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Abstract. The notion of isomorphisms of types has many theoretical
as well as practical consequences, and isomorphisms of types have been
investigated at length over the past years. Isomorphisms in weak system
(like linear lambda calculus) have recently been investigated due to their
practical interest in library search. In this paper we give a remarkably
simple and elegant characterization of linear isomorphisms in the setting
of Multiplicative Linear Logic (MLL), by making an essential use of the
correctness criterion for Proof Nets due to Girard.

1 Introduction and Survey

The interest in building models satisfying specific isomorphisms of types (or
domain equations) is a long standing one, as it is a crucial problem in the de-
notational semantics of programming languages. In the 1980s, though, some
interest started to develop around the dual problem of finding the domain equa-
tions (type isomorphisms) that must hold in every model of a given language.
Alternatively, one could say that we are looking for those objects that can be
encoded into one-another by means of conversion functions f and g without loss
of information, i.e. such that the following diagram commutes

A

f

idA B
g

idB

The seminal paper by Bruce and Longo [5] addressed the case of pure first
and second order typed λ-calculus with essentially model-theoretic motivations,
but due to the connections between typed λ-calculus, cartesian closed categories,
proof theory and functional programming, the notion of isomorphism of types
showed up as a central idea that translates easily in each of those different but
related settings. In the framework of category theory, Soloviev already studied
the problem of characterizing types (objects) that are isomorphic in every carte-
sian closed category, providing a model theoretic proof of completeness for the
theory Th1

×T in Table 1 (actually [21] is based on techniques used originally
in [15], while another different proof can be found in [16]). A treatment of this



same problem by means of purely syntactic methods for a λ-calculus extended
with surjective pairing and unit type was developed in [4], where the relations
between these settings, category theory and proof theory, originally suggested
by Mints, have been studied, and pursued further on in [11]. Finally, [7] provides
a complete characterization of valid isomorphisms of types for second order λ-
calculus with surjective pairing and terminal object type, that includes all the
previously studied systems (see table 1).

(swap) A → (B → C) = B → (A → C)
}

Th1

1. A×B = B ×A
2. A× (B × C) = (A×B)× C
3. (A×B) → C = A → (B → C)
4. A → (B × C) = (A → B)× (A → C)
5. A×T = A
6. A → T = T

7. T → A = A































Th1

×T

8. ∀X.∀Y.A = ∀Y.∀X.A
9. ∀X.A = ∀Y.A[Y/X] 1

10. ∀X.(A → B) = A → ∀X.B 2

}

+ swap = Th2

11. ∀X.A×B = ∀X.A× ∀X.B
12. ∀X.T = T



















































































Th2

×T

split ∀X.A×B = ∀X.∀Y.A× (B[Y/X])



































































































− 10, 11 = ThML

A,B,C stand for any type, while T is a constant for the terminal type unit.
Axiom swap in Th1 is derivable in Th1

×T via 1 and 3.
Table 1. Theories of isomorphisms for some type lambda calculi.

These results have found their applications in the area of Functional Pro-
gramming, where they provide a means to search functions by type (see [18, 19,
17, 20, 9, 8, 10]) and to match modules by specifications [2]. Also, they are used
in proof assistant to find proofs in libraries up to irrelevant syntactical details [6].

Linear isomorphisms of types Recently, some weaker variants of isomorphism of
types showed to be of practical interest, linear isomorphism of types in particular
(e.g. , for library search in databases), which correspond to the isomorphism of
objects in Symmetric Monoidal Categories, and can be also described as the
isomorphism of types in the system of lambda calculus which corresponds to

1 Provided X is free for Y in A, and Y 6∈ FTV (A)
2 Provided X 6∈ FTV (A)



intuitionistic multiplicative linear logic. (A description of this system can be
found in [22]).

In [22] it was shown that the axiom system consisting of the axioms 1, 2, 3,
5, and 7 defines an equivalence relation on types that coincides with the relation
of linear isomorphism of types, and in [1] a very efficient algorithm for deciding
equality of linear isomorphisms is provided; also, [12] provides a model theoretic
proof of the result in [22].

