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Abstract

We introduce a semantics of Logic Programming based on classica Game Theory, which is
proven to be sound and completew.r.t. traditional semanticslikethe minimum Herbrand model and
the s-semantics. This AND compositional game semantics alows a very simple characterization
of the solution set of alogic programin term of approximationsof the val ue of the game associated
to it, which can aso be used to capture in avery simple way the traditiona “negation as failure”
extensions. This novel approach to semantics opens the way to a better understanding of the
mechanisms at work in parallel implementations of logic programs, and is of great pedagogical
value,

1 Introduction

Game theory has found, in recent years, various applications in the research field of programming
languages semantics, so that game theory is a very active research subject in computer science. After
the preliminary works of Lamarche [Lam95], Blass [Bla92] and Joyal [Joy95] in the early 90s, the
works of Abramsky, Malacaria and Jagadeesan [AJ94] lead to the first fully abstract semantics for
functiona (PCF) or imperative (Idealized Algol) languages. Then, more recently, speciaistsof Linear
Logicsgotinterested in links between games and the geometry of interaction [PBE97], whereas Curien
and Herbelin showed that certain classical abstract machines could be interpreted in terms of games
[CH96].

On the down side, all these nice works seem to use more the vocabulary of games (player, move,
game, strategy) than the results and the techniques of traditional Game Theory. This shows that the
vocabulary of Game Theory can be, because of the generaity of the concepts it manipulates (arenas,
multiple and independent agents, strategies of cooperation or of non-cooperation, quantification of the
remuneration after each game) and of itsintuitive nature, a metalanguage that allowsto tackle many
of the aspects of modern programming languages. Nevertheless, it seemsto us of the highest interest
to be ableto show, for thefirst time, that classical notionslike payoff, propagation functionsand value
of agame tree are not sterilein the semantics of programming languages.

In this paper, we relate Game Theory and Logic Programming, using these classical notions, thus
providing afirst game semantics for Logic Programming.

There are traditionally two classical views of alogic program, depending on whether each clause
B «— Aq,..., A, initisinterpreted from right to |l eft or from | ft to right:
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e thelogica vision: if Ay A--- A A, thenB

¢ the effective vision: to compute B, one must first compute A1, As - -- A,,. Another way of
sayingitisthat B isaprocedurewhosebody isA;--- A,

We propose here athird alternative: to each logic program we associate a simple game, in which
one of the players tries to prove the goal and his opponent tries to disprove it: the beauty of the
approach is that the logical rules written by the programmer are just the rules of the game, and this
allowsto get a simpler understanding of the mechanisms involved in logic programming.

Nevertheless, our game is not the naive one obtained by taking the tree of al possible SLD
derivations; we wanted to clearly separatein our framework the different features making up an SLD
derivation: the construction of thetree, the visit of the tree and its evaluation. For this, we use player
positionsconsisting of just one atom, and check the consistency of solutionsusing a special evaluation
function in the AND nodes of the game tree similar to the mean value used in games with random
players.

The main result of the paper is that winning strategies in the game are in direct correspondence
with successful SLD-derivations, but they are much more compact: onewinning strategy representsan
exponential number of “switch-equivalent” derivations (i.e. derivationsdiffering by inessential details
and having the same computed answer, see 3.3).

Whereas the traditional semantics of Logic Programming languages (eg. Prolog) have been
deeply investigated (see for instance the books by Lloyd [LI087], Apt [Apt97] or Doets Doed4] for
good general sources on the usual semantics), we think that this novel game theoretic description is
more concise, intuitive and easy to understand for the novice.

The slogan " each logic programis a game” arose by a sort of a side effect: while working on
bisimulation games for concurrency theory [LN97], we implemented a Prolog prototypewhich turned
out to be very simple (only six lines of code). Actually, it was too simple: it was impossible not
to have the clear feeling that we had come across, in one way or the other, a structural shift of the
problem, so we looked more closdly at the mechanisms at work, and the outcome of thisinvestigation
was the foundation of a game semantics for logic programming that we present in this paper. 1t would
probably have been possibleto arrive at the same results starting from the tradition of games for model
theory (like the Ehrenfeucht-Fraissé games [Ebb][Sti97]), which have similar flavor. Nevertheless, to
the author’s best knowledge, no such attempt has been previously made.

Some basic notionsof Game Theory

Game theory is the branch of mathematics which tries to model and to understand the behavior
that rational agents should choose in a competitive arena. We introduce here some basic notions of
game theory which we will use later in the paper, which corresponds, mainly, to the intuitive idea of
randomized strategic games, and refer the interested reader to the comprehensive handbook [Ae92]
for arecent introduction to the topic.

Classically, agameis given extensionaly as atree in which the root represents theinitial position
of a play, the nodes are positions and edges are moves. In a genera n-players game, thereare n + 1
players (n human players plus an (optional) special one, the chance player, used to model random
processes, like throwing a dice), and nodes are labeled with the name of the player whose turn isto
play in that position. The payoff function is a function giving terminal positions p an n-ary vector of
values (usually reals), in which the j'h component represents the amount paid (or received) by player
j when the game ends in position p. A strategy for player j isa function which associates to each of
the (human) player’s node exactly one of his moves in that player’'s position: it describes the way he



will behave in aplay. The most studied games in Game Theory have been the two players, zero-sum
games: for them, the Minimax Theorem (von Neumann, 1928) states that the dual approaches of
maximizing one's gains or minimizing one's losses lead to the same expected value for each player, so
each game has one optimal value, the minimax value. Thiscan be rephrased in terms of game trees by
saying that one can compute the value of atwo-player, zero-sum game by assigning the payoff values
to the terminal nodes of the game tree, and propagating them bottom-up applying the Max (resp. Min)
propagation functionsto the values of the player (resp. opponent) subtrees.

