
A Game Semantics Foundation for Logic Programming
(Extended Abstract)

Roberto Di Cosmo∗ Jean-Vincent Loddo† Stephane Nicolet‡

December 9, 1997

Abstract

We introduce a semantics of Logic Programming based on classical Game Theory, which is
proven to be sound and complete w.r.t. traditional semantics like the minimum Herbrand model and
the s-semantics. This AND compositional game semantics allows a very simple characterization
of the solution set of a logic program in term of approximations of the value of the game associated
to it, which can also be used to capture in a very simple way the traditional “negation as failure”
extensions. This novel approach to semantics opens the way to a better understanding of the
mechanisms at work in parallel implementations of logic programs, and is of great pedagogical
value.

1 Introduction

Game theory has found, in recent years, various applications in the research field of programming
languages semantics, so that game theory is a very active research subject in computer science. After
the preliminary works of Lamarche [Lam95], Blass [Bla92] and Joyal [Joy95] in the early 90s, the
works of Abramsky, Malacaria and Jagadeesan [AJ94] lead to the first fully abstract semantics for
functional (PCF) or imperative (Idealized Algol) languages. Then, more recently, specialists of Linear
Logics got interested in links between games and the geometry of interaction [PBE97], whereas Curien
and Herbelin showed that certain classical abstract machines could be interpreted in terms of games
[CH96].

On the down side, all these nice works seem to use more the vocabulary of games (player, move,
game, strategy) than the results and the techniques of traditional Game Theory. This shows that the
vocabulary of Game Theory can be, because of the generality of the concepts it manipulates (arenas,
multiple and independent agents, strategies of cooperation or of non-cooperation, quantification of the
remuneration after each game) and of its intuitive nature, a metalanguage that allows to tackle many
of the aspects of modern programming languages. Nevertheless, it seems to us of the highest interest
to be able to show, for the first time, that classical notions like payoff, propagation functions and value
of a game tree are not sterile in the semantics of programming languages.

In this paper, we relate Game Theory and Logic Programming, using these classical notions, thus
providing a first game semantics for Logic Programming.

There are traditionally two classical views of a logic program, depending on whether each clause
B ← A1, . . . , An in it is interpreted from right to left or from left to right:

∗DMI-LIENS - Ecole Normale Supérieure - 45, Rue d’Ulm - 75005 Paris, France - Email:dicosmo@ens.fr
†Université de Paris VII - 2, Place Jussieu - 75005 Paris, France - Email:loddo@ens.fr
‡DMI-LIENS - Ecole Normale Supérieure - 45, Rue d’Ulm - 75005 Paris, France - Email:nicolet@ens.fr

1

• the logical vision: if A1 ∧ · · · ∧ An then B

• the effective vision: to compute B, one must first compute A1, A2 · · ·An. Another way of
saying it is that B is a procedure whose body is A1 · · · An

We propose here a third alternative: to each logic program we associate a simple game, in which
one of the players tries to prove the goal and his opponent tries to disprove it: the beauty of the
approach is that the logical rules written by the programmer are just the rules of the game, and this
allows to get a simpler understanding of the mechanisms involved in logic programming.

Nevertheless, our game is not the naı̈ve one obtained by taking the tree of all possible SLD
derivations; we wanted to clearly separate in our framework the different features making up an SLD
derivation: the construction of the tree, the visit of the tree and its evaluation. For this, we use player
positions consisting of just one atom, and check the consistency of solutions using a special evaluation
function in the AND nodes of the game tree similar to the mean value used in games with random
players.

The main result of the paper is that winning strategies in the game are in direct correspondence
with successful SLD-derivations, but they are much more compact: one winning strategy represents an
exponential number of “switch-equivalent” derivations (i.e. derivations differing by inessential details
and having the same computed answer, see 3.3).

Whereas the traditional semantics of Logic Programming languages (e.g. Prolog) have been
deeply investigated (see for instance the books by Lloyd [Llo87], Apt [Apt97] or Doets[Doe94] for
good general sources on the usual semantics), we think that this novel game theoretic description is
more concise, intuitive and easy to understand for the novice.

The slogan ”each logic program is a game” arose by a sort of a side effect: while working on
bisimulation games for concurrency theory [LN97], we implemented a Prolog prototype which turned
out to be very simple (only six lines of code). Actually, it was too simple: it was impossible not
to have the clear feeling that we had come across, in one way or the other, a structural shift of the
problem, so we looked more closely at the mechanisms at work, and the outcome of this investigation
was the foundation of a game semantics for logic programming that we present in this paper. It would
probably have been possible to arrive at the same results starting from the tradition of games for model
theory (like the Ehrenfeucht-Fraissé games [Ebb][Sti97]), which have similar flavor. Nevertheless, to
the author’s best knowledge, no such attempt has been previously made.

Some basic notions of Game Theory

Game theory is the branch of mathematics which tries to model and to understand the behavior
that rational agents should choose in a competitive arena. We introduce here some basic notions of
game theory which we will use later in the paper, which corresponds, mainly, to the intuitive idea of
randomized strategic games, and refer the interested reader to the comprehensive handbook [Ae92]
for a recent introduction to the topic.

Classically, a game is given extensionally as a tree in which the root represents the initial position
of a play, the nodes are positions and edges are moves. In a general n-players game, there are n + 1
players (n human players plus an (optional) special one, the chance player, used to model random
processes, like throwing a dice), and nodes are labeled with the name of the player whose turn is to
play in that position. The payoff function is a function giving terminal positions p an n-ary vector of
values (usually reals), in which the jth component represents the amount paid (or received) by player
j when the game ends in position p. A strategy for player j is a function which associates to each of
the (human) player’s node exactly one of his moves in that player’s position: it describes the way he

will behave in a play. The most studied games in Game Theory have been the two players, zero-sum
games: for them, the Minimax Theorem (von Neumann, 1928) states that the dual approaches of
maximizing one’s gains or minimizing one’s losses lead to the same expected value for each player, so
each game has one optimal value, the minimax value. This can be rephrased in terms of game trees by
saying that one can compute the value of a two-player, zero-sum game by assigning the payoff values
to the terminal nodes of the game tree, and propagating them bottom-up applying the Max (resp. Min)
propagation functions to the values of the player (resp. opponent) subtrees.

It is important to note that the choice of the Max and Min functions depends on the game: usually
they are the maximum and minimum over a set of reals, but there are well-known cases where a
different function is needed. For example, in the presence of random events (dices etc.), the mean
value is used instead of the maximum. Similarly, the game presented in this paper uses substitutions
as values and intersection of substitutions as the Max function.