In this paper, instead of studying linear isomorphisms of intuitionistic for-
mulae, as is done when considering directly linear λ-terms, we focus on linear
isomorphisms of types inside the multiplicative fragment (MLL) of Linear Logic
[13], which is the natural settings for investigating the effect of linearity. We
should stress that isomorphisms in MLL are not the same as in linear lambda
calculus: MLL is a richer system, allowing formulae, like A⊥⊗A, and proofs that
have no correspondence in linear lambda calculus, so we are investigating a finer
world. But a particularly nice result of this change of point of view is that the
axioms for linear isomorphisms are reduced to a remarkably simple form, namely,
to associativity and commutativity of the logical connectives tensor and par of
MLL, plus the obvious axioms for the identities.

For example, if we interpret implication A → B in linear lambda calculus
as linear implication A−◦B in Linear Logic, which in turn is equivalent to
A⊥

OB, the isomorphisms T → A = A becomes the simple identity isomor-
phism ⊥OA = A. Similarly, currying ((A×B) → C = A → (B → C)) becomes
just associativity of the par connective (A⊥

OB⊥)OC = A⊥(OB⊥
OC) and Swap

(A → (B → C) = B → (A → C)) becomes just A⊥(OB⊥
OC) = B⊥(OA⊥

OC),
which is a consequence of associativity and commutativity of par.

Formally, isomorphisms of formulae in MLL is defined as follows:

Definition 1 (Linear isomorphism) Two formulae A and B are isomorphic
iff

– A and B are linearly equivalent, i.e. ⊢A⊥, B and ⊢B⊥, A

– there exists proofs of ⊢A⊥, B and ⊢B⊥, A that reduce, when composed by a
cut rule to obtain a proof of ⊢A⊥, A (resp. ⊢B⊥, B)), to the expansion of
the axiom ⊢A⊥, A (resp ⊢B⊥, B) after cut elimination3.

We show in this paper that two formulae A and B are linearly isomor-
phic if and only if AC(⊗,O)⊢A = B in the case of MLL without units, and
ACI(⊗,O)⊢A = B in the case of MLL with units, whereAC(⊗,O) andACI(⊗,O)
are defined in the following way:

3 That is to say, to the proof of ⊢A⊥, A obtained by allowing only atomic axioms.



Definition 2 (AC(⊗,O)) Let AC(⊗,O) denote the set constituted by the four
following equations:

X⊗Y = Y⊗X (XOY )OZ = XO(Y OZ)
XOY = Y OX (X⊗Y )⊗Z = X⊗(Y⊗Z)

AC(⊗,O)⊢A = B means that A = B belongs to the equational theory generated
by AC(⊗,O) over the set of linear logic formulae; in other words, it means that
the formulae are equal modulo associativity and commutativity of O and ⊗.

Definition 3 (ACI(⊗,O)) Let ACI(⊗,O) denote the set constituted by the
equations of AC(⊗,O) plus:

X⊗1 = X XO⊥ = X

ACI(⊗,O)⊢A = B means that A = B belongs to the equational theory generated
by ACI(⊗,O).

As always, in the investigation of theories of isomorphic objects, the sound-
ness part is easy to prove:

Theorem 4 (Isos soundness). If ACI(⊗,O)⊢A = B, then A and B are
linearly isomorphic

Proof. By exhibiting the simple nets for the axioms and showing context closure.

All the difficulty really lies in the proof of the other implication, completeness:
the rest of the article focuses on its proof. To do that, we use in an essential way
the proof-nets of Girard.

Let’s now recall some preliminary definitions from linear logic (but we refer
to [13] for a complete introduction):

Definition 5 (proof nets) A proof net is a structure inductively obtained start-

ing from axiom links A A?
ax

via the three construction rules

A B
A�B

Γ ∆ A B
AOB

Γ A A?

cut

Γ ∆

Definition 6 (simple nets) A proof net is simple if it contains only atomic
axiom links (i.e. axiom links involving only atomic formulae).