It isimportant to note that the choice of the Max and Min functions depends on the game: usualy
they are the maximum and minimum over a set of reals, but there are well-known cases where a
different function is needed. For example, in the presence of random events (dices etc.), the mean
valueis used instead of the maximum. Similarly, the game presented in this paper uses substitutions
as values and intersection of substitutionsas the Max function.

The paper is organized as follows: Section 2 introduces the game I'(P) associated to a logic
program P, the notion of game tree I'( P, G), strategy and value of a game tree. Section 3 discusses
the relationship between winning strategies and various semantics of logic programs, and establishes
the soundness and compl eteness results, by reduction to the operational semantics of alogic program.
In essence, we can exhibit a winning strategy in the game associated to (P, G) for each successful
SL D-derivation starting with goa G in program P and viceversa. Finally, we give an exact estimate
of the size of the equivalence class of SLD derivations represented by a winning strategy and we
conclude by hinting at several potential applications of this new theory.

2 TheRulesof the Game

We begin this section with an informal explanation of the idea of the game associated to a logic
program P. Given a set of Horn clauses , we can define informally the mechanisms of a two player
game, as follows:

e Each godl to satisfy defines an initial position for adifferent instance of the game.

e Thefirst player (caled Player in the rest of the paper) wants to prove that the current atomic
goa A is satisfiable. He searches in the program al the clauses whose head unify with the
current goal (so the moves of Player are found by a vertical scanning of the rules of P). For
Player to win, that is, for the god to be satisfied the goal, it would be sufficient for one of his
moves to be winning, so Player’s nodes will be denoted by 'OR’ nodesin the game tree.

e The second player (called Opponent) wants to prevent Player from satisfying the current goal.
For this, each time Player moves choosing arule H «— Ay, .., A, of the program, Opponent
answer in turn with all the sub-goals A4, .., A, which thus represent his moves. So the moves
of Opponent are found by an horizonta reading of the rules of P. To win, the Player must
prove that he satisfy al these sub-positions proposed by Opponent, so Opponents's nodes will
be denoted by 'AND’ nodesin the game tree.

e Each player loses in a terminal node if he has no legal move in the current position. For
Opponent, this means that the current goal isthe empty goal T (Player has been ableto apply a
axiom (H < ) of P at hislast move). For Player, this means that Opponent has been able to
reach astate where no clause of P unify with the current game position.

e The payoff of the game will modd the price paid by Player each time he wantsto make amove
to advance in the game: it is just the substitution calculated by the unification process done



when he wants to apply one of the clauses of P. Of course, to get the resulting payoff for a
termina position of the game, one has just to sum (to compose) al the payoffs (the elementary
substitutions) accumulated during the history of the game.

e Wemodel thefact that queries given to alogic program generally consist of multiples atoms by
saying that Opponent will be thefirst player to move in this game.

We can now give a formal definition for the game I'(P) associated to a logic program and the
gametree I'( P, G) for the game I'( P) starting at position G.

Definition 2.1 (Game semantics of a logic program) Thegameassociatedtoalogic program P has
the following components:

players: the gamehastwo players, one called Player and the other called Opponent

positions: a player position in the game is an atomic formula A, while an opponent position is a
sequence of atomic formulae. Only opponent positionsare legal starting positions of a game

Player moves: Player moves by choosing a (variant of a) rule H < Ay, .., A, in P whose head H
unifieswith the current position A. Thisleads to an opponent position (A;6, .., A,0), where ¢
isthemgu of A and H (we say that theta is the payoff of the move).

If no rule unifies with the current position, Player 0oses and Opponent wins.

Opponent moves: Opponent moves by selecting one of the subgoals A; of an opponent position
G = Ay, .., A,, and the game continues in the player position A;. If the current opponent
position is the empty sequence, Opponent looses and Player wins.

Notice that it is not enough, for a goa to be provable, that player always arrives to a terminal
winning position: he also needsto have used compatible payoffs. In other terms, it will bethe“value’
of the game, in game theoretic terminology, that isrelated to provability. To compute such ava ue, we
need to introduce the notion of a game tree, a set of values, and the evaluation functions.

Let’sfirst introduce theidea of the gametree I'( P, G) of thegoa G in the program P by asimple
example, then we will formalizeit.

Example 2.2 [A simple example] Consider the logic program P consisting of the following three
rules

1. path(X 2) :- arc(XY), path(Y,2)
2. path(X X
3. arc(a,h)

This program P defines the game T'(P). If we try to satisfy the goal path(X,b) in P, we use I'(P)
with theinitial position path(X, b) and get the game tree T'( P, path( X, b)), which will be the regular
infinite tree of figure 1, where the gray subtree isequal to I'( P, path(X, b)) up to the renaming of X
toY.[

Asisimmediately be seen from figure 1, the game trees we get here are not the SL D-trees used
in the usual semantics of logic programming. The game tree is more abstract that the corresponding
SLD-tree: infact, each SL D-tree describesaparticular visit of thegametree, given the chosen sel ection
rule which impose the order the visit of the sub-game trees at Opponent’s nodes.