The paper is organized as follows: Section 2 introduces the game Γ(P) associated to a logic
program P , the notion of game tree Γ(P,G), strategy and value of a game tree. Section 3 discusses
the relationship between winning strategies and various semantics of logic programs, and establishes
the soundness and completeness results, by reduction to the operational semantics of a logic program.
In essence, we can exhibit a winning strategy in the game associated to (P,G) for each successful
SLD-derivation starting with goal G in program P and viceversa. Finally, we give an exact estimate
of the size of the equivalence class of SLD derivations represented by a winning strategy and we
conclude by hinting at several potential applications of this new theory.

2 The Rules of the Game

We begin this section with an informal explanation of the idea of the game associated to a logic
program P . Given a set of Horn clauses , we can define informally the mechanisms of a two player
game, as follows:

• Each goal to satisfy defines an initial position for a different instance of the game.

• The first player (called Player in the rest of the paper) wants to prove that the current atomic
goal A is satisfiable. He searches in the program all the clauses whose head unify with the
current goal (so the moves of Player are found by a vertical scanning of the rules of P). For
Player to win, that is, for the goal to be satisfied the goal, it would be sufficient for one of his
moves to be winning, so Player’s nodes will be denoted by ’OR’ nodes in the game tree.

• The second player (called Opponent) wants to prevent Player from satisfying the current goal.
For this, each time Player moves choosing a rule H ← A1, .., An of the program, Opponent
answer in turn with all the sub-goals A1, .., An, which thus represent his moves. So the moves
of Opponent are found by an horizontal reading of the rules of P . To win, the Player must
prove that he satisfy all these sub-positions proposed by Opponent, so Opponents’s nodes will
be denoted by ’AND’ nodes in the game tree.

• Each player loses in a terminal node if he has no legal move in the current position. For
Opponent, this means that the current goal is the empty goal (Player has been able to apply a
axiom (H ←) of P at his last move). For Player, this means that Opponent has been able to
reach a state where no clause of P unify with the current game position.

• The payoff of the game will model the price paid by Player each time he wants to make a move
to advance in the game: it is just the substitution calculated by the unification process done

when he wants to apply one of the clauses of P . Of course, to get the resulting payoff for a
terminal position of the game, one has just to sum (to compose) all the payoffs (the elementary
substitutions) accumulated during the history of the game.

• We model the fact that queries given to a logic program generally consist of multiples atoms by
saying that Opponent will be the first player to move in this game.

We can now give a formal definition for the game Γ(P) associated to a logic program and the
game tree Γ(P,G) for the game Γ(P) starting at position G.

Definition 2.1 (Game semantics of a logic program) The game associated to a logic programP has
the following components:

players : the game has two players, one called Player and the other called Opponent

positions : a player position in the game is an atomic formula A, while an opponent position is a
sequence of atomic formulae. Only opponent positions are legal starting positions of a game

Player moves : Player moves by choosing a (variant of a) rule H ← A1, .., An in P whose head H

unifies with the current position A. This leads to an opponent position (A1θ, .., Anθ), where θ

is the mgu of A and H (we say that theta is the payoff of the move).
If no rule unifies with the current position, Player looses and Opponent wins.

Opponent moves : Opponent moves by selecting one of the subgoals Ai of an opponent position
G = A1, .., An, and the game continues in the player position Ai. If the current opponent
position is the empty sequence, Opponent looses and Player wins.

Notice that it is not enough, for a goal to be provable, that player always arrives to a terminal
winning position: he also needs to have used compatible payoffs. In other terms, it will be the “value”
of the game, in game theoretic terminology, that is related to provability. To compute such a value, we
need to introduce the notion of a game tree, a set of values, and the evaluation functions.

Let’s first introduce the idea of the game tree Γ(P,G) of the goal G in the program P by a simple
example, then we will formalize it.

Example 2.2 [A simple example] Consider the logic program P consisting of the following three
rules

1. path(X,Z) :- arc(X,Y), path(Y,Z)
2. path(X,X)
3. arc(a,b)

This program P defines the game Γ(P). If we try to satisfy the goal path(X,b) in P , we use Γ(P)
with the initial position path(X, b) and get the game tree Γ(P, path(X, b)), which will be the regular
infinite tree of figure 1, where the gray subtree is equal to Γ(P, path(X, b)) up to the renaming of X
to Y .

As is immediately be seen from figure 1, the game trees we get here are not the SLD-trees used
in the usual semantics of logic programming. The game tree is more abstract that the corresponding
SLD-tree: in fact, each SLD-tree describes a particular visit of the game tree, given the chosen selection
rule which impose the order the visit of the sub-game trees at Opponent’s nodes.

We will denote game trees using (possibly infinite) terms built via the constant constructors
AndLeaf andOrLeaf , then-ary constructors AndandOr, substitutionsσand the binary constructor
Label, for which we will use the abbreviation Label(θ, t) = θ

t
.

path(X,b)

clause 2clause 1

{X←b}

{Y←b}{ X←a,Y←b }

arc(X,Y) path(Y,b)

clause 1 clause 2clause 3

Opponent nodes

Goal path(X,b)

Player nodes

{X←b}{X←a,Y←b}

path(X,b)

clause 2

{X←b}

{Y←b}{ X←a, Y←b }

arc(X,Y) path(Y,b)

clause 2clause 3

path(X,b)

clause 1

Figure 1: An example game tree and two winning strategies.

Definition 2.3 (The game tree of a goal in a logic program)
We introduce here the two mutually recursive functions fand and for to construct the game tree of a
goal G in a logic program P. The function fand takes a goal G as argument and constructs the AND
levels or the tree, whereas for takes an atom A as argument and constructs the OR levels of the tree.
They are defined as follow:

• fand() = AndLeaf

• fand(A1, .., An) = And(for(A1), ..., for(An))

• for(A) = OrLeaf if Player has no move at A

• for(A) = Or(θ1
fand(G1) , · · · ,

θk
fand(Gk)) if there are k moves with payoffs θ1, .., θk for Player

leading to the opponent positions G1, .., Gk

A game tree is thus an AND/OR tree in which the edges going from OR nodes to AND nodes are
labeled by substitutions. In the rest of the paper, we will sometimes call AND game tree and OR game
tree any term beginning with the And and Or constructors, respectively.
Finally, we can define the game tree Γ(G, P) as fand(G) in P .

Remark 2.4 As usual, we use variants of program rules obtained by replacing the free variables of
the rule with fresh variables. Here, we will also require that each application of a node formation rule
uses a different supply of fresh variables.