It is quite simple to show that

Proposition 1 (η-expansion of proof nets). For any (possibly not simple)
proof net S, there is a simple proof net with the same conclusions, which we call
η(S).



Proof. This is done by iterating a simple procedure of η − expansion of non
atomic axiom links, which can be replaced by two axiom links plus one par and
one times link.

This means that, as far as provability is concerned, one can restrict our at-
tention to simple nets. We will show that also as far as isomorphism is concerned
we can make this assumption.

We first characterize isomorphic formulae in MLL without units, by reducing
isomorphism to the existence of two particular proof-nets called simple bipartite
proof-nets. Then we show that we can restrict to non-ambiguous formulae (that
is, formulae in which atoms occurs at most once positive and at most once
negative). This characterization in term of nets allows to prove completeness
of AC(⊗,O) for MLL (without units) by a simple induction on the size of the
proof-net.

In the presence of units, we first simplify the formulae by removing all the
nodes of the shape ⊥OA and 1⊗A. Then we remark that isomorphisms for
simplified formulae are very similar to the case without units. By showing a
remarkable property of proof-nets for simplified formulae, we can indeed reduce
the completeness proof to the case without units.

The paper is organized as follows: reduction to simple bipartite proof-nets
and non-ambiguous formulae will be detailed in sections 2 and 3. Then we will
show the final result in section 4 before extending it to the case with units in
section 5.

2 Reduction to simple bipartite proof nets

First of all, we formalize the reduction to simple nets hinted at in the introduc-
tion.

Definition 7 (tree of a formula, identity simple net) A cut-free simple proof
net S proving A is actually composed of the tree of A, (named T (A)), and a set
of axiom links over atomic formulae. We call identity simple net of A the simple
cut-free proof net obtained by a full η-expansion of the (generally not simple) net

A A⊥. This net is made up of T (A), T (A⊥) and a set of axiom links that
connect atoms in T (A) with atoms in T (A⊥).
Notice that, in simple nets, the identity axiom for A is interpreted by the identity
simple net of A.

A first remark, which is important for a simple treatment of linear isomor-
phisms, is that we can focus, w.l.o.g., on witnesses of isomorphisms which are
simple proof nets.

Lemma 1 (Simple vs. non-simple nets). If a (non-simple) net S reduces
via cut-elimination to S′, then the simple net η(S) reduces to η(S′).



Proof. It is sufficient to show that if S⊲1S
′ (one step reduction), then η(S)⊲∗η(S′)

(arbitrary long reduction). If the redex R reduced in S does not contain any
axiom link, then exactly the same redex appears in η(S) that can therefore be
reduced in one step to η(S′). Otherwise R contains an axiom link, that may be
non atomic (if the axiom link is atomic, then the considered redex is exactly
the same in S and η(S) and the property is obvious). If F is non atomic and
F F⊥ is the cut link of R, let n be the number of atoms of F (counted with
multiplicity). Then n − 1 is the number of connectives in F , and η(S) can be
reduced to η(S′) in 2n− 1 steps (n− 1 steps to propagate the cut link to atomic
formulae, and n steps to reduce every atomic axiom link produced this way).

Theorem 8 (Reduction to simple proof nets). Two formulae A and B are
isomorphic iff there are two simple nets S with conclusions A⊥, B and S′ with
conclusions B⊥, A that when composed using a cut rule over B (resp. A) yield
after cut elimination the identity simple net of A (resp. B).

Proof. The ‘if’ direction is trivial, since a proof net represents a proof and cut
elimination in proof nets correspond to cut elimination over proofs.
For the ‘only if’ direction, take the two proofs giving the isomorphism and build
the associated proof nets S and S′. These nets have as conclusions A⊥, B (resp.
B⊥, A), and we know that after composing them via cut over B (resp. A) and
performing cut elimination, one obtains the axiom net of A (resp. B). Now take
the full η-expansions of S and S′ as the required simple nets: by lemma 1, they
reduce by composition over B (resp. A) to the identity simple net of A (resp.
B).