We will denote game trees using (possibly infinite) terms built via the constant constructors
AndLeaf andOr Leaf ,then-ary constructors And and O, substitutions o and the binary constructor
Label , for which we will usethe abbreviation Label (6,t) = .



Goal path(X,b) {X-aYy-b} X b}

Player nodes O path(X,b) path(X,b)
Opponent nodes [ ]
clause clause 2
{X-b}

dause3 dause2
{X-aY.b} (Y-}

Figure 1. An example game tree and two winning strategies.

Definition 2.3 (The gametree of a goal in alogic program)

We introduce here the two mutually recursive functions f,,,,4 and f,, to construct the game tree of a
goal Ginalogic programP. The function f,,q takes a goal G as argument and constructs the AND
levels or the tree, whereas f,,- takes an atom A as argument and constructs the OR levels of the tree.
They are defined as follow:

e fund(@) = AndLeaf

i ftmd(Ala ~~7An) :And(for(Al)a "'7f07“(A7’L))
e for(A)=0CrLeaf if Player hasno moveat A

o for(A) =0 ( fanngl)’ e fanglka)) if there are &k moves with payoffs 61, .., 8, for Player
leading to the opponent positions Gy, .., G

A game tree is thus an AND/OR tree in which the edges going from OR nodes to AND nodes are
labeled by substitutions. In the rest of the paper, we will sometimes call AND gametree and OR game
tree any term beginning with the And and Or  constructors, respectively.

Finally, we can definethe gametree I'(G, P) as fona(G) in P.

Remark 2.4 As usual, we use variants of program rules abtained by replacing the free variables of
therulewith fresh variables. Here, we will also requirethat each application of a node formationrule
uses a different supply of fresh variables.

Following the tradition of classical theory of games, we now try to give value to the games
trees associated to a logic program we've just described. Game trees will have values ranging over
formal digjunctive expressions of substitutions (including a special substitution FAL SE to denotethe
solution of an unsatisfiable system of equations), equipped with a partia order that extends the usua
substitution partial order < (i.e. o < 7 iff 30’.7 = oo’ : notice we reverse the traditiona notation
for coherence reasons with payoffs) to disjunctive expressions. The intuition behind this is that the
disjunction of two substitutionsis a va ue representing the possibility for player to choose either one
of the two, whileintersection of valuesis the function performing the compatibility check.

We will use in what follows the usual notations and definitions for substitutions, unifiers, most
genera unifiers (mgu) etc. (acomprehensive survey of the propertiesof substitutionsand unifiers can
befound, for instance, in [Ede85]). Wewill useo, 7, . .. torange over substitutions, «, 3, . . . torange
over substitutions or the specia symbol FALSE, and vy, v2 to range over formal expressions (aso
called values). Also, e will stand for the identity substitution. More formally



Definition 2.5 (The values of the game) The values of the game are the formal expressions given by
the grammar v := FALSE | ¢ | v V v for which we impose that V is an associative commutative
symbol such that FALSE = FAL SE v FAL SE, and equipped with the partial order C generated by
the following inequations:

o CFALSE for all substitutione (Top) aVovCw (choice)
oCT ifo <7 (subst) aVvEpBVoe ifal g (V—monotonicity)

Given asubstitution @, we note Ey the system of equations Ey = {x = 26 | = € Dom(0)}. Since
0 is clearly a solution of Fy, Ey is aways unifiable. Moreover, in the rest of the paper, we will
always consider substitutions cal culated by unification algorithms, and notice that in that case, if 6 is
idempotent and relevant, then 6 = mgu(Ey).

Definition 2.6 (Operation on Values) We define the intersection o A 7 of two substitutions o, 7 as
mgu(E, U E;) if E, U E; is unifiable (in which case we will say that ¢ and 7 are compatible),
and FAL SE otherwise. This associative commutative operation A is extended to arbitrary values by
means of distributivity with respect to vv. The composition ¢ - v of a substitution o with a value v is
defined by means of distributivity of composition of substitutionwith respect to Vv, with the additional
equation o - FALSE = FALSE.

It iseasy to verify that A and Vv on values are monotone with respect to the order C.

When a game tree isfinite, we can give it avalue that represent the payoff for the player. Here is
where it becomes apparent that we are using a specia operator on AND nodes, that captures aglobal
notion of compatibility of vaues, thus making the eval uation very different from what could be found
in simple games like the ones discussed in the introduction.

Definition 2.7 (Value of a finite game tree)
The value of a gameis defined in a bottom-up fashion fromthe leavesto theroot, by first giving values
to the terminal nodes and then combining the values of the subtrees as follows:

val (AndLeaf ) = ¢ val (And(ty,---,t,) ) = (valty) A--- A (valty,)
val (Or Leaf ) = FALSE val (Or (%, %)) = (6, - (valty)) V- V (8, - (valt,))

> tn

2.1 Winning strategies

The central notion to relate game trees to the traditional SLD derivationsisthat of strategy for Player:
intuitively, a strategy tellsthe player what move she/he must chose in each positionwhereitis her/his
turn to play. Formally, a strategy is a partial function from the internal Or nodes of the game tree to
subtrees, or, equivalently, a subtree of agame tree which is deterministic on the OR levels:

Definition 2.8 (Strategiesin a gametree)
The set ¢(¢) of strategiesin aterm isthe maximum set such that:

e t = AndLeaf = ¢(t) = {AndLeaf }

o t =AnNd(t1,...,tn) 0 € 4(t) = o =And(p1,...,pv,) Withp; € ¢(t;)
o t = O Leaf = ¢(t) = {OrLeaf }

t=O (%, %), peat) = 3jsuchthatp = O ( Z) withy' € ¢(t;)

o tn



Remark 2.9 (Value of afinite strategy) Finite strategies are just finite game trees with a special
form, so the definition of the val ue of a game tree extends naturally to strategies. Note, however, that it
can easily be seen fromthe definitionsthat the value of a strategy is either a substitution or FAL SE :
it cannot be a disjunction of substitutions.