Following the tradition of classical theory of games, we now try to give value to the games
trees associated to a logic program we’ve just described. Game trees will have values ranging over
formal disjunctive expressions of substitutions (including a special substitution FALSE to denote the
solution of an unsatisfiable system of equations), equipped with a partial order that extends the usual
substitution partial order ≤ (i.e. σ ≤ τ iff ∃σ′.τ = σσ′ : notice we reverse the traditional notation
for coherence reasons with payoffs) to disjunctive expressions. The intuition behind this is that the
disjunction of two substitutions is a value representing the possibility for player to choose either one
of the two, while intersection of values is the function performing the compatibility check.

We will use in what follows the usual notations and definitions for substitutions, unifiers, most
general unifiers (mgu) etc. (a comprehensive survey of the properties of substitutions and unifiers can
be found, for instance, in [Ede85]). We will use σ, τ, . . . to range over substitutions,α, β, . . . to range
over substitutions or the special symbol FALSE, and v1, v2 to range over formal expressions (also
called values). Also, ǫ will stand for the identity substitution. More formally

Definition 2.5 (The values of the game) The values of the game are the formal expressions given by
the grammar v := FALSE | σ | v ∨ v for which we impose that ∨ is an associative commutative
symbol such that FALSE = FALSE ∨ FALSE, and equipped with the partial order ⊑ generated by
the following inequations:

σ⊑FALSE for all substitution σ (Top) α ∨ v⊑ v (choice)
σ⊑ τ if σ ≤ τ (subst) α ∨ v⊑β ∨ v if α ⊑ β (∨−monotonicity)

Given a substitution θ, we note Eθ the system of equationsEθ = {x = xθ | x ∈ Dom(θ)}. Since
θ is clearly a solution of Eθ, Eθ is always unifiable. Moreover, in the rest of the paper, we will
always consider substitutions calculated by unification algorithms, and notice that in that case, if θ is
idempotent and relevant, then θ = mgu(Eθ).

Definition 2.6 (Operation on Values) We define the intersection σ ∧ τ of two substitutions σ, τ as
mgu(Eσ ∪ Eτ) if Eσ ∪ Eτ is unifiable (in which case we will say that σ and τ are compatible),
and FALSE otherwise. This associative commutative operation ∧ is extended to arbitrary values by
means of distributivity with respect to ∨. The composition σ · v of a substitution σ with a value v is
defined by means of distributivity of composition of substitution with respect to ∨, with the additional
equation σ · FALSE = FALSE.

It is easy to verify that ∧ and ∨ on values are monotone with respect to the order ⊑.
When a game tree is finite, we can give it a value that represent the payoff for the player. Here is

where it becomes apparent that we are using a special operator on AND nodes, that captures a global
notion of compatibility of values, thus making the evaluation very different from what could be found
in simple games like the ones discussed in the introduction.

Definition 2.7 (Value of a finite game tree)
The value of a game is defined in a bottom-up fashion from the leaves to the root, by first giving values
to the terminal nodes and then combining the values of the subtrees as follows:

val (AndLeaf) = ǫ val (And(t1, · · · , tn)) = (val t1) ∧ · · · ∧ (val tn)

val (OrLeaf) = FALSE val (Or(θ1
t1
, · · · , θn

tn
)) = (θ1 · (val t1)) ∨ · · · ∨ (θn · (val tn))

2.1 Winning strategies

The central notion to relate game trees to the traditional SLD derivations is that of strategy for Player:
intuitively, a strategy tells the player what move she/he must chose in each position where it is her/his
turn to play. Formally, a strategy is a partial function from the internal Or nodes of the game tree to
subtrees, or, equivalently, a subtree of a game tree which is deterministic on the OR levels:

Definition 2.8 (Strategies in a game tree)
The set φ(t) of strategies in a term t is the maximum set such that:

• t = AndLeaf ⇒ φ(t) = {AndLeaf}

• t = And(t1, . . . , tn), ϕ ∈ φ(t)⇒ ϕ = And(ϕ1, . . . , ϕn) with ϕi ∈ φ(ti)

• t = OrLeaf⇒ φ(t) = {OrLeaf}

• t = Or(θ1
t1
, . . . , θn

tn
), ϕ ∈ φ(t)⇒ ∃j such that ϕ = Or(θj

ϕ′) with ϕ′ ∈ φ(tj)

Remark 2.9 (Value of a finite strategy) Finite strategies are just finite game trees with a special
form, so the definition of the value of a game tree extends naturally to strategies. Note, however, that it
can easily be seen from the definitions that the value of a strategy is either a substitution or FALSE :
it cannot be a disjunction of substitutions.

Since we are mainly interested in the calculated answers of a logical programs, we introduce the
notion of winning strategy for the first player:

Definition 2.10 (Winning Strategy) A winning strategy in a (possibly infinite) game tree Γ is a finite
strategy ϕ such that valϕ < FALSE

For the game on the left of the previous figure 1, there are at least two winning strategies, shown
on the right of figure 1.

3 Games and traditional semantics

It is well known that some of the traditional semantics of logic programming, like the least Herbrand
model, have operational characterizations in terms of SLD-derivations. We shall prove in this section
that it is also possible to give another equivalent definition of these denotations, with the notion of
winning strategies.
We’ve seen that the initial positions of the game are just goal, so we shall in the following definitions
use freely the adjective "atomic, ground, Herbrand, conjunctive, etc." to characterize them. The least
Herbrand model denotation (success set) of a program P is rewritten as the set of winning Herbrand
positions for Player, that is the Herbrand positions in which he has a winning strategy:

WP = {A | A Herbrand position such that ∃ a winning strategy in Γ(P, A)}

For denotation of computed answers (s-semantics in [BM94]), we have the most general atomic
positions (i.e. positions with the form A(X1, .., Xn)), instantiated by the computed answers:

WS
P = {Aθ | A most general position such that ∃ a winning strategy in with value θ in Γ(P, A)}

We shall say thatWP and WS
P are the two winning position denotations of a programP , and prove the

soundness and the completeness of these game-based denotations with respect to the least Herbrand
model OP and the s-semantics OS

P , through the use of their well-known operational characterizations:

OP = {A | A Herbrand atom and ∃ A =⇒
P

∗
} andOS

P = {Aθ | A most general atom and ∃ A
θ

=⇒
P

∗
}

3.1 Fusion and splitting of SLD derivations

In order to relate strategies to SLD-derivations, we need to prove a key result about SLD-derivations,
namely that we can fusion two successful derivations and that we can split a successful derivation
starting from a conjunctive goal into several successful derivations starting from the components of the
conjunction. Technically, this is done by introducing an annotated version of SLD derivation, to keep
track of the system of equations solved by an SLD derivation, and using the notion of switch-equivalent
derivations (informally, that two SLD-derivation steps can be switched provided that in the second
step an instance of an ”old” atom is selected, and this give raise to a symmetric relation↔, whose
reflexive and transitive closure is denoted ≈. This technical development has an intrinsic interest, so
it is fully detailed in the appendix, but for our purposes we only need to state the following final result
which is an immediate consequence of lemma A.6 and lemma A.10.