We will show now that if two formulae are isomorphic then the isomorphism
can be given by means of proof nets whose structure is particularly simple.

Definition 9 (bipartite simple proof-nets) A cut-free simple proof net is
bipartite if it has exactly two conclusions A and B, and it consists of T (A),
T (B) and a set of axiom links connecting atoms of A to atoms of B, but not
atoms of A between them or atoms of B between them (an example is shown in
figure 1).

Lemma 2 (cuts and trees). Let S be a simple net (not a proof net) without
conclusions built out of just T (A) and T (A⊥), with no axiom link, and the cut
A A⊥. Then cut-elimination on S yields as a result just a set of atomic cut
links pi p⊥i between atoms of A and atoms of A⊥.

Proof. This is a simple induction on the size of the net.

Theorem 10 (Isomorphisms are bipartite). Let S be a cut-free simple proof
net with conclusions A⊥ and B, and S′ be a cut-free simple proof net with con-
clusions B⊥ and A. If their composition by cut gives respectively the identity
simple net of A and B, then S and S′ are bipartite.



atomic axiom links

T(A) T(B)

BA

Fig. 1. The shape of a bipartite proof net.

Proof. We actually show the contrapositive: if S or S′ is not bipartite, then
their composition by cut is not bipartite, hence is not an identity proof net. By
symmetry, we can assume w.l.o.g. that S is not bipartite, and contains an axiom
link between two atoms of A⊥. We claim that the composition of S and S′ by
cut over B is not bipartite.
Since S and S′ are cut-free, their composition only contains a single cut link
(between B and B⊥). Since S and S′ are simple, every axiom link of their
composition is atomic. Hence every (atomic) axiom link of the net S S′ that is
reduced by cut elimination is connected to an atom of B or B⊥. In particular,
the axiom link of S only connected to atoms of A is not reduced. This proves
that cut elimination in S S′ does not lead to a bipartite net.
As a consequence, the theorem holds.

3 Reduction to non-ambiguous formulae

To prove the correctness theorem, we first show that one can restrict our study
to non-ambiguous formulae, i.e. to formulae where each atom appears only once
positive and one negated.

Definition 11 (non-ambiguous formulae) We say that a formula A is non-
ambiguous if each atom in A occurs at most once positive and at most once
negative. For example, A⊗B and A⊗A⊥ are non-ambiguous, while A⊗A is not.

In the following, we will call substitution the usual operation [G1/A1, ...Gn/An]
of replacement of the propositional atoms Ai of a formula by the formulae Gi.
A substitution will be denoted by greek letter σ, τ, ..., and we will also consider
substitutions extended to full proof nets, i.e. if R is a proof net, σ(R) will be
the proof net obtained from R by replacing all formulae Fj appearing in it by
σ(Fj).

But we will also need a weaker notion, renaming, that may replace different
occurrences of the same atom by different formulae in a net.



Definition 12 (renaming) An application α from the set of occurrences of
atoms in a proof net R to a set of atoms is a renaming if α(R) (the net obtained
by substitution of each occurrence p of an atom of R by α(p)) is a correct proof
net.

Note that if R is simple, the definition of α only on the occurrences of atoms
in axiom links is sufficient to define α on every occurrence in R. If R is simple
and bipartite, then the definition of α only on the occurrences of atoms in one
conclusion of R is sufficient to define α on every occurrence in R.
Note also that, if the conclusions of R are ambiguous formulae, then two different
occurrences of the same atom can be renamed differently, unlike what happens
in the case of substitutions.

As expected, a non-ambiguous formula can only be isomorphic to another
non-ambiguous formula.