Since we are mainly interested in the calculated answers of alogica programs, we introduce the
notion of winning strategy for the first player:

Definition 2.10 (Winning Strategy) A winning strategy in a (possibly infinite) gametreeT" isafinite
strategy ¢ such that val o < FALSE

For the game on the left of the previous figure 1, there are at |east two winning strategies, shown
on theright of figure 1.

3 Gamesand traditional semantics

It iswell known that some of the traditional semantics of logic programming, like the least Herbrand
model, have operational characterizationsin terms of SLD-derivations. We shall prove in this section
that it is also possible to give another equivaent definition of these denotations, with the notion of
winning strategies.

WEe've seen that theinitia positions of the game are just goal, so we shall in the following definitions
use freely the adjective "atomic, ground, Herbrand, conjunctive, etc." to characterize them. The least
Herbrand mode denotation (success set) of aprogram P is rewritten as the set of winning Herbrand
positionsfor Player, that isthe Herbrand positionsin which he has awinning strategy:

Wp = {A | A Herbrand position such that 3 awinning strategy inI'(P, A)}

For denotation of computed answers (s-semantics in [BM94]), we have the most general atomic
positions (i.e. positionswith theform A(X7, .., X,,)), instantiated by the computed answers:

W3 = {Af | A most general position such that 3 awinning strategy inwithvalue§ inT'(P, A)}

We shall say that W and I3 are the two winning position denotationsof aprogram P, and provethe
soundness and the compl eteness of these game-based denotations with respect to the least Herbrand
model Op and the s-semantics O%, through the use of their well-known operational characterizations:

Op = {A | AHerbrand atomand 3 A ?* o} and O3 = {Af | A most general alomand 3 A %* o}

3.1 Fusion and splitting of SLD derivations

In order to relate strategies to SL D-derivations, we need to prove a key result about SLD-derivations,
namely that we can fusion two successful derivations and that we can split a successful derivation
starting from a conjunctivegoal into several successful derivationsstarting from the components of the
conjunction. Technically, thisis done by introducing an annotated version of SLD derivation, to keep
track of the system of equationssolved by an SL D derivation, and using the notion of switch-equival ent
derivations (informally, that two SLD-derivation steps can be switched provided that in the second
step an instance of an "old” atom is selected, and this give raise to a symmetric relation «, whose
reflexive and transitive closure is denoted ~. This technical development has an intrinsic interest, so
itisfully detailed in the appendix, but for our purposes we only need to state the following final result
which is an immediate consequence of lemma A.6 and lemma A.10.



Proposition 3.1 (Goal fusion and goal split for successful SL D-derivations)

Supposethat §; and 6, are compatible, that G O mandthat Gy 227 @, then (G1, Go) = fL0%* g,

0 0 )
Conversely, if (G, G2) ?* O thenthereexists ;.05 st. G4 Tj;k g, Gs %Vk andd = 6, Af,.

Thisisthe key technical tool to convert SLD-derivations back and forth into winning strategies.

3.2 Soundnessand completeness of the Winning Positions Denotations

We show here first that our game based denotations are sound, that is, whenever a winning strategy
exists, we can find a successful SLD-derivation. Then, we show that our game denotations are a so
complete, that is that whenever a successful SLD-derivation exists, we can find a winning strategy.
What is more, the computed answer and the value of the strategy are the same.

Theorem 3.2 (From winning strategies to successful SL D-derivations (soundness)) Ifthereexists
a winning strategy with value 6 in I'( P, G) then there exists a successful SLD-derivation of G in P
with computed answer 6.

Proof. The proof is by induction on the structure of the strategy. A winning strategy ¢ isafinite
AND-OR tree that have no OR-Leaf, so we can prove the thesis by induction on the number d of
and-levels of the strategy.

e d=1.If p=AndLeaf thenT'(P,G) = AndLeaf then G isthe empty god by construction
and we have a successful SLD-derivation of G with computed answer ¢, which is the value of
the strategy ¢, as claimed.

e Induction step Suppose G = (A, ..., 4,), 0 = And(Q (£ ..., O (Z2)) witheach
p; astrategy in a sub-game v; of I'(P, G). Therules of the game imply that each of these ~;
has been obtained by using a program clause H; < G; inan SLD step A; => G,0; where

o isfinite and itsvalue is strictly lower then FAL SE, the sub-strategies ¢; are flnlte and their
val ues v; are strictly lower then FALSE. Since the ¢;’s are winning strategies in the ~;'s, we
can apply the induction hypothesisn times to get n successful SLD-derivations G;6; %*
of G;0; in P with computed answers v; So we can get a successful SLD-derivation of A; in
P, with computed answer 6;v;. Since v = 61v1 A --- A B0, 1S the value of ¢, a winning
strategy, it isstrictly lower than FAL SE, so we can apply corollary 3.1 to construct a successful
SLD-derivation of (A, .., A,) with computed answer v, and we are done.

O

0
Theorem 3.3 (From successful SL D-derivationsto winning strategies (completeness)) If G ?*
then there exists a winning strategy with value § in the game I'( P, G).