Proposition 3.1 (Goal fusion and goal split for successful SLD-derivations)

Suppose thatθ1 and θ2 are compatible, thatG1
θ1
=⇒
∗ and thatG2

θ2
=⇒
∗ , then (G1, G2)

θ1∧θ2
=⇒
∗ .

Conversely, if (G1, G2)
θ

=⇒
P

∗ then there exists θ1,θ2 s.t. G1

θ1
=⇒
P

∗ , G2

θ2
=⇒
P

∗ and θ = θ1∧θ2.

This is the key technical tool to convert SLD-derivations back and forth into winning strategies.

3.2 Soundness and completeness of the Winning Positions Denotations

We show here first that our game based denotations are sound, that is, whenever a winning strategy
exists, we can find a successful SLD-derivation. Then, we show that our game denotations are also
complete, that is that whenever a successful SLD-derivation exists, we can find a winning strategy.
What is more, the computed answer and the value of the strategy are the same.

Theorem 3.2 (From winning strategies to successful SLD-derivations (soundness)) If there exists
a winning strategy with value θ in Γ(P,G) then there exists a successful SLD-derivation of G in P

with computed answer θ.

Proof. The proof is by induction on the structure of the strategy. A winning strategy ϕ is a finite
AND-OR tree that have no OR-Leaf, so we can prove the thesis by induction on the number d of
and-levels of the strategy.

• d = 1. If ϕ = AndLeaf then Γ(P,G) = AndLeaf then G is the empty goal by construction
and we have a successful SLD-derivation of G with computed answer ǫ, which is the value of
the strategy ϕ, as claimed.

• Induction step Suppose G = (A1, . . . , An), so ϕ = And(Or(θ1
ϕ1
), . . . , Or(θn

ϕn
)) with each

ϕi a strategy in a sub-game γi of Γ(P,G). The rules of the game imply that each of these γi

has been obtained by using a program clause Hi ← Gi in an SLD step Ai

θi
=⇒

Hi←Gi

Giθi where

ϕ is finite and its value is strictly lower then FALSE, the sub-strategies ϕi are finite and their
values vi are strictly lower then FALSE. Since the ϕi’s are winning strategies in the γi’s, we

can apply the induction hypothesis n times to get n successful SLD-derivations Giθi
vi
=⇒
P

∗

of Giθi in P with computed answers vi So we can get a successful SLD-derivation of Ai in
P , with computed answer θivi. Since v = θ1v1 ∧ · · · ∧ θnvn is the value of ϕ, a winning
strategy, it is strictly lower than FALSE, so we can apply corollary 3.1 to construct a successful
SLD-derivation of (A1, .., An) with computed answer v, and we are done.

Theorem 3.3 (From successful SLD-derivations to winning strategies (completeness)) IfG
θ

=⇒
P

∗

then there exists a winning strategy with value θ in the game Γ(P,G).

Proof. Let ξ be a SLD-derivation G
θ

=⇒
P

∗
. The proof is by induction on the length l of ξ.

1. If G consists of a unique atom A, we consider explicitly the head and the tail of the SLD-

derivationA θ′

=⇒ G′
θ′′

=⇒
∗ . If G′ = , the result is trivial, otherwise we apply the induction

hypothesis on the tail, which gives us a winning strategy ϕ′ in the game Γ(P,G′) with value

θ′′. Then the winning strategy for Player is obvious: answer the first opponent move A with
the same rule that was used to make the first step of the SLD-derivation, reaching the position
G′, then play like ϕ′ in Γ(P,G′). Formally, ϕ = And(Or(θ′

ϕ′)) is a strategy in Γ(P,G), with
value valϕ = (θ′ · valϕ′) = θ′θ′′ = θ

2. If the goal G has the form A1, A2, . . . , An with n ≥ 2 then we can apply the corollary 3.1

to get n successful SLD-derivations ξi = Ai
θi

=⇒ , with the additional property θ = θ1 ∧

θ2 ∧ · · · ∧ θn. Applying the induction hypothesis on the ξi, we get n winning strategies ϕi

in the games Γ(P, Ai) with values θi. A winning strategy for Player follows easily: use the
strategy ϕ1 when the opponent plays A2, use the strategy ϕ2 when opponent plays A2, and

so on... Formally, if ϕi = And(Or(
θ′
i

ϕ′
i

)) with value θi , then we can form the strategy

ϕ = And(Or(
θ′1
ϕ′

1
), . . . , Or(θ′n

ϕ′
n
)) which has the value θ1 ∧ θ2 ∧ · · · ∧ θn = θ

3.3 Expressive power of winning strategies

Looking better at the proofs of the soundness and completeness results, we can see that a winning
strategy represents precisely the class of switch equivalent successful SLD-derivations. For a formal
proof, we would reconstruct the strategy implicitly associated to an SLD-derivation and prove that
any equivalent SLD-derivation correspond to the same strategy, but here we only want to remark that
equivalents SLD-derivations have the same skeleton and the strategy is indeed this skeleton.

It is quite interesting to determine the number of different (but switch -equivalent) SLD-derivations
denoted by a strategy. Observe that if an SLD-derivation is the switch of another then they consist of
the same number of SLD-steps (the same holds for ≈), so derivation in an equivalence class have the
same length. We can then compute the length ℓ(ϕ) and the number ♯(ϕ) of successful SLD-derivations
that a strategy denotes.

ℓ(ϕ) =

0, if ϕ = AndLeaf
n
∑

j=1
(ℓ(ϕj) + 1), if ϕ = And(Or(θ1

ϕ1
), .., Or(θn

ϕn
))

♯(ϕ) =

1 if ϕ = AndLeaf
n
∏

j=1
♯(ϕj) ·

ℓ(ϕ)!
n
∏

j=1

(ℓ(ϕj)+1)!

if ϕ = And(Or(θ1
ϕ1
), .., Or(θn

ϕn
))

Example 3.4 Consider a strategy with the structure shown in the following picture (figure 2) we can

Figure 2: A strategy with three And levels

calculate 13440 different successful SLD-represented by this simple winning strategy.