Lemma 3 (non-ambiguous isomorphic formulae). Let A and B be isomor-
phic formulae, and α a renaming such that α(A) is non-ambiguous, then α(B⊥)
is non-ambiguous.

Proof. If A and B are isomorphic formulae, then (by theorem 10) there exist a
bipartite proof net with conclusions A, B⊥. Since α is a renaming, there also
exists a bipartite proof net with conclusions α(A), α(B⊥). Then, α(A) and α(B⊥)
have exactly the same atoms. And since α(A) is non-ambiguous, α(B⊥) is also
non-ambiguous.

We now prove that isomorphism is invariant by renaming.

Theorem 13 (renaming preserve isomorphisms). If A and B are linearly
isomorphic, let R and R′ be the associated simple proof nets (with conclusions
A⊥, B and B⊥, A respectively). If α is a renaming of (the occurrences of) the
atoms of R, then there exists α′, a renaming of the atoms of R′ such that α′(A)
and α(B) are isomorphic, i.e.:

– α′(R′) is a correct proof net.
– α(A⊥) ≡ (α′(A))⊥ and α′(B⊥) ≡ (α(B))⊥

– The composition of α(R) and α′(R′) by cut over α(B) (resp. α′(A)) gives
the identity simple net of α′(A) (resp. α(B)).

Proof. We first have to define α′. Since (by theorem 10) R′ is bipartite, it is
sufficient to define α′ only on the occurrences of B⊥, i.e. to define α′(B⊥). So one
can define: α′(B⊥) ≡ (α(B))⊥. Then the composition of α(R) and α′(R′) by cut
over B is a correct proof net. And since reduction of proof nets does not depend
on labels, this composition reduces to an identity net with conclusions α(A⊥)
and α′(A). An easy induction (on the number of connectives of α(A)) shows that
η-reduction in this net gives an axiom link. One then has α(A⊥) ≡ (α′(A))⊥.
But then, the composition of α′(R′) with α(R) by cut over α′(A) is a correct
proof net, that reduces to an identity net (since reduction of proof nets does not
depend on labels) that is the identity simple net of α(B).
Hence, α′(A) and α(B) are isomorphic.



We are finally in a position to show that we can restrict attention to non-
ambiguous formulae.

Lemma 4 (ambiguous isomorphic formulae). Let A and B be isomorphic
formulae such that A is ambiguous, then there exists a substitution σ and for-
mulae A′ and B′ non-ambiguous such that A′ and B′ are isomorphic formulae,
and A ≡ σ(A′) and B ≡ σ(B′).

Proof. Let R and R′ be bipartite proof nets with conclusions B⊥, A and A⊥, B
respectively associated to the isomorphism between A and B. Since it is sufficient
here to define α only on occurrences of atoms of A, one can define a renaming
α such that α(A) has only distinct atoms (i.e. no atom of α(A) occurs twice
in α(A), even once positively and once negatively). In particular, α(A) is non-
ambiguous. Then, theorem 13 gives an algorithm for defining a renaming α′

such that α(A) and α′(B) are isomorphic: in particular α′(A⊥) ≡ (α(A))⊥ and
α(B⊥) ≡ (α′(B))⊥.

Let A′ ≡ α(A) and B′ ≡ α′(B). By theorem 13, A′ and B′ are isomorphic
and α(R) has conclusions A′ and B′⊥.

On α(R) one can define a renaming α−1 such that α−1(A′) ≡ A, and hence
α−1(B′⊥) ≡ B⊥.

Since α(R) is bipartite, it is equivalent to define α−1 on occurrences of R,
or only on occurrences of atoms of A′. But since all atoms of A′ are distinct,
two distinct occurrences of atoms of A′ correspond to distinct atoms of A′. One
can then define a substitution σ on atoms of A′ by: σ(p) ≡ α−1(Occ(p)) where
Occ(p) is the single occurrence of the atom p in A′.