Proof. Let ¢ bea SLD-derivation G %* 0. The proof is by induction on the length [ of .

1. If G consists of a unique atom A, we consider explicitly the head and the tail of the SLD-
derivation A 9:/> G’ 9:N>* o. If G’ =@, theresultistrivial, otherwise we apply theinduction
hypothesis on the tail, which gives us awinning strategy ¢’ in the game I'( P, G) with value
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0". Then the winning strategy for Player is obvious: answer the first opponent move A with
the same rule that was used to make the first step of the SLD-derivation, reaching the position
G',thenplay like ¢’ inT'(P,G"). Formaly, ¢ = And( Or ( %) ) isastrategy inT'(P, G), with
valuevalp = (¢’ - valy') = 06" =60

. If the goa G has the form A, As, ..., A, withn > 2 then we can apply the corollary 3.1

to get n successful SLD-derivations&; = A; 9:> &, with the additional property 8 = 6; A
02 A --- A B,. Applying the induction hypothesis on the &;, we get n winning strategies ;
in the games IT'( P, A;) with vaues 6;,. A winning strategy for Player follows easily: use the
strategy ¢1 when the opponent plays Ag, use the strategy o, when opponent plays A,, and
so on... Formaly, if ¢; = And( O ( —L)) with vaue 6; , then we can form the strategy

ap:And(O(Z—/}l),...,O(wz)) which hasthevaluef; A 6 A -~ A 0, = 0

3.3 Expressive power of winning strategies

Looking better at the proofs of the soundness and completeness results, we can see that a winning
strategy represents precisely the class of switch equivaent successful SLD-derivations. For aformal
proof, we would reconstruct the strategy implicitly associated to an SLD-derivation and prove that
any equivalent SL D-derivation correspond to the same strategy, but here we only want to remark that
equival ents SL D-derivations have the same skeleton and the strategy isindeed this skeleton.

Itisquiteinterestingto determine the number of different (but switch -equivalent) SL D-derivations

denoted by a strategy. Observe that if an SLD-derivation is the switch of another then they consist of
the same number of SLD-steps (the same holds for =), so derivationin an equivaence class have the
samelength. We can then computethelength /() and the number £( ) of successful SL D-derivations

that a strategy denotes.
0, if ¢ = AndLeaf
Up) = { fl(e(%) +1), ifp=And(Or (L), .O(%))
j=
1 if o = AndLeaf
_ (p)! . 0
H(p) = H (e )-7 if o =And(Or (24),...0 (2))
H(Z(% +1

Jj=1

Example 3.4 Consider a strategy with the structure shown in the following picture (figure 2) we can

Figure 2: A strategy with three And levels

calculate 13440 different successful SLD-represented by this simple winning strategy. [J



4 Cutting and evaluating gametrees

Up to now, we have evaluated only strategies, for which the digunction of substitutions was not
necessary in the space of values. If we look at the value of a whole game tree, then we will find
disjunctions, telling us how many ways Player has to win, alowing thus to finely analyze the mul-
tiplicity of computed answers. For this, we will need to evaluate potentialy infinite trees, but here
again traditional game theory comes to our rescue: for instance, the size of the chess gametreeis so
big that it can be considered infinitefor all practical purposes, so rea chessplaying programscut it at
acertain level and provide an approximative eval uation of the tree using appropriate heuristicsfor the
values of cut nodes. Here, we can do the same: cut the tree at the ith AND level, assigning avalueto
the cut nodes and obtaining an ith approximation.

Two main choices are available to estimate of the cut node: either we use FAL SE, and obtain a
pessi mistic approximation Valﬁess of thereal value, or use ¢, and obtain an optimistic approximation
val(ﬁpt of the real value (see appendix for details). The first choice gives us the necessary tool to
establish the correspondence with SLD derivations, while the second choice alowsto handle SLDNF
derivations (which we will not consider here due to lack of space).

A fundamental property of these approximations is that they are, respectively, decreasing and
increasing with respect to the cut level (see theorem B.3), so one can take the limit on an appropriate
set of values and obtain for example the pessimistic value val T'( P, G) of agame tree which has some

very interesting properties:

e Its cardinality (the number of substitutionsin the disjunction) is the number of equivalence
classes of successful SLD derivationsfor GG in P for the switch equivaence.

¢ |ts components are the computed answers substitutionsof the query G in G, counted with their
order of multiplicity

e If we apply to it the simplification rule” 8 v 8§ = 6 ", then we come back to the computed
answers semantics.

e If we apply toit the simplificationrule” 6 V o = o if o ismore genera than 6 ”, then we get
only the most general computed answers.

The soundness and completeness theorems established in the previous sections alows to relate
this approximation to SLD derivations.

Coroallary 4.1 (Pessimistic semantics and SLD derivations. soundness and completeness)
A 9 :
If 3i.val},, ,I'(P,G) = vsuchthato C FALSE then 3 G =" & withv C 6.

pess

0 A
Conversdly, if G —>" @ then 3i.val,,,,I'(P,G) = v C 0 C FALSE.

Proof. If there exists a pessimistic eva uation of the gamewith valuewv strictly lower than FAL SE,
then there exists awinning strategy in Cut(i,I'( P, G)) with value # such that v C 6. So we can use
theorem 3.2 to obtain a successful SLD-derivation with computed answer 6.