4 Cutting and evaluating game trees

Up to now, we have evaluated only strategies, for which the disjunction of substitutions was not
necessary in the space of values. If we look at the value of a whole game tree, then we will find
disjunctions, telling us how many ways Player has to win, allowing thus to finely analyze the mul-
tiplicity of computed answers. For this, we will need to evaluate potentially infinite trees, but here
again traditional game theory comes to our rescue: for instance, the size of the chess game tree is so
big that it can be considered infinite for all practical purposes, so real chess playing programs cut it at
a certain level and provide an approximative evaluation of the tree using appropriate heuristics for the
values of cut nodes. Here, we can do the same: cut the tree at the ith AND level, assigning a value to
the cut nodes and obtaining an ith approximation.

Two main choices are available to estimate of the cut node: either we use FALSE, and obtain a
pessimistic approximation val

i
pess of the real value, or use ǫ, and obtain an optimistic approximation

val
i
opt of the real value (see appendix for details). The first choice gives us the necessary tool to

establish the correspondence with SLD derivations, while the second choice allows to handle SLDNF
derivations (which we will not consider here due to lack of space).

A fundamental property of these approximations is that they are, respectively, decreasing and
increasing with respect to the cut level (see theorem B.3), so one can take the limit on an appropriate
set of values and obtain for example the pessimistic value valΓ(P,G) of a game tree which has some
very interesting properties:

• Its cardinality (the number of substitutions in the disjunction) is the number of equivalence
classes of successful SLD derivations for G in P for the switch equivalence.

• Its components are the computed answers substitutions of the query G in G, counted with their
order of multiplicity

• If we apply to it the simplification rule ” θ ∨ θ = θ ”, then we come back to the computed
answers semantics.

• If we apply to it the simplification rule ” θ ∨ σ = σ if σ is more general than θ ”, then we get
only the most general computed answers.

The soundness and completeness theorems established in the previous sections allows to relate
this approximation to SLD derivations.

Corollary 4.1 (Pessimistic semantics and SLD derivations: soundness and completeness)

If ∃i .val ipessΓ(P,G) = v such that v < FALSE then ∃ G
θ

=⇒
P

∗ with v ⊑ θ.

Conversely, if G
θ

=⇒
P

∗ then ∃i.val ipessΓ(P,G) = v ⊑ θ < FALSE.

Proof. If there exists a pessimistic evaluation of the game with value v strictly lower than FALSE,
then there exists a winning strategy in Cut(i,Γ(P,G)) with value θ such that v ⊑ θ. So we can use
theorem 3.2 to obtain a successful SLD-derivation with computed answer θ.

On the other side, given a successful SLD-derivation ξ = G
θ

=⇒
P

∗
, we can construct the winning

strategy ϕ = SLD2Strat(ξ) in Γ(P,G). Then take i as the depth of ϕ. By theorem B.3 have that
valpessΓ(P,G) ⊑ val

i
pessΓ(P,G) ⊑ valϕ = θ.

5 Conclusions and Perspectives

We have presented in this paper a game theoretic approach to the semantics of Logic Programming, and
proved that it is flexible enough to capture various forms of semantics proposed in the literature, from
the minimum Herbrand model to the computed answers, to the most general computed answers. We
showed that a winning strategy concisely represents a very large class of equivalent SLD derivations,
thus providing a powerful tool to investigate properties of derivations. Nevertheless, all these results
that established the first bridge between Game Theory and Logic Programming seem to have tapped
only a little of the potential intrinsic in this interconnection. Let us point here at some further very
promising developments.

It would be interesting to link the literature in the field of parallelization of logic languages
with the field of parallelization of game-search algorithms (good comprehensive bibliographies can
respectively be found in [LP93] and [Bro96]). Since the works on game-algorithms began decades
before the first logic programming implementations, we expect that the latter would greatly benefit
from the connection.

It is clear, though we hadn’t enough place to develop the idea here, that the game values of the
programs are AND-compositional (namely val Γ(P, (G1, G2)) = valΓ(P,G1)∧valΓ(P,G2)), but
not OR-compositional (val Γ((P ∪Q), G) 6= valΓ(P,G) ∨ valΓ(P,G)). This suggests to look for
an OR-compositional game-based denotation, which hopefully would be more abstract and intuitive
than the known ones.

Finally, the two ways, pessimistic or optimistic, of defining a cut-approximation computation of
game values yields a duality clearly similar to the least fix-point vs greatest fix-point duality used
to deal with positive and negative interrogation in logic programming. Since the negation as failure
(SLDNF) denotation of a program P uses that maximum fix-point of the immediate consequences
operator TP , it seems that the negative goals must be treated with the optimistic approximations: if we
can show that val ioptΓ(P,G) is FALSE for some i, then G has been shown to be unsatisfiable despite
being very optimistic for the cut parts of the game, and G is a contradiction of the logic program P .
This gives a very intuitive explanation of SLDNF.

References

[Ae92] Aumann and Hart (eds). Handbook of Game Theory with Economic Applications. 1992.

[AJ94] Samson Abramsky and Rhada Jagadeesan. Games and full completeness for multiplicative linear
logic. The Journal of Symbolic Logic, 59(2):543–574, 1994.

[Apt97] Krzysztof Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[Aum81] R.J. Aumann. Survey of Repeated Games. In : Essays in Game Theory and Mathematical Economics
in Honour of Oskar Morgenstern. Bibliographisches Institut, Zurich, 1981.

[Bla92] A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic, 56:pages 183–220,
1992.

[BM94] Levi Bossi, Gabbrielli and Meo. The s-semantics approach : theory and applications. Journal of
Logic Programming, 19(20), 1994.

[Bro96] M.G. Brockington. A taxonomy of parallel game-tree search algorithms. Journal of the International
Computer Chess Association, 19(3):162–174, 1996.

[CH96] P.L. Curien and H. Herbelin. Computing with abstract bohm trees. 1996.

[Doe94] Kees Doets. From Logic to Logic Programming. The MIT Press, 1994.

[Ebb] Thomas Ebbinghaus, Flum. Mathematical Logic. Springer Verlag.

[Ede85] E. Eder. Properties of substitutions and unifications. Journal of Symbolic Computation, (1):31–46,
1985.

[Joy95] A. Joyal. Free lattices, communication and money games. Proceedings of the 10th International
Congress of Logic, Methodology, and Philosophy of Science, 1995.