Thus, R ≡ α−1(α(R)) ≡ σ(α(R)): in particular σ(A′) ≡ A and σ(B′⊥) ≡

σ(α(B⊥)) ≡ α−1(α(B⊥)) ≡ B⊥, so σ(B′) ≡ B.
Finally, A′ and B′ are isomorphic non-ambiguous formulae such that σ(A′) ≡

A and σ(B′) ≡ B.

Corollary 1 (reduction to non-ambiguous formulae). The set of couples
of isomorphic formulae is the set of instances (by a substitution on atoms) of
couples of isomorphic non-ambiguous formulae.

Proof. We show each inclusion separately.
Let A and B be two isomorphic formulae. By lemma 4, A and B are instances
of two non-ambiguous isomorphic formulae A′ and B′ (eventually A ≡ A′ and
B ≡ B′).

Conversely let C and D be isomorphic formulae and σ be a substitution
on atoms of C (and then also on atoms of D). Let R and R′ be two bipartite
proof nets associated to C and D. The substitution σ defines on R a renaming
α (any substitution can be seen as a renaming). Let α′ be the renaming defined
on R′, associated to α as in theorem 13. Since σ(C⊥) ≡ α(C⊥) ≡ (α′(C))⊥, α′

is also the renaming induced by σ on R′. By theorem 13, α(C) and α(D) are
isomorphic. Hence σ(C) and σ(D) are isomorphic.

Hence, in what follows, we can focus only on non-ambiguous formulae.



We are now able to show that for non-ambiguous formulae the very existence
of bipartite simple nets implies isomorphism.

Theorem 14 (bipartite simple nets for non-ambiguous formulae). Let
S be a bipartite simple proof net over A⊥ and B, and S′ a bipartite simple proof
net over B⊥ and A. Then their composition by cut over B reduces to the identity
simple net of A (resp. their composition by cut over A reduces to the identity
simple net over B).

atomic axiom links atomic axiom links

A
⊥

cut link

T (B

?

)

T (B)

T (A

?

)

T (A)

AB B
⊥

Proof. Consider the composition of S and S′ by cut over B (see figure).
By lemma 2, cut elimination in the subnet T (B) T (B⊥) gives a set of atomic

cut links between atoms of B and atoms of B⊥. Since S and S′ are bipartite,
each such atomic cut link

is connected to an atomic axiom link between an atom of A⊥ and an atom
of B, and to an atomic axiom link between an atom of B⊥ and an atom of A.
Now, the net only contains atomic redex composed of cut and axiom links. The
reduction of these redex gives the identity tree of A (since there is no axiom link
connecting atoms of A —resp. (⊥A) between them).

atomic cut links

atomic axiom links atomic axiom links

A
⊥

T (A

?

)

T (A)

A

Atoms of  B Atoms of B
⊥

Theorems 14 and 10 have the following fundamental consequence.



Corollary 2. Two linear non-ambiguous formulae A and B are isomorphic iff
and only if there exists simple bipartite proof nets having conclusions A⊥, B, and
B⊥, A.

4 Completeness for isomorphisms in MLL

Using the result of the above section, and the following simple lemma, we can
prove our main result, i.e. completeness of AC(⊗,O) for MLL without constants.

Lemma 5 (isomorphic formulae). If A and B are linearly isomorphic, then
they are both, either O-formulae, or ⊗-formulae.

Proof. Actually, one O-formula and one ⊗-formula can not be isomorphic. If
A1OA2 and A3⊗A4 were isomorphic, then there would exist a simple bipartite
proof-net with conclusion (A⊥

1
⊗A⊥

2
), (A3⊗A4), which is impossible because such

a net does not have a splitting (terminal) tensor, since removing one of both
terminal tensor links does not give two disconnected graphs (by bipartiteness).
Hence two isomorphic formulae must be both, either O-formulae, or ⊗-formulae.

Theorem 15 (Isos completeness). If A and B are linearly isomorphic, then:
AC(⊗,O)⊢A = B.

