths of it3-links.

Letn'(M) be the number of !-links iM. We define
IM||" = n'(M)? —a(M)
Lemma 8. For any Me PN Z.

L M| =o0.
2. 1fr:M 55, N, then|N|' < [|M]|'.

5.2 Duplication

This is the trickiest case. Fig. 9 illustrates by means of an exampleahsformation
O (M) ﬁdup K(N) corresponding to : M £>du.p N. In that example, we assume that
the contractiort in the redex join two exponential subtrees whose leavesAirand
A’ A" respectively; that two sets of leaves are the premises of the two nemdest
of cin u(N). As every rule ilPNc, & defines a mapy : ®(U(N)) — d(u(M)).
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A/ A/I A//I A/ A/I AII !
\éf AT @ ?f AL T AL T
oA AL é? Sap 2A " 1AL IAL
cut | cut
nr cut oxr

Fig. 9. Duplication inPNc.

Lemma9. Letr:M 25, N.

1. nfc" (M) = nfc" ((N));

3. M]3 = INII&c-

5.3 Ticked proof nets

Usually, the proof that duplication is terminating exploits the thett, in a sequence
of duplications, no box is duplicated twice by the same contractioritis is the
intuitive idea; formally, we should reason in terms of residuals. i@y, since we
assume to know th&N¢c" is strongly normalizing, we can resort to a technical trick.
Duplication does not decrease the length of any permanent path. So, in @rder t
prove that it is terminating, we need a measure of the unfolding ticauges. The re-
mark that duplication tends to increase the number of persistent paths sekuitsul:
unfortunately, there ael £5,,, N for which |W(u(M))| = |W(u(N))|. For instance, the
proof netM in Fig. 10 reduces to an axiom; so the pattirawn in the figure is the only
non-empty permanent path bf. The pathg contains two occurrences of the pafh
(rooted at [A2AL)) that loops inside the box.e., = @U@ P@. After M S, N,
the residual ofis ¢ = ¢4’ @, Y" ¢, wherey andy” are residuals af that loop inside
two distinct boxes of. In other words, instead of duplicating some permanent path,
the duplication inM unfolds the loop described by the unique permanent path in the
proof net. The situation would be different if the bBxn M would contain a permanent
path: that path would be duplicated by the duplicatioBof

] ) N
ok, )
A9 A
(A |(ApAL)
it

Fig. 10. Unfolding the loop of a permanent path.
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Lep p be any atomic formula. Aick of PN¢ is a proof structurd ™ as that in
Fig. 11; andu(T¥) is a tick of PNac. A tick is not a proof net but, for every € PNc,
the proof structureéM = NUTY obtained by attaching the tick¥ to N is a proof
net (.e., M € PNc); moreoverM 25, N, by contraction of the weakening cut T .
Therefore, leN be the interior of the most external box of some proof net; by repdacin
M for N, we get a ticked boB € PN¢. Then, by recursive application of this ticking
procedure to the boxes By we eventually get a proof net whose boxes are all ticked.

ax
L
@ pep
2p-®p) !(pept)
cut
Fig. 11. A tick.

Definition 6 (PNxc). A box contains (at least) a tick when its interior is a proof net
BUTY and TV is atick. A proof net oPNac is tickedwhen each of its boxes contains
a tick. Let us denote bRNX. the set of the ticked proof nets BNac. We say that
MY € PNjxc is aticking of M € PNac when M can be obtained from Wby erasing
some of its ticks.

The set of the ticked proof neBN .. is closed by reduction,e., for anyM* € PNx
and anyp : M¥ 25 NY',NY € PNc. In the following,M*" will always denote some

ticking of M € PNc (by the way, there exists at least dvi€ for everyM). By definition,
MY 5% M, for anyM" .

Lemma 10. The£S-reduction of Me PNac is terminating iff the2-reduction of any
M is terminating.

By Lemma 10, strong normalization BNac reduces to that d?N,(C. Moreover, as the

ticks of M* are permanent, duplication is not a problenPMyc. In fact, letn¥ (M) be
the number of ticks iM. For anyM € PN &, we define

Ml = IWM)IE  where [P = n" (nfg"(P)) —n*(P) for P e PN
Lemma 11. For any M € PNc.

1 MYz >0.
2. 1fr:M¥ 25 N7, then|NY |4 < [[MY || xc; moreover|NY |4 < [[MY || xc, when r
is a duplication.
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5.4 The norm of PNXc

LetM € PN, we take

(M) ac = (IMIZc+ M, M1 )

with the lexicographic orderinge., < is the reflexive closure gfy,b;) < (az, by, ) iff
(a1 < ap) or (ay = az A by < bp). By definition,(0,0) < (M) s
We remark that, for anil,N € PN¢, M ~ N implies (M) \c = {N) ac-

Lemma 12. Let M" € PNx.. For every i MY 25 NY' (N ) pc < (M ) pc-

Lemma 13. PN,¢ is strongly normalizing.

6 Conclusions and future work

We have presented here for the first time a proof of strong normalizédi Multiplica-
tive Exponential Linear Logic’s Proof Nets with an associative-comnugatbntrac-
tion free to float in and out of proof boxes. This is interesting feesal reasons.

First, this is another significative application of thermalization by persistent
pathsslogan which can be found in Girard’s Geometry of Interaction. But alew, n
that we know that we can rearrange contraction trees as we like during a cedotti
a proof net, and still have the strong normalization property, we odragk to analyse
how the classicgb-reduction of the lambda calculus, or the more refined reductions of
calculi with explicit substitutions are simulated in our system. \¥geet not only to
be able to provide a much simpler simulation than the ones in thatlitex, but also to
extract fromPNac a calculus of explicit substitutions with good properties.
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