[Lam95] F. Lamarche. Game semantics for full propositional linear logic. Proceedings of the 10th Annual
IEEE Symposium on Logic in Computer Science, pages 464–473, 1995.

[Llo87] John Lloyd. Foundations of Logic Programming. Springer Verlag, 2nd edition edition, 1987.

[LN97] Jean Loddo and Stéphane Nicolet. Theorie des jeux et langages de programmation. Technical report,
ENS, 45, Rue d’Ulm, 1997. To appear.

[Loo46] L.H. Loomis. On a theorem of von Neumann. Proceedings of the National Academy of Sciences of
The United States of America, (32):213–215, 1946.

[LP93] G. Levi and F. Patricelli. Prolog : Linguaggio Applicazioni ed Implementazioni. Scuola Superiore
G. Reiss Romoli, 1993.

[MFP93] M. Martelli M. Falaschi, G. Levi and C. Palamidessi. A model-theoretic reconstruction of the
operational semantics of logic programs. Information and Computation, 102(1):86–113, 1993.

[PBE97] V. Danos P. Baillot and T. Ehrhard. Believe it or not, AJM’s games model is a model of classical
linear logic. Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, pages
pages 68–75, 1997.

[Pea84] J. Pearl. Heuristics. Intelligent Search Strategies for Computer Problem Solving. Addison Wesley,
1984.

[SAM94] Rhada Jagadeesan Samson Abramsky and Pasquale Malacaria. Full abstraction for PCF, in. Theorical
Aspects of Computer Software, International Symposium TACS’94, 1994.

[Sha53] L.S. Shappley. Stochastic games. Proceedings of the National Academy of Sciences of The United
States of America, (39):1095–1100, 1953.

[Sti97] C. Stirling. Bisimulation, model checking and other games. Technical report, Notes for Mathfit
Instructional Meeting on Games and Computation, Edinburgh, 1997.

[Sto79] G.C. Stockman. A minimax algorithm better than alpha-beta ? Artificial Intelligence, 12(2):179–196,
1979.

[vN28] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathaematische Annalen, (100):195–320,
1928.

[vNM44] J. von Neumann and Morgenstern. Theory of Games and Economics Behavior. Princeton University
Press. Princeton, 1944.

[Zer13] E. Zermolo. Uber eine Anwendung der Mengellehre auf die Theorie des Schachspils. Proceedings
of the Fifth International Congress of Mathematicians. Cambridge University Press. Cambridge,
2(100):501–504, 1913.

A Technical definitions and results about SLD derivations

A.1 Goal Fusion

We need to extend the definition of SLD-derivation to include the notion of system associated to (and
solved by) a traditional SLD-derivation.

Definition A.1 (System associated to an SLD-derivation) If G = A1, .., An is the current gaol and
B ← H is a variant of a program clause, variable disjoint with G and τ , such that B and Aiτ unify
with mgu θ, then we can infer the transition

〈G, τ, E〉
θ

=⇒
B←H

〈G′, τθ, E · {Ai = B}〉

where G′ = A1, .., Ai−1, H, Ai+1, .., An.
The two notations are clearly equivalent: if we note λ is the empty sequence of equations, then

G
θ

=⇒
∗
G′ if and only if 〈G, ǫ, λ〉

θ
=⇒
∗
〈G′′, θ, E〉 and G′ = G′′θ

but with the new notation, we keep track of the sequence E of formal equations solved along the steps
of the SLD-derivation. In the rest of the paper we will say that E is the system associated to an
SLD-derivation.

Remark A.2 We shall frequently consider a sequence of equations as a system, so we will, by abuse
of notation, say that a sequence is solvable or that two sequences are equivalent (in which case we
will write E1 ∼ E2).

Example A.3 We illustrate the construction process of an SLD-derivation system with a simple
example. Suppose we had the following successful SLD-derivation ξ :

A1
θ1
=⇒

B1←A2,A3
A2θ1, A3θ1

θ2
=⇒
B2←

A3θ1θ2
θ3
=⇒
B3←

then in the new notation we have:

〈A1, ǫ, λ〉
θ1
=⇒

B1←A2,A3
〈(A2, A3), θ1, {A1 = B1}〉

θ2
=⇒
B2←

〈A3, θ1θ2, {A1 = B1} · {A2 = B2}〉

θ3
=⇒
B3←

〈 , θ1θ2θ3, {A1 = B1} · {A2 = B2} · {A3 = B3}〉

so the system to ξ is {A1 = B1, A2 = B2, A3 = B3}.

The nice point of the notion of systems associated to SLD-derivations is that they are very
convenient for complicate proofs on SLD-derivations, as there are lots of well-known and strong
results on unification of systems. For instance, we will use the following lemma, which allows us to
search for mgus in an iterative fashion. A proof can be found in [Apt97].

Lemma A.4 (Iteration) Let E1,E2 be two sets of equations. Suppose that θ1 is a mgu of E1 and η1

an mgu of E2θ1. Then θ1η1 is a mgu of E1 ∪ E2. Moreover, if E1 cupE2 is unifiable then an mgu θ1

of E1 exists and for any mgu θ1 of E1 an mgu η1 of E2θ1 exists, as well.

The system associated to any SLD-derivation has a solution, which is exactly its computed answer
substitution. In fact we even show something stronger, from which we get the result by taking τ = ǫ

and E = λ.

Lemma A.5 If 〈G, τ, E〉
θ

=⇒ 〈G′, τθ, E · E ′〉 then θ is the mgu of the system E ′τ .

Proof. The proof is a simple induction on the length l of the SLD-derivation

• l = 1. If 〈G, τ, E〉
θ

=⇒ 〈G′, τθ, E · {A = B}〉 by definition θ is the mgu ofAτ and B where A
is the selected atom inG, in other words θ is the mgu of{Aτ = B} = {Aτ = Bτ} = {A = B}τ
(notice that Bτ = B because B is an arbitrary variant of a program clause disjoint to τ).

• l > 1. We decompose the derivation in two parts strictly shorter than l (but longer than 1) :

〈G, τ, E〉
θ1
=⇒
∗
〈G1, τθ1, E · E1〉

θ2
=⇒
∗
〈G2, τθ1θ2, E · E1 · E2〉

and we want to show that (E1 ·E2)τ is solved by θ1θ2. By induction hypothesis θ1 is the mgu of
E1τ and θ2 is the mgu of E2τθ1. By applying the iteration lemma A.4 we have that θ = θ1θ2

is the mgu of E1τ ∪E2τ = (E1 ∪E2)τ .