Proof. By induction on the size of the simple bipartite proof net, given by the
isomorphism, with conclusions A⊥, B.
If A and B are atomic, then the property is obvious.
Else the formulae A⊥ and B are both non atomic (since the net is bipartite,
they must contain the same number of atoms). Moreover, (by lemma 5) since A
and B are isomorphic, one of the formulae A⊥, B is a O-formula and the other
one a ⊗-formula. One can assume, w.l.o.g., that B is a ⊗-formula, and A⊥ a
O-formula.

Now, removing all dangling O nodes in the proof net with conclusions A⊥,
B gives a correct proofs net with conclusions of the form A⊥

1
, . . . , A⊥

k , B1⊗B2. If
one of the formulae A⊥

1
, . . . , A⊥

k contains a tensor node, removing it does not lead
to two disconnected graphs, since (by bipartiteness) every atom of A⊥

1
, . . . , A⊥

k

is connected to the formula B1⊗B2.

B
O

⊗

B1 B2 O

O

A
⊥



The splitting tensor node (that must exist due to Girard’s correctness crite-
rion) is necessarily the B1⊗B2 node. Removing it yields, due to the correctness
criterion, two disconnected proof nets, which are still simple since the axiom
links were not modified.

We can recover from these nets two bipartite simple proof nets (a bipartite
proof net must have exactly two conclusions) by adding O-links under the Ai

(because of AC(⊗,O), the order of the Ai does not matter). This constructs

two formulae A′
1

⊥
(connected with B1) and A′

2

⊥
(connected with B2). The nets

that we obtain contain at least one link less than the original net, and thus, are
strictly smaller. It only remains to verify that B1 and A′

1
are isomorphic, and

that B2 and A′
2
are isomorphic, so that we can apply the induction hypothesis.

B
O

⊗

A
′⊥

B1 B2
OO

To do that, we use the fact that the two initial formulae are isomorphic.
If we put the initial O and ⊗ back, we obtain two formulae A′ and B, that
are isomorphic (by theorem 4). There exists a simple bipartite proof-nets with
conclusions A′ and B⊥. Since the formulae are non-ambiguous, we can extract
from this proof-net to simple bipartite proof-nets; one with conclusions A′

1
and

B⊥
1
, the other with conclusions A′

2
and B⊥

2
. Hence, by theorem 14, A′

1
and B1

are isomorphic, and A′
2
and B2 are isomorphic.

O

A
′⊥

O

O

B
⊗

B1 B2

B
⊥

O⊗

A
′

⊗ B
⊥

2B
⊥

1⊗

By induction hypothesis, AC(⊗,O)⊢A′
1
= B1 and AC(⊗,O)⊢A′

2
= B2, and

thus AC(⊗,O)⊢A′ = B. We can conclude using the fact that AC(⊗,O)⊢A =
A′.

5 Handling the units

We have shown above soundness and completeness result for the theory of iso-
morphisms given in the introduction w.r.t. provable isomorphisms in MLL. This



essentially corresponds to isomorphisms in all *-autonomous categories, which
is a superset of all Symmetric Monoidal Closed Categories (SMCC’s ) without
units . Nevertheless, if we want to get an interesting result also in terms of mod-
els, and handle then also SMCC’s in their full form, we need to be able to add
units to our treatment.

5.1 Expansions of axioms with units: identity simple nets revisited

In the presence of the units 1 and especially ⊥, proof nets in general get more
involved, as ⊥ forces the introduction of the notion of box for which we refer the
interested reader to [13], where a detailed explanation is presented.

For our purpose, it will suffice to recall here the proof-net formation rules for
the units:

1

...
Γ

Γ ⊥

Now, the expansion of an axiom can contain boxes, if the axiom formula involves
units; for example, the axiom ⊢ (A⊗1)⊥, (A⊗1) gets fully η-expanded into:

A
1

1

O

⊗

⊥
A

⊥

5.2 Reduction of isomorphisms to simplified formulae

First notice that a formula of the shape 1⊗A is always isomorphic to A, and
⊥OA is isomorphic to A.