0
On the other side, given a successful SLD-derivation§{ = G ?* @, we can construct the winning
strategy ¢ = SLD2Strat({) in I'(P, G). Then takei as the depth of ¢. By theorem B.3 have that
val,...I'(P,G) C val . T'(P,G) C valp = 0. ]

pess



5 Conclusionsand Per spectives

We have presented in thispaper agame theoreti c approach to the semantics of L ogic Programming, and
proved that it is flexible enough to capture various forms of semantics proposed in the literature, from
the minimum Herbrand model to the computed answers, to the maost general computed answers. We
showed that awinning strategy concisely represents a very large class of equivalent SLD derivations,
thus providing a powerful tool to investigate properties of derivations. Nevertheless, all these results
that established the first bridge between Game Theory and Logic Programming seem to have tapped
only alittle of the potential intrinsic in this interconnection. Let us point here at some further very
promising devel opments.

It would be interesting to link the literature in the field of pardleization of logic languages
with the field of parallelization of game-search agorithms (good comprehensive bibliographies can
respectively be found in [LP93] and [Bro96]). Since the works on game-algorithms began decades
before the first logic programming implementations, we expect that the latter would greatly benefit
from the connection.

It is clear, though we hadn’'t enough place to develop the idea here, that the game values of the
programs are AND-compositiona (namely valT'(P, (G1,G2)) = valT'(P, G1) AvalT'(P, Gs) ), but
not OR-compositional (valT'((P U @), G) # valT'(P, G) vV valT'(P, G)). This suggeststo look for
an OR-compositional game-based denotation, which hopefully would be more abstract and intuitive
than the known ones.

Finally, the two ways, pessimistic or optimistic, of defining a cut-approximation computation of
game values yields a duality clearly similar to the least fix-point vs greatest fix-point duality used
to deal with positive and negative interrogation in logic programming. Since the negation as failure
(SLDNF) denotation of a program P uses that maximum fix-point of the immediate consequences
operator T'p, it seems that the negative goals must be treated with the optimistic approximations: if we
can show that val;,I'(P, G) is FAL SE for some i, then G has been shown to be unsatisfiable despite
being very optimistic for the cut parts of the game, and G is a contradiction of the logic program P.
This givesa very intuitive explanation of SLDNF.
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A Technical definitions and results about SL D derivations

A.1 Goal Fusion

We need to extend the definition of SLD-derivation to include the notion of system associated to (and
solved by) atraditional SLD-derivation.



Definition A.1 (System associated to an SL D-derivation) If G = A4, .., A,, isthe current gaol and
B «— H isavariant of a program clause, variable digoint with G and 7, such that B and A;7 unify
with mgu 6, then we can infer the transition

0
(G,T1,E) o (G',70,E-{A; = B})
where G/ = Ay, . A1, H, Az‘+1, o A
The two notationsare clearly equivalent: if we note X is the empty sequence of equations, then

G L* @ ifandonlyif (G, e, \) =" (G",0,E) and G' = G"9

but with the new notation, we keep track of the sequence E of formal equations solved along the steps
of the SLD-derivation. In the rest of the paper we will say that E is the system associated to an
SL.D-derivation.

Remark A.2 We shall frequently consider a sequence of equationsas a system, so we will, by abuse
of notation, say that a sequence is solvable or that two sequences are equivalent (in which case we
will WriteE1 ~ EQ)

Example A.3 We illustrate the construction process of an SLD-derivation system with a simple
example. Suppose we had the following successful SLD-derivation ¢ :

91 92 93
A =  As0;, As0; == As010, = O
U g g a, 2201 4301 77 A3 ZBy_.

then in the new notation we have:

(A1, e, \) — ((Ag, A3),01,{A1 = B1})

— (A3,0100,{A1 = B1} - {A2 = By})

BQ(—
[%
i @O0 (A= Bi} - {Ar = Ba} - {4s = Ba))

SOthesyﬂefntOé. iS{Al = Bl,AQ = BQ,Ag = Bg} ]

The nice point of the notion of systems associated to SLD-derivations is that they are very
convenient for complicate proofs on SLD-derivations, as there are lots of well-known and strong
results on unification of systems. For instance, we will use the following lemma, which alows usto
search for mgusin an iterative fashion. A proof can be found in [Apt97].

LemmaA.4 (Iteration) Let E4,E, be two sets of equations. Supposethat 6, isa mgu of £; and 1,
an mgu of E56,. Then 617, isamgu of E; U E,. Moreover, if B¢ cupFs is unifiablethen an mgu 6,
of F existsand for any mgu 6, of 1 an mgu n; of E»0; exists, aswell.

The system associated to any SLD-derivation has a solution, which is exactly its computed answer
substitution. In fact we even show something stronger, from which we get the result by taking 7 = ¢
and E = ).



LemmaAb If (G, 7, E) N (G', 70, E - E') then 6 isthe mgu of the system E'.
Proof. The proof isa simpleinduction on the length 1 of the SLD-derivation

o 1=1.1f(G,7,E) - (G, 70, E-{A= B}) by definitiond isthemgu of A~ and B where A
istheselectedatomin G, inother wordsfisthemguof {Ar = B} = {Ar = Bt} = {A = B}r
(noticethat BT = B because B isan arbitrary variant of a program clausedigjoint to 7).

e 1 > 1. We decompose the derivation in two parts strictly shorter than 1 (but longer than 1) :

(G, 7, E) 25 (G, 701, E- E1) 25 (G, 70105, E - By - By)

and we want to show that ( E - E»)7 issolved by 0, 65. By induction hypothesisé; isthe mgu of
Ey7m and 6, isthe mgu of Ey76;1. By applying the iteration lemma A.4 we havethat 6 = 6,65
isthemgu of Ey7 U Eor = (Eq1 U Es)T.