We can now prove the following key lemma

Lemma A.6 (Goal fusion) If G1
θ1
=⇒
∗
G′1 and G2

θ2
=⇒
∗
G′2 are two SLD-derivations such that θ1

and θ2 are compatible (θ1 ∧ θ2 ≤ FALSE), then starting from the fusion of the two goals we can

obtain an SLD-derivation (G1, G2)
θ1∧θ2
=⇒
∗

(G′1η1, G
′
2η2) where η1 and η2 are substitutions such that

θ1η1 = θ2η2 = θ1 ∧ θ2.

Proof. The idea of the proof is to consider the extended form of SLD-derivations:

〈G1, ǫ, λ〉
θ1
=⇒
∗
〈G′′1, θ1, E1〉 and 〈G2, ǫ, λ〉

θ2
=⇒
∗
〈G′′2, θ2, E2〉

and to prove that we can concatenate them, by doing the latter after the former, thus forming the
following SLD-derivation:

〈(G1, G2), ǫ, λ〉
θ1
=⇒
∗
〈(G′′1, G2), θ1, E1〉

η1
=⇒
∗
〈(G′′1, G

′′
2), θ1 ∧ θ2, E1 · E2〉

First, we prove that E1 ∪ E2 is solvable. By hypothesis θ1 ∧ θ2 < FALSE, so by definition of the
intersection of substitutions mgu(θ1, θ2) exists. But by lemma A.5, θi is the mgu of Ei, so θi is just
the solved form of Ei and we obtain that E1 ∪E2 is solved by θ1 ∧ θ2.
Suppose the second SLD-derivation hadn steps andE2 has the formE2 = {L1 = R1} · · ·{Ln = Rn},
thenE2θ1 = {L1θ1 = R1θ1} · · ·{Lnθ1 = Rnθ1}. Since we can choose the program clausesRi ← Hi

variable disjointwithθ1, this is equivalent to the system{L1θ1 = R1} · · ·{Lnθ1 = Rn} . The iteration
lemma for solution of systems (lemma A.4) assure us that E2θ1 can in fact be solved step by step, that
is in the order

τ1 = mgu(L1θ1, R1)

τ2 = mgu(L2θ1τ1, R2)

. . .

τn = mgu(Lnθ1τ1 · · · τn−1, Rn)

Having now 〈(G1, G2), ǫ, λ〉
θ1
=⇒
∗
〈(G′′1, G2), θ1, E1〉, we can complete the missing steps to construct

〈(G′′1, G2), θ1, E1〉
η1
=⇒
∗
〈(G′′1, G

′′
2), θ1η1, E1 · E2〉, where η1 = τ1 · · · τn, taking the previous order

to solve the equations.
Now, by applying once more the lemma A.5, we get that θ1η1 = mgu(E1 ·E2) = mgu(E1∪E2).

By doing the work in the other way round (that is, reducing G1 after G2), we could construct eta2

such that θ2η2 = θ1 ∧ θ2 = θ1η1. Finally we have that (G1, G2)
θ1∧θ2
=⇒
∗

(G′′1θ1η1, G
′′
2θ1η1) with

G′′1θ1η1 = G′1η1 and G′′2θ1η1 = G′′2θ2η2 = G′2η2, as claimed.

A.2 Goal Splitting

Let us recall a classical technical lemma on SLD-derivations, the switching lemma, which says,
informally, that two SLD-derivation steps can be switched provided that in the second step an instance
of an ”old” atom is selected. The following formulation is taken from [Apt97].

Lemma A.7 (Switching Lemma) Consider a queryQn with two different atomsA1 andA2. Suppose
that

ξ = Q0
θ1
=⇒
c

Q1 · · ·Qn
θn+1
=⇒
cn+1

Qn+1
θn+2
=⇒
cn+2

Qn+2 · · ·

is an SLD-derivation where

• A1 is the selected atom of Qn,

• A2θn+1 is the selected atom of Qn+1.

Then for some Q′n+1, θ
′
n+1 and θ′n+2

• θ′n+1θ
′
n+2 = θn+1θn+2 ,

• there exists an SLD-derivation

ξ′ = Q0
θ1
=⇒
c

Q1 · · ·Qn

θ′n+1
=⇒
cn+2

Qn+1

θ′n+2
=⇒
cn+1

Qn+2 · · ·

where

– ξ and ξ′ coincide up to the resolvent Qn,

– A2 is the selected atom of Qn,

– A1θ
′
n+1 is the selected atom of Q′n+1,

– ξ and ξ′ coincid after the resolvent Qn+2.

Definition A.8 (Equivalence of SLD-derivation) If ξ and ξ′ are two SLD-derivations which satisfy
the conditions of the switching lemma A.7 then we say that ξ′ is a switch of ξ and we write ξ′ ↔ ξ.
By definition↔ is a symmetric relation, so we define the equivalence≈ as the reflexive and transitive
closure of↔.

Lemma A.9 (Systems of equivalent SLD-derivations) Equivalent SLD-derivations have the same
associated system of equations and the same computed answers.

Proof. We first observe that

ξ = 〈G, ǫ, λ〉
θ

=⇒
∗
〈G′, θ, E1〉, ξ′ = 〈G, ǫ, λ〉

θ
=⇒
∗
〈G′, θ, E2〉, ξ ↔ ξ′ ⇒ E ≈ E ′

since if A1 and A2 are the switched atoms and c1 = (B1 ← H1) and c2 = (B2 ← H2) are the
switched clauses used to transform ξ into ξ′, then we have E1 = E ′1 · {A1 = B1} · {A2 = B2} · E

′′
1

and E2 = E ′2 · {A2 = B2} · {A1 = B1} · E ′′1 . So E1 and E2 represent the same set of equation (but
in a different order). By reflexivity and transitivity of equality of systems, ≈ has this property too.
Having the same associated system, they have the same computed answer.