Definition 16 (simplified formulae) A formula is called simplified if it has
no sub-formula of the shape 1⊗A or ⊥OA (where A is any formula). To each
formula A, we associate the formula s(A) obtained by normalizing A w.r.t the
following canonical (confluent and strongly normalizing) rewriting system:

1⊗A → A A⊗1 → A ⊥OA → A AO⊥ → A

We can restrict our attention to simplified formulae using the following theorem:

Theorem 17. Two formulae A and B are linearly isomorphic if and only if
s(A) and s(B) are linearly isomorphic.

Proof. We first show that 1⊗A is isomorphic to A, and ⊥OA is isomorphic to
A, and conclude using the fact that linear isomorphism is a congruence.



5.3 Completeness with units

For simplified formulae, the proof of completeness is very similar than in the
case without units. We just have to extent the definition of bipartite simple
proof-nets:

Definition 18 (bipartite simple proof-nets) A cut-free simple proof-net is
bipartite if it has exactly two conclusions A and B, and it consists of

– T (A), T (B)
– a set of axiom links connecting atoms of A to atoms of B, but not atoms of

A between them or atoms of B between them
– and boxes with at least one conclusion in T (A) and at least one conclusion

in T (B).

Theorem 19. Let A and B be two simplified formulae. Let S be a cut-free
simple proof net with conclusions A⊥ and B, and S′ be a cut-free proof net with
conclusions B⊥ and A. All the boxes in S and S′ are boxes containing only the
constant 1.

Proof. In this proof, let nX
1

and nX
⊥

denote respectively the number of 1 and the
number of ⊥ in the proof-net X.

– The case where A or B is a constant is obvious.
– Otherwise, all the occurrences of the constant 1 in the two proof-nets are one

of the two sub-terms of a O-link. The only way to have these two sub-terms
connected (which is necessary to make a proof-net) is to put the 1 in a box.
Each of these boxes correspond to a distinct ⊥. From there we deduce that
nS
⊥
≥ nS

1
, and nS′

⊥
≥ nS′

1
.

– But nS
⊥

= nS′

1
, nS′

⊥
= nS

1
. Hence nS

⊥
= nS

1
. Thus there is no box with

somewhat else than an 1 in S. Idem for S′.

It is easy to show that boxes of that kind behave like axiom links for cut-
elimination. It suffices to remark that the only possible case of cut-elimination
involving boxes in such a proof-net is the following one:

1

1 ⊥

1

1 ⊥

that reduces to

1

1 ⊥

Thus units can be viewed exactly as atoms in this case, and we can proceed
precisely as in the case without units to prove that

Theorem 20. If A and B are linearly isomorphic, then AC(⊗,O)⊢ s(A) =
s(B).



Hence

Theorem 21 (Isos completeness with units). If A and B are linearly iso-
morphic, then ACI(⊗,O)⊢A = B.

6 Conclusions

We have shown that in MLL the only isomorphisms of formulae are given by
the most intuitive axioms, namely associativity and commutativity, only. Be-
sides the interest of the result on its own, this gives a very elegant symmetrical
interpretation of linear isomorphism in linear lambda calculus, and provides a
justification of the fact, observed several times in the past, that currying in
functional programming correspond to “a sort of” associativity (this happens
in the implementation of abstract machines, as well as in the coding of lambda
terms into Berry’s CDS [3]). Our result confirms once more that Linear Logic
is a looking glass through which fundamental properties of functional compu-
tation appear symetrized and simplified. It should also be remarked that the
axiom links from Linear Logic play a similar role to the formula links originally
introduced by Lambek in his study of SMC objects [14], and that proof nets
were really the missing tool to understand linearity. In proving the result, we
used essentially the topological properties of the proof nets of linear logic, which
simplified enormously our task (for example, the reduction to non ambiguous
formulae when working directly with lambda terms is far more complex than
here, where the axiom links allows us to give an elegant proof).
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