We can now prove the following key lemma
Lemma A.6 (Goal fusion) If Gy b x G’ and Go b x GY, aretwo SLD-derivations such that 6,
and 6, are compatible ( 8; A 8, < FALSE), then starting from the fusion of the two goals we can
obtain an SLD-derivation (G, G2) 9%92* (G'1m1, G5ne) where n; and 9 are substitutions such that
011 = bOamo = 01 N Oa.

Proof. Theidea of the proof isto consider the extended form of SLD-derivations:

<G17€7 )‘> g* < /1/7017E1> and <G2767 )‘> g* < /2/7027E2>
and to prove that we can concatenate them, by doing the latter after the former, thus forming the
following SLD-derivation:

(G1,Ga), 6, \) 2 (G, Ga), 01, Br) 255 ((GY,GY), 01 A by, By - Eo)

First, we prove that £ U E5 is solvable. By hypothesis8; A 85 < FALSE, so by definition of the
intersection of substitutionsmgu(6, 62) exists. But by lemmaA.5, 6; isthemgu of E;, so 6; isjust
the solved form of F; and we abtainthat £ U E5 issolved by 61 A 6.
Supposethe second SL D-derivationhad n stepsand E; hastheform Ey = {Ly = Ry} -+ - {L, = R,.},
then E20; = {L10; = R161}---{L,01 = R0, }. SincewecanchoosetheprogramclausesR; < H;
variabledigointwithf, thisisequivaenttothesystem{ L0, = R} ---{L,0; = R, }. Theiteration
lemma for solution of systems (lemma A .4) assure usthat F»0; canin fact be solved step by step, that
isin the order

1 = mgu(L101,R1)
T2 = mgu(L20171,R2)

Tn = mgu(Ln0171 o Tn—1, Rn)



Havingnow ((G1, G2), €, A) Bx (G, G9), 01, E1), wecan compl etethemissing stepsto construct

(G, Gs), 01, E1) 55 (G, GY), 61m1, Er - Es), where g, = 74 - - - 7, taking the previous order
to solve the equations.

Now, by applying oncemorethelemmaA.5, we get that 011, = mgu(E; - E2) = mgu(FE1 U E3).
By doing the work in the other way round (that is, reducing G after G2), we could construct etas

such that 02172 = 01 A 02 = 01171. Flnally we have that (Gl, GQ) 01005 (G”01171, G2/01171) with
G/1/01171 = Gllnl and G’2’01n1 = G’2’02n2 = Gl2172, as claimed. [

A.2 Goal Splitting

Let us recal a classica technical lemma on SLD-derivations, the switching lemma, which says,
informally, that two SL D-derivation steps can be switched provided that in the second step an instance
of an”old” atom is selected. The following formulation is taken from [Apt97].

Lemma A.7 (Switching Lemma) Consider aquery @, with two differentatoms A; and A,. Suppose
that

f QO Ql Qn CR-H Qn—l—l :> Qn+2
isan SLD-derivation where

e A; isthesdected atomof @,
e Asf,.1 isthe selected atomof Q.+ 1.

Then for some Q;, 1,0, ,, and @,
® 0,109 =0nt16n42
e thereexists an SLD-derivation

[4
€=Q0 L Qi Qn 22 Quit 22 Quis -

n+

where

— ¢ and ¢’ coincide up to theresolvent @,
— A, isthesdlected atomof @,,,

- A10,,,, istheselected atomof @, ,,

— ¢ and ¢’ coincid after the resolvent @, 1.

Definition A.8 (Equivalence of SLD-derivation) If £ and ¢’ are two SLD-derivations which satisfy
the conditions of the switching lemma A.7 then we say that ¢’ is a switch of £ and we write ¢ « &.
By definition < isa symmetric relation, so we define the equivalence ~ asthe reflexive and transitive
closure of <

Lemma A.9 (Systems of equivalent SL D-derivations) Equivalent S_D-derivations have the same
associated system of equations and the same computed answers.



Proof. We first observe that

E=(G, e\ =5 (G, 0,B), €=(GeN LF(G0,E), to¢=>E~E
since if A; and A, are the switched atoms and ¢; = (B <« Hj) and ¢; = (By <« H,) are the
switched clauses used to transform £ into ¢, thenwehave £y = E} - {A; = B1} - {As = Ba} - EY
and By = Ef - {As = By} - {41 = B} - EY. So E; and E, represent the same set of equation (but
in a different order). By reflexivity and transitivity of equality of systems, ~ has this property too.
Having the same associated system, they have the same computed answer. [

)
Lemma A.10 (Goal split) If (G1, G2) ?* G’ then there exists G} ,G%,01,02,m1 and 7, such that

0 [4
o Gy =" G, Gy =" GhWith G’ = (Gimy, Gymp)
o =01 =0 =01 N0

Proof. We consider the extended form of the SL D-derivation:

*

((G1.Ga).e.0) == ((GY.GY).0.E)

The ideg, then, isthat we can isolatein £ the steps which reduce G and al itsresidus. A method to
achieve this, for instance, isto "mark” G in the SLD-derivation and all the descendants of GG;. By
using the switching lemma repeatedly and sorting, we can move GG; and all of its marked residues to
the head of £, and get an SLD-derivation £’ equivalent to &, but in which we reduce G first:

91* m x

§1 = <(G17G2)767®> ? <( /1/7G2)7017E1> ? <( /llaGIQ/)aelnlvEl'E2>
With the same argument we can reducefirst G5 and its residues to abtain

2 %

6
& = ((G1,Ga),6,0) ==" ((G1,G),00, B) =" ((G{,G3), 0212, Ez - En)

Since&; and &, are both equivalent to &, they have the same associated system and the same cal cul ated
answer by lemmaA.9, so E = E; U B, issolvableand 6 = 6,17 = 6m9. But noticethat now, calling
G| = G601 and G, = G462, wecan extract thederivationsfor G; and G separately by keeping only
thefirst stepsin & and &5, respectively :

01 % 0 x
fi:zGl ? Gll and fé:zGQ ? GIQ

E; is the system associated to ¢, E» the system associated to &), they are solved by 6, and 6
respectively, and F; U E, is solvable, so we can apply thefusionlemmaA.6toget that 6 = 6, A0y, I

B Cutting and evaluating infinite treesin detail

Hereistheforma definition of the function for cutting infinite trees, followed by the definition of the
pessimistic and optimistic value of a cut game tree. Applied to a game tree, the function Cut(i, _)
cuts it at the i** AND level, replacing all non-leaf subtrees with the constant §2, which represent the
interruption of the tree devel opment process.



Definition B.1 (Cut of atree at level i)
The function Cut(o,f) a game tree is defined inductively as follow :

e at the AND levels:
Cut(0,AndLeaf ) =Q
Cut(k,AndLeaf ) = AndLeaf vk >1
Cut(0,And( t1,...,t,) ) = Q
Cut(i,And( ty,...,t,) ) = And( Cut(i — 1,t), ..., Cut(i — 1,t,)) Vi >1

e atthe ORlevels:
Cut(i,Or Leaf ) = O Leaf
Cut(i,Or (%, ..., 82)) = O ( gty -+ Tty

Ha R ] Cut(Ltn)

Definition B.2 (Pessimisticand optimistic approximations of the game value)

The function val,,., is an extension of the function val on the game trees containing the constant
2, which is evaluated by the worst possible value, that is using the equation val ., © = FALSE.
The (dual) optimistic version val,,,, evaluates 2 with the best possible value, that is using the
equation val,, .2 = ¢ We will note val’ . t the approximationval .. Cut(i, t) and val? ,t the dual
approximation val

pess
Cut (i, t).

%
pess op

opt

Theorem B.3 (Monotonicity of progressive approximations)
Thefunction val’, .. of a gametreeis decreasing with respect to the cut leve i, whereas the function

pess

val , is monotone (increasing) with respect to i.

%
op

Proof. To provethe monotonicity for thefunction val we comparethetwo valuesval i*1 ¢ and

pess? pess

val!___t toestablishthat the latter is greater than (or equal to) theformer. If ¢ isaleaf (¢t =AndLeaf )

pess
then both terms are equals to ¢ and the claim is trivially proved. So we will suppose that ¢ has the
. () (5)
genera form And( ¢, ..., t,) withn > 1 wheret; =Or Leaf ort; =0 ( ‘:}7), . ‘z(—:))
1 n

The proof is by induction on the cut level i :

e wheni= 0, we have Cut(0,t) = 2 and its pessimistic evaluation isFALSE which is greater
than to anything el se.

e fori > 0, weunfold the two valuesto compare them:

val'tlt = val . Cut(i+1,And( ¢, .., t,) )

pess pess

= val,. And( Cut(i, t1), .., Cut(i, t,))

n
= /\ valpessCut(i, t;)
j=1

val! .t = wval  Cut(i,And(t,..,t,))

pess pess

= wval And( Cut(i — 1,t1),..,Cut(i — 1,t,))

pess

n
= /\ val,.. . Cut(i —1,t;)
j=1

If one of the subtrees (say ¢;) is aleaf then Cut(i,t;) = Cut(i —1,¢;) = O Leaf and so
valiflt = valiflt — FALSE, since val ., Or Leaf = FALSE and by the definition of

pess pess pess



O

PIE) 9(7)
intersection. On the other hand, if all thet; are of the form Or ( (:) - (7)) then we further

unfold thevalues val’*1¢ and val!__ .t and get

pess pess

95.7') 9(7')
Cut(it{)" "7 Cut(i t(”)

n
valgjsit = /\valpess()( )
j=1
n

= /\ \7 G(J val;)esstg

7=1h=1

ng) 9(.7')

% _
valpess =

)

Cut(i—1,t7)" " Cut(i-1,t7))

pessh,

\/ 0(] vali~ lt(J)

Now, by theinduction hypothesis, weknow that val ’esstfj I val;)e;gtfj ), sousi ng monotonicity
of composition of substitutions (that is, 81 < 6, implies96; < 66, ) and of v and A operators,
we get the result:

i+1 i
val J .t © val . 1

The proof of monotonicy for Valopt issimilar (replacing J for C and e for FAL SE).

We now turn to the definition of the value of an infinite game-tree. Do do that, we introduce the

set of winning strategies of agiven height in the game tree,

G = {¢ | ¢ isawinning strategy of height n inT'(P, G)}

and the value associated to this set :

wn= \/ wvaly if $£“ innot empty, and FAL SE otherwise
pedn

The pessimistic value of ageneral game-tree is then the (possibly infinite) following disunction:

val['(P,G) = hm valpess (P,G) = \/ wy, inwhich we quantify only on the wy, # FALSE.

k=1