Lemma A.10 (Goal split) If (G1, G2)
θ

=⇒
P

∗
G′ then there exists G′1,G′2,θ1,θ2,η1 and η2 such that

• G1

θ1
=⇒
P

∗
G′1, G2

θ2
=⇒
P

∗
G′2 with G′ = (G′1η1, G

′
2η2)

• θ = θ1η1 = θ2η2 = θ1 ∧ θ2

Proof. We consider the extended form of the SLD-derivation:

〈(G1, G2), ǫ, ∅〉
θ

=⇒
P

∗
〈(G′′1, G

′′
2), θ, E〉

The idea, then, is that we can isolate in ξ the steps which reduce G1 and all its residus. A method to
achieve this, for instance, is to ”mark” G1 in the SLD-derivation and all the descendants of Gi. By
using the switching lemma repeatedly and sorting, we can move G1 and all of its marked residues to
the head of ξ, and get an SLD-derivation ξ′ equivalent to ξ, but in which we reduce G1 first:

ξ1 := 〈(G1, G2), ǫ, ∅〉
θ1
=⇒
P

∗
〈(G′′1, G2), θ1, E1〉

η1
=⇒
P

∗
〈(G′′1, G

′′
2), θ1η1, E1 ·E2〉

With the same argument we can reduce first G2 and its residues to obtain

ξ2 := 〈(G1, G2), ǫ, ∅〉
θ2
=⇒
P

∗
〈(G1, G

′′
2), θ2, E2〉

η2
=⇒
P

∗
〈(G′′1, G

′′
2), θ2η2, E2 ·E1〉

Since ξ1 and ξ2 are both equivalent to ξ, they have the same associated system and the same calculated
answer by lemma A.9, so E = E1 ∪E2 is solvable and θ = θ1η1 = θ2η2. But notice that now, calling
G′1 = G′′1θ1 and G′2 = G′′2θ2, we can extract the derivations for G1 and G2 separately by keeping only
the first steps in ξ1 and ξ2, respectively :

ξ′1 := G1

θ1
=⇒
P

∗
G′1 and ξ′2 := G2

θ2
=⇒
P

∗
G′2

E1 is the system associated to ξ′1, E2 the system associated to ξ′2, they are solved by θ1 and θ2

respectively, and E1∪E2 is solvable, so we can apply the fusion lemma A.6 to get that θ = θ1 ∧ θ2.

B Cutting and evaluating infinite trees in detail

Here is the formal definition of the function for cutting infinite trees, followed by the definition of the
pessimistic and optimistic value of a cut game tree. Applied to a game tree, the function Cut(i,)
cuts it at the ith AND level, replacing all non-leaf subtrees with the constant Ω, which represent the
interruption of the tree development process.

Definition B.1 (Cut of a tree at level i)
The function Cut(o,f) a game tree is defined inductively as follow :

• at the AND levels :
Cut(0,AndLeaf) = Ω
Cut(k,AndLeaf) = AndLeaf ∀k ≥ 1
Cut(0,And(t1, ..., tn)) = Ω
Cut(i,And(t1, ..., tn)) = And(Cut(i − 1, t1), ..., Cut(i− 1, tn)) ∀i ≥ 1

• at the OR levels :
Cut(i,OrLeaf) = OrLeaf
Cut(i,Or(θ1

t1
, ..., θn

tn
)) = Or(θ1

Cut(i,t1)
, ..., θn

Cut(i,tn))

Definition B.2 (Pessimistic and optimistic approximations of the game value)
The function valpess is an extension of the function val on the game trees containing the constant
Ω, which is evaluated by the worst possible value, that is using the equation valpessΩ = FALSE.
The (dual) optimistic version valopt evaluates Ω with the best possible value, that is using the
equation valoptΩ = ǫ We will note val

i
pesst the approximation valpessCut(i, t) and val

i
optt the dual

approximation valoptCut(i, t).

Theorem B.3 (Monotonicity of progressive approximations)
The function val

i
pess of a game tree is decreasing with respect to the cut level i, whereas the function

val
i
opt is monotone (increasing) with respect to i.

Proof. To prove the monotonicity for the function valpess, we compare the two values val
i+1
pesst and

val
i
pesst to establish that the latter is greater than (or equal to) the former. If t is a leaf (t =AndLeaf)

then both terms are equals to ǫ and the claim is trivially proved. So we will suppose that t has the

general form And(t1 , ..., tn) with n ≥ 1 where tj =OrLeaf or tj =Or(
θ
(j)
1

t
(j)
1

, .., θ
(j)
n

t
(j)
n

)

The proof is by induction on the cut level i :

• when i = 0, we have Cut(0, t) = Ω and its pessimistic evaluation is FALSE which is greater
than to anything else.

• for i > 0, we unfold the two values to compare them :

val
i+1
pesst = valpessCut(i + 1, And(t1, .., tn))

= valpessAnd(Cut(i, t1), .., Cut(i, tn))

=
n
∧

j=1

valpessCut(i, tj)

val
i
pesst = valpessCut(i, And(t1, .., tn))

= valpessAnd(Cut(i − 1, t1), .., Cut(i− 1, tn))

=
n
∧

j=1

valpessCut(i − 1, tj)

If one of the subtrees (say tj) is a leaf then Cut(i, tj) = Cut(i− 1, tj) = OrLeaf and so
val

i+1
pesst = val

i+1
pesst = FALSE, since valpessOrLeaf = FALSE and by the definition of

intersection. On the other hand, if all the tj are of the form Or(
θ
(j)
1

t
(j)
1

, ..,
θ
(j)
nj

t
(j)
nj

), then we further

unfold the values val
i+1
pesst and val

i
pesst and get

val
i+1
pesst =

n
∧

j=1

valpessOr(
θ
(j)
1

Cut(i,t
(j)
1)

, ..,
θ
(j)
nj

Cut(i,t
(j)
nj

)
)

=
n
∧

j=1

nj
∨

h=1

θ
(j)
h val

i
pesst

(j)
h

val
i
pesst =

n
∧

j=1

valpessOr(
θ
(j)
1

Cut(i−1,t
(j)
1)

, ..,
θ
(j)
nj

Cut(i−1,t
(j)
nj

)
)

=
n
∧

j=1

nj
∨

h=1

θ
(j)
h val

i−1
pesst

(j)
h

Now, by the induction hypothesis,we know that val ipesst
(j)
h ⊑ val

i−1
pesst

(j)
h , so using monotonicity

of composition of substitutions (that is, θ1 ≤ θ2 implies θθ1 ≤ θθ2) and of ∨ and ∧ operators,
we get the result:

val
i+1
pesst ⊑ val

i
pesst

The proof of monotonicy for val
i
opt is similar (replacing ⊒ for ⊑ and ǫ for FALSE).

We now turn to the definition of the value of an infinite game-tree. Do do that, we introduce the
set of winning strategies of a given height in the game tree,

φP,G
n = {ϕ | ϕ is a winning strategy of height n in Γ(P,G)}

and the value associated to this set :

ωn =
∨

ϕ∈φ
P,G
n

valϕ if φP,G
n in not empty, and FALSE otherwise

The pessimistic value of a general game-tree is then the (possibly infinite) following disjunction :

val Γ(P,G) = lim
i→∞

val
i
pessΓ(P,G) =

∞
∨

k=1

ωk in which we quantify only on the ωk 6= FALSE